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ABSTRACT In many cases, a pack of robots holds an advantage over a single robot such when an oversized
or over-weighted load is to be carried. In such cases, a single robot will not do. Nevertheless, this may
not be an easy task for a pack of robots as well, especially when the load needs to be lifted off the
ground making the cooperative task less tolerant of errors. The limited research on such a load can be
attributed to the mechanical complexity of the problem. Notably, previous studies have not considered the
spatial, decentralized, communication-free scenario. We, therefore, consider a robotic pack of six agents
that assumes the task of spatially moving a load through a cluttered space. As it transports the load, the
pack carefully avoids planar obstacles while maintaining its orientation. To do so, we model the whole
system as a six Prismatic-Prismatic-Spherical-Spherical (6-PPSS) redundant mobile platform, having twelve
degrees of freedom. This paper focuses on a decentralized control schemewhere nomutual communication is
needed. Each agent calculates its ego movements according to the height of its corresponding load-node; the
surrounding obstacles, and; the goal’s relative position. To avoid numerical errors appearing in the vicinity
of singular configurations, we calculate the platform’s forward kinematics in the model’s full configuration
space. We then show how this rationale can be further extended to formulate a distributed control scheme
for the motion planner. We demonstrate our algorithms in several simulated scenarios and in a set of real-
world experiments using specially designed omnidirectional robot agents. We test the ability of the pack to
maintain the load’s orientation just by measuring the load’s height at the holding node of each agent. Lastly,
we measured the time required for the pack to assume a desired load orientation. Results indicated that even
in the presence of a 10-degree tilt error, the load was able to be restabilized within a maximum of 15 seconds
in simulated conditions and 20 seconds in real-life experiments.

INDEX TERMS Swarm robotics, parallel robots, motion planning, decentralized control.

I. INTRODUCTION
The ability to cooperatively transport objects is common for
several arthropods [3] where an individual insect holds the
object firmly by applying generalized forces or alternatively,
push/pull the object [7], [13]. Typically, this involves limited
information sharing with regard to the exerted generalized
forces each experience [7], [13].
In the Robotics literature (e.g., [8], [9]§, [21], [23]), a swarm
refers to multiple robotic agents with a cooperative mission
where usually a decentralized controller with minimal
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communication capabilities is applied. Such cooperative
missions may include mapping, loads manipulating, and
searching [6], [9], [10], [15], [26]. In general, motion in the
plane requires at least two degrees of freedom. For wheeled
agents, these can be given using: Omniwheels that enable
motion to any direction regardless of the agent’s orientation;
or Differential (or skid) steering where opposite wheels (or
tracks) can be independently actuated.

A. RELATED WORK
Early research mainly considered centralized control for
the load carrying task. For example, in [33], where the
researchers considered a swarm of communicating agents
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that manipulate planar loads via cooperative pushing. Since
then, most work has been focused on decentralized control
schemes. These can be further categorized according to
predefined information-sharing assumptions:

1) DECENTRALIZED WITH INFORMATION-SHARING
Carrying a load may rely on friction. For example, in [1]
the researchers considered a swarm of omnidirectional
mobile robots transporting a planar elastic load by means
of Coulomb friction. The motion planner introduced was
based on an artificial potential field calculated assuming
the agents share their locations. Carrying arbitrarily shaped
loads were considered in [18]. In their work, the agents
first surround the object, and by sharing the locations of
all agents, each agent estimates the object’s centroid. Then,
by choosing their motion with respect to that centroid, the
agents manipulate the load. The researchers in [42] proposed
a decentralized control scheme for a multi-robot system using
a deep Q-network controller for each agent. This was used to
transport an oversized object on the plane. The researchers
demonstrated a two-robots scenario where an oversized rod
was carried through a doorway. The information regarding
the rod’s orientation, as well as the fellow agent position,
was assumed to be known. In [28] the authors of this paper
recently introduced a spatial-load-carrying swarm where a
decentralized control scheme with information sharing was
applied. The swarm was given the task of maneuvering
through a planar-cluttered space with additional obstacles in
the load’s path.

2) DECENTRALIZED WITH NO INFORMATION-SHARING
Pereira et al. [31] considered an ‘‘object closure’’ strategy
for translating and orienting planar objects. They assumed
that only local information is available to the robots (relative
position and orientation of their neighbors) and that each
robot knows the object’s shape. Similarly, manipulating
planar loads was considered in [12] where the researchers
constructed an artificial decentralized navigation function to
hold the object’s boundary and traverse it towards the goal
position. Researchers in [16], [17] addressed a cooperative
planar transport mission where the group members lack
knowledge about the goal position. The agents exploit the
physical interactions with other group members to imitate
a passive caster. Kalat et al. [22] proposed a decentralized
control algorithm for a planar transport problem where
each robot coordinates its actions with a virtual teammate
located at the robot’s mirror position with respect to the
payload’s center. A communication-free manipulation was
also proposed in [5] where each agent is given the simple
mission of pushing an object on the plane at positions where
a direct line of sight to the goal is occluded by the object. Note
that all cases above refer to the load-carrying task as a planar
one, meaning, the load can be manipulated in three degrees of
freedom. In such cases, pushing or enclosing an object in the
plane is insensitive to discontinuities, that is, instances where

FIGURE 1. An illustration of six omnidirectional agents carrying a
triangular load. The equivalent kinematic model is a 6-PPSS redundant
mobile platform. As A and B follow the dashed circle and all other agents
will stay still, point C will stay in place. The motion of A and B together
radially into the circle will elevate point C.

one agent or more stop participating in the task of carrying
the load.

3) SPATIAL TASKS
The problem at hand is to translate a spatial load andmaintain
its orientation while avoiding planar obstacles. Unlike planar
load-carrying tasks, the spatial case is more involved and
requires a complex robot-load formation referred to in the
literature as a ’Parallel Manipulator’. Manipulating a spatial
load requires six planar agents at a minimum as presented
in Figure 1. One can therefore model the entire agents-load
system as a 6-PPSS parallel manipulator which has been
extensively studied (e.g., [14], [29]). Parallel mechanisms are
characterized by a limited work-space volume (the subspace
of the intersection of the work-spaces of its limbs [36]). Thus,
various structural modifications have been implemented to
increase the work-space volume. For example, a 3-PRPS
parallel platform with linear base-point-actuators [34], and
the 3-RPRS introduced in [41]. In our case, this deficiency is
overcome by the planar translation capabilities of the agents
such as been investigated in [2] and similarly, as with the
3-PPSR platforms which were introduced by Tahmasebi and
Tsai [39] and by Pernette et al. [32] (c.f., [4], [25]).

B. CONTRIBUTION
As presented, carrying a load by a pack of robotic agents is
of interest to the research community. Obviously, six or more
agents may be involved in the hauling assignment, however,
six will suffice to properly control a spatial load in a non-
prehensile situation.

In this paper, we shall consider only six agents who are
actively bearing the load. The load’s orientation is controlled
as the agents move over the plane, transporting it to the
goal position.While information sharing can greatly facilitate
the task, the risk of communication failure can lead to
problems, such as the payload falling. Thus, our proposed
approach involves a motion planning scheme that does not
require communication. Under this assumption, with the
agents unaware of the positions of the others, the ability of
the individual agents to solve the forward kinematics and act
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accordingly is out of hand. Figure 1 illustrates this: agents
A and B hold the load at point C. As A and B follow the
dashed circle and all other agents will stay still, point C
will stay in place. If all agents can coordinate their actions
they can elevate point C or lower it at will. For example, all
agents but A and B stay in place while A and B should move
together radially into the circle or outwards, respectively.
Nevertheless, the agents do not communicate and agent A
does not know what will agent B does nor what the others
do. Under these circumstances, the proposed scheme relies
on a heuristic algorithm designed via a large set of simulation
experiments calculated in the configuration space. Here,
we apply a Potential Field method [24] for each of the agents
as a motion planner due to its computational efficiency and
ease of implementation. The scalar potential field for each
agent is a weighted sum of the distance to the target, the
distance to nearby obstacles, and the holding point height.
These sum up to solving the pack’s heuristic local inverse
kinematics while avoiding obstacles and pursuing a target
position.

Since the agents are unaware of their mutual positions
and cannot calculate the kinematics, avoiding singularities
is out of hand. Instead, we concentrate on maintaining the
payload in a predefined orientation while satisfying some
kinematic thumb rules. Nevertheless, singularities are bound
to appear so to avoid numerical errors in the vicinity of such
singular configurationswe present a robust, error-freemethod
for the time propagation in the mechanism’s configuration
space.

C. PAPER ORGANIZATION
This paper is organized as follows: Section II introduces the
model and the main assumptions (i.e. the sensor capabilities
and the mechanical structure). Section III introduces the
associated kinematic model used to manipulate the load in
the spatial space. We show its vulnerability and present
a method that overcomes the Jacobian-ill-condition errors
by calculating the kinematics in the configuration space.
Section IV introduces a potential field motion planning
scheme that we applied to maintain the load’s orientation
while evading planar obstacles. The simulation study, which
served as the basis for our proposed scheme, is detailed
in Section V. Section VI presents the set of simulated
experiments demonstrating our approach and algorithms
in congested workspaces and real-world experiments using
robotic agents specially designed and fabricated in our
laboratory. Section VII concludes the paper.

II. MODEL AND ASSUMPTIONS
The use of swarms to carry heavy and oversized loads
offers significant advantages over the use of a single agent.
In addition to the load being distributed among multiple
agents, the need for each agent to exert high torques to
manipulate the load in the spatial space is eliminated,
making the task possible in a mechanical sense. From a
kinematic perspective, each agent within the swarm can be

FIGURE 2. The kinematic model of a single agent (out of six) carrying a
load. A planar mobile agent located at xi holds a rod via a passive sphere
joint connected by a second passive sphere joint to the platform at
xi + li .

conceptualized as holding the load via a rod that is connected
at both of its ends to spherical joints (see Figure 2). It is
clear that utilizing less than six agents will necessitate the
incorporation of torques, which is beyond the scope of this
paper. On the other hand, incorporating more than six agents
will result in a non-determinate problem, thus in this paper,
we consider six agents for the task.

We now detail the assumptions made regarding the agents’
sensing capabilities and their communication abilities.

A. SENSORS
We assume that each agent is equipped with a compass and a
sensory system that measures the distance to nearby obstacles
(other agents are considered obstacles as well). Each agent
holds the platform by a rod having two spherical joints at its
ends. The agent’s rod relative orientation is assumed to be
known; thus at each time-step an agent is aware of the height
of its rod’s endpoint on the platform. Measurement noise is
out of the scope of this paper.

B. COMMUNICATION
In the literature, a swarm commonly refers to simple physical
agents with minimal communication needs (or having no
communication needs as in [19]).

In our precursory research [28] we assumed that all agents
are fully aware of the (estimated) position of all other
agents (i.e., they share only their estimated position, not their
planned velocities). However, in the current research, each
time step an agent proceeds towards its own goal while no
information regarding the other agents’ position is available.

C. PROCESSING
Our method is decentralized and communication free.
Therefore, it is assumed that all calculations and decisions are
made individually in each agent’s local CPU. This includes
sensory processing and motion control calculation.
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TABLE 1. A comparison of the state-of-the-art research. The first row lists the current research. Note that the first three rows are the only attempts to
manipulate a spatial load, whereas the current paper is the only one that provides a decentralized, communication-free solution.

III. KINEMATICS
Weuse the kinematicmodel provided in [28]: Figure 2 depicts
the ith agent position vector xi, the load center of gravity
position p, the ith rod vector l i and the ith load’s node bi, which
are given in global coordinates, with vector bi written in the
load’s coordinate system. The 3 × 3 load’s rotation matrix R
sets:

xi + l i = p+ Rbi

for all i = 1, 2, . . . , 6. Differentiating with respect to time
and noting that |l i| = const, yields:

l⊤i ẋi = l⊤i ṗ+ l⊤i Ṙbi

which can be written in the matrix form:

J1

(
ṗ
ω

)
= J2ẋ (1)

where we define the platform’s Jacobian matrix J1 as

l⊤1 l⊤1
∂R
∂ψ

b1 l⊤1
∂R
∂θ

b1 l⊤1
∂R
∂φ

b1

l⊤2 l⊤2
∂R
∂ψ

b2 l⊤2
∂R
∂θ

b2 l⊤2
∂R
∂φ

b2
...

...
...

...

l⊤6 l⊤6
∂R
∂ψ

b6 l⊤6
∂R
∂θ

b6 l⊤6
∂R
∂φ

b6


(2)

the load’s angular velocity vector as ω = (ψ̇, θ̇ , φ̇)⊤ (Euler
angular velocities) and the actuation (agents) Jacobian matrix
as J2 = diag

(
l⊤1 , l

⊤

2 , . . . , l
⊤

6

)
.

Note that if more than six robots are involved in carrying
the load it will result in a statically indeterminate system.
Nevertheless, load carrying is also possible with multiple
agents, for example, by adding a passive prismatic joint on
each rod. In such a case, six rods will always attain their
minimal length due to the platform’s weight, while the rest
of the rods will comply by extending to enable the agents
holding them to ‘‘lose grip’’ of the platformmomentarily (see
[28] for further information). This may be useful for avoiding
obstacles.

A. SINGULAR CONFIGURATIONS
The singularity of parallel platforms can be divided into two
types, depending on the two Jacobian matrices J1 and J2
(c.f. [37]). In general, in the case where J1 is singular (or close
to singularity) activating the platform’s actuators will result
in no motion of the platform. In the case where J2 is singular
(or close to singularity), the platform may move even if no
actuation is introduced (see also [30]).

Note that in the case of load carrying by a swarm having
decentralized control, it is possible to avoid some simple
singular configurations (e.g., avoiding configuration where
the holding rods are vertical). Of course, some other ill-
conditioned configurations may come about and result in bad
performances. Thus, training the swarm to carry the load
using simulations will not suffice since significant numerical
errors are expected.

Figure 3 depicts the swarm in a singular configuration
where all agents independently decide their next step. In this
configuration, however, the platform’s velocities vector
cannot be accurately calculated by Equation 1 because the
corresponding jacobian is ill-conditioned. But note that in
order to implement any kind of a heuristic motion planner
these inaccuracies should be carefully considered (or avoided
altogether).

B. TIME PROPAGATION IN THE CONFIGURATION SPACE
To overcome this, we consider the entire mechanism’s
configuration rather than focusing on the workspace (as in
Eq. 1). The configuration space C is a continuous set of
vectors c ∈ C equipped with a Euclidean metric. Each vector
c represents a posture of the mechanism. A configuration c
is defined as an ordered set of the planar coordinates of all
the agents concatenated by the spatial coordinates of all the
platform’s vertices.

Here we assume that the agents hold the load at three
contact points (equivalent to a ternary link). Moreover, each
contact point is held by a pair of agents. Thus, for 6 agents,
a configuration c ∈ C ⊂ R21 is:

(x1, . . . , x6, x
p
1 , . . . , x

p
3 ) (3)
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FIGURE 3. A top view of a singular configuration. If for example, all
agents move left so will the load. Still, the platform’s velocities vector
cannot be accurately calculated directly from the jacobian since the
configuration is singular.

which is obviously a redundant description of the system’s
configuration. Fixing the agents’ planar locations, 9 distance
constraints should be imposed to ensure the rigidity of the
mechanism. Since the platform is modeled as a triangle
embedded in R3, three constraints will rigidify the platform
leaving 6 DOF for the load transformation. The carrying
rods’ lengths constitute 6 more constraints. Therefore, each
configuration must hold a set of distance constraints G =

{gi(c) = li}9i=1, where gi is the Euclidean norm. Obviously,
one may also add external obstacles constraints set {oj(c) =

ϵj}
m
j=1 to the setG if exist, to keep the system from agent-agent

collision and agent-obstacle collision (see [28]).
Assume a configuration c1, and neighboring configura-

tion c2. Motion from c1 to c2, restricted to the boundary
of G, can be obtained by calculating ∇gi at the current
configuration c = c1, and restricting motion to the joint
null space KG (provided as the intersection of all null spaces
{Ki}

1
i=12. Explicitly, motion direction vd is set to a desired

instantaneous direction vector projected onto the null space
K̂G yields:

v =

12−m∑
i=1

K̂⊤
i · vd · K̂i (4)

where m is the number of the additional workspace obstacles
to crawl on at c, and K̂i is the ith base vector of KG. Thus,
at each time-step, the system advances by the following:

c(k + 1) = c(k) + ϵv (5)

where ϵ is a predetermined small step size in C.
Let us assume, for example, a scenario with no obsta-

cles where one defines vd = (β1, β2)⊤ where β1 =

(1, 0, 2, 0, 3, 0, 0⃗1×6) and β2 = 0⃗1×9. So agents 1 to 3 should
advance only in the x direction and such that agent 2 moves
twice as fast and agent 3 moves three times as fast from agent
one as implied by the vector β1. All other agents stay still
as well as the platform. In such a case, the dimension of the
null space KG is 12. Thus, the projection of vd on KG will
not necessarily result in the desired agents’ motion. Rather

the resulting motion will only comply with the imposed
constraints. To overcome this, we define a subspace in C
where its vector base is spanned by the columns of the
following matrix:

A =

[
β1

⊤ . . . β1
⊤ β1

⊤

I9×9 09×1

]
21×10

By projecting vd on KG ∩ A, agents’ motion is maintained
to the desire motion: The agents’ motion is confined to the
12-element vector β1 while the platform is free tomove in any
direction in C (which corresponds to the identity sub-matrix)
or to stay still (the null vector). Note that in this example,
we do not consider collisions (c.f., [28]).

Alternatively, the inverse kinematics is calculated by
associating vd ∈ C with the desired motion of the load.

IV. MOTION PLANNING
As stated, the main contribution of this paper is the
assumption that the agents do not communicate their location
nor their motion direction. The only data available for the
agents are the desired load’s 3D trajectory (position and
orientation) and its current state. Instead, the agents are
assumed to have the ability to measure their relative position
to the load. We shall now provide an algorithm for each agent
such that it obeys the following rules as much as it can:

1) Keeping the load steady,
2) Avoiding obstacles,
3) Advancing the load to its desired destination.

A. POTENTIAL FIELD METHOD
The Potential Field (PF) method is one of the most important
and useful methods in robot motion planning. PF is an
artificial potential field defined in C which models mission
targets as points of attraction in C and obstacles (and other
agents) as repulsion. Here, we apply six PF’s – one for each
agent.

At each time step, each agent advances towards the
direction of the field’s gradient. This way each agent is
repelled one from the others and from the obstacles as ∝

1/oj(c) for all j ∈ {1, . . . ,m}.
The main flaw of the PF method is the emergence of local

minima. That is, points in the configuration space where
the field’s gradient vanishes. Here each agent follows an
independent PF, so a local minimum for the entire system
means that at a certain point in C all PFs assume a local
minima. This indeed may occur, but since solutions are
available (e.g., [19], [20]) and since in all the experiments
conducted, no such point was observed, we shall not consider
such scenarios. However, since the agents’ sensors are of
limited range, faraway obstacles are not being considered,
reducing the chance of local minima.

We shall use the PFmethod tomaintain the aforementioned
rules. In addition to the traditional repulsion and attraction
forces, we define a force-vector whose purpose is to maintain
the load balanced which obviously influences the movement

VOLUME 11, 2023 16561



H. Cohen et al.: Decentralized Motion Planning for Load Carrying and Manipulating by a Robotic Pack

of the pack members as it forces them to take the load’s
balance into account.

B. BALANCING WHILE MANEUVERING
Recall that the agents can sense objects only in their vicinity
(as with ants [7], [11]). Following this, it is natural to
assume that each agent can measure the orientation of the
connecting-rod it holds and the position of the load-center.
The latter assumption implies that each agent can deduce its
general movement direction v̂goal (for ants, this assumption is
apparently not true, but it is mitigated by following a leader
ant strategy).

To balance the load, an agent i calculates the height
differences between the far end of the rod it holds xi + li, and
the desired height of the load-center p = pd at the destination
(see Figure 2). The aim of each will then be to reduce this
difference as much as possible.

To do so, we define imaginary circles lying on the floor-
plane for each of the holding-nodes as follows (the inner
circle demonstrated in Figure 6): The circles’ centers x̃pi are
positioned at the projection of xi+ li on to the plane. The radii
of which are the horizontal distances between the agents and
the corresponding centers of the circles ∥xi − x̃pi ∥.
Each agent tries to maintain the load at the desired

height. That is, an agent that finds the load to be tilted
downwards with respect to it, tries to lift the holding-node
by advancing towards the center of its corresponding circle
(moves in the direction vb = x̃pi − xi). If the load is inclined
upwards, the agent lowers the node by moving in the opposite
direction. To verify the effectiveness of this scheme, a set
of simulative experiments were conducted. Unfortunately,
the results indicate that this approach does not always work
(as detailed in Section V). There may be configurations
where moving towards (away from) the center of the circle
will lower (elevate) the load (opposite to the desired result).
Of course, sharingmore informationmay resolve this, but this
would deviate from the scope of this paper. Thus we shall
make do with the above and try to improve the balancing
scheme and examine the algorithm’s performance statistics.
To do so, each agent can ’close its loop’ simply by measuring
its resulting node motion. To elevate the holding-node, the
agent first moves radially as described above δv̂b (initialized
as δ = 1), and checks whether the node moved in accordance
with intentions (i.e. if1zk = zd − z is with the desired sign).
If the node should be further elevated, the agent will continue
moving in the same direction. Otherwise, it will toggle the
heuristic δ = −δ.
Finally, an agent follows:

k1δv̂b + k2vobs + k3v̂goal (6)

where vobs is the sum of forces over all detected obstacles.
Each is inversely proportional to the square of the distance
between the agent and the obstacle.

Figure 4 depicts the calculated directions and the weighted
vector sum. Figure 8 presents the algorithm performance in
the obstacle workspace while moving towards the goal (green

FIGURE 4. Each agent individually decides its current motion direction
according to the detected obstacles, detected agents and goal direction.

star). Under these assumptions, the expected deviation from
a desired orientation will attain its maximal value when the
predefined orientation is horizontal and two triangle nodes
deviate upwards while the latter deviates downwards. The
maximal error in each of the nodes will be assumed when
two agents are positioned on opposite sides of the projected
circle demonstrated in Figure 6. The i-th node height is given
as h2i = l2 − vb2i and so 1hi = −

vbi
hi
1vbi. The resultant

deviation of the load from its designated orientation is1θ ∼
41hi
3∥bi∥

(see Figure 2). For the values we used in our simulations
(b = 0.3,1vbi = 0.01, vbi = 0.21) the maximal deviation is
1θ ∼ 2.6o.

V. SIMULATIVE STUDY
We first conducted a set of simulated experiments aiming
to examine the efficiency of the aforementioned scheme for
a pack of agents to avoid obstacles and maintain the load’s
balance while having no communication between the agents.
We first tested the direction of movement of each agent that
results in a lift of its corresponding load’s node.

Figure 5 exemplifies the directions of movement for
all agents, which according to the rationale above, should
balance the load by moving each of the corresponding nodes
upwards (marked as green half) or downwards (red half).
Note that for all agents but agent #1, moving away from
the node’s projection on the plane lowers the corresponding
node. This indicates impossible to unequivocally determine
the nodes’ vertical direction.

Next, we tested whether it is possible to unequivocally
know the rise or fall of the node when a robot walks into the
projection circle when located in different initial positions on
the circle. In each experiment, all agents were fixed but one,
the agent in question, then circumvent the circle completing a
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FIGURE 5. Examining whether moving towards the projection circle lifts
the node (green) or lowers the node (red). We initialized the load to be
horizontal. Here, at each test, only one agent moved. Green is the
direction resulting with a node lift.

FIGURE 6. Load balance test when agent #2 is located in different
positions along the projection circle while agent #1 moves inward into
the circle. The Green color indicates that agent #1 node rises, downward
movement is indicated by red. Blue and yellow indicates the same for its
neighboring agent.

complete turn as depicted in Figure 6. Each starting position
of the robot was marked green (red) if moving inwards from
that point resulted in the node moving upwards (downwards).

The upward/downward motion of the load depends on the
position of the agents that do not move as well as depicted in
Figure 7.

We therefore may conclude that since the agents do not
communicate and agents do not know the location of the
others, it is not possible for an individual agent to determine
how it can correct the load orientation by its ego motions.
So we resorted to maintaining balance by means of trial and
error.

VI. EXPERIMENTAL RESULTS
We conducted two sets of experiments. The first was
designed to test our stabilizing scheme while no translational
constraints are imposed on the load. The other tested
the stabilizing performance during motion planning takes

FIGURE 7. Testing whether moving towards the projection circle lifts the
node. The load was initialized to be horizontal. At each test all agents
were fixed but one. Green is the direction resulting in an upwards motion
of the node. Note that in the current configuration agent #1 should move
away from the projected circle to lift its node.

place. It should be noted that in all experiments the load’s
orientation error is of concern while translation errors that
were straightforward to correct are not presented here.

A. SIMULATIONS
We conducted a set of over 1, 000 experiments to test the
performance of our algorithm in balancing the load and
measured the time it took the agents to reorient a load tilted
in an initiate angle to an angle under 2◦. To quantify the
performance of our scheme we measured the resulting error
of the load’s orientation (in degrees) and used the elapsed time
to resolve it, as our metric.

Each test was initiated with random load orientation and
with different agents positions. Figure 9 depicts the elapsed
time it took for the pack to stabilize the load from an initial
inclination angle of 10◦ degrees measured between the load’s
normal and the z axis. The results provided in Figure 9
show that the algorithm performs well, and the load can
be stabilized to a tilt angle under 2◦ degrees in less than
15 seconds in all cases tested.

B. REAL-WORLD EXPERIMENTS
In addition to the simulations, a set of real-world experiments
were conducted. In these experiments, we tested our scheme
or real load which was constructed as an equilateral triangular
frame with edges of length 35 cm. We tested the ability to
maintain a steady load and to follow a simple motion planner.
The load was made of Carbon-fiber beams having a hollow
rectangular cross-section of size 2.5 × 2.5 cm. A pack of
six robot agents was specially fabricated. Each robot with
three omni-directional wheels is capable of translating the
plane in all directions. Each robot was controlled via ESP32
microcontroller and motion commands were sent via WiFi.
Each robot held the load via a 35cm Carbon-fiber thin rod
with magnetic spherical joints at its ends.
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FIGURE 8. Motion towards the goal position (green star) while avoiding
obstacle collision and keeping the load stable.

FIGURE 9. Load stabilizing. A typical load stabilizing process. An initial
inclination angle of ten degrees measured between the load’s normal and
the z-axis was eliminated in less than 15 seconds.

FIGURE 10. For keeping the rods under compression, we add a position
constraint to each agent such that an agent should not cross an
imaginary line between the projections on the floor of the agent’s node
on the load and the load’s center. On the left - an agent (circled in red)
crosses the boundary line causing the load to collapse (right figure).

We used a set of 18 OptiTrack surveillance cameras,
which provide us with real-time spatial locations of the entire
system with an accuracy of two millimeters. All calculations
were performed in real-time, and the processing time was

FIGURE 11. A snapshot from a real-world experiment. An obstacle (red)
was positioned in the workspace between the initial position of the pack
and the target (white rectangle). The system traversed the plane while
avoiding mutual collisions and the static obstacle and while keeping the
load balanced.

negligible. Four markers were connected to each agent for
the cameras to detect. From which, the OptiTrack algorithm
then constructed a rigid body. In addition, we attached
three markers to each of the corners of the ternary-link
load. It is important to note that during the experiment,
the main computer holds the information regarding all
agents’ locations. Yet, each agent is shared with only the
relevant information according to the algorithm described in
Section IV. We first tested the balancing algorithm alone.
Six agents were placed on the floor randomly, holding the
triangular load by six rods. The allowable range in which
we define the load as stable is when each of its nodes is at
a distance of up to ±2cm from its desired height. The desired
height was set to be 44cm from the ground (33cm from the
top of the agents). Upon activating the algorithm, the agents
started moving in accordance with the balancing algorithm
until the systemwas balanced and the agents stopped. In order
to challenge the system, we randomly moved two agents
so that the load would lose its balance. After the system
recognizes that the load orientation was altered (using the
OptiTrack) the agents balanced the load (see a short video
of the experiment in [27]). In all conducted experiments the
loadwas balanced after less than 20secwhich is in accordance
with the simulation results. Note that the rods’ lengths are
given as a constraint, so kinematically, both tension and
compression forces in the rods are acceptable. In the real
world, though, this is true up to a certain limit. Obviously, it is
preferable to keep the rods under compression. Thus, we add
a position constraint to each agent such that an agent should
not cross an imaginary line between the projections on the
floor of the agent’s node on the load and the load’s center.
Figure 10 depicts the realization of the said imaginary line.
Indeed, a set of real experiments confirmed the efficacy of

this approach. We conducted a set of 15 real-life experiments
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in which the robotic pack carried the load to the destination,
and maintained its desired orientation while avoiding planar
obstacles (a static obstacle and the other agents) on the
way. In most cases (12 out of 15) the algorithm performed
well, and the agents were able to traverse the balanced load
to its desired location while avoiding the obstacles. In the
unsuccessful experiments, the compression force in one of
the rods caused an undesirable tilt of the robot and its lack
of ability to control its motion, eventually resulting in the
load falling. Figure 11 depicts a snapshot from one of the
experiments. A video of the experiment is available in [27].

VII. CONCLUSION
We introduced a novel heuristic motion planning scheme for
a load-carrying pack of agents which is a continuation of the
author’s previous paper on a load-carrying swarm [28]. Here,
we drew inspiration from ants’ behavior and assumed the
agents do not communicate their positions. Furthermore, the
agents are considered as such that are able to sense only their
vicinity (i.e., the spatial angle at which they hold the load and
nearby obstacles).

Unlike most load-carrying research that traverses the
load in 2D, in our research, we carry the load spatially.
Furthermore, when load carrying is performed in 3D, and
a communication failure occurs, the load-agents structure
may collapse. Thus, a communication-free motion planning
scheme is of interest. The system is designed as a parallel
mechanism and consequently suffers from errors in the
time propagation calculation using Jacobian formalism.
We demonstrated how formalizing the problem in the
mechanism’s configuration space solves this.

To test our scheme, we fabricated six specially designed
robotic agents and exemplified the efficiency of the scheme
through a set of simulations and real-world experiments.
We first showed that the pack was able to stabilize the load
from an initial inclination angle of 10◦ degrees to a tilt angle
under 2◦ degrees in less than 15 seconds.We then showed that
using our scheme the system can avoid obstacles and balance
the load while carrying it to a target destination.

In summary, following some simple heuristic rules suffices
to complete the vast majority of the missions: Each agent
closes its control loop by measuring the height of its load’s
node; Agents follow toggled potential field (Equation 6); In
the real-world experiments, additional constraints were added
to to avoid tension in the rods that support the load.

Future work will focus on enlarging the number of agent
so they could switch positions or dispatch when required.
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