
Received 7 January 2023, accepted 29 January 2023, date of publication 6 February 2023, date of current version 23 February 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3243098

FACHS: Adaptive Hybrid Storage Strategy Based
on File Access Characteristics
YING SONG1,2,3, QIANG ZHANG1,2, AND BO WANG4
1Beijing Key Laboratory of Internet Culture and Digital Dissemination, Beijing Information Science and Technology University, Beijing 100101, China
2Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Information Science and Technology University, Beijing 100101, China
3State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100086, China
4Software Engineering College, Zhengzhou University of Light Industry, Zhengzhou 450002, China

Corresponding author: Ying Song (songying@bistu.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61872043; and in part by the State Key
Laboratory of Computer Architecture, ICT, CAS, under Grant CARCHA202103.

ABSTRACT With the widespread use of distributed systems and the development of big data technology,
the storage redundancy, data availability and persistence of distributed systems have become a concern.
Traditional multi-copy storage may cause large storage redundancy, thus wasting storage space. The erasure
code is considered as the best alternative to the replica strategy. However, the existing methods do not fully
consider the access characteristics of files, so that the data with high access popularity are stored using
computationally complex erasure codes, resulting in poor parallel read and write performance. Moreover,
due to insufficient consideration of file size, storage redundancy cannot be minimized, thus wasting storage
space. Therefore, we propose an adaptive hybrid storage strategy based on file access characteristics called
FACHS. For cold files, namely the files with low access frequency, we use RS Code (Reed Solomon Code)
to store them. RS Code has low computing and storage costs. We use multi-copy and LRC code (local
reconstruction code) to store small and large size hot files respectively. Multi-copy ensures the efficiency of
file read/write, as well as the ability of parallel read/write. The recovery cost of LRC code in case of node
failure is very low. The experimental results show that compared with the existing methods, FACHS can
reduce the storage space occupation by 12% for cold files, and improve the read/write speed by 8% and the
recovery efficiency by 29% for hot files.

INDEX TERMS Access characteristics, adaptive storage, erasure code, multi-copy.

I. INTRODUCTION
Now we live in a big data era [1]. With the development of
information technology, big data technology is increasingly
widely used in all walks of life [2]. How to reduce the
storage redundancy of large-scale data, improve data avail-
ability, persistence and data recovery efficiency are major
challenges [3] for distributed systems [4] in the big data sce-
nario. Hadoop [5] is the most widely used distributed system
at present. It has a distributed file system called HDFS [6]
for storing large-scale data and a parallel computing model
MapReduce [7] for large-scale data processing. Nowadays,
many distributed systems [8] adopt multi-replica strategy to

The associate editor coordinating the review of this manuscript and

approving it for publication was Jjun Cheng .

effectively solve the problem of storage fault tolerance. Many
versions of Hadoop use the multi-copy policy; however, the
multi-copy policy may lead to excessive storage redundancy.

Therefore, nowadays, more and more distributed storage
systems use erasure codes instead of multi-copy strategy [9].
Typical erasure codes are RS Code and LRC Code (LRC
adds local check blocks on the basis of RS), which can
provide the same level of fault tolerance with less storage
redundancy. In a variety of erasure code types, the storage
redundancy does not exceed 70%. Files stored with erasure
codes will be cut into k blocks, and then m parity blocks are
generated by encode. When a node fails, the erasure code is
decoded to obtain the surviving data block information, and
then the surviving block is transmitted to the reconstruction
node for data recovery. Since it takes a long time for erasure

VOLUME 11, 2023 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 16855

https://orcid.org/0000-0001-5176-4762


Y. Song et al.: FACHS: Adaptive Hybrid Storage Strategy Based on File Access Characteristics

code to recover data, all data blocks are placed in different
data nodes to minimize data block loss in case of node
failure.

However, the application effect and data recovery effi-
ciency of erasure codes technology in Hadoop need to be
improved. Many scholars are also studying how to improve
the performance of data storage and recovery to better apply
erasure codes. After all, as far as storage redundancy is
concerned, erasure codes still have great potential in this
field, and they have natural advantages over multi-copy strat-
egy [10].

Distributed storage systems host files with varying heat and
sizes. Files with different access characteristics have different
performance requirements. The files with high popularity
need high read/write efficiency and recovery efficiency, and
the corresponding number of files is also small. The files with
low heat need low storage redundancy to ensure the storage
efficiency of the system, and the corresponding number of
files is also large. The files of different sizes in the cluster
also need appropriate storage methods, otherwise the storage
redundancy cannot be minimized, resulting in a waste of
storage space.

Nowadays, a single erasure code type or storage strat-
egy has been difficult to meet the storage requirements of
files with different access characteristics in distributed sys-
tems. Therefore, more and more scholars propose and study
adaptive storage strategies. However, the existing methods
do not fully consider the characteristics of file access. For
example, DECPA [16] only considers the file size, which
may lead to the use of erasure codes with low computational
efficiency to store data with high access frequency, result-
ing in poor parallel read and write performance. In other
methods [15], [17], [18], the access efficiency and recovery
efficiency of hot files cannot be improved because the file
size and heat are not considered. In the existing methods
mentioned above, the file access characteristics have not been
fully considered. This makes files with high access frequency
adopt inappropriate encoding and storage methods, resulting
in poor parallel read/write performance or high recovery
costs [19], or files with low access frequency use erasure
code with high storage redundancy [20], [21], resulting in
a waste of storage space. How to combine different coding
and storage methods, make full use of the advantages of
different types of coding and storage methods, avoid their
disadvantages, and form an efficient adaptive storage scheme
is the main content of our research.

Therefore, we propose an adaptive hybrid storage strategy
based on file access characteristics, FACHS. FACHS selects
the appropriate storage mode according to the size and heat of
the file to improve the cluster read/write efficiency and recov-
ery efficiency as well as maintain low storage redundancy.
The experimental results show that compared with the exist-
ingmethods, FACHS can reduce the storage space occupation
by up to 12% for cold files, and improve the read/write speed
by up to 8% as well as the recovery efficiency by up to 29%
for hot files.

The organization of this paper is as follows. In Section II,
the related work and our motivation are introduced.
In Section III, we describe the design of FACHS in detail.
In Section IV, we evaluate FACHS through a set of analysis
and experiments. Section V summarizes our work and pro-
poses the future research directions.

II. RELATED WORK
This section first briefly introduces the basic erasure codes,
and then focuses on the work related to adaptive hybrid
storage.

A. BASIC ERASURE CODES
The files stored in the erasure codes will be cut into multiple
stripes, with k blocks for each stripe, and then multiple parity
blocks will be generated through coding. When a node fails,
the erasure code is decoded to obtain the surviving data block
information, and then transmits it to the reconstruction node
for data recovery. Since it takes a long time for erasure code
to recover data, all data blocks are placed in different data
nodes to minimize data block loss in case of node failure [11].
Typical erasure codes include RS Code and LRC Code.

1) REED-SOLOMON CODE (RS CODE)
RS Code was proposed by Irving S. Reed and Gustave
Solomon in 1960. It is a coding algorithm based on finite
fields, also known as Galois Field. It is named after Galois,
a famous French mathematician. It was first used in the field
of communication. After decades of development, it has been
widely used in storage systems. RS Code [12] is a maximum
distance separable (MDS) code [13] with high storage effi-
ciency. Its encode and decode operations are based on the
Galois field. The specific layout of RS Code can be expressed
as RS (k , m), where k and m represent the number of data
blocks and the number of parity blocks, respectively. RSCode
encodes k data blocks into m parity blocks, so that when any
one of the k + m blocks is lost, k blocks can be arbitrarily
selected from other surviving blocks for reconstruction (as
long as the number of lost blocks does not exceed m blocks),
and k + m blocks together form a stripe, and each block is
stored on different nodes.

2) LOCAL RECONSTRUCTION CODE (LRC CODE)
LRC Code is a non MDS code [13]. The specific layout of
LRC Code can be expressed as LRC (k , y, z), where k , y
and z represent the number of data blocks, the number of
local parity blocks and the number of global parity blocks,
respectively. LRC (k , y, z) encode k data blocks into a group,
and further divide the k data blocks into y local groups
on average. Each local group includes k/y data blocks, and
calculates a local check block respectively. Then LRC (k , y, z)
calculates z global check blocks from all k data blocks. When
a block is lost (not a parity block), it can be reconstructed by
transmitting other data blocks in the data block group of the
lost block and their corresponding local parity blocks. The

16856 VOLUME 11, 2023



Y. Song et al.: FACHS: Adaptive Hybrid Storage Strategy Based on File Access Characteristics

k + y + z blocks together form a stripe, and each block is
stored on a different node.

B. ADAPTIVE HYBRID STORAGE SCHEME
Now there are many researches on adaptive hybrid storage
strategies, including adaptive hybrid strategies based on the
same type of erasure codes and adaptive hybrid strategies
based on multiple types of erasure codes. Next, we introduce
the relevant work in this field.

Jinping et al. proposed a LRC-RS hybrid coding strat-
egy [14] to solve the problem of high repair bandwidth and
stable node resource waste caused by the application of low
rate RS (Reed Solomon code) codeswith the same parameters
in decentralized storage. By classifying nodes according to
their confidence level, high trusted nodes can use LRC cod-
ing, while low trusted nodes can use RS coding with low code
rate to reduce the repair bandwidth and storage overhead of
stable nodes.

The HACFS [15] proposed by Xia et al. is a classic hybrid
storage scheme for erasure codes of the same type, using two
erasure codes based on XOR series, LRC Code and Product
Code. HACFS adjusts the code structure in the system accord-
ing to the change of workload. It uses a fast code to optimize
recovery performance, and a compact code to reduce storage
redundancy. A novel conversion mechanism is adopted to
efficiently encode data blocks up and down between fast code
and compact code.

Chiniah et al. [16] designed and implemented the dynamic
erasure code policy allocation - DECPA based on the mini-
mum storage redundancy, which is an adaptive hybrid storage
scheme of erasure code and multi-copy, realizing the hybrid
storage of RS code and multi-copy with different parameter
types. Three different algorithms are implemented to adapt
to various application scenarios of single strip and multiple
strips, and effectively improve the storage efficiency of the
system. However, because the file heat is not considered, the
files with different heat may not have an appropriate storage
mode, resulting in a reduction in the cluster’s read/write
efficiency and data recovery efficiency.

Qiu et al. [17] proposed an efficient hybrid erasure code
storage framework EC Fusion (Erasure Codes Fusion) for
cloud storage systems to solve the problem that front and
back office workloads can simultaneously and efficiently
process in parallel. EC Fusion is a hybrid storage of RS
Code and MSR Code. It dynamically selects the appropri-
ate code according to the application workloads. For write
intensive application workloads, RS Code is used to reduce
both computing overhead and storage costs. For read inten-
sive application workloads, using MSR Code can improve
recovery efficiency. Therefore, better overall application per-
formance and recovery performance can be achieved in a
low-cost way.

On the basis of MSR Code and LRC Code, Xie et al.
[18] design the coding and decoding algorithm of AZ Code,
use the MSR Code with a specific parameter to generate

a local parity check block, and use the RS Code with a
specific parameter to generate a global parity check block.
This enables AZ Code to have high recovery efficiency and
storage efficiency.

In the above existing approach, whether based on the inter-
nal hybrid coding of erasure codes, or the hybrid storage
strategy of two erasure codes, or the hybrid storage strat-
egy of erasure codes and multi-copy, failed to fully con-
sider the file access characteristics. This makes the files
with high access frequency adopt inappropriate encode and
storage methods, resulting in poor parallel read/write per-
formance or high recovery cost [19], or the files with
low access frequency use correction codes with high stor-
age redundancy [20], [21], resulting in a waste of storage
space.

III. FACHS STRATEGY DESIGN
To improve the storage efficiency, parallel read/write ability
and recovery efficiency of distributed systems, we analyze the
size and heat distribution of files in the cluster, and design
an adaptive hybrid storage strategy called FACHS based on
file access characteristics. In this section, we first introduce
the design concept of FACHS. In order to better analyze the
access differences of files in the cluster, we define the expres-
sion of file heat. Next, we describe how to adopt different
storage strategies according to the access characteristics of
files. Finally, we introduce the implementation process of
FACHS in detail.

A. DESIGN CONCEPT
In a distributed system, the size of files varies. Some files may
be smaller than one stripe, while others may occupy multiple
stripes. The file size also directly affects the storage redun-
dancy caused by using erasure codes and multi-copy. The
same is true for the popularity of files. The access frequency
of files in the cluster is different. Only a small number of files
may be frequently accessed in a short period of time, while
other files may only have a small amount of access for a long
time. If erasure code with low coding and decoding efficiency
is used to store hot data, the read/write efficiency of the cluster
will be affected. In addition, if the selected erasure code or
storage mode is improper, when the data node where the hot
data is located fails, it will not only cause low data recovery
efficiency and high recovery cost, but also further worsen the
high concurrency overload problem of the cluster, resulting
in read delay.

Therefore, we believe that using efficient encoding and
storage methods for hot files can improve the read/write
performance and recovery performance of the cluster, while
cold files only need to be encoded and stored at low storage
costs to reduce the storage redundancy of the cluster. Large
files require a single stripe to accommodate more encoding of
data blocks to reduce the number of stripes. Small files need
appropriate stripe size to reduce storage redundancy. We use
different strategies to design FACHS according to different
file size and heat.

VOLUME 11, 2023 16857



Y. Song et al.: FACHS: Adaptive Hybrid Storage Strategy Based on File Access Characteristics

B. HEAT CALCULATION AND CLASSIFICATION
Through research and analysis, we know that the popularity
of files in distributed clusters depends on the frequency of
access within a certain period of time. New files are often
accessed frequently at the initial stage of creation, with a high
frequency [25] of access, and most of them will be accessed
less frequently over time. Therefore, this will affect the deter-
mination of file access frequency. Therefore, it is important
to determine the access skew rate of the time period, so that
new files can be distinguished and the access frequency of
files can be calculated more accurately. Combining the real
environment and the above analysis, we propose a more
accurate heat calculation formula.

First, we calculate the average access frequency favg of
each file. Set the heat statistics time cycle to T , and the total
number of access to the file in the cycle is N . The formula for
calculating the average access frequency favg in the cycle is
as follows.

favg =
N
T

(1)

After obtaining the average access frequency favg of the
file, we will calculate the access slope I of the file during
the period. Each statistical cycle T is divided into n periods
{t1,t2,. . . tn}, where t1 is the first period of the current sta-
tistical cycle, tn is the last period of the current statistical
cycle, and access weight λ = 1/i, the access frequency of ti
period is fti. That is, the access weight proportion in the period
closer to tn is higher, and the access weight proportion in the
period closer to t1 is lower. In this way, we can get the truest
reflection of the access frequency in the cycle and avoid being
affected by new files. The calculation formula of access slope
I is as follows:

I = (
n∑

i=1

fti
i
)/T (2)

We set the heat of the file toH , calculate the average access
frequency favg and access slope I of the file, and assign a
balance factor β to the average access frequency of the file,
Then the file access slope balance factor is (1- β), The heat
H is calculated as follows:

H = (1 − β)I + βfavg(0 < β < 1) (3)

After the heat value of the document is calculated, we clas-
sify the heat of the document. In daily life, many phenomena
conform to the law of Zipf distribution [22], including the
frequency of words, the frequency of web page visits, etc. In a
large-scale distributed cluster, it also conforms to this rule.
80% of users’ access to the cluster is usually concentrated on
20% of the files. Therefore, in our design, we use the heat
calculation formula mentioned above to calculate the heat
value, and then count the top 20% of the files ranked by heat
as hot files, and the remaining 80% of the files are defined as
cold files.

TABLE 1. Units for magnetic properties.

C. FILE SIZE CLASSIFICATION
We use the size of three data blocks (the default size of a
data block in Hadoop 3.0 is 128MB) as the threshold of
file size classification. Because when the file is smaller than
three data blocks, RS (3,2) only needs to use one stripe
storage. Although the multi-copy storage efficiency is only
0.33 shown in Table 1, when it is less than three data blocks,
it will not cause excessive storage space occupation. Multi-
copy can greatly improve the parallel read/write ability of
files and reduce the read delay of files.

D. FILE SIZE CLASSIFICATION
The idea of designing the FACHS algorithm is as follows.
Considering the file access characteristics (size and heat),
we can select the best encode and storage mode for each file
to improve the read/write performance and recovery perfor-
mance while ensuring low storage redundancy.

The advantage of using multi-copy for the ‘‘hot’’ and
‘‘small’’ files has been mentioned in Section III-C. Although
it may cause additional storage redundancy, it can improve the
read/write efficiency and parallel read/write ability of files
with high access frequency. Using LRC (6,2,2) coding for
‘‘hot’’ and ‘‘large’’ files can take advantage of its efficient
reconstruction capability. Through our research, we know
that more than 95% of data loss in distributed clusters occurs
on a single node. When LRC Code handles data loss of less
than two data blocks, it can directly call local check blocks
for fast data recovery without calling global check blocks,
reducing the time of data reconstruction and transmission,
and effectively improving cluster recovery efficiency. For
the ‘‘cold’’ files, we use RS Code to store them, and take
advantage of the RS code’s low storage cost to reduce the
storage redundancy of the cluster. Among the ‘‘cold’’ files,
the ‘‘small’’ and ‘‘cold’’ files use RS (3,2), the ‘‘large’’ and
‘‘cold’’ files use RS (6,3) to encode the maximum number of
complete stripes respectively, and the last stripe uses RS (3,2)
or RS (6,3) depending on the size of the remaining blocks to
avoid too many empty blocks to save storage space.

We traverse all the files in the cluster, obtain the heat value
of the files in the cycle based on the heat formula proposed
in 3.2, count the heat value required for ranking as a hot
file, and set the Heat flag (‘‘cold’’ or ‘‘hot’’) for the files.
Then we obtain the storage information of the file, that is,
the specific storage space occupied by the file, and set the

16858 VOLUME 11, 2023



Y. Song et al.: FACHS: Adaptive Hybrid Storage Strategy Based on File Access Characteristics

Size flag (‘‘large’’ or ‘‘small’’) for the file. Then, we encode
the file and select the storage method as follows. If the Heat
flag of the file is ‘‘hot’’ and the Size flag is ‘‘small’’, then
we use multi-copy to store such file. If the Heat flag of
the file is ‘‘hot’’ and the Size flag is ‘‘large’’, then we use
LRC (6,2,2) to code such file. If the Heat flag of the file
is ‘‘cold’’ and the Size flag is ‘‘small’’, RS (3,2) is used
to encode such file. If the Heat flag of the file is ‘‘cold’’
and the Size flag is ‘‘large’’, RS (6,3) is used to encode
the maximum number of complete stripes, and RS (3,2) or
RS (6,3) is used to encode the last stripe depending on the
remaining block size. The specific algorithm is shown in
Algorithm 1.

Algorithm 1 Adaptive Selection Algorithm of FACUS
Input: file_size, file_heat, hot_value;
Output: storage mode

1: if (file_size<block_size*3) then
2: set Heat = hot;
3: if (file size < block_size∗3) then
4: set Size = small;
5: Apply 3 Replica;
6: else
7: set Size = large:
8: Apply LRC(6,2,2);
9: end if
10:else
11: set Heat = cold;
12: if (file_size < block_size∗3) then
13: set Size = small;
14: Apply RS(3,2);
15: else
16: set Size = large;
17: for all full strips do
18: Apply RS(6.3);
19: end for
20: remaining strip Apply RS(3,2) or RS(6,3);
21: end if
22:end if

We have clearly defined and classified the files in
the cluster through Algorithm 1, and adopt appropriate
storage methods for different types of files according
to their characteristics to improve the storage efficiency,
read and write efficiency and recovery efficiency of the
cluster.

IV. EXPERIMENTAL EVALUATION
To verify the advantages and disadvantages of the FACHS
strategy, we built an experimental platform on the basis of
CloudSim [23] platform. We compare FACHS with the exist-
ing methods in the simulation scenario in terms of the storage
efficiency, read/write performance, and recovery efficiency.
To this end, we first introduce the experimental environment
and the experimental design, then analyze the performance
evaluation results.

A. EXPERIMENTAL ENVIRONMENT
CloudSim is a full system simulation platform, launched
by the Grid Lab and Gridbus project of the University of
Melbourne, Australia. It is universal enough to provide data
centers, hosts, virtual machines and other cloud computing
system simulation components for our experiments [24].
Moreover, CloudSim can simulate the hardware resources of
a single physical node in a large-scale cloud environment,
enabling us to simulate the situation of multiple nodes and
multiple files during experimental design.

In our experiment, CloudSim will generate a cluster of
multiple nodes every time according to the experimental
needs. Each node has a single-core Intel(R)core(TM)-i7
CPU@2.00 GHz and runs 4GBRAMonUbuntu 16.04.4LTS.
Our machines running CloudSim platform are configured as
Intel (R) Core (TM) i5-1035G1 CPU @ 1.00GHz 1.19GHz
and 16 GB RAM.

We extend the function on the basis of CloudSim to make
the simulation environment close to Hadoop distributed clus-
ter to meet the requirements of this experiment.

B. EXPERIMENTAL DESIGN
Our experiment simulates the distributed cluster applica-
tion scenario of ‘‘write once and read many times’’. In this
scenario, Zipf distribution is applied to the read allocation
of files, namely 80% of the access are concentrated on
20% of the files. To ensure the fairness of the experiment,
we designed multiple groups of comparison experiments to
store different numbers of files on different number of nodes.
Each node has an average of 50 files, and the size of each file
is randomly set within 3000 MB.

We select DECPA strategy [13], RS (3,2) and RS (6,3)
for our comparison experiments. Among them, DECPA is a
dynamic erasure coding strategy allocation. We implement
DECPA-F and DECPA-MF strategies. The experiments are
divided into three groups. The first group of experiments
consist of 100 nodes, 5000 files, and 4000 reads. The sec-
ond group of experiments consist of 500 nodes, 25000 files
and 20000 reads. The third group of experiments consist of
1000 nodes, 50000 files and 40000 reads.

Our experimental performance evaluation includes the
storage redundancy, write performance, read performance of
the cluster, and the reconstruction time required to recover
data blocks when a single node fails.

C. ANALYSIS OF EXPERIMENTAL RESULTS
We compare FACHS with DECPA-F, DECPA-MF, RS (3,2)
and RS (6,3) respectively in terms of the storage redundancy,
write performance, read performance, and the reconstruction
time required to recover data blocks in the event of a single
node failure.

1) STORAGE OVERHEAD ANALYSIS
We count the storage redundancy generated when the cluster
stores files. As shown in Figure 1, the storage redundancy

VOLUME 11, 2023 16859



Y. Song et al.: FACHS: Adaptive Hybrid Storage Strategy Based on File Access Characteristics

FIGURE 1. Comparison of storage overhead under different node sizes.

FIGURE 2. Write performance comparison under different node sizes.

generated by FACHS under different nodes and file numbers
is better than DECPA and the basic RS code. In the 1000 node
scale, when the data size is 50000 GB, FACHS can save up
to 3000 GB of storage space compared with DECPA, and
improve the storage efficiency by 12%. Compared with RS
coding, FACHS can save up to 9000 GB of storage space
and improve the storage efficiency by 37%. According to the
file size, FACHS uses RS (3,2) and RS (6,3) to store cold
files in the cluster. RS Code itself has a high storage effi-
ciency. FACHS can avoid the generation of too many empty
blocks in the stripe, so it can reduce the occupied storage
space.

2) WRITE PERFORMANCE ANALYSIS
We verify the performance of writing data by writingmultiple
files to the cluster. The experimental results are shown in
Figure 2. When there are 100 nodes, compared with RS
(3,2) and RS (6,3) coding, FACHS can shorten the write
time by 2.5% and 4% respectively. The reason is that some
files in FACHS use multi-copy of storage, saving the encode
transmission time of erasure codes. Compared with DECPA,
FACHS shortens the write time by 6.3%. Because the coding

FIGURE 3. Comparison of read performance under different node sizes.

FIGURE 4. Single block loss recovery time comparison.

efficiency of LRC code is better than RS code, the write time
can be shortened.With the increase of the number of files, the
proportion of write performance improvement also increases
slightly due to the increase of the time taken for erasure code
encode. At the scale of 1000 nodes, compared with RS (3,2)
and RS (6,3), FACHS can shorten the write time by 3.2% and
4.9%, and compared with DECPA, FACHS can shorten the
write time by 6.4%.

3) READ PERFORMANCE ANALYSIS
We read data from files of multiple sizes, and the experi-
mental results are shown in figure 3. The advantage of the
multi-copy strategy is that its read and write performance is
higher than that of the erasure code, and the advantage of RS
code is that its storage space is saved when storing cold data.
FACHS divides the heat of files, and uses the zipf distribution
to focus most of the access on a small number of files, which
also allows FACHS to take full advantage of the multi-copy,
so fachs is better than decpa and traditional rs code in data
read performance. at the scale of 100 nodes, compared with rs
(3,2), RS (6,3) and decpa, fachs can shorten the data read time
by up to 9.2%, 9.4% and 5.3%, respectively. with the increase
of the number of files and the number of read operations,

16860 VOLUME 11, 2023



Y. Song et al.: FACHS: Adaptive Hybrid Storage Strategy Based on File Access Characteristics

the number of access to the hot data by fachs is more, and
the efficiency of read operations is higher. in 1000 node
scale, compared with rs (3,2), RS (6,3) and decpa, fachs
can shorten the data read time by 11.8%, 13.7% and 8.0%,
respectively.

4) RECOVERY TIME ANALYSIS
We evaluate the reconstruction time required for FACHS to
recover lost data blocks when simulating single block loss.
The experimental results are shown in Figure 4. Because
FACHS uses LRC codes, compared with RS codes, it is
more efficient in the number of transmission blocks and the
encode and decode time, it can reduce the reconstruction
time when blocks are lost. Compared with RS (3,2), RS (6,3)
and DECPA, FACHS can shorten the recovery time by 6.2%,
26.8% and 29.1%, respectively.

From the experimental results of the above four indica-
tors, we can see that in the three groups of experiments, the
performance indicators of FACHS at each scale are better
than those of other comparison objects, and the performance
indicators at 1000 node scale have the highest proportion of
improvement.

V. CONCLUSION
This paper designs and implements FACHS. This is a hybrid
storage strategy, which integrates RS Code, LRC Code and
multi-copy together, so that the cluster has lower storage
redundancy as well as higher read/write efficiency and recov-
ery efficiency. As to the infrequently accessed files, we use
RS Code for storage; as to the frequently accessed files,
we use LRC Code and multi-copy storage according to the
file size. To verify the effectiveness of FACHS, we conducted
several groups of experiments on the CloudSim simulation
platform. Compared with the traditional RS Code, FACHS
improves the write performance, the read performance, the
recovery efficiency by up to 4.8%, 13.7% and 29.1%, respec-
tively. Compared with DECPA, FACHS improves the write
performance, the read performance, the recovery efficiency
by up to 6.4%, 8.0% and 26.8%, respectively. Compared
with the traditional RS Code and DECPA, FACHS saves up
to 9000 GB and 3000 GB of storage space at 1000 nodes,
respectively. Therefore, our experiments verify the perfor-
mance improvement of FACHS compared with existing
methods.

Our work has further optimized the use of erasure code
hybrid storage strategy in distributed systems, improved
the performance of clusters, and made a contribution to
the worldwide distributed storage field. However, because
FACHS uses different types of erasure codes, the perfor-
mance requirements of nodes are also high, which may lead
to the failure to give full play to the advantages of FACHS
in heterogeneous environment. Therefore, in the future work,
we will study how to optimize FACHS for heterogeneous
environment.

REFERENCES
[1] L. Qian, Z. Luo, Y. Du, and L. Guo, ‘‘Cloud computing: An overview,’’

in Proc. Cloud Comput., 1st Int. Conf., (Cloudcom), Beijing, China,
Dec. 2009, pp. 626–631.

[2] K. Michael, ‘‘Securing the cloud: Cloud computer security techniques and
tactics,’’ Comput. Secur., vol. 31, no. 4, p. 633, Jun. 2012.

[3] M. Hilbert, ‘‘Big data for development: A review of promises and chal-
lenges,’’ Develop. Policy Rev., vol. 34, pp. 135–174, Jan. 2016.

[4] X. Li, R. Li, P. Lee, and Y. Hu, ‘‘OpenEC: Toward unified and configurable
erasure coding management in distributed storage systems,’’ in Proc.
USENIX FAST, 2019, pp. 1–15.

[5] R. G. Masur and S. K. Mcintosh, ‘‘Preliminary performance analysis of
Hadoop 3.0.0-alpha3,’’ in Proc. New York Sci. Data Summit (NYSDS),
Aug. 2017, pp. 1–3.

[6] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, ‘‘The Hadoop dis-
tributed file system,’’ in Proc. IEEE Symp. Mass Storage Syst. Technol.,
May 2010, pp. 1–10.

[7] J. Dean, ‘‘MapReduce: Simplified data processing on large clusters,’’ in
Proc. Symp. Operating Syst. Design Implement., 2004, pp. 1–7.

[8] D. Ford, ‘‘Availability in globally distributed storage systems,’’ in Proc.
9th USENIX Symp. Operating Syst. Design Implement. (OSDI), Vancouver,
BC, Canada, Oct. 2010, pp. 1–14.

[9] R. Li, Y. Hu, and P. P. C. Lee, ‘‘Enabling efficient and reliable transition
from replication to erasure coding for clustered file systems,’’ IEEE Trans.
Parallel Distrib. Syst., vol. 28, no. 9, pp. 2500–2513, Sep. 2017.

[10] K. Rashmi, N. B. Shah, D. Gu, H. Kuang, D. Borthakur, and K. Ramchan-
dran, ‘‘A solution to the network challenges of data recovery inerasure-
coded distributed storage systems: A study on the Facebook warehouse
cluster,’’ Presented as the 5th USENIX Workshop Hot Topics Storage File
Syst., 2013.

[11] S.Mitra, R. Panta, M.-R. Ra, and S. Bagchi, ‘‘Partial-parallel-repair (PPR):
A distributed technique for repairing erasure coded storage,’’ in Proc. 11th
Eur. Conf. Comput. Syst., Apr. 2016, p. 30.

[12] J. Gu, C. Wu, X. Xie, H. Qiu, J. Li, M. Guo, X. He, Y. Dong, and Y. Zhao,
‘‘Optimizing the parity check matrix for efficient decoding of RS-based
cloud storage systems,’’ in Proc. IEEE Int. Parallel Distrib. Process. Symp.
(IPDPS), May 2019, pp. 533–544.

[13] C. Wu, S. Wan, X. He, Q. Cao, and C. Xie, ‘‘H-code: A hybrid MDS
array code to optimize partial stripe writes in RAID-6,’’ in Proc. IEEE Int.
Parallel Distrib. Process. Symp., May 2011, pp. 782–793.

[14] H. Jin-Ping, L. Gui-Yang, and L. Hui, ‘‘Hybrid coding LRC-RS in het-
erogeneous decentralized storage,’’ Comput. Eng. Des., vol. 42, no. 2,
pp. 301–308, 2021.

[15] M. Xia, ‘‘A tale of two erasure codes in HDFS,’’ in Proc. Usenix Conf. File
Storage Technolog., 2015, pp. 213–226.

[16] A. Chiniah and A. Mungur, ‘‘Dynamic erasure coding policy allocation
(DECPA) in Hadoop 3.0,’’ in Proc. 6th IEEE Int. Conf. Cyber Secur. Cloud
Comput. (CSCloud)/ 5th IEEE Int. Conf. Edge Comput. Scalable Cloud
(EdgeCom), Jun. 2019, pp. 29–33.

[17] H. Qiu, C. Wu, J. Li, M. Guo, T. Liu, X. He, Y. Dong, and Y. Zhao,
‘‘EC-fusion: An efficient hybrid erasure coding framework to improve
both application and recovery performance in cloud storage systems,’’
in Proc. IEEE Int. Parallel Distrib. Process. Symp. (IPDPS), May 2020,
pp. 191–201.

[18] X. Xie, C. Wu, J. Gu, H. Qiu, J. Li, M. Guo, X. He, Y. Dong, and Y. Zhao,
‘‘AZ-code: An efficient availability zone level erasure code to provide high
fault tolerance in cloud storage systems,’’ inProc. 35th Symp.Mass Storage
Syst. Technol. (MSST), May 2019, pp. 230–243.

[19] Y. Chen, S. Alspaugh, and R. Katz, ‘‘Interactive analytical process-
ing in big data systems: A cross-industry study of mapreduce work-
loads,’’ VLDB Endowment, vol. 5, no. 12, pp. 1802–1813, 2012, doi:
10.14778/2367502.2367519.

[20] Y. Hu, Y. Wang, B. Liu, D. Niu, and C. Huang, ‘‘Latency reduction and
load balancing in coded storage systems,’’ in Proc. Symp. Cloud Comput.,
Sep. 2017, pp. 365–377.

[21] S.Mitra, R. Panta, M.-R. Ra, and S. Bagchi, ‘‘Partial-parallel-repair (PPR):
A distributed technique for repairing erasure coded storage,’’ in Proc. 11th
Eur. Conf. Comput. Syst., Apr. 2016, p. 30.

[22] Y. Chen, S. Alspaugh, and R. Katz, ‘‘Interactive analytical processing
in big data systems: A cross-industry study of MapReduce workloads,’’
Proc. VLDB Endowment, vol. 5, no. 12, pp. 1802–1813, Aug. 2012, doi:
10.14778/2367502.2367519.

VOLUME 11, 2023 16861

http://dx.doi.org/10.14778/2367502.2367519
http://dx.doi.org/10.14778/2367502.2367519


Y. Song et al.: FACHS: Adaptive Hybrid Storage Strategy Based on File Access Characteristics

[23] R. N. Calheiros, R. Ranjan, C. A. F. D. Rose, and R. Buyya, ‘‘CloudSim:
A novel framework for modeling and simulation of cloud computing
infrastructures and services,’’ in Proc. CloudSim ICCP, 2009, pp. 1–9.

[24] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. D. Rose, and R. Buyya,
‘‘CloudSim: A toolkit for modeling and simulation of cloud computing
environments and evaluation of resource provisioning algorithms,’’ Softw.,
Pract. Exper., vol. 41, no. 1, pp. 23–50, Jan. 2011, doi: 10.1002/spe.995.

[25] J. Liao, Z. Cai, F. Trahay, and X. Peng, ‘‘Block placement in distributed
file systems based on block access frequency,’’ IEEE Access, vol. 6,
pp. 38411–38420, 2018, doi: 10.1109/ACCESS.2018.2851571.

YING SONG received the Ph.D. degree in com-
puter engineering from the Institute of Comput-
ing Technology (ICT), Chinese Academy of Sci-
ences. She is currently an Associate Professor with
the Computer School, Beijing Information Science
and Technology University. Her work has covered
topics, such as performance modeling, resource
management, cloud computing, and big data com-
puting platform. She has been authoring or coau-
thoring more than 30 publications in these areas,

since 2007. Her research interests include computer architecture, parallel
and distributed computing, and virtualization technology. She has served for
various academic conferences.

QIANG ZHANG received the B.S. degree in
computer science and technology from Beijing
Information Science and Technology University,
Beijing, China, in 2019, where he is currently
pursuing the master’s degree with the Computer
School. His research interest includes distributed
storage.

BO WANG received the B.S. degree in com-
puter science from Northeast Forest University
(NEFU), Harbin, China, in 2010, and the Ph.D.
degree in computer science from Xi’an Jiaotong
University (XJTU), Xi’an, China, in 2017. He was
a Guest Student with the State Key Laboratory
of Computer Architecture, Institute of Comput-
ing Technology (ICT), Chinese Academy of Sci-
ences (CAS), from 2012 to 2016. He is currently
a Lecturer with the Software Engineering College,

Zhengzhou University of Light Industry (ZZULI). He has published more
than ten research articles in these areas. His research interests include
distributed systems, cloud computing, edge computing, resource manage-
ment, and task scheduling. He has served for various academic journals and
conferences.

16862 VOLUME 11, 2023

http://dx.doi.org/10.1002/spe.995
http://dx.doi.org/10.1109/ACCESS.2018.2851571

