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ABSTRACT A thorough understanding of the fundamental relation of traffic flow variables is critical for the
efficient operation of traffic systems. However, their relationships in mixed traffic are challenging to model
due to the continuously changing vehicle composition. This paper proposes a composition-based approach
for estimating the fundamental relationships between traffic flow variables using empirical data. The
methodology seeks to eliminate the difficulties in class-specific ss identification by introducing a continuous
wavelet transformation with oblique cumulative arrival and oblique occupancy time plots. We used machine
learning (ML) algorithms to delineate regimes and showed the fundamental diagrams for a given location that
has a composition-invariant free-flow branch but has distinct composition-specific branches in congestion.
Also, it was observed that the congested regime (CR) has a wide scatter indicating possible stochastic
inter-class interactions for varying vehicular composition. We proposed a distance optimization method to
re-cluster the CR data and found that the proposed method improves the fit with the empirical observations.
The inter-class interactions result illustrates that the heavy vehicles will dominate the high-speed vehicles
with the increase of AO. It is found that beyond a critical level of AO in congestion, all vehicle class
travel at the same speed. Finally, it is found that validation with different datasets shows that the proposed
methodology is robust in estimating fundamental diagrams under mixed traffic conditions.

INDEX TERMS Mixed traffic, non-lane-based traffic, machine learning, fundamental diagram, AO.

I. INTRODUCTION
Traffic flow models have been developed over the years to
understand and mathematically represent the nature of traffic
flow and optimize traffic conditions. Fundamental diagrams
(FD) that refer to the steady-state (ss) relationships between
any two of the traffic flow variables of flow, occupancy, and
mean speed of traffic stream, are one of the fundamental mod-
els used by transportation researchers and engineers. They are
helpful in describing both static and dynamic properties of
traffic flow such as road capacity, optimal speed, congestion
propagation, etc. For example, at signalized intersections,
the rate of queue buildup and dissipation due to the cyclic
changes in the signal indications can be explained using
the ratio of flow change and density change. Similarly, the
ss flow and densities during the green indication are given
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by the saturation flow and critical density and during the red
indication by the jam density and zero flow.

The FD models are classified into single and multi-regime
models. Greenshields [1] proposed a linear speed-density sin-
gle regime model for the traffic in both congestion and free-
flow states. Later, Grinbeerg [2] proposed an FD, assuming
density as a logarithmic speed function. Since then, several
researchers have proposed several variations such as expo-
nential relation [3], [4], [5], and complex functional relation
between speed-density relationship [6], [7], [8], [9]. However,
the drawback of these single regimemodels is the discrepancy
between mathematical relations and empirical evidence [10].
To deal with the challenges of the single regime models,
researchers developed multi-regime models where the whole
density range is classified with multi-regions for improved
fit with the empirical data. Multi-regime models include two
and three regimes to describe traffic conditions. However,
one of the major challenges of the model is the selection of
boundaries for the regimes [11], [12], [13].
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FIGURE 1. Sample aerial view of the study area representing mixed traffic
conditions from SP road, Chennai, India.

The traditional FD models were developed under homoge-
neous vehicle classes and lane-based movement that mimic
the traffic behavior in the developed countries. However, the
traffic in south Asian and developing countries includes a
mix of vehicle classes ranging from two-wheelers, three-
wheelers, and four-wheelers, to public transport like buses
and non-lane-basedmovements [14], representingmixed traf-
fic conditions (see Figure 1). As the vehicle dynamics and
driving characteristics of mixed traffic are different from
that of homogeneous traffic, the FDs’ functional form and
parameter values can be significantly different. Moreover,
ss identification to estimate the speed-density relationship
for mixed traffic is also a challenging task, as it deals with
ss across multiple classes of vehicles.

Another challenge in modeling mixed traffic is the proper
characterization of the traffic state. The traditional flow and
density need extra information like composition that defines
the properties of vehicle classes in the traffic stream. To over-
come this, passenger car equivalent (PCE) [15], [16], [17],
[18], [19], area defined density [20], [21], and AO [22]
concepts were developed. Multi-class models have been pro-
posed as an alternative to traditional density measurements to
address the challenges of PCE [23], [24], [25].

In multi-class models, the vehicles are generally subdi-
vided into classes based on their kinematic and physical fea-
tures. Jin [26] developed a multi-class model in which vehicle
classes are grouped based on their free-flow speed. Vehicles
with identical free-flow speeds are grouped into one vehicle
class. An example of such a multi-class model is the Logghe
and Immers [27] model. In this model, they differentiated
different vehicle classes using scale factors. An assumption
made is that the fundamental diagram for any class can be
a scaled version of a reference fundamental diagram. It is
assumed that the mixed traffic flow also conforms to the
same fundamental diagram. Heterogeneous multi-class mod-
els are developed based on the distinguishing class-specific
speed Vj(.). Wong et al. [28] developed a model where the
velocity function of each class is a function of total density
(vj = Vj(

∑
i ρi). This model differentiated vehicles based

on vehicle length. The velocity of each class is distinct, and
the model was able to describe various traffic phenomena
such as two capacities, hysteresis, and platoon dispersion.
Benzoni-Gavage & Colombo [29] extended it and developed
a n-population model where vehicle size was taken into con-
sideration. In this model, a system of conservation equations
was applied for space occupied by each class of vehicles
rather than conserving a number of vehicles. In these hetero-
geneous multi-class models, speed is defined by the function

of effective density and assumes that vehicles are only in
static condition when their density reaches jam density (ρjam)
or at a common maximum occupied space (Vj(rm) = 0),
where rm is maximum occupied space.
In car following, follower and leader vehicle characteristics

(size, speed, etc.) affect the following vehicle’s decisions,
which in turn influences the traffic stream behavior [22]. Con-
gestion propagation wave speed depends on the vehicle size;
usually, longer vehicles have larger wave speeds than shorter
ones [30]. Vehicle size and its free-flow speed also signif-
icantly affect the saturation flow and critical density [31].
Coifman [32] proposed vehicle length and speed-based bins
to calculate the fundamental relations for each bin. However,
in the case of a mixed environment, headway calculation
will be more difficult due to possibly multiple leaders and
their complex influences. Also, in the study, vehicle dynamics
of different sizes of vehicles were estimated, but the effect
of composition changes was not addressed. Hence, when
modeling mixed traffic, it is necessary to incorporate the
kinematic and physical characteristics in the models. Traffic
composition is one of the essential factors that influence the
lateral distribution of vehicles under mixed traffic conditions
and the road capacity [22]. The effects of lane width on FD
were examined for different compositions of heterogeneous
traffic and found that composition influence the capacity of
road [33].

Researchers have been exploring composite fundamen-
tal diagrams of human-driven vehicles (HVs) with differ-
ent penetrations of connected autonomous vehicles (CAVs).
Few studies follow average stable headway to estimate the
composite fundamental diagrams where the combinations of
CAVs and HVs were modeled probabilistically [34], [35].
Also, microsimulation-based IDM car-following models [36]
were used to model the CAVs and HVs stream with differ-
ent perceptions and reaction times for analyzing the prop-
erties of FDs in different composition levels [37]. However,
the complexity of probabilistic methods increases for traffic
streams with more traffic classes. Also, these studies deal
with vehicles of similar physical characteristics (dimensions)
and are primarily based on microsimulation approaches and
not empirical data.

It is important to estimate ss periods since traffic compo-
sition varies during the day, but there is a lack of literature
on the subject. Thomas et al. [38] developed a multi-regime
class-wise fundamental relationship for the mixed traffic and
investigated the model performance for the impact of vehicle
composition and the volume of the traffic stream but did not
consider the class-wise ss and spatial traffic composition. So,
the inter-class interactions were ignored in the fundamental
relationship. The study fails to explain how to group the
different compositions of vehicles into FDs. The reported
study on traffic stream modeling is a very limiting resource
for understanding the ss phenomena and the interactions of
the different vehicle classes in mixed traffic conditions. Also,
unlike homogeneous traffic, there are no prior studies to
delineate the shape and nature of the fundamental relations in
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varying compositions of the traffic stream. Most of the exist-
ing studies on mixed traffic homogenize traffic conditions
using passenger car units. However, it is well known that such
homogenization masks the important intra-vehicular inter-
actions. Also, these studies aggregate the variables across
multiple traffic states leading to significant noise in the FDs.

Studies in the literature attempted to estimate composite
FDs in the context of connected autonomous vehicles for
different penetration rates, they typically considered only
two vehicle classes. Moreover, these studies typically used
simulation for estimating composition-specific FDs. To over-
come these limitations, the study proposes a methodology to
systematically identify and estimate the compositions dur-
ing the ss to estimate composition-specific FDs using the
class-specific cumulative count curve and occupancy time
curve. The proposed model composition-specific fundamen-
tal diagrams unveil interesting insights regarding the proper-
ties of the free-flow and congested regimes and class-specific
interactions in mixed traffic conditions. The major contribu-
tions of this paper are listed in more detail below:
• Developed a methodology to identify ss duration in the
mixed traffic stream.

• Proposed an ML-based and traffic state-based optimiza-
tion technique for estimating composition-specific con-
gested branches of the FD.

• Formulated composition-specific FDs and analyzed
their properties.

• Investigated inter-class interactions in lane-free traffic.
The rest of the paper is organized as follows: Section II

presents the data collection techniques using image process-
ing, the data attributes, and the study location. Section III
discusses the methodology involving ss identifications and
AO derivations from class-specific traffic data. Section IV
proposes the methodology for FD estimation using unsuper-
vised ML. Section V shows the results of speed-AO-based
FD and their property. Finally, Section VI presents the dis-
cussion and conclusions. The overview of this paper is shown
in Figure 2.

FIGURE 2. Overview of this paper.

II. DATA
To study the FD characteristics in mixed traffic, trajectory
data was collected from Sardar Patel Road (SRP), Chennai,
India. Data was collected during the evening peak period
ranges from 4:30 pm to 6:30 pm on June 6, 2019. Videos
were recorded from a vantage point using three cameras, each

TABLE 1. Chi. sq test for TW and car proportion in the stream.

covering around 70m. From the video, vehicle trajectories
were extracted using the image processing techniques as
discussed in [39].

We excluded the trajectory of stopped vehicles, as well as
lost-tracking trajectories in the video. After pre-processing,
we get 10800 unique vehicles and 432,000 seconds of vehi-
cle trajectories for the study. Unique vehicle trajectories
consist of longitudinal and lateral local coordinates with
instant speed and acceleration every 1/24 seconds. Among
the observed vehicles, the proportion of different vehicles can
be estimated from the average classes-wise proportion (see
Figure 4b). Figure 1 shows a screenshot of the video data,
and Figure 3 is a schematic diagram of the location showing
the selected study stretch, where ‘‘A’’ is the data collection
loop. The selected study stretch is a six-lane roadway with
three lanes in each direction. For the study, westbound traffic
flow was considered. The prevailing traffic on this road is
highly heterogeneous in vehicle classes with an approximate
composition of 52%motorized two-wheelers (TW), 37%pas-
senger cars (car), 6% motorized three-wheelers (auto), and
5% combined proportion of heavy vehicles with bus and truck
(BLT1) (see Figure 4(b)). Figure 4(a) shows the distribution
of vehicle proportions by TW and car class during the ss
period of data collection time. It represents that proportion
of TWs, and cars are more frequent at 0.45 in a ss period and
follow the symmetric kind distribution. Further, we tested the
observed data set using a χ2 test with a null hypothesis that
the vehicle proportions are normally distributed and found
χ2
observed < χ2

critical (see Table 1). Hence, a significant propor-
tion of traffic (%TW+%car≥ 90%) follows normal Gaussian
distribution. Traffic volume was obtained by counting the
number of vehicles traveling in all lanes at the entry of virtual
loop detector A (see Figure 3). The classified space mean
speed of all vehicles was measured using the travel time to the
detector length. The classified count was carried out for every
one-second interval. The extracted data is further analyzed to

1Bus-lcv-truck together:BLT, as their flow is less than 10% in traffic
stream.
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FIGURE 3. Schematic diagram of the selected study stretch.

FIGURE 4. (a) Histogram plot of TW, and car proportion during ss
(b) Average proportion of TW, car, auto, BLT in several ss periods.

estimate other traffic flow variables of interest, i.e., density,
AO, flow, etc.

A. ESTIMATION OF SPACE MEAN SPEED, DENSITY, AND
FLOW IN MIXED TRAFFIC CONDITIONS
Longitudinal and lateral position of each vehicle for every
1/24 second is collected, along with the vehicle class infor-
mation. Suppose ‘p’ represents the vehicle class, where p ∈
(TW , car, auto,BLT ) and j, k is the starting time and end
time of the ss period and the speed of the vehicle class p
during the ss period jk is (vjkp ) which is the harmonic mean of
all the individual vehicle’s speed on that particular ss period,

so vjkp = 1∑k
t=j

1
vp

. Class-specific density (ρjkp ) =
qjkp
vjkp

. Stream

speed during a particular ss, vjk , is the weighted average
speed of the density proportion of all classes of vehicles,
and the other stream fundamental parameters are estimated
as follows.

vjk =
∑
p

ρ
jk
p v

jk
p

ρjk
, qjk =

∑
qjkp , ρ

jk
=

∑
ρjkp (1)

Sample trajectories of vehicles along with the instantaneous
speed and the class of vehicle are shown in Figure 5, which
shows urban, multi-class, free-flow, and congested traffic
conditions in mixed traffic conditions.

III. METHODOLOGY
This study focuses on inter-class interactions and their impli-
cation for composition-specific FDs. First, we analyze the
traffic data to estimate the ss periods using continuous
wavelet transformation (CWT), cumulative count, occupancy
plots, and oblique plots of arrival and occupancy. Next,
we separate the ss data using machine learning and traffic

FIGURE 5. Sample trajectory of the mixed vehicles along with the speed
label at every instance.

state optimization techniques into different clusters based on
their compositions and traffic states. Then, we aggregated all
the data points into 0.5-sec intervals to capture temporal vari-
ation. Finally, flow-density and flow-occupancy relationships
for ss points were plotted to estimate the class-specific FDs.
More details of these steps are given in the subsections below.

A. STEADY STATE IDENTIFICATION
Cassidy [40] proposed oblique cumulative count (cc) and
occupancy (co) plots to identify the nearly stationary traffic in
homogeneous traffic. However, it may not suit mixed traffic
as the inter-class equilibrium is a critical factor. Researchers
have used mathematical transformations to study the wave
propagation and ss period in traffic flow using Fast Fourier
Transforms [41] and Wavelet transformation (WT) [42].
These methods are very efficient for identifying traffic speed
variation over time-series data but heterogeneous, class-
specific traffic needs a methodology to apply those transfor-
mations in ss identification.WT assists in identifyingwhether
all classes of vehicles follow ss in mixed traffic conditions
or if only some classes do. WT findings will be used in
developing a methodology to identify ss periods in mixed
traffic environments. Therefore, we focus more closely on
WT of the trajectories in the next sub-section.

1) WAVELET TRANSFORMATION
To understand wave propagation behavior in the time-space
(X-T) domain of intraclass traffic and interclass traffic in
mixed traffic conditions, we take the help of the CWT based
energy method. A Wavelet is a wave-like oscillation that is
localized in time. The WT is similar to the short-time Fourier
transformation (STFT) based on the operations of time and
frequency shifts; the basis functions for the decomposition are
time and frequency-shifted versions. The CWT is an alterna-
tive, but related, decomposition based upon the operations of
time shifts and scalings [43]. STFT-produced time-frequency
plots do not always clearly locate the stationary time inter-
vals. Whereas a wavelet is a real or complex mathematical
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function, ψ(t, a), that can transform a time series of traffic
speed profiles into various scale components to help identify
stationary intervals. The properties of Wavelet are shown
in (2).

E =
∫
∞

−∞

|ψ(t, a)|2dt <∞,
∫
∞

−∞

ψ(t, a)dt = 0 (2)

Here E is the wavelet-based energy with a finite value,
and the mean of the wavelet is zero. As we want to process
a long-duration continuous speed profile, the coefficient of
CWT is the best method to achieve the goal. From many
mother wavelets available (e.g., Haar, Daubechies, Mexican
hat, Morlet, Coiflet) for a continuous signal, we choose the
Mexican hat wavelet for the time-varying speed data, as oth-
ers wavelets are near-optimal and provide similar results for
a wide variety of signals [44]. Adeli et al. [45], [46] describe
more details of WT and its applications. For our study, speed,
v(t) time-series is the continuous signal function. Thus, the
WT coefficient of v(t) can be obtained as follows (3):

T (t, a) =
1
√
a

∫
∞

−∞

v(t)
[
1− (

t − τ
a

)2
]
exp

(
−

t−τ
a

2

)2

dt

(3)

Then, the average wavelet-based energy at τ is computed
based on the WT coefficients for different scales, i.e.,

E =
1

max(τ )

∫
∞

0
|T (t, a)|2dt (4)

Here τ is the time shift parameter i.e., ψ(t, a)← ψ(t− τ, a),
is given by:

ψ(t, a)← a0ψ(t/a0, a0a), a0 > 0

In this study, we used the detector data to identify the wave
propagation of class-specific vehicles. Here, v(t) is the indi-
vidual vehicle speed for a sample study period. T(t,a) is
computed for the speed value of vehicles with the shape value
of a = 64. The temporal wavelet-based energy plots of the
TW and the car is shown in Figure 6(a,b). The peaks and
dips in the plot imply the abrupt speed change during the
travel. In Figure 6, black dotted lines joining through the dips
and peaks of energy plots have different slopes for car and
TW throughout the travel period. The analysis showed that
class-specific wave speeds exist during congestion periods,
and they propagate backward, showing that all vehicles have
different wave speeds in congestion. Three different detectors
were placed in the road section at entry, mid-block, and exit
locations where the space mean speed of individual vehicles
crossing from the detector was collected with respect to time.
Similarly, the time-varying speed profile of three detectors
was transformed into a CWT energy plot. There has been a
constant change in the slope of peaks and dips connecting
lines throughout time and space. Hence, it is concluded that
traffic composition greatly affects wave speed propagation
and fundamental parameter estimation of the traffic stream.

2) CUMULATIVE COUNT AND CUMULATIVE OCCUPANCY
CURVE
To estimate fundamental relationships among the traffic flow
variables, i.e., flow (q), density (ρ), and speed (v) in mixed
traffic conditions, one needs to identify them during ss. Here,
we extended Cassidy‘s [40] methodology to identify the
class-specific common ss periods in the mixed traffic stream.
The first step involves plotting the vehicle class-specific
cumulative count curve (N- curve), curves of cumulative
vehicle arrival number to x by time t for each class, Ni(x, t).
To visually identify the linear arrival rates of vehicles, oblique
plots of arrival (Ni(x, t) − qi0t ) were constructed. Next,
to check the constant rate of speed during the ss periods
of each vehicle class, cumulative occupancy time (T-curve)
and the oblique plots of occupancy time (Ti(x, t) − Ti0t)
were plotted over the detector length. The occupancy time
(T-curve) was calculated in the middle of the study section
by considering a virtual loop detector of 10 meters in length
over the whole cross-section (see Figure 3a). This data is
used to develop the oblique plots of the cumulative count and
travel time to magnify the fluctuation of the vehicle arrival
and travel time during the observation period. Note that qi0
and Ti0 represent the average rate of vehicle arrivals and
average rate of travel time of vehicle during the period and
Ni(x, t) and (Ti(x, t), the cumulative vehicles arrival and the
cumulative occupancy time curves for ith class vehicles. The
ss periods for each vehicle class are identified when both the
oblique N-curve and T-curve have a linear slope, indicating a
ss period. Thresholds on the minimum duration of 10 seconds
and maximum coefficient of variation of the speed of 20 were
imposed during the ss identification. Finally, the common ss
periods for all vehicle classes were identified. In Figure 7, the
ss periods of the stream are illustrated for the time window of
20min for peak hour traffic. It can be seen in Figure 7(a,b)
for a few sample time periods T1, T2, T3, and T4 where
class-specific oblique plot for N-curve and T-curve have a
linear slope in the mentioned period. The data from these ss
periods are collected for further analysis.

B. FUNDAMENTAL DIAGRAM ESTIMATION
The FD represents the ss relationship between q, ρ, and v.
The critical points of the FD are jam density (ρjam), critical
density (ρcr ), free-flow speed (vf ), capacity (qmax), and wave
speed (w). Existing methods for FD estimation are developed
for homogeneous traffic conditions. However, vehicle com-
position is an important factor in characterizing traffic condi-
tions. Density is essentially defined for spatial measurements
suitable for lane-based homogeneous traffic. In the recent
past, researchers proposed that occupancy is a better vari-
able for highly mixed traffic to incorporate widely varying
vehicular dimensions and speed [22], [23], [24]. However,
occupancy may not precisely represent the combined mixed
traffic behavior moving in both lateral and longitudinal direc-
tions [47]. To deal with these difficulties, the width of the road
is considered in occupancy calculation, known as AO.
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FIGURE 6. (a) CWT-based energy plots of the class-specific vehicles, black lines joining through peaks, and
dips of the energy plots give the wave propagation idea for each class a) car b) two-wheeler, c) x-t Plot shows
the trajectories of those vehicles (tw,car) in mixed traffic conditions (blue color: car, red color: two-wheeler).

FIGURE 7. Class-specific oblique plots of (a) cumulative count curves and (b) cumulative occupancy time curves.

1) AREA OCCUPANCY ESTIMATION
Macroscopic traffic flow characteristics can be described
using density, occupancy, and AO. While density and occu-
pancy are more relevant for homogeneous and lane-based
traffic, AO is suitable for heterogeneous and non-lane-based
traffic. The AO expresses how long a particular size of the
vehicle is over the detector on the road. AO is calculated based
on the width of the road irrespective of the number of lanes.
Hence, multiple vehicle presence over the road section can be
considered. The AO of the traffic stream is the summation of
all vehicles available during a particular time. Derivation of
AO can be found in [24].

AO =
m∑
p=1

∑n
q=11xwpqτpq
1xWT

=

m∑
p=1

∑n
q=1 wpq

(lpq+1x)
vpq

WT

=

m∑
p=1

w̄p(lp +1x)ρp, w̄p =
wp
W

(5)

So, the AO for a particular period for pth vehicle class of
q number of the vehicle can be estimated using (5). Density
ρp, vehicle length lp, and vehicle width wp for a particular
class is the only independent variables to estimate AO for
that class at any instant. τpq is the occupancy time of pth class
qth vehicle. In this study, the width, W , of the road section is
uniform throughout the detector length, is 12.5 meters. There
were only six classes of vehicles available based on the size
and vehicle dynamics in the study location, their length (lp)
and width (wp) can be found in Table-2. As the frequency
of arrivals of bus, truck, and lcv during any time of day are
very less compared to the car and TW, we grouped them
into one class named BLT class. The average size of BLT
class was taken as 2.5m in width and 8.5m in length. The
longitudinal length of the detector 1x is taken as 10m. The
class-specific AO is calculated from the estimated ρq and
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using other variables. The total AO for the stream of traffic
is the summation of class-specific AO in a ss period.

TABLE 2. Physical characteristics of Vehicles observed in Indian
road ( [24]).

This section proposes a method for FD estimation
using different unsupervised learning algorithms to segre-
gate composition-specific FDs. Large vehicles significantly
reduce the speed of smaller vehicles compared to the same
AO road section with more small vehicles [48]. Composition
change leads to changes in traffic characteristics even in the
same density of the same road section. In this paper, we devel-
oped a methodology for estimating composition-based FD
on the collected traffic data. The collected data set contains
a large percentage of TW-class of vehicles. In the highly
congested road, when all other classes of vehicles are stopped,
TW can move in between the available safe gap of other
vehicles, making traffic more volatile during congestion. The
congested regime of fundamental diagrams is more scattered
(see Figure 8) than the free-flow regime in the mixed traffic
stream. It represents that the extensive flow range can be
experienced at a particular AO or density in congestion.
One possible reason for these widespread data points could
be the complex interactions between the available vehicle
classes across the different traffic compositions. Segregation
of the traffic compositions from the stream will greatly help
understand the vehicle interactions in the traffic stream.

2) COMPOSITION-BASED CLUSTERING
Every ss traffic stream has a unique composition of classes
of vehicles. The composition of vehicles in a traffic stream
is described by the proportion of all the available vehi-
cle classes during a particular ss period. Density propor-
tions give a better understanding of spatial traffic vari-
ability. To investigate the effect of vehicle interactions
in the road space, We used density proportion to esti-
mate traffic composition rather than volume proportion.
As there are predominantly four classes of vehicles appear-
ing in the stream and the proportion of blt class are
always lesser than other classes, the stream composition is
expressed as (ρTW /ρBLT : ρcar/ρBLT : ρauto/ρBLT : 1).
This proportion value changes every period. To classify these
proportions into several groups, we use an unsupervised
ML called Gaussian Mixing Model (GMM), which is an
expectation-maximization algorithm [49]. The core idea of
this model is traffic composition can be modeled by Gaussian
Distribution. The proportion distribution of the predominant
vehicle class, i.e., TW, and car follows Gaussian normal

distribution as shown in Figure 4 (a). So it is quite natural and
intuitive to assume that the composition clusters come from
different Gaussian Distributions. Or in other words, it tries to
model the dataset as a mixture of several Gaussian Distribu-
tions. For multivariate Gaussian Distribution, the probability
density function is given by (6).

G(X |µ, σ ) =
1

√
(2π)|σ |

exp(−
1
2
(X − µ)Tσ−1(X − µ))

(6)

Here µ is the d−dimensional vector denoting the mean
of the distributions, and σ is the (d × d) covariance
matrix. X is the data frames of compositions X ∈

[(ρTW /ρBLT , ρcar/ρBLT , ρauto/ρBLT ]. Suppose in our case
for traffic composition, and there are K clusters based on
composition. So,µ and σ are also estimated for eachK. These
parameters can be estimated by the maximum-likelihood
method. Since there are K such clusters, pdf is defined as the
linear function of densities of all these K distributions, i.e.

p(X ) =
K∑
k=1

πkG(X |µk , σk )

where πk is the mixing coefficient for the k − th dis-
tribution.In this study, we used a python package of
GaussianMixture(ncomponents = K ) [50] and the initial and
essential parameters (ncomponents, ninit , randomstate) are cus-
tomized for the package. GMM requires the user to specify
the number of components or number of clusters (ncomponents)
before training the model. Here, we used the famous Aikaki
Information Criterion (AIC) and the Bayesian Information
Criterion (BIC) to aid us in this decision. In our study,
both AIC and BIC [51] converge approximately at K = 2
(see Figure 9 (a)). So, ncomponents or the number of feasi-
ble clusters based on the traffic composition is taken as 2.
We named this classification Class-A, so the two clusters are
A1 and A2. Based on the A1 and A2 clustering FD of flow
vs. AO are plotted (see Figure 9(b)).

3) TRAFFIC STATE-BASED CLUSTERING
Composition-specific FDs are scattered plots of q−ρ or q-AO
over the whole regime. It is not trivial to separate the different
traffic regimes in the FDs from the composition-based meth-
ods since it is difficult to conclusively identify the transition
point or the critical density visually. Therefore, there is a need
to design a methodology that can systematically segregate
the free-flow and congested regime data. In the traffic-state-
based clustering, we used the same procedure as the GMM
clustering technique, except that X is the data frames of flow
(q), sms speed(vsms), and AO ( X ∈ [q, vsms,AO]). It is
found that the number of optimal clusters based on the traffic
composition is 3. It divided the fundamental diagram into
three parts, two clusters in the free-flow regime and a cluster
for a congested regime based on the distribution of X. The
classes of this state-based FD are named class-B (B1, B2, B3).
Based on the B1, B2, and B3 clustering FD of flow vs. AO is
plotted in Figure 10.
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FIGURE 8. AO vs Flow diagram for the ss dataset.

FIGURE 9. (a) ncomponents estimation for traffic composition using AIC and BIC criterion (b) Composition-based clustering of AO vs. flow plots.

4) COMPOSITE FUNDAMENTAL DIAGRAMS
Based on the above two methods, the whole regime of FD is
segregated into two broader groups, i.e., class A and class B.
The overall methodology of the FDs estimation using unsu-
pervised ML can be found in a flowchart shown in Figure-13.
Composition-specific FD refers to the line joining through
mean points of the class-B group for a unique composition of
class-A (B ∈ A). The main idea behind connecting the mean
points to construct the composite FD is that a conventional
FD always represents the average traffic behavior in the
equilibrium conditions. Spreading of the equilibrium points
around the mean line infers the acceleration and deceleration
of vehicles for a unique composition. We applied k-mean
clustering to each of the clusters to identify the centroid or
mean point for each group of data points. k-means algo-
rithm [52] is an iterative algorithm that clusters the dataset
into K pre-defined distinct non-overlapping subgroups (clus-
ters). It is a centroid-based algorithm where each cluster is
associated with a centroid. The main aim of this algorithm

is to minimize the sum of distances between the data point
and their corresponding clusters. In this study, the k-mean
algorithm takes unlabeled data of each group as input and
generates the mean point of the cluster as output ( k = 1).
The proposed best-fit FD is developed as follows:
• Line joining mean points of free-flow regime and origin
gives the free-flow speed of the traffic stream for differ-
ent compositions.

• The capacity flow (Qmax) for each composition-specific
FDs can be estimated by intersecting the free-flow
line with a line passing through maximum AO point
(AO = 1.0), and mean points of congested regime’s
cluster.

• Jam density (ρjam) can be estimated by extending the
line from (Qmax , ρcr ) through the mean points of the
congested regime’s cluster.

• Line starting from ρ = ρjam at zero flow through mean
points of the congested regime for each composition
gives the congested regime wave speed.
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FIGURE 10. (a) ncomponents number of the optimum cluster for the input (q, AO, v) dataset (b) Traffic state-based clustering of AO vs. flow plots.

• The meeting point of the free flow speed line and con-
gested wave speed line gives the saturation flow and the
critical density for a particular composition of the traffic
stream.

The primary purpose of q-AO FDs is to estimate the capacity
flow based on the intersection point of the best-fit line in
the free-flow regime and the best-fit line in the congested
regime. Since the best-fit congested line in the q-AO FDs
can be bounded by a maximum value of AO = 1, it is easy
to estimate q-AO FDs for the observed data set. Once the
capacity flow is known from Q-AO FDs, q-ρ FDs and jam
density can be estimated using free flow speed, capacity flow,
and the congested regime mean points. Therefore, all steps
are essential for estimating composition-specific FDs from
observations.

5) Distance optimization
Classification of congested regime data based on the compo-
sition and traffic state showed a promising result with several
clusters. However, congested regime data are scattered more
than free flow regime data, excluding several points from
estimated FDs.

To overcome this, we introduced another level of clustering
for congested regime data points based on the distance from
the w-line in the direction of speed of each (q, ρ) point. w-line
is the congested regime wave speed, connecting saturation
flow and jam density through the specific composition‘s
mean point, shown in Figure 11. An optimization algo-
rithm based on traffic state has been developed. Points with
equal travel speeds are grouped according to the distribu-
tion of ss points in q-ρ space. The scattered equal travel
speed points represent the vehicles moving with unique equal
speeds when the flow and density of the stream change. This
phenomenon indicates that the scattered points with equal
speed have different compositions, and the unique composi-
tion points are placed close to each other. The steps for the
proposed distance optimization algorithm are explained as
follows:

• Lines emanating from the origin and passing through
each (q, ρ) points have to extend up to the w-lines
derived in the previous method.

• Calculate the distance (di) between the original points
(qi, ρi) and the extension points at w-line (qei, ρei).

• Existing points are classified based on the magnitude
of distance from the original to the extension points
(di < dj two points are in different classes)

• Set the ranges of the distance (d) from the w-line for
both side data to classify them based on their magnitude
in the direction of speed to the w-line.

• Estimate revised w-line and repeat the process until the
centroid position does not change.

Steps to calculate di:
• Equation of line originating from the origin and passing
through (qi, ρi)

qi = viρi

here vi sms speed of each point.
• Equation of w-line:

qi = −wρ + c

passing through (0, ρjam), so c = wρj.
• qi = viρi line intersects w-line at (qei, ρei) i.e.,
(wρjamvivi+w

,
wρjam
vi+w

)
• The distance between (qi, ρi) and (qei, ρei) can be calcu-
lated as:

di =
√
(qi − qei)2 + (ρi − ρie)2

• w = argminw(
∑
di)

Figure 11 describes the distance calculation procedure in
detail.

Figure 12 shows two iterations of w = 12.6 and 25 km/hr
with the total sum of the distance of steady state points
from w-line. W-line ending at a jam density approximate
of 875veh/km (Figure 11) illustrated minimum

∑
di than

the w-line of 25, and 12.6 (see Figure 12). This method
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FIGURE 11. Scattered (qi , ρi ) points in the congested regime, solid black
line is the congested wave speed which was estimated from the
composition-based classification of the traffic stream.

ensures that all the points in the new clusters have the same
characteristics of wave speed, composition, and traffic state.
The objective function is to minimize the sum of the distance
of all points,

∑
di for a cluster. This is a performancemeasure

that doesn’t have a physical meaning. Therefore, a minimum
of
∑
di helps to estimate w-line through the mean points of

a cluster of unique composition. The objective function is
to minimize the sum of the distance,

∑
di of all points for

a cluster. The minimum of
∑
di ensures that the ss points

for a unique composition has the same speed (w-line) and
the cluster is closely packed in the q − ρ domain. Thus,
the w-line through the optimum clusters is fine-tuned till the
convergence of the algorithm. In this study, the optimum
w-line for one composition class is shown in Figure 11.

IV. RESULTS
This section describes the properties of the composite FDs,
developed by combining class-A and class-B data sets. The
data set in this study has two composition-based (class-A)
and three state-based (class-B) clusters. Hence, there are three
groups for each traffic composition, resulting in six groups.
It is found that the free flow regime centroids of four data
groups lie on a unique slope line, whereas two groups in the
congested regime had distinct means as can be seen from
Figure 14. Line joins AO = 1 and two mean points which
meet with the free-flow regime at (AOcr (C1),Qmax(C1)),
(AOcr (C2),Qmax(C2)), representing the wave speed. Here,
(AOcr (Ci),Qmax(Ci) are critical AO and a maximum flow of
traffic for the Ci class (i ∈ 1, 2). The assumption we made in
this study is that vehicles will occupy the maximum area of
the road section during jam conditions leading to AO = 1.
We estimated the jam density and generated q − ρ FDs
(see Figure 14b) for the clustered data sets using capacity
flow (Qmax) of AO-q FDs and mean points of q − ρ FD
clusters. In Figure 14b, the free-flow regime continuous line
represents the average free-flow speed of the traffic stream.

FIGURE 12. a) The first iteration of the distance optimization algorithm,
the total sum of the distance from the w-line to steady state points is
67627 when w = 25 b) the Second iteration of the distance optimization
algorithm, the total sum of the distance from the w-line to steady state
points is 68475 when w = 12.6.

FIGURE 13. Unsupervised learning approach to fundamental diagram
estimation.

Two dotted lines above and below the best-fitted line in the
free-flow regime represent the 95% confidence interval of
mean free-flow speed. Qmax(C1), Qmax(C2) are the satura-
tion flow for C1 and C2 cluster, respectively, which were
estimated from Figure 14(b). The point of intersection of the
mean free-flow speed line and the two reference saturation
lines gives the critical density for class-C1 (ρcr (C1)) and
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class-C2 (ρcr (C2)). Line trough (ρcr ,Qmax(C)) and mean
point of congested regime meets at q = 0, gives the jam
density (ρjam) for C1 and C2. Wave speed in congestion for
two different compositions W (C1),W (C2) can be estimated
from (Qmax(C), ρcr ) and ρjam.

FIGURE 14. a) AO-q FD after applying distance optimization algorithm,
new clusters in the congested regime are C1 and C2 b) q − ρ FD after
applying distance optimization algorithm.

Figure 14(a) shows two classes of scattering data in a con-
gested regime. To evaluate the distribution of compositions
of the new cluster’s data, we plotted a ternary phase diagram
of composition for the two estimated classes. A ternary plot
is a triangular plot of three variables (TW/BLT: car/BLT:
auto/BLT) which must sum to 100%. The scatter triangular
plot of the three compositions variable for the two classes are
shown in Figure 15. It is evident from Figure 15 that the distri-
bution of compositions is different from one class to another,
demonstrating that all compositions with 2W percentage over
50% and 3W proportion less than 50% have a distinct wave
speed compared to the other way around. Table (3) shows
the summary statistics of the traffic composition and the
corresponding FD parameters. From Table (3), it can be seen
that the mean free-flow speed of composition lies between
95% confidence interval, i.e. [34,28] km/hr. It can also be
seen that ρjam for C2 is higher than C1 as the TW and BLT

proportion is higher forC2.Wave speed in congestion for two
different compositions can be estimated from (QA, ρcr ) and
ρjam. It is comprehendible fromFigure 14 (b) that theC1 class
has a higher wave speed than C2. So, it can be concluded that
higher TW and BLT proportion leads to lower wave speed in
congestion.

TABLE 3. The parameter value of composition-based FD after distance
optimization algorithm.

FIGURE 15. Ternary phase diagram of the percentage of composition
(TW/BLT: car/BLT: auto/BLT) for the optimized distance clusters in
congested regime.

A. INTER-CLASS INTERACTION
We studied the interactions between different classes of
vehicles using composition-specific FDs. In this study, the
interactions are defined as the speed change of one class
in the presence of other classes with AO. The interactions
were investigated to understand the response of the one-class
vehicle to the others in the congested regime. Therefore,
we represented the interaction in terms of vehicle speed based
on the class of the vehicles.

The ss points of composition-specific FDs are weighted
averages of class-specific variables and can be grouped
based on similar behavior. The similar behavior points on
composite FDs are identified by class-specific mean speed
of the TW(vTW ), cars (vcar ), auto (vauto), BLT (vBLT ) and
their relative speeds. These parameters are used as a fea-
ture to classify the congested points using the GMM model.
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The characteristics of each vehicle class in a unique group
of GMM models are analyzed to understand the inter-class
interactions.

TABLE 4. Inter-class interaction regimes in the congested branch of
composition-specific FDs.

The mean speed, standard deviation, and range of observed
AO for each group are shown in Table 4 and Figure 17 to
understand the behavior of each class. TWs always move
faster than other classes of vehicles, irrespective of the
regimes. In the lower congestion levels (in regime 1,2), cars
and autos move faster than heavy vehicles (BLT). However,
BLT dominates the cars and auto speed with the increase of
congestion (in Regime 3,4). It demonstrates that the presence
of heavy vehicles at themedium congestion level affects high-
speed vehicles. Further, all the vehicles move together at a
very high congestion level (in Regime 5), beyond the AO
of 0.6, representing single pipe flow in high congestion. Since
the maximum and minimum AO values for C1 are higher
than C2, the shape of the regimes can be represented by join-
ing an oval diagonally to the minimum and maximum points
of C1 and C2 in the FDs. Figure 16 shows the regimes 1 to
5 in the fundamental diagrams.

FIGURE 16. Composition-specific fundamental diagram with vehicle
interaction regimes in congestion.

V. DISCUSSION
We have introduced a framework based on empirical obser-
vation, which estimates the composition-specific fundamen-
tal diagrams for heterogeneous and non-lane-based traffic.
In this section, we showed the potential of the proposed
methodology to produce promising results for different data

FIGURE 17. Box plots of speed for TW, car, auto, and BLT for different
regimes.

sets and the theoretical insights from the empirical analysis
of the composition-specific FDs.

A. EMPIRICAL EVIDENCE
To the authors’ understanding, since there are no suit-
able studies in the literature for fair benchmarking, the
observations are validated theoretically by proposing sev-
eral lemmas. Furthermore, this methodology was applied
to multiple data sets to show the generalizability of the
observations. The proposed methodology is tested on four
mixed traffic datasets from India and Greece to demon-
strate its universality. The datasets include Stadiou corri-
dor, Athens, Greece [53] (named pNEUMA-1; 9:00-9:30
and pNEUMA-2; 9:30-10:00), Sardar Patel Road, Chen-
nai, India [39] (named view2-Chennai), and Surat-Dumas
road, Surat, India [54] (named Surat). Figure 18 shows the
composition-specific q − ρ FDs for the four datasets. The
FDs show variable free-flow and wave speeds based on the
compositions. Also, the FDs show that the wave speed is
higher for the composition with more heavy vehicles and
decreased with the increase of fast-moving vehicles. Also, the
jam density increased with increasing TW proportion. These
results are in line with the observations from the literature and
indicate that the proposedmethodology is robust in accurately
estimating the FDs for mixed traffic conditions.

B. THEORETICAL DERIVATION
In this section, we introduce and prove some characteristics
of proposed composition-specific fundamental diagrams ana-
lytically from the observed data set.
Lemma-1: In free flow, the mean speed of different com-

positions is equal. However, the range of the speed of the
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FIGURE 18. (a) Composition-specific FDs were estimated from the data collected using camera-1,2,3,4 in morning
9:00-9:30,pNEUMA, Athens, Greece [53] (b) composition-specific FDs were estimated from the data collected using
camera-1,2,3,4 in morning 9:30-10:00,pNEUMA, Athens, Greece [53] (c) same data location from Chennai, India which is
used to develop the methodology in this paper for a different time period in evening peak(d) composition-specific FDs were
estimated from surat-dumas roadway data [54].

stream composition for relatively higher when the proportion
of fast-moving vehicles (TW, car) is higher than that of the
slow-moving vehicles.

Proof: We consider the case of two traffic streams
where composition-1 (C1) has more slow-moving vehicles
(truck, heavy vehicles), and composition-2 (C2) has more
fast-moving vehicles (TW, cars). Let’s assume the proportion
of fast vehicles to slow vehicles for C1 and C2 are (α1 : β1)
and (α2 : β2), respectively. Where (α2 > α1 : ∀α, β > 0),
then the stream free flow speed for C2 (v2) will be higher than
stream free flow speed for C1 (v1) (7).

v1 = (vf (fastvehicle) × α1 + vf (slowvehicle) × β1) ≤ v2

= (vf (fastvehicle) × α2 + vf (slowvehicle) × β2) (7)

vf (slowvehicle/fastvehicle)- free flow speed of slow-moving and
fast-moving vehicles respectively. The observed maximum
speed (vsl) for the urban road was 40 kmph which was
lesser than vf (slowvehicle/fastvehicle). Hence, it is evident that
any traffic-stream compositions in free-flow states will only

allow to move in vsl subjected to maximum variation up to
vf (slowvehicle/fastvehicle). The free flow speed variation of slow
vehicles [vsl, vf (slowvehicle)] and fast vehicle [vsl, vf (fastvehicle)].

v2 ≥ v1 ≥ vsl, ∃[vsl, vf (slowvehicle)] ⊂ [vsl, vf (fastvehicle)]

(8)

Empirical evidence for hypothesis 1 can be seen in
Figure 19 for our data set. C2 composition of the stream had
a more significant proportion of fast-moving vehicles than
composition C1. Hence, the best-fit lines of the speed-AO
relationship for C2 lay above C1 in the congested regime, but
they almost overlapped in free-flow regimes. Figure 19 shows
the coefficient of determination (R2) and logarithmic relation
between speed and AO.
Lemma-2: Traffic composition of a higher proportion of

fast-moving vehicles has a higher capacity than the lower
fast-moving vehicle composition.
Proof: The critical density of a higher proportion of fast

vehicles is greater than the lower proportion of fast-moving
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FIGURE 19. Speed-AO relationship for two compositions C1 and C2.

vehicles, and their speed in the free-flow regime is unique, vsl .
As it appears that the FD obtained in this study, the higher pro-
portion of fast-moving vehicle’s composition impacts higher
capacity than the lower proportion of the fast-moving vehicles
(see Figure 14(b)).
Lemma-3: In congestion, the wave speeds are different for

different compositions. Wave speed for a relatively higher
proportion of large vehicles is higher.
Proof: Traffic density of a stream depends on the stream

composition, the fundamental relation for any composi-
tion (c) of traffic can be expressed as:

q(ρ(c)) = ρ(c)v(c)

Here ρ(c), q(c), and v(c) are the fundamental parameters
of composition (c) specific traffic stream. So, the wave speed
for the composition stream in congestion

∂q(ρ(c))
∂ρ(c)

= v(c)+ ρ(c)
dv(c)
dρ(c)

= v(c)+ ρ(c)
∂v(c)
∂AO

dAO
dρ(c)

= v(c)+ ρ(c)
∂v(c)
∂AO(c)

× w̄(c)(l(c)+1x)

from (5) (9)

We consider two traffic streams based on the fast vehicles
(TW,car) to slow vehicles (heavy vehicles) proportion i.e.
C1(α1 : β1), and C2(α1 : β2) respectively. Where (β1 >
β2) : ∀α, β > 0). The heavy vehicle proportion for C1 is
greater than C2, and the fast vehicle proportions for C1 and
C2 are the same. So, the density relation of C1 and C2 can be
expressed as:

ρ(C2) < ρ(C1) (10)

The proportion of heavy vehicles or slow-moving vehicles
increases for C1, and the average speed for the stream of C1
composition will be lesser than C2.

v(C2) > v(C1) as v2 > v1 (congestion : ρcr < ρ < ρjam)

(11)

FIGURE 20. Thick continuous lines in congested regime show the
composition-specific fundamental diagrams after applying k-mean
clustering with k = 3 and dotted lines represent the composition-specific
fundamental diagrams after applying k-mean clustering with k = 2.
A comparison could be made between these FDs and the proposed FDs
k = 1 (thin continuous line).

As the average width and length of C1 composition is larger
than C2:

w̄(C2)(l(C2)+1x) < w̄(C1)(l(C1)+1x) (12)

Assume the rate of change of speed with respect to AO in a
congested regime is irrespective of composition and speed is
a decreasing function of AO in congestion, i.e.,

∂v(c)
∂AO

< 0, AOcr < AO < 1 (13)

Now we can estimate the wave speed in congestion
|
∂q(ρ(c))
∂ρ(c) | using (10-13) in (9). As the 2nd term of (9) is

significantly higher for C1 than C2, and from (10), it is
evident that the magnitude of wave speed for C1 is higher
than C2.

|
∂q(ρ(C2))
∂ρ(C2)

| < |
∂q(ρ(C1))
∂ρ(C1)

| (14)

C. FDs WITH k > 1 IN THE K-MEAN CLUSTERING
The earlier sections demonstrated the methodology to
estimate FDs of different compositions using the k-mean
clustering. The steps assumed linear FDs to better under-
stand the composition-specific FDs’ average behavior
(i.e., k = 1). However, one could assume a non-linear
congested branch for the FDs using k > 1. Figure 20 shows
the composition-specific fundamental diagrams for
k = 2, 3 which indicate changes in the saturation flow,
critical density, and wave speed. Also, the FDs parameters for
k=1, 2, and 3 show that the difference between the former two
is more than the latter for the compositions observed. Thus,
it may be conjectured that analysis beyond k = 2 may not be
required.
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VI. CONCLUSION
This paper deals with the estimation of multi-regime FDs
based on traffic composition for mixed traffic conditions.
Towards this, the paper first presented a methodology to
identify the ss periods using the oblique plot (Obl N) of
the cumulative vehicle arrivals curve with the help of the
oblique occupancy time plot (Obl T). The CWT energy plots
of sms speed show that the class-specific ss exists in the
traffic stream. Next, the common class-specific ss parame-
ters are extracted to estimate the stream ss. In mixed traffic
conditions, the availability and accessibility of free space are
the major elements that govern the speed of vehicles. In this
paper, AO was used for the measure of FD parameters which
would be more accurate for modeling the vehicular flow.

Unsupervised ML, GMM is used for clustering the traffic
compositions and traffic states and finding their centroids.
We show that different classes of fundamental diagrams with
small variations in saturation flow and wave speed are possi-
ble for k = 1 and k = 2. However, there is no significant
difference in FDs was found beyond k > 3. In addition,
we introduced the distance optimization algorithm to address
the scatteredness of points in the congested regime. It is found
that the distance optimization algorithm effectively classifies
the points for each composition to obtain a tight fit for the
congested branch.

Traffic flow parameters like mean free-flow speed, critical
density, critical AO, saturation flow, wave speed, and Jam
density are estimated from the proposed FD. Based on the
observation, we proposed some hypotheses of the composite
fundamental diagrams and proved those using traffic flow
theory.

Some of the major insights/highlights of the paper are:

• A systematic separation of traffic states facilitates easily
capturing the effects and interactions across different
traffic compositions.

• Estimation of stream ss from the class-specific ss using
obl-N andObl-T is an efficient way to effectively capture
the mixed traffic characteristics.

• The FDs are highly sensitive to traffic compositions,
with frequent changes in compositions creating complex
traffic scenarios.

• The free-flow speed only varied marginally and showed
a strong linear fit for the free-flow branch of the FDs for
different compositions.

• From the q − ρ FD plots, it was found that higher TW
(or lower BLT) proportions lead to higher saturation
flow, jam density, and lower wave speed in congestion.

• An analysis of inter-class interactions shows that heavy
vehicles cause faster vehicles to slow down at medium
to high congestion levels. However, this effect is negli-
gible in low congestion and diminishes with increasing
congestion levels.

• The validation results from various data sets indicate that
the proposed methodology is robust in systematically
developing FDs for mixed traffic conditions and the

generalization of the insights across geographical loca-
tions shows the possible universality of the results.

The methods presented in this paper can be easily adapted for
more compositions for better estimation of traffic flow vari-
ables and FDs. Some of the future research directions include
calibrating the thresholds, improving and fine-tuning the
clustering methods, and exploring alternative approaches to
automatically estimate FDs from the trajectory data to reduce
the computational effort for FD extraction and research con-
tinues in these directions.
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