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ABSTRACT Pedestrian-based mobile sensing enables a large number of urban-centric use cases in the areas
of intelligent mobility, smart city, and crowd management. With increasing standardization in Vehicle-to-
Everything (V2X) communication to increase localized environmental awareness, i.e. cooperative perception
(CP), a technological basis is already heavily discussed. Work in this area is usually directed toward road
safety use cases. However, the same technologies could also be applied to pedestrian-centric applications in
urban areas. Use cases like spatiotemporal density maps of pedestrians for public transportation optimization
or urban route planning are such examples. This paper introduces an opportunistic decentralized mobile
crowd sensing (MCS) approach where arbitrary measurement quantities are collected, aggregated, and
disseminated in decentralized pedestrian measurement maps (DPMM). The sensing, dissemination, and
aggregation are driven by mobile devices, without the need for centralized aggregation and dissemination
infrastructure. By utilizing cellular sidelink communication (i.e. via the PC5 interface in 5G/6G systems) and
node-local aggregation, the perception of the environment can be directly shared with neighboring nodes.
The described DPMM approach is evaluated using CrowNet, an open-source simulation framework based
on OMNeT++/INET by employing several detailed simulation studies: first, using a synthetic measurement
quantity with a linear change rate behavior and second, a real use case concerning decentralized pedestrian
density measurements. The results indicate that DPMM can provide spatiotemporal maps of the local
area with a high level of detail and low delay – close to the optimum achievable in a specific mobility
situation – while only requiring a moderate amount of cellular bandwidth.

INDEX TERMS Cellular sidelink, CrowNet, mobile crowd sensing, network simulation, pedestrian
communication, pedestrian simulation, Vadere.

I. INTRODUCTION
The shared perception of the environment is a key aspect
for many use cases in smart cities and urban-centric intel-
ligent transportation systems (ITS). Possible use cases are:
tracking live environmental quantities such as temperature,
air quality, CO2 concentration, humidity, noise pollution,
or spatiotemporal pedestrian density maps for safety and
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ITS-related use cases. These density maps can provide real-
time route recommendations [1] for public transportation
and enable dynamic crowd management to increase safety,
reduce crowded areas, and possibly decrease egress times.
Another use case for pedestrian density maps, related to the
spread of Covid, is that the density map allows pedestrians to
circumvent high-density areas, thus reducing their exposure
risk imposed by dense crowds [2].

With the ubiquity of devices such as smartphones,
wearables, or portable IoT devices, pedestrians are major
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contributors to mobile crowd sensing (MCS) applications.
With use cases requiring shared or collective perception,
pedestrians are both producers and consumers of the collected
and aggregated data. MCS systems, however, primarily build
centralized services for sensing campaign management, data
aggregation, and dissemination. This might lead to privacy
concerns if for instance pedestrian location data is used to
create pedestrian density or flow maps.

Moving aggregation and dissemination-related tasks into
the pedestrian devices and utilizing direct broad- and
groupcast communication provided by 4G/5G/6G cellular
sidelink, shared perception can be created without the need
for centralized services to handle privacy-relevant data.

Based on previous work on disseminating pedestrian
density measures [2], in this paper a generalized architecture
for measurement maps, to collect, aggregate, and dissemi-
nate arbitrary spatiotemporal quantities is introduced. This
enables the sharing of locally generated perception in a
privacy-preserving fashion.

The main contributions of this paper are:
1) A generalized architecture to create, aggregate, and

disseminate spatiotemporal quantities using broadcast
communication technologies without the need for
centralized services.

2) The application of this generalized architecture to
the use case of pedestrian density measurements,
using active position beacons and heuristic selection
algorithms.

3) The publicly available open-source simulation frame-
work CrowNet to conduct simulation studies incorpo-
rating the measurement map architecture.

4) A detailed simulation study analyzing four different
scenarios: First a synthetic linear sensor model to
analyze the effect of mobility and measurement
quantity change rates. Furthermore, three scenarios
utilizing the pedestrian density map are investigated
in a stationary flow, a static scenario with impulse
response characteristics, and a real-world example
concerning a public transportation setting.

The article is structured as follows: First, in Section II,
related work concerning the collection, aggregation, and
dissemination of sensor values and the relation to other
mobile crowd sensing (MCS) approaches is given. Next,
Section III introduces the generalized architecture with the
three tasks Sensing, Dissemination, and Aggregation fol-
lowed by Section IV applying the architecture to pedestrians
density sensing. Section V introduces metrics for evaluating
the performance, the simulationmodel, and gives an overview
of the CrowNet simulation framework and parameter settings
used for the simulation study in Section VI. A conclusion
and future work are given in Section VII. Tbl. 1 lists used
abbreviations.

II. RELATED WORK
In the following, related work to our proposed decentralized
measurement map is presented: mobile crowd sensing,

TABLE 1. Abbreviation table.

collective perception based on the cellular sidelink and
concepts for measuring pedestrian densities.

A. MOBILE CROWD SENSING
The notion of building a shared perception, among mobile
agents, is part of many research fields: The field of Mobile
Crowd Sensing (MCS) looks at systems where local data
collection or sensing is done by crowds utilizing mobile
devices in conjunction with data aggregation in the cloud [3].
ForMCS, multiple surveys classify existingMCS approaches
alongmultiple dimensions: Capponi et al. [4] used four layers
(application, data, communication, and sensing) to describe
MCS system architecture. Similarly, Phuttharak et al. [5]
used four dimensions (task, participation, data collection,
and processing) to group MCS systems. We focus here on
MCS systems without user interactions, i.e. opportunistic
sensing [6] where the device performs the task autonomously.
Such use cases are environmental monitoring like noise pol-
lution mapping [7], intelligent transportation systems (ITS)
applications for bus arrival time estimation [8], or pedestrian
density estimation by applying moving sensors [9].

A majority of MCS applications rely on centralized
structures for data aggregation, post-processing, and anal-
ysis, leaving only sensor data collection to the decentral
components [4]. This entails that possible fine-grained data
must be transmitted to centralized services, allowing the
potential collection of privacy-relevant data combined with
large communication loads. Further, if the aggregated data
is again needed directly at the origin, it has to be queried
from the backend system. Decentralized approaches where
the aggregation and dissemination of the crowd-sensed
measurement are less prevalent. Benedetto et al. [10] for
instance propose to use early cellular side link capabilities
like LTE-direct to transmit arbitrary multi-frame data in the
LTE-direct discovery resource allocated slots. This broadcast
communication allows direct sharing with neighboring
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nodes. Costa et al. [11] describe a system for querying
trajectories of pedestrians that are stored locally for privacy
reasons. Applying edge and fog technology in the MCS
context [12], [13] decreases network-induced delays but still
leads to centralization of application data as the applied edge
application is controlled by the same entity.

B. CELLULAR SIDELINK: COLLECTIVE PERCEPTION
Newer cellular networks have a dedicated link, i.e. Sidelink,
for direct device-to-device (D2D) communication over the
PC5 interface for safety-relevant and proximity-based appli-
cations. Work on cellular Sidelink is related to the vehicle-
to-everything (V2X) communication paradigm that is used in
automated vehicles as they rely on environmental perception
shared through wireless communication [14]. In ETSI
standardization, environmental and situational awareness in
the V2X context is separated into cooperative awareness
(CA) and collective perception (CP). The former, CA, is part
of the cooperate awareness basic service [15], where V2X
nodes exchange information, using cooperative awareness
messages (CAMs) about their states such as heading, speed,
and location. In the same context, vulnerable road user (VRU)
awareness messages (VAM) [16] are used to communicate
the position and heading of VRU, i.e. pedestrians or cyclists.
The objects described in the CAM and VAM messages
are collected in each V2X node in a local dynamic map
(LDM) [17], which thus contains the current perception of
that node, created through shared knowledge.

However, the LDMonly contains information generated by
the participating nodes. With collective perception (CP) [18]
nodes can share the knowledge they collected in their local
environment model with other neighboring nodes to increase
shared perception [19]. CP allows therefore an increased
shared perception compared to the LDM structure. Work
related to CP in V2X is for instance about redundancy
mitigation measures [20] to reduce the channel busy ratio
(CBR), without reducing the collective awareness provided
by CP. Willecke et al. [21] investigate the effect of rules for
the inclusion policy for VRU objects in collective perception
messages. Similar to MCS approaches, the use of edge or
mobile edge computing (MEC) [22] is considered to improve
the use cases of CP as well as the overall dissemination of the
shared environment model.

The shared collective perception generated in V2X use
cases closely resembles our proposed decentralized pedes-
trian measurement map. However, pedestrians are only
considered VRUs, and therefore included in the shared
environment model when they participate in road traffic in
a safety-relevant way [16]. If pedestrians are in a pedestrian
zone they would not create VAM messages and are thus not
included in the shared environment model.

C. PEDESTRIAN DENSITY MEASUREMENT
Measuring or estimating pedestrians densities in urban areas
can be achieved in multiple ways: Image and video-based

FIGURE 1. Architecture of DPMM. It shows the interaction between the
three tasks Sensing, Aggregation, and Dissemination/Reception. The
Local map (LM) Λi , generated in the Sensing task, is used together with
received foreign aggregated maps (FAMs) Υ∗, provided by the
Dissemination/Reception task, in the Aggregation task to create the local
aggregated map (LAM) Πi . This map is then broadcasted to neighboring
nodes.

approaches as discussed and surveyed in [23], [24], and [25]
infer pedestrian densities and flows from single images up
to multiple camera angles by applying, for instance, deep
learning algorithms. Most of these systems utilize stationary-
mounted camera systems. However, Tokuda et al. [9]
introduce the usage of images frommoving sensors (i.e. cars)
for pedestrian counting. Common disadvantages of image-
based approaches are the need to install cameras in the area of
interest (AOI) beforehand as well as the privacy implication
entailed with vast centralized image processing.

Non-vision-based approaches like [26] use positional data
from cellular network operators to extract pedestrian density
data. Wirtz et. al [27] describe a participatory sensing system
for crowd monitoring based on GPS data collected through
smartphone applications. Other approaches investigate for
instance Wi-Fi probing behavior [28] to count pedestrians
in a privacy-preserving manner. These approaches, however,
focus on the collection and aggregation and do not discuss the
dissemination of the results to increase the shared perception.

In [29], a theoretical system for pedestrians and cyclists
sensing (AMSense) is proposed, which describes the usage
of vehicular sensors and V2X communication to capture
the spatiotemporal properties of pedestrians and cyclists.
The system relies on vehicular sensors and has architectural
elements where the localized aggregation is applied with
support from edge and cloud data processing.

III. DECENTRALIZED MEASUREMENT MAPS
In the following, we define a decentralized measurement
map as a collection of arbitrary spatiotemporal data that is
created by sharing the data between mobile and or stationary
agents. With the measurement map, agents can share their
perception of the environment with neighboring agents,
to create and improve their understanding of the environment.
For this, each agent translates its geospatial measurement of
the environment into a measurement map. The environment
is discretized into squared, non-overlapping cells. If an
agent has information about one of these cells, it assigns a
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FIGURE 2. Data driven view of the measurement map build process. Each row represents the view of the respective node.
It contains received foreign maps Υ and sensed local maps Λ (on the main diagonal). These maps provide the basis for the
calculation of the local aggregated map Π. For example: Node 1 receives foreign maps Υ from Node 0, 2, and 3. Together with
the own measurements, Λ1, the local aggregated map Π1 can be created. Node 2 does not receive any data from other nodes,
thus only the local measurements, Λ2, can be used to calculate the aggregate map Π2.

measurement value as well as a set of metadata elements to
this cell. These maps are then shared with neighboring agents
using broadcast communication. The receiving agents use
these foreign maps to improve and increase their perception
of the environment before communicating their updated
measurement maps. Fig. 1 shows the three tasks and their
relationship on an architectural level. The three tasks are
Sensing, Dissemination, and Aggregation. Fig. 2 gives a
data-driven view of the measurement map creation process.
It shows where data is located and how it is shared among
participating agents. With the three tasks, three versions of
the measurement map are introduced to describe the creation
and ownership nature of the data. The three map types are:
the local measurement (LM) map Λ, the foreign aggregated
measurement (FAM) maps Υ , and the local aggregated
measurement (LAM) map Π .
In the Sensing task, each agent creates a local perception

of its surrounding area by collecting sensor readings. This
might be a temperature sensor, collecting temperature and
humidity readings, an air quality sensor tracking the CO2
level, or some other setup that for instance allows the counting
of pedestrians by utilizing active position beacons from
which the number of pedestrians for a certain area can be
derived.

The data obtained from these local sensors are processed
in the Sensing task, such that the collected data is assigned to
cells of the local measurement (LM) map denoted as Λ, see
Fig. 1 upper right and Fig. 2 on the main diagonal. This map
contains a set of measurements that are based on the local
sensor readings only.

The Dissemination task consists of two subtasks, namely
the reception of foreign aggregated measurement (FAM)
maps Υ and the dissemination of the local aggregated
measurement (LAM) map Π . The received foreign maps Υ

will be used in the Aggregation task to create the LAM map
Π of the current node. There are multiple ways how this
aggregation can be conducted. Aggregation algorithms will
heavily depend on the type of measurement, i.e. temperature
or the number of pedestrians, as well as available contextual
metadata.

The second subtask addresses the actual dissemination
of the generated LAM map Π . The map is divided, based
on measurement cells, into smaller chunks to be sent as
one-hop broadcast packets to neighboring nodes. Each packet
consists of a header and 1-to-N cell measurements, with N
depending on the maximum transmission unit (MTU) and
the cell measurement size. Packets are independent of each
other to ensure that the loss of one does not invalidate other
packets. The task also collects received map packets from
foreign agents into foreign aggregated measurement (FAM)
mapsΥ , which are the counterpart to the LAMmap, see Fig. 2
(arrow between Υ3 and Π3). The dissemination task ensures
that each FAM map is updated when a new map packet from
the corresponding foreign agent arrives and provides access
to thesemapswhen the aggregation task uses them to generate
the LAM map.

Next, a formal definition of key structures for the
measurement maps is given, followed by a definition of the
input and output structures for each task. A list of used
symbols is given in Tbl. 2.

A. MEASUREMENT MAP
We describe each measurement map Λ, Υ , and Π as a set
of measurements. Each measurement m is defined as a pair
in (1a), containing the measurement value ρ and a set of
additional metadata elements mmeta shown in (1b).

m = (ρ,mmeta), with (1a)
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TABLE 2. Symbol table.

mmeta = {c, t, a, d} (1b)

M = {m0,m1,m2 . . . } (1c)

The metadata set mmeta in (1b), contains associated data
points to give contextual meaning to the measurement. This
includes, for instance, the cell identifier c which marks
the geospatial point the measurement is associated with.
Furthermore, the set contains the creation time t of the
measurements as well as the identifier a of the agent, which
created the measurement, and the distance d between the
respective cell and the creating agent at the creation time t .
To simplify the access of the measurement tuple entries

defined in (1), the following notation is used: Given a
measurement m, access to the measurement value and
metadata is written as m[□] where □ is substituted with the
respective selector. For example, m[t] is the creation time of
m, m[c] is the cell linked to the measurement. Likewise, m[ρ]
will be the measurement value of the measurement m, see
Tbl. 2 for a full list.

Next, we define the age function ∆m in (2), which
calculates the age of a measurement based on the creation
time m[t] of the measurement.

∆m : R 7→ R; (t) 7→ ∆m(t) = t −m[t] (2)

Lastly, given a set of measurements M , as defined in
(1c), we define common sets that will be used throughout
the definition of the measurement maps. The set of agents
AM in (3a) contains all agent identifiers, which contribute

measurements into the setM . Let CM in (3b) further describe
the set of all cells for which at least one measurement is
present inM .

AM =

{
m[a]

∣∣∣m ∈ M
}

(3a)

CM =

{
m[c]

∣∣∣m ∈ M
}

(3b)

B. SENSING
In the sensing task, each agent i uses some sensor model
to create a set of measurements Si for cells the agent can
perceive, see (4).

Si = {m0,m1, . . . }with ∀m(m[a] = i) (4)

At some time interval, the agent uses the set of mea-
surements to create the LM map Λi(t) for the current time
t . We assume that the sensor model provides a temporal
discretization, which does not have to coincide with the
update cycle used for the LMmap. The agent applies function
f (·) which takes the current time t as well as the set of
measurements Si to create the LM map Λi(t), see (5a).

Λi(t) = f (t, Si) with (5a)

∀m,n ∈ Λi(t)(m[c] ̸= n[c]) and (5b)

∀m ∈ Λi(t)(m[a] = i) (5c)

The definition of f (·) depends on the sensor model. The
only requirements that the function f must meet are that for
each cell at most one measurement exists (5b) and that each
measurement must belong to the current agent i (5c).

C. DISSEMINATION
The dissemination task consists of two subtasks: transmission
and reception.

1) TRANSMISSION SUBTASK
The measurement map is communicated to agents through
local one-hop broadcast utilizing sidelink communication.
The measurement map is divided into multiple, independent
packets at the application layer to ensure that the loss of one
does not lead to the loss of the whole map. The size of the
packets is limited by the maximum transmission unit of the
used link.
The fragmentation strategy of the measurement map relies

on multiple factors such as the type of measurement value,
the inherent dynamic nature, the size of the area of interest,
and the available resources. The strategy will influence
the order and the transmission frequency with which each
cell measurement is communicated. A detailed analysis and
comparison of these strategies will be left for future work.
In this paper, we assume a fragmentation strategy with

a constant order and an identical inter-transmission interval
for all cells. A simple algorithm would be a ring buffer of
all cells from which cells are selected for the next packet.
To mitigate line or row scanning effects, introduced by a
simple row/column order of cells, we use a first seen first
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transmitted (FSFT) approach based on the first in first out
(FIFO) principle. At the start of the application, we assume an
empty ordered set of cells IC = ∅. After the first aggregation
step, the node has access to the initial LAM map Πi(t).
The FSFT strategy then uses the creation time of the cell
measurements to create a transmission order. The ordered set
IC is then extended every time the LAMmap is updated such
that new cells, which were not seen before, are appended at
the end. This creates a fixed transmission order for each node
based on local knowledge alone (see Algorithm 1).

Algorithm 1 FSFT Strategy for Cell Transmission Order
Input: Πi(t), IC (t91) previous ordered set of cells
Output: IC (t)
1: M := sort Πi(t) by creation time m[t]
2: IC (t) := IC (t91)
3: for m in M do
4: if m[c] /∈ IC (t) then
5: append cell m[c] to IC (t)
6: end if
7: end for
8: return IC (t)

This order is kept throughout the lifetime of the measure-
ment map. It only defines the sequence in which each cell is
checked for valid measurements. If a measurement reached
the time to live τMap, the measurement is removed from the
LAMmap but the corresponding cell stays in the transmission
order set IC (t) and will be skipped if no valid measurement
exists.

2) RECEPTION SUBTASK
On the receiving side, the reception subtask handles the
reception of map packets Ef and their assembly into the FAM
map Υf , where the suffix f denotes a foreign agent from
which the packet originated. The update of the FAM map
Υf (t) is defined by the update function g(·) as shown in (6a),
ensuring that after the update, at most one measurement for
each cell exists (6b) and that all measurements are created by
the agent f (6c).

Υf (t) = g(t, Υf (t91),Ef ) with (6a)

∀m,n ∈ Υf (t)(m[c] ̸= n[c]) and (6b)

∀m ∈ Υf (t)(m[a] = f ) (6c)

The function uses the previous state of FAM map Υf (t91)
as well as the currently received packet Ef to create the FAM
map Υf (t). If no previous state of the FAM map exists, let
Υf (t91) = ∅ be the empty set in (6a).

As an update function g(·), we use a filter as described
in Algorithm 2: First, it ensures that all measurements in
Υf (t91) and Ef are not older than the time to live τMap.
Next, for each measurement in the filtered set E , it is tested
if a measurement for this cell already exists, see line 5
in Algorithm 2. If so, only the most recent measurement,
i.e. the one with the newer creation time stamp, is selected.

If no measurement associated with this cell exists, the
measurement is appended to the FAM map.

Algorithm 2 Update Algorithm g(·) to Create Υf (t) on Map
Packet Ef Reception
Input: Υf (t91), Ef
Output: Υf (t)
1: Y := filter Υf (t91) by age: ∀m(∆m(t) < τMap)
2: E := filter Ef by age: ∀m(∆m(t) < τMap)
3: CY := set of cells of measurements in Y (see (3b))
4: for m in E do
5: if m[c] ∈ CY then
6: n := measurement in Y for cell m[c]
7: if m[t] > n[t] then
8: replace n with m in Y
9: end if
10: else
11: append measurement m to Y
12: end if
13: end for
14: return Y (updated set of measurements Υf (t) at time t)

D. AGGREGATION
With the definition of the LM map Λi(t) in (5) and the FAM
map Υf (t) in (6) for foreign agents, the current agent i has the
set of measurements to its disposal to create the LAM map
Πi(t).

Mi(t) =


Fi⊂A⋃
f

Υf ∪ Λi

 with

f , i ∈ A and i /∈ Fi ⊂ A (7)

The suffixes f and i in (7) are node identifiers, where A is the
set of all agent identifiers andFi, a real subset ofA, containing
the foreign agent identifiers from which the current agent i
has a FAM map Υf .

The set Mi(t) from (7) is the input to the aggregation
function y(·) which generates the LAM map Πi(t) of the
agent i.

Πi(t) = y(t,Mi(t)) with (8a)

∀m,n ∈ Πi(t)(m[c] ̸= n[c]) and (8b)

∀m ∈ Πi(t)(m[a] = i) (8c)

The aggregation function y(·) computes the new estimates
for each cell while ensuring that for each cell only one
measurement exists, see (8b). Furthermore, the function must
ensure that all measurements returned belong to agent i, even
if foreign measurements are used as input (8c). This is done
to ensure that no foreign identifiers are communicated to
preserve privacy.

In the following, we use a simple selection-based approach
as the aggregation function. This class of heuristics selects
one measurement based on the assigned rank provided by
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a rank function defined by r(m, t) in (9). This function
maps a real-valued rank between 0 ≤ r(m, t) ≤ 1 to each
measurement m ∈ Mi,j at time t .

r : (Mi,j, t) 7→ R; (m, t) 7→ r(m, t) (9)

The set Mi,j ⊆ Mi(t) describes a subset of Mi(t), containing
all measurements in Mi(t) concerning cell j. Let further be
CMi(t) the set of cells present in the set of measurementsMi(t)
as defined in (3b).

Mi,j =

{
m

∣∣∣m ∈ Mi(t) ∧m[c] = j
}

(10)

The selection is then applied to each cell present inCMi(t) as
described in Algorithm 3. First, an empty LAM map Πi(t) is
created. Next, for each cell j ∈ CMi(t), the measurement with
the smallest rank, provided by the specified rank function,
is selected. For the selected measurement m′, the agent
identifier is set to the current agent. Lastly, the measurement
m′ is appended to the LAM map Πi(t). This algorithm
ensures the constraints in (8b) and (8c), such that the LAM
map Πi only contains at most one measurement for each cell
with the correct agent identifier.

Algorithm 3 Selection Based Aggregation Algorithm
Input: Mi(t), rank function r(m, t)
Output: Πt (t)
1: Πt (t) := ∅

2: for j ∈ CMi(t) do
3: /* select m with smallest rank for cell j. */
4: m′ := argmin

m∈Mi,j

r(m, t)

5: m′
[a] = i /* update agent identifier. */

6: append m′ to Πt (t)
7: end for
8: return Πt (t)

One simple example of a selection-based aggregation
heuristic is an age-based approach, which utilizes the age of
themeasurement as a rank function. This simple heuristic was
introduced in [2] under the name youngest measurement first
(YMF). The rank is given by the age in (11), such that the
newestmeasurement will be selected.We use this aggregation
method as a baseline due to its simplicity.

rymf (m, t) = ∆m(t) (11)

IV. DECENTRALIZED PEDESTRIAN DENSITY MAPS
This section applies the generic concept to a typical appli-
cation of crowd sensing, namely the sensing of pedestrian
densities in the local area. The aim is to create a decentralized,
shared perception of the pedestrian density in the close
to medium range by aggregating position beacons, which
are communicated by all agents. The measurement quantity
saved in the measurement map value m[ρ] is the number of
pedestrians in each cell. The beacon and the measurement
map use the same agent identifiers such that beacons and
mapmessages from one agent can bematched. However, each

node only communicates its identifier and never rebroadcasts
any foreign received identifiers.

A. SENSING OF PEDESTRIAN DENSITY
The pedestrian density is calculated based on the number
of pedestrians in a given cell. The location and dimension
of each cell are shared knowledge. To derive the number
of pedestrians, a beacon sensing approach is used, where
each agent actively communicates its location via recurring
position beacons. Therefore, each agent i receives a set of
beacons Bi (12a), which are described as a tuple shown
in (12b). Based on the set of received beacons, the agent
creates a neighborhood table (NT) that contains one entry of
the form b for each agent.

Bi = {b0, b1, b2, . . . } (12a)

b = (a, x⃗, t, c) (12b)

The selection notation b[□] for the NT entry values is
similar to the definition of the measurement tuple described
in (1). The entry encodes the sending agent’s identifier b[a],
position b[Ex], and beacon creation time b[t]. Additionally, the
cell identifier b[c] based on the agent position is included
for convenience. Note that the age function in (2) is also
applicable to NT entries ∆b(t) = t−b[t]. Similar to the set of
agent identifiers contained in a set of measurements in (3a),
let ABi in (13) be the set of agent identifiers from which at
least one beacon was received.

ABi =

{
b[a]

∣∣∣b ∈ Bi
}

(13)

The NT contains only the newest location of each agent,
thus only the newest beacon is included in NT. (14) creates
the subset B′

i ⊆ Bi of beacons that adheres to this condition.
It selects the newest beacon from one source a (i.e. {b|b ∈

Bi ∧ b[a] = a}), and combines the result in a union over all
beacon sources ABi , as defined in (13).

B′
i =


ABi⋃
a

argmin
{b|b∈Bi∧b[a]=a}

(∆b(t))

 (14)

Lastly, the set B′
i is filtered, such that only beacons that

are younger than some time to live τNT are part of the
neighborhood table, (15).

NTi(t) =
{
b
∣∣b ∈ B′

i ∧ ∆b(t) ≤ τNT
}

(15)

The base LM map Λi is then generated by calculating the
number of agents for one cell ρc,i by summing up all beacons
that originated in that cell.

ρc,i =

NTi(t)∑
b

u(c, b) with u(c, b) =

{
1 if, b[c] = c

0 otherwise.
(16)

The measurement value ρc,i is then combined with the
necessary metadata information into a measurement value m
for cell c, generated by agent i at time t . Compare with (1).

m = (ρc,i, {c, t, a = i, d}) (17)

VOLUME 11, 2023 13355



S. Schuhbäck et al.: Cellular Sidelink Enabled Decentralized Pedestrian Sensing

Applying (16) and (17) for all cells present in the NT, agent
i generates the base LM map Λi(t) for the current point in
time. However, to update the LM map over time, the map
and NT must be updated together each time a new beacon
arrives. If one cell is occupied by one agent and this agent
moves to a different cell, the number of pedestrians calculated
in (16) only reports the new location of the agent but does not
include the knowledge that the previous cell is now empty.
The process of updating the NT and LM map is described in
Algorithm 4 and Algorithm 5.

Every time a beacon is received, the NT will be checked
if an entry reached the time to live τNT , see Algorithm
4. If an entry reached τNT , it is removed from the neigh-
borhood table. In addition, the corresponding measurement
m ∈ Λi(t), of the LM map is updated by decrementing
the count and updating the metadata, i.e the generation
time m[t].

Algorithm 4 Check Time to Live in Neighborhood
Table (NT)
Input: NT , Λi, t, τNT
1: for b ∈ NT do
2: if ∆b(t) > τNT then
3: retrieve cell measurement m for NT entry b
4: decrement count and update metadata in m
5: delete entry b from NT
6: end if
7: end for

Next, the received beacon is processed as shown in
Algorithm 5: If the beacon is already out of date, it will
not be processed. Otherwise, the existing NT entry b′ and
map entry m′ concerning the cell from where the beacon
originated are selected if present. If no entry is found, the
beacon is the first entry from this source. The corresponding
cell measurement from the LM map is selected (or created
if not existing) and incremented. It is possible that the LM
map measurement already exists because the cell might be
occupied by other agents. In case b′ exists, it is tested if the
source agent moved between cells. If not, no increment is
needed and only the time stamp for the LMmapmeasurement
is updated. If a cell change occurred, the old cell measurement
is decremented and the new cell measurement is incremented
accordingly. Lastly, the state of the neighborhood table is
updated if needed.

To summarize, the LM map Λi(t) is continuously updated
by using received position beacons and the neighborhood
table to create a localized perception of the pedestrian density
by counting beacons.

B. DISSEMINATION
The pedestrian density map does not need a specialized
dissemination process. The generic algorithms described in
Sec. III are sufficient to receive and disseminate pedestrian
density map packets.

Algorithm 5 Update Local Measurement (LM) Map Λi

Input: Λi,NT , t, beacon
Output: Λi
1: b := create new NT entry from beacon
2: if ∆b(t) > τNT then
3: /*TTL reach; Beacon dropped, no update needed */
4: return Λi
5: end if
6: b′ := access old NT entry if present
7: m′ := access cell measurement for b′

[c] if present
8: if b′ = null then
9: create new cell measurement m for cell

10: increment count and update metadata of m
11: else if b[c] = b

′
[c] then

12: access cell measurement m of cell
13: only update metadata of m, agent stayed in cell
14: else
15: /*agent moved to new cell*/
16: access old cell measurement m′

17: decrement count and update metadata of m′

18: access/create new cell measurement m
19: increment count and update metadata of m
20: end if
21: update NT
22: return Λi

C. AGGREGATION
In addition to the YMF algorithm described in the previous
chapter, we introduce the adapted version, Youngest mea-
surement first plus distance (yDist), to better cope with the
beacon-based sensing approach.

The rationale behind the YMF heuristic is that newer
data more closely describes the current state of the cells.
However, preliminary results in stationary scenarios indicated
that for cells at the edge of the coverage, the number of
pedestrians can be underestimated. A possible reason is that
own, beacon-based, measurements are favored since these
values are updated more frequently. The update frequency
of the LM map is closely linked to the beacon frequency as
well as the number of agents perceived. Each beacon will
update the time stamp of the corresponding measurement
as described in Algorithm 5. On the other hand, updates
generated by FAM packets are linked to the lower map packet
frequency, producing a lower updated frequency for these
measurements and consequently a larger average age.

In the case of the YMF aggregation, this will lead to
situations where local measurements are preferred because
they have a smaller average age, compared to the foreign
measurements due to the difference in their respective
reception frequency.

If the respective cell is close by, this has no effect because
the own sensing and received aggregated results show similar
counts. However, if a cell is located at the edge of the
reception range of the current node, parts of the cell’s area
may be outside of the reception range, leading to blind spots.
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If there are agents in these blind spots, the LM map will
underestimate the number of agents.

This kind of degradation of the measurement accuracy
is specific to the beacon sensing since the measured value
is derived from the number of received packets. For other
measurement values such as temperatures where the value
is part of the message, lost messages just lead to missing
values and not wrongfully low values. These wrongfully low
values cannot be distinguished from correct low agent counts.
Note that lost measurement map packets do not introduce this
problem. Measurement map packets do encode the value as
the content of the message. Lost map packets just lead to
missing values and not erroneous low values.

The error of underestimation at the edge of the reception
range is a problem with the data coming from the LM
map Λ. Other agents, which are closer to the cells at
the edge of the current agent’s reception range do not
have this problem. However, by the time the foreign agent
communicates these cell measurements through a FAM
map Υ , these measurements are older and will be dismissed
by the YMF heuristic. To mitigate this, the distance between
the measuring node and the cell measured is introduced in
the decision process. The yDist algorithm is defined by the
rank function ryDist (m, t) which assigns each measurement
m a rank based on the combination of distance and age.

ryDist (m, t) = α0(m, t) + (1 − α)9(m, t) (18)

The rank function (18) is defined as the convex combina-
tion of an age rank 0(m, t) with a distance rank 9(m, t). The
resulting rank is thus the weighted average of both ranks with
the weights α and (1 − α), with 0 ≤ α ≤ 1.

The distance rank 9(m, t) defined in (20) uses the relative
source-cell distance of each measurement as a rank. The
distance rank should only affect measurements at the edge
of the measurement distance. Thus, the cutoff distance
parameter D > 0 is introduced in (19) which will give all
measurements smaller or equal to the cut of distance the same
rank.

ID(d) =

{
D if d ≤ D,
d otherwise.

(19)

The distance rank9(m, t) thus uses the step function ID(d)
to calculate the rank in (20).

9(m, t) =
ID(m[d])∑

m∈Mi,j

ID(m[d])
(20)

For the age rank 0(m, t) in (22), we compare the
normalized age difference between the current age and the
minimum age (21) of each measurement for cell j.

tmin = min
m∈Mi,j(t)

(∆m(t)) (21)

We use the age difference rather than the age because
otherwise, the relative difference between two ranks would
change over time, even if no new measurements are

introduced. In combination with the distance rank, this would
lead to the possibility that the ranking changes over time
without introducing new measurements. To mitigate this,
the age difference is used, which will stay constant as time
progresses.

0(m, t) =

{
∆m(t)−tmin
Z0(Mi,j)

if Z0(Mi,j) > 0

1.0 otherwise.
(22)

with

Z0(Mi,j) =

∑
m∈Mi,j

(∆m(t) − tmin) (23)

Note that (23) might reach zero if there is only one
measurement or when all measurements have the same age.
In this case, the rank is set to 0(m, t) = 1.0 to get the same
behavior as in the distance rank.

The aggregation function for the yDist heuristic uses the
selection-based aggregation Algorithm 3, combined with the
rank function ryDist (t,m) shown in (18).

V. METRICS AND SIMULATION MODEL
In this section, identified metrics are introduced, which
will be used in the simulation study to evaluate our
model. Secondly, the simulation model and base simulation
parameters are introduced, in conjunction with the used
simulation framework CrowNet.

A. METRICS
1) ERROR METRICS
We choose the mean squared cell error (MSCE) (24a) to
evaluate the accuracy of the pedestrian map. The MSCE is
based on the squared error of each cell measurement (Yi,j(t)−
Ŷj(t))2 for all agents i which have a measurement Yi,j(t) for
cell j. Ŷj(t) denotes the ground truth for the cell j. The term
Yi,j(t) is the measurement value m[ρ] which is part of the
LAM map Πi(t) of the agent i for the cell j, see (24b). The
number of agents |At |will change over time due to new agents
entering or leaving the area of interest (AOI). To get an error
metric for some AOI, the MSCE of the containing cells are
combined in the mean squared map error (MSME) as shown
in (24c).

MSCEj(t) =
1

|At |

At∑
i

(
Yi,j(t) − Ŷj(t)

)2
(24a)

Yi,j(t) = m[ρ] with m ∈ Πi(t) ∧m[c] = j (24b)

MSME(t) =
1

|C|

C∑
j

(
MSCEj(t)

)
(24c)

2) CELL KNOWLEDGE RATIO
The number of agents that have knowledge about a given cell,
denoted by |At | in (24a), does not have to be the number
of all agents currently in the area of interest. If agents in
the area of interest build disconnected clusters, one cluster
does not know about the other. The error metric as defined
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in (24) will not show that only a portion of the agents provided
measurements for the metric. This problem of missing values
can be addressed in different ways. In the case of pedestrian
density maps, missing values can be replaced with a count
of zero pedestrians. The rationale behind this approach is,
that the sensing of the pedestrian is based on active beacons,
meaning that there is no way to count zero pedestrians.
The absence of measurements can therefore be assumed
to be a measurement of zero pedestrians. Missing values
should be removed, when such an imputation approach is not
justifiable. In this case, the error metrics should be associated
with a coverage ratio kC , which indicates how many agents
participated in the error calculation. For the measurement
maps, this ratio is defined as the number of agents which have
a measurement for the given cell |At | divided by the number
of all agents |A′

t | currently in the area of interest (25). For
pedestrian density maps, the ratio will be kC = 1.0 due to the
use of the imputation approach.

kC =
|At |
|A′
t |

(25)

3) MEAN PEDESTRIAN COUNT
For the analysis of the pedestrian density map, the pedestrian
count over time Ĉped (t) (26) of the mean density map is
used to test how accurately the number of pedestrians in
the AOI can be estimated using density maps. The number
of pedestrians Ĉped (t) is calculated by first summing up the
pedestrian count each agent i has in their LAM map Πi(t)
at the current time, i.e. the total number of pedestrians seen
by the current agent. The agent-based map counts are then
aggregated over all agents currently present at time t , denoted
as At , to form the mean pedestrian count.

Ĉped (t) =
1

|At |

At∑
i

Πi(t)∑
m

m[ρ] (26)

4) CELL OCCUPATION RATIO AND INTERVAL DISTRIBUTION
The measurement accuracy, and therefore the error, depends
on the capability of the system to capture the dynamics of the
underlying measurement quantity. Parameters with influence
are the available communication resources and the packet
dissemination frequency.

Besides these standard parameters, the mobility charac-
teristics of the sensing nodes (i.e. chosen path, speed, and
interaction with the environment) as well as the range of the
used sensors play a role in the reachable accuracy. Due to the
free movement of nodes through the scenario, cells will go in
and out of coverage. That means the set of cells for which the
measurement quantity can be sensed will change over time
based on the mobility pattern. We call the time a cell is in the
sensor range of at least one agent the occupancy time of that
cell.

During this time, the node can sense the measurement
quantity of the cell. At times when the cell is empty, i.e. out
of reach of the sensing range of all nodes, no measurements

FIGURE 3. Example of three cells showing exemplary occupation pattern
and occupancy ratio as defined in (27a). The plot illustrates intervals of
occupation 1tO, i.e. at least one node is able to sense values of this cell,
and intervals 1tE , where no node can sense the measurement quantity
of the cell.

can be taken. During these time intervals, the system
cannot track changes in the measurement quantity. Already
taken measurements will age over time. Errors that arise
from this condition cannot be eliminated by increasing the
dissemination interval or providing more communication
resources. This condition is highly dependent on mobility
patterns and the overall topography, which in conjunctionwill
create some interval distribution (i.e. length and frequency
of occupied and empty intervals). To make this circumstance
more tangible, we introduce the cell occupation ratio and
the mean cell occupied/empty interval length. Fig. 3 shows
an exemplary occupancy pattern of three cells over time.
Each cell has two possible states: empty E, no measurements
possible, and occupied O, a cell can be measured. The
occupation ratio oc (27a) is the time a single cell c is occupied
divided by the analysis period. The occupancy time is the sum
of all intervals NO in the analysis period tp. See Fig. 3 for
an example. The average occupation ratio for the AOI and
analysis period, containing cells C , is given by (27b).

oc =
toc
tp

=

∑NO

i 1tOi
tp

(27a)

ô =
1

|C|

C∑
c

oc (27b)

The mean occupied and empty interval for an area of
interest is given by creating the mean over all occupied
intervals NO, respectively all empty intervals NE over all
cells.

ˆ1tO =
1

|NO|

NO∑
i

1tOi (28a)

ˆ1tE =
1

|NE |

NE∑
i

1tEi (28b)

To summarize, the accuracy of the system depends on
(1) the underlying dynamics of the measurement quantity,
(2) the map and sensing frequency, (3) the available com-
munication resources, and (4) the cell’s occupancy interval
length and distribution over time.
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FIGURE 4. Measurement map packet structure.

B. SIMULATION MODEL
In this section, we describe the used simulation model,
framework, implementation details of the measurement and
densitymap, as well as the default simulation parameters used
in the communication and mobility domain.

1) CrowNet SIMULATION FRAMEWORK
The simulation study is conducted with the CrowNet
simulation framework. The framework allows the simulation
of packet-level communication based on the OMNeT++

ecosystem (INET [30], Simu5G [31], Artery [32],
VEINS [33]), combined with detailed microscopic mobility
simulators for pedestrians and vehicles. Existing pedestrian
mobility models such as the striping model in Sumo [34] are
useful but do not accurately represent pedestrian mobility
patterns in open spaces such as pedestrian zones. This is
due to the graph-based routing in the Sumo striping model.
For this, mobility models, such as the Optimal Steps Model
(OSM), where pedestrians can move freely in the 2D space
are better suited. The effect of different detailed pedestrian
mobility models was previously analyzed in [35]. The OSM
utilizes floor fields that represent target attraction to model
routes, as well as obstacles and agent repulsion, to ensure
topographic bounds and prevent overlapping pedestrians. For
the superposition of these fields, each agent calculates the
next optimal step by solving an optimization problem within
their respective step circle. For an in-depthmodel description,
the reader is referred to [36], which contains detailed
descriptions of the used OSM implementation provided by
the Vadere pedestrian dynamics simulator.

In the CrowNet framework, we previously introduced [37]
a bi-directional coupling between the communication and
mobility domain by utilizing the Traffic Control Interface
(TraCI) [38]. This approach is based on the existing work
of the frameworks VEINS [33] and Artery [32] to allow
the simulation of coupled scenarios where mobility and
communication domains affect each other.

In the used scenarios the communication domain does not
interact with the mobility domain. Therefore, we use pre-
recorded mobility traces, generated by Vadere, to increase
the simulation performance. The traces are based on the
BonnMotion trace format introduced in [39]. To allow
the dynamic creation and removal of agents based on the
Vadere traces, an adaption of the INET BonnMotion mobility
module is necessary. We publish the open-source CrowNet
framework, including all required adaptions to the INET
modules and all simulations for this study on GitHub.1

1https://github.com/roVer-HM/crownet/tree/pub_ieeeAcces_DPMM

2) SIMULATION MODEL
The measurement and density map are implemented as
map data structures, containing the cell measurements either
directly created based on the sensing step, i.e. the LMmapΛ,
or based on received FAM maps Υ . The LAM map will
be generated on demand based on the selected aggregation
algorithm. The algorithm selection is based on the strategy
design pattern and will be configured for each simulation.
A similar approach is used in the Dissemination/Reception
task, where the configured dissemination strategy selects
cells for transmission.

For the packet structure, we assume the following setup
shown in Fig. 4: The map header is 30 bytes long, contains a
sequence number (2B), a node identifier (4B), the lower 32 bit
of a 64-bit milliseconds timestamp as well as 18 bytes to
encode the grid origin and cell size. The time stamp will wrap
every 49.7 days which is long enough for 1-hop broadcast
packets. With the timestamp, the sequence number, and node
identifier, out-of-order and duplicate packets can be detected
and removed. The payload shown in Fig. 4 consists of a list
of 10-byte long blocks, encoding the measurement value for
one cell measurement m. It contains at least the measured
value, creation time, and cell identifier. Similarly, the beacon
packet (36 bytes) contains a sequence number, identifier, time
stamp, and location information. The packet structures can
be further tuned to reduce header and data size when taking
into account the underlying measurement quantity and other
contextual metadata elements. The analysis of this and further
decentralized configuration capabilities of the measurement
map system will be left for further work.

3) SIMULATION PARAMETERS
All simulations utilize the Mode 3 sidelink communication
with the support of the base station. Our key use cases are
based in the urban area, thus the assisted mode is chosen.
The analyzed scenarios contain a single base station.Multiple
base station scenarios as well as Mode 1 sidelink will be
part of future work. Tbl. 3 shows the default parameters.
We use a small base station with 25 resource blocks on
the carrier frequency of 2.6 GHz. The propagation model
provided by the Simu5G framework is configured as an urban
microcell [40], which provides a heuristic path loss model.
The channel model is further configured to take into account
interference in up- and downlink as well as between D2D
devices. For a detailed Simu5G model description, the reader
is referred to [31], [41].

In Vadere, the Optimal Steps Model uses a truncated
normal distribution to set the free flow speed of pedestrians
based on a mean speed of 1.34 ms-1. The pedestrian potential
parameters ensure that there are no overlaps. The optimal
steps model uses the discrete mode with a step circle
resolution of four, which means that for each step four
equidistant points on the step circle circumference are used
from which the best next step is selected. A more detailed
mobility modeling, like solving an optimization problem on
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TABLE 3. Base simulation parameters.

the step circle disc is possible. However, the discrete option
was chosen because the topographies in this paper are based
on wide-open outdoor spaces and not highly accurate indoor
scenarios like classrooms.

VI. SIMULATION STUDY
In this section, we analyze the decentralized measurement
map in four distinct scenarios, where the first scenario (S0)
uses the generic measurement map without any coupling
betweenmeasurement quantity andmeasuring nodes. Scenar-
ios S1-3 will apply the pedestrian density maps with beacon
sensing where the measurement quantity (i.e. pedestrian
count) depends on the number of nodes in the simulation.

Scenario (S0) will use an abstract measurement quantity
with a linear change rate and a dual corridor topography with
separated flows in opposite directions. In scenarios S1-3, the
pedestrian density map with beacon sensing is used: Scenario
S1 will use the same topography and mobility patterns as
scenario S0 to analyze performance in a steady state flow.
In Scenario S2, a stationary mobility pattern is used with
the simultaneous removal of half of all agents to analyze the

TABLE 4. Parameter variation for S0.

convergence time of the density map, void of any mobility-
induced changes. Lastly, a dynamic scenario S3 concerning a
subway entrance is used to conduct a parameter study for the
yDist heuristic described above.

A. ABSTRACT MEASUREMENT QUANTITY (S0)
The objective of this scenario is to see the effect of dif-
ferent inter-transmission intervals and measurement quantity
dynamics (i.e. change rates) on the error quantity, given a
fixed set of mobility patterns in a dual corridor topography.
We use a linear model of the form shown in (29) for the
measurement values, where the ground truth measurement
Ŷj(t) for a cell j over time is given by a linear equation with
a random, cell-dependent parameter βj and a system-wide
change rate of α. We further assume that the sensor range
of this abstract sensor model is limited to the cell the agent is
currently part of.

Ŷj(t) = βj + αt (29)

1) TOPOGRAPHY DESCRIPTION
The topography is displayed in Fig. 5. In the upper path,
pedestrians are generated in a source area (green rectangle)
on the right and move to the target area (orange rectangle)
on the left. In the bottom path, the agents are generated on
the left and move to the right. In the center of the scenario,
one eNB is placed. The horizontal paths have a width of
5m such that the paths only contain one row of square cells
of the size of 5m. Grey areas in Fig. 5 are obstacles that
only affect the mobility pattern of pedestrians. Pedestrians
are generated in each source with a constant inter-arrival time
of 25 seconds, which translates to a system-wide pedestrian
generation frequency of λX4.8 =

2 ped
25 s ·

60 s
min = 4.8 ped

min . The
pedestrian flow is generated byVadere using the optimal steps
model with a free flow speed drawn from a truncated normal
distribution of N (1.35ms , 0.26ms ).

2) MOBILITY DYNAMICS
For this scenario, we vary the change rate α and the map
transmission interval 1tMap, see Tbl. 4. Each variation
is executed N=20 times, where the seed for both the
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FIGURE 5. Topography of scenario S0/S1 with an area of 415m × 40 m. Pedestrians (blue circles, enlarged for figure) move from left to right on the lower
corridor and from right to left on the upper corridor. The corridors are separated by obstacles (gray). Pedestrian that reach their target (orange
rectangles) are removed from the simulation. Note that the obstacles only affect the mobility simulation.

communication and mobility domains are varied. In the
mobility domain, the most prevalent effect of the seed
variation will be different free-flow speeds and, derived from
that, differences in the cell occupancy ratio and interval
distributions. The mobility dynamics of the simulations are
shown in Fig. 6. The mean cell occupancy is ô = 0.1452
overall seeds with a standard deviation of 0.015. Fig. 6a plots
the histogram for each seed as well as the distribution over
all seeds. It shows a similar distribution of the cell occupancy
ratio overall seeds. Similarly, the mean empty interval length
is depicted in Fig. 6b, depicting a heavy-tailed distribution
toward longer interval lengths. The mean empty interval
length, over all, seeds is ˆ1tE = 24.0035 s with a standard
deviation of 18.25 s. In comparison with the occupancy
interval length of ˆ1tO = 4.6621 s and the standard deviation
of 1.5578 s, the empty interval length has a higher mean and a
larger spread with a tailed distribution towards longer interval
lengths.

3) SIMULATION RESULTS
The MSME metric for Scenario S0 is shown in Fig. 7.
On the right, Fig. 7a, the MSME over time with the
corresponding standard deviation over all seeds is shown. For
small map transmission intervals, the error values are smaller,
as expected due to higher sampling. The periodical change,
most prevalent in S0:32 and S0:40, can be attributed to the
inter-arrival time of pedestrians in the simulation. Looking
at smaller map transmission intervals of 1tmap ≤ 5.0 s
in Fig. 7b, the errors are considerably smaller. Furthermore,
these errors are in the same region as the pure mobility-
induced error: If we assume an error-free communication
with infinite resources and an infinite small map transmission
interval, a cell can still only be measured if at least one agent
is in the sensing range. As shown in Fig. Fig. 6c, a cell
is empty on average for 24.0035 seconds in the scenario.
Thus, the moment before an agent enters a cell, the currently
known value of this cell is on average around 24 seconds
old. The squared error e of this average age can be calculated
using (29) as follows.

e = (Ŷj(t1) − Ŷj(t0))2 (30a)

e = (α ∗ (t1 − t2))2 = (α ∗ 1tE )2 (30b)

e = (0.01 ∗ 24.0035)2 = 0.057 616 801 225 (30c)

The red line in Fig. 7b depicts the mobility-induced
error (30c) based on the average length of the empty interval.
It illustrates that for small map transmission intervals, most

of the error can be explained by the mobility pattern. Note
further, that for transmission intervals smaller than 1tMap ≤

1.0 s, only small differences in the error metric are observed,
see the zoomed area in Fig. 7b. This can also be seen
in Fig. 7c, where the residual MSEME error ratio, compared
to scenario S0:0 with a map transmission interval of1tMap =

100ms, is given. It demonstrated that even a ten-fold increase
in the transmission interval to 1tMap = 1.0 s (S0:12) does
not increase the error metric considerably. Even an increase
to 5.0 s only increases the error by 20%.

In Fig. 7c, the cell knowledge ratio kC is shown. It
indicates that each cell is known by all agents after some
time. The oscillation in the cell knowledge ratio is explained
by the creation of new agents every 25 seconds. These
agents do not have any knowledge and must first receive
information from neighboring nodes. With increasing map
transmission intervals, the convergence time increases. If no
communication is done, the knowledge ratio only depicts the
own cells the agent enters, thus explaining the low knowledge
ratio for simulation S0:40.

The results of the same structure were observed for
other change rates, however with increased amplitude in the
MSME metric. This is expected due to increased absolute
measurement values. The results are therefore omitted here
for brevity.

4) SUMMARY (S0)
The results demonstrate that the measurement map quality
depends on the mobility pattern of the participating agents.
If knowledge about the change rate of the measurement
quantity and the mobility patterns is available (i.e. interval
length of occupation), a lower bound estimate of the error
can be given. Furthermore, estimates for the lower bounds
for the transmission interval are possible, which will reduce
the bandwidth requirements. Note further that the mobility
patterns as well as the measurement rate of change can be
derived locally, without the need for centralized services.

B. STEADY STATE SCENARIO (S1)
In this and the following scenarios, the pedestrian density
map with beacon sensing is used, as defined in Sec. IV.
In scenario S1 we evaluate if the pedestrian density map
can model a stationary flow of pedestrians. The scenario
establishes a stationary flow of pedestrians in opposite
directions. It uses the same topography and mobility setup
as described in Scenario S0, see Fig. 5. In addition to the
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FIGURE 6. Cell occupation ratio and interval distribution for N=20 seeds used for scenario S0.

FIGURE 7. Scenario S0: Mean squared map error (MSME), cell occupation ratio and residual MSME ratio for change rate α = 0.01 s−1 and with map
transmission interval from 0.1 s to 7500 s. The last scenario S0:40 depicts the situation without any communication and only local sensing knowledge.

inter-arrival time of 25 seconds in Scenario S0, a second
inter-arrival time of 50 seconds, i.e. a pedestrian frequency
of λX2.4 =

2 ped
50 s ·

60 s
min = 2.4 ped

min is introduced. Furthermore,
the simulation time is increased to 5000 seconds to ensure
that the pedestrian flow is stationary over time.

Fig. 8a shows the time series X2.4 and X4.8 of the number of
pedestrians in the simulation over time. After a ramp-up time
of approximately 500 seconds, the number of pedestrians in
the simulation visually follows a stationary process with an
average number of pedestrians of ¯X2.4 = 13.45 and a sample

variance of sX2.4 = 2.29 for X2.4 and ¯X4.8 = 26.84 and sX4.8 =

4.20 for the time series X4.8 respectively. Given the stationary
criterion, the mean and variance do not change over time and
thus can be used to describe the time series.

1) STATIONARITY TEST
To test the time series for stationarity, we apply the
augmented Dickey-Fuller test (ADF). The null hypothesis is
that the time series has a unit root and thus is not stationary.
The alternative hypothesis is that the time series under test
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FIGURE 8. Scenario 1 (S1): Number of pedestrians in simulation over time. (a) Ground truth given by traces generated by Vadere for X2.4 (blue) with
pedestrian arrival frequency of λX2.4

= 2.4 ped
min and X4.8 (red) with a pedestrian arrival frequency of λX4.8

= 4.8 ped
min . Mean pedestrian count over time

(b) shows close visual accordance with ground truth data. The small underestimation can be seen in the empirical cumulative density function (c),
comparing all variations S1:0-7, which are shifted left, to their respective ground truth X2.4 or X4.8.

does not have a unit root and thus is stationary. Rows X4.8
and X2.4 in Tbl. 5 show the test score, p-value, and criticality
criterion for the time series of the traces. The null hypothesis
must be rejected, due to the small p-value as well as the test
statistic value being smaller than the critical value. Given the
stationary flow of pedestrians, the density map should be able
to reproduce this process. We thus use the mobility traces of
X2.4 and X4.8 in the simulation to test if the density maps
can represent the stationary process. The mean pedestrian
count Ĉped (26), over time, is then compared to the respective
ground truths X2.4 and X4.8.

2) PARAMETER VARIATION
For the evaluation of the stationarity, we apply a parameter
study containing the parameters beacon and map interval,
the pedestrian frequency, and the aggregation algorithm as
shown in Tbl. 6. Each parameter variation is run with N = 20
different seeds concerning the communication simulation.
Fig. 8b shows the time series of the number of pedestrians
created by the density maps and Fig. 8c the empirical CDF
of each variation and ground truth. Tbl. 5 shows the ADF
test statistics and statistical moments for each variation sorted
by pedestrian frequency. It shows that the mean pedestrian
count Ĉped of each variation S1:0-7 closely matches the
ground truth data with a small underestimation of the mean
pedestrian count. The p-value of the ADF test allows the
rejection of the null hypothesis for a confidence level of 1%,
meaning that the densitymap does create a stationary process.
Further, the scenario shows that a higher frequency of beacon
and map packets produces a smaller error in the mean
pedestrian count, compare S1:0/2 or S1:4/6 for λX4.8 in
Fig. 8b and 8c. The difference is tested by applying a Mann-
Whitney U test (H0 assumes distributions are the same).
Comparing the distributions of S1:0/2 pS1:0/2 = 6.096 ×

10−28 and S1:4/6 pS1:4/6 = 3.079 × 10−26 the H0 must
be rejected for a confidence level of 5%, such that there is
a difference in the central tendencies. Note however, that

TABLE 5. Adjusted dickey-fuller tests for scenario S1.

for this simple scenario, variations with the same beacon
and map intervals but with different aggregation algorithms
(YMF and yDist0.9/60) the null hypothesis of the Mann-
Whitney U test cannot be dismissed, pS1:0/4 = 2.596 × 10−1

and pS1:2/6 = 5.118 × 10−1, thus assuming that these dis-
tributions are the same. This holds for both pedestrian
frequencies λX2.4 = 2.4 ped

min and λX4.8 = 4.8 ped
min respectively.

3) SUMMARY (S1)
The pedestrian density map with beacon sensing can recreate
stationary pedestrian flows. Higher packet transmission
frequencies reduce the error count. However, the benefit of
the yDist algorithm compared to the YMF algorithm cannot
be seen in this simple scenario.

C. STATIONARY SCENARIO (S2)
In the stationary scenario, the reaction time of the density
map is investigated when a sudden change in the number
of pedestrians is observed. For this, pedestrians are placed
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TABLE 6. Parameter variation for scenario S1 with N=20.

FIGURE 9. Simulation setup for S2 with two areas A1 and A2. At the
event time te = 50s half of the pedestrian (blue pentagons) will be
removed. Figure shows the first seed with 64 pedestrians at the
beginning of the simulation.

evenly distributed in x- and y-direction, in an area around
a single base station. During the simulation, the pedestrians
remain stationary. At a given event time te = 50 s, half of
the pedestrians are removed. The quantity of interests for
this scenario S2 are the convergence time and the relative
error in the mean pedestrian count. The convergence time
is defined as the time it takes for the pedestrian count
of the mean density map Ĉped to reach the correct value,
within an error band of ±5%, after the removal event took
place.

Two areas are used in which pedestrians are placed: The
first area, A1, has a dimension of 415 × 394 m, and the
second area, A2, (207 × 196 m) which is 25% of area A1.
Both areas are centered on the base station as shown in
Fig. 9. To get an understanding of the convergence time,
11 pedestrian densities are simulated with changes in the area
(A1 and A2), the pedestrian position (20 positional seeds),
as well as changes in the aggregation algorithm (yDist, YMF).
The total number of simulations for scenario S2 is |S2| =

11 × 2 × 20 × 2 = 880.

FIGURE 10. Convergence time over density and area size for N=766/880
simulations. The convergence time is the time it takes to reach the new
ground truth within an error band of ±5%. 98 simulations never reached
the error band before the event time and 16 simulation did not reach the
error band within 50 seconds. The marker size represents the number of
simulation with same convergence time.

TABLE 7. Number of simulations for scenario S2 not reaching selection
criterion.

From the 880 simulations, 98 simulations have not reached
a mean pedestrian count before the event time te = 50s
within an error band of ±5%. These simulations are removed
from the analysis becausewewant to analyze the convergence
time of connected density maps. Including these simulations
would introduce false positives where simulations of discon-
tented density maps reach fast convergence only because the
disconnected pedestrians are removed. Most of the removed
simulations have small densities in the larger area A1. This
is expected, because the sparsity of agents in a larger area
creates disconnected clusters such that each cluster only sees
its members, leading to an underestimation of the pedestrian
count. For the smaller area A2, this happens less frequently.
16/880 simulations did not reach the error band of ±5%
within 50 seconds after the event time te. Due to the static
scenario, a longer simulation time would not lead to a late
convergence and thus it is assumed that these simulations
would never converge. The reason for this is again the
creation of disconnected clusters due to the removal of agents.
Tbl. 7 shows which simulations were removed or did not
reach convergence.

Fig. 10 shows the convergence time of the simula-
tion separated by density and area. The used algorithms
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FIGURE 11. Normalized mean map count over time (N=20 receptions with different node positions) for different density values separated by area
size (A1, A2) and selection algorithms (yDist, YMF). The figure shows high errors for very lower densities and very high densities. Simulations where
agents are placed closer to the eNB (area A2) have continuously smaller count errors. The effect of the aggregation algorithms, in reducing the error,
increases with the density. For statistical significance, see Tbl. 8.

FIGURE 12. Above ground area of subway station ‘‘Müncher Freiheit’’ with cells (red grid). The generation interval is defined by a negative exponential
distribution with the parameter 1

λ
= 25 s. Agents are routed based on the OD-Matrix shown in Tbl. 9. The trajectories (blue paths) depicted in the figure

are the dynamic behavior for one mobility seed. Gray polygons are obstacles (buildings), gray hatched polygons represent streets such that pedestrian
will use dedicated crossings.

(yDist, YMF) did not affect the convergence time. The
different areas are represented by the marker shape. The
size of the marker represents multiple simulations that
have the same convergence time. It clearly shows that
small density values have a larger convergence time with
a significantly larger variation. A possible reason for
the longer convergence times is that the communication

graph between the pedestrians is sparse such that density
information has to be communicated over multiple hops.
This also explains that larger areas with the same density
have considerably larger convergence times. After a limit
density of around 0.0003 ped

m2 , the mean convergence time
for all simulations is 5.92 s with a standard deviation
of 0.87 s.
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FIGURE 13. Parameter study with scenario S3 showing the MSME difference between the yDist and YMF algorithm for all N=20 seeds.

The second quantity of interest is the relative error in the
mean pedestrian count as shown in Fig. 11. It shows the
Ĉped (t) for each simulation separated by density, area, and
algorithm and averaged over N=20 positional seeds for each
(density, area, algorithm) triplet. The normalized mean count
error is shown by the y-distance between the Ĉped (t) time
series and the ground truth (black line). The error decreases
with rising density values to a point and then increases
again for higher densities. Also with rising density values
the difference in the applied algorithms increase such that
the yDist algorithm performs better in denser situations. This
improvement is clearer for the larger area (A1) and densities
above 9.283×10−4 ped

m2 . The gray lines in each grid plot show
the normalized mean pedestrian count of the other densities
to ease comparison between densities.

1) SUMMARY (S2)
The scenario shows that the reaction time of the pedestrian
density map to changes in the number of agents present
depends foremost on the time to live τNT of the neighborhood
table which encodes the beacon sensing of pedestrian density
maps. The effect of pedestrian density is less prevalent
compared to the distance between nodes. This can be seen
in simulations with the same density where considerably
different convergence times are observed when the size of the
area changes. Furthermore, the yDist algorithm shows better
performance in the stationary example with increased density.

D. DYNAMIC SCENARIO S3
We use a real scenario concerning the area around the subway
station "Müncher Freiheit", Munich, Germany, to perform a
parameter study to find the parameters α andD needed for the
yDist algorithm. The real-world scenario is modeled in the
Vadere simulator to generate the mobility traces needed for
the simulations. Fig. 12 shows the Vadere topography with an
overlay representing density map cells used for the scenario.
We only consider cells that can be reached by agents during
the simulation. Cells completely covered by obstacles, such

TABLE 8. Comparison of norm. mean map count for S2.

FIGURE 14. MSME difference sorted by mean.

as buildings or roads, are removed from the analysis. Note
that all removed cells did not contain any errors, meaning
the measurement value of the removed cells is always zero
and these cells never had any erroneous counts during the
simulation time.
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FIGURE 15. Comparison of best variation of yDist with YMF algorithm. The S3:8 variation has better performance in cases with higher MSME
compared to the YMF (S3:17) variation.

TABLE 9. OD-Matrix used for Scenario S3.

For the simulation, pedestrians are spawned in sources
(green polygons). At creation time, each agent is assigned to
one target (orange polygons) based on the distribution given
by the origin-destination (OD) matrix shown in Tbl. 9. Each
element contains the probability that an agent spawned at the
source will go to the respective target. For example, an agent
created at source ❼ will go to target ❹ with a probability of
20%. The origin/destination numbers are shown in Fig. 12.
The OD-matrix is constant throughout the simulation study.
However, due to the distribution-based ODmatrix, the overall
pedestrian dynamic will change considerably with different
seeds.

For the parameter study, the parameter space for α and the
cutoff distance D is sampled using a full grid approach. The
parameter α is sampled at [0.65, 0.80, 0.90, 0.95] and the cut
of distance D at [60, 80, 120, 160] meters, which will lead to
16 parameter variations. Parameter variations for the yDist
algorithm with α values below 50% show consistently worse
results in initial studies and are therefore not listed. To allow
a comparison to the youngest measurement first algorithm,
an additional variation is included where the parameter α

is set to 1.0, which will reduce the yDist algorithm to the
YMF algorithm. Compare rank function definitions (11) and
(18). Each parameter variation is simulated with N=20 seed
such that for scenario |S3| = 17 × 20 = 340 simulations
are conducted. For this scenario, we reduced the time to live
τMap = 15.0 s of map measurements as this reduces the

pedestrian count error in this dynamic situation. This only
reduced the absolute value of MSME in the parameter study.

For scenario S3, we compare the mean squared map
error (MSME), to find the parameter variation of the yDist
algorithm which provides better or similar performance
compared to the YMF algorithm. Fig. 13 depicts the MSME
difference for all variations S3:0-15 (yDist) compared to the
youngest measurement first. The right column of Fig. 13
shows that with a distance parameter of D = 160 m
there is no or very little difference between the yDist and
YMF algorithms. With decreasing distance and increasing α

values, the yDist algorithm shows consistently lower mean
squared map errors in all runs. The variation S3:8 with
(α = 0.9,D = 60) has the biggest mean difference,
as shown in Fig. 14. The box plot marks variation S3:17YMF,
with which all other variations are compared. Comparing
the variation S3:8 with YMF over time, Fig. 15a shows a
slightly reduced error in the interval of 100 to 400 seconds.
In the start and end phases of the simulation, the errors
look similar. Fig. 15b shows the empirical CDF for all
variations, with S3:8 (yDist) and S3:17 (YMF) highlighted.
For small MSME values, all variations behave similarly.With
increasing MSME values, for yDist, all but one variation
do outperform the YMF. However, the performance gain is
smaller compared to the gains seen in the stationary Scenario
S2.

1) SUMMARY (S3)
The pedestrian density map shows good performance for a
real-world scenario. Both proposed heuristics show similar
performance with a maximum MSME of 0.025, which
translates to an average pedestrian count error for an average
cell of

√
0.025 = ±0.158 113 883 008 419 0.

VII. CONCLUSION AND FUTURE WORK
We presented a generalized architecture for a decentralized
pedestrian measurement map (DPMM) to sense, disseminate,
and aggregate arbitrary measurement quantities without the
need for centralized services. For this, we defined a set-based
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structure containing pairs of the form measurement quantity
and associated metadata sets. Based on this we, defined
abstract rules to generate aggregated measurement maps in
a node-local manner. Specific algorihms for aggregation and
strategies to create a cell transmission order are embedded in
the abstract architecture with the possibility to exchange the
implementation as needed.

Furthermore, we demonstrated that the mobility patterns
of the sensing agents (i.e. pedestrians) play a major role
in the achievable measurement accuracy. An important
metric to determine this accuracy is the distribution of the
empty interval length for cells because only when an agent
is within sensing range, measurements are possible. The
proposed metrics to capture the cell’s empty interval length
can be recorded locally by each node, thus allowing it
to be used as a parameter to configure dynamic variables
such as dissemination interval length or cell transmission
order.

For the use case of pedestrian density measurements,
we introduced a beacon-based sensing model that utilizes
active position beacons and the neighborhood table structure
to count pedestrians in the direct vicinity. We demonstrated
that the beacon sensing approach is capable to recreate
stationary flows of pedestrians. In stationary scenarios,
the time-to-live τNT of neighborhood table entries has a
significant influence on the convergence time, i.e. the time
required for getting accurate measurements when the number
of pedestrians has changed drastically. Furthermore, the
inter-node distance has a stronger effect on the dissemination
of new information than the pedestrian density itself.
For the aggregation, we selected two simple heuristics to
aggregate received foreign maps locally. Detailed event-
based simulations of several scenarios indicate that with
these heuristics an accurate estimate of the pedestrian
density within the local area can be obtained. The heuristics
both produce similar results regarding observed differences
based on node mobility. In future work, we plan to
analyze how additional contextual information, besides age
and sensing distance, can help to increase measurement
accuracy.

A known limitation of the proposed decentralized pedes-
trian measurement maps is the fixed inter-transmission
interval, which can lead to congestion of the radio chan-
nel in high-density situations or high background traffic.
To mitigate this, congestion control mechanisms can be
introduced as well as mobility-based algorithms that take
into account the perceived mobility to dynamically adapt
beacon and map transmission intervals. Furthermore, the
selection process of cells for transmission can be extended to
consider mobility or measurement quantity dynamics. These
potential improvements of the presented approach will also
be evaluated in detail in future work.
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