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ABSTRACT As the global demand for data has continued to rise exponentially, some have begun turning
to the idea of semantic communication as a means of efficiently meeting this demand. Pushing beyond
the boundaries of conventional communication systems, semantic communication focuses on the accurate
recovery of themeaning conveyed from source to receiver, as opposed to the accurate recovery of transmitted
symbols. In this survey, we aim to provide a comprehensive view of the history and current state of semantic
communication and the techniques for engineering this higher level of communication. A survey of the
current literature reveals four broad approaches to engineering semantic communication. We term the
earliest of these approaches classical semantic information, which seeks to extend information-theoretic
results to include semantic information. A second approach makes use of knowledge graphs to achieve
semantic communication, and a third utilizes the power of modern deep learning techniques to facilitate this
communication. The fourth approach focuses on the significance of information, rather than its meaning,
to achieve efficient, goal-oriented communication. We discuss each of these four approaches and their
corresponding studies in detail, and provide some challenges and opportunities that pertain to each approach.
Finally, we introduce a novel approach to semantic communication, which we term context-based semantic
communication. Inspired by the way in which humans naturally communicate with one another, this
context-based approach provides a general, optimization-based design framework for semantic communica-
tion systems. Together, this survey provides a useful guide for the design and implementation of semantic
communication systems.

INDEX TERMS 6G, beyond-5G, semantic communication, semantic information theory.

I. INTRODUCTION
While 5G continues to roll out across the globe, the world
of wireless communications continues to expand and grow.
According to a report published by Ericsson in November
of 2021, the monthly global data traffic is predicted to grow
exponentially over the next five years [1] (see Figure 1).
Recently, the circumstances imposed by the ongoing
COVID-19 pandemic have sparked a movement of an
increasing number of people choosing to telecommute for
work [2]. This will no doubt accelerate global traffic growth
even further.

This unprecedented growth is accompanied by an array
of new use cases for wireless networks. As defined
by the 3rd Generation Partnership Project (3GPP), the
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FIGURE 1. Global monthly traffic predictions from mobile data and fixed
wireless access (FWA) [1].

5G network is focused on supporting three main use cases,
namely (1) enhanced mobile broadband (eMBB), (2) mas-
sive machine-type communication (mMTC), (3) and ultra-
reliable low-latency communication (URLLC) [3]. eMBB is
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FIGURE 2. General model of communication with components of the three fundamental communication problems.

aimed at providing enhanced services to traditional users of
the mobile network, focusing on increased throughput and
connection density. mMTC is a paradigm that is designed for
a large network of devices each transmitting a relatively small
amount of data, e.g. a large wireless sensor network. URLLC
is needed when communications are critical and extremely
time-sensitive, e.g. when performing remote surgery, or dur-
ing complex manufacturing processes.

From these observations, we anticipate two trends. First,
global data traffic will continue to increase at an exponential
rate. As all data communication requires some amount of
energy for transmission, this will translate to an exponential
growth in overall power consumption of wireless networks.
In a world where we all are under increasing pressure to
reduce consumption and create more sustainable infrastruc-
ture, this trend presents a grand challenge indeed. Second,
the decision by the 3GPP to define three specific use cases
of the 5G network points to another trend, which is the
growing heterogeneity of the wireless network. Communica-
tion across the network is increasingly diverse, with a wide
variety of use cases and application-specific requirements
and constraints. To be able to meet the growing demand for
data in a sustainable way, the crucial question is this: how
can we communicate more efficiently over an increasingly
heterogeneous network?

Considering the recent, widespread success demonstrated
by artificial intelligence (AI) and machine learning (ML),
we believe that a promising approach to address this chal-
lenging question is to develop more intelligent communica-
tion systems, and specifically, semantic communication sys-
tems. In their pioneering work, Shannon and Weaver defined
three fundamental communication problems [4]:
A. How accurately can the symbols of communication be

transmitted? (The technical problem.)
B. How precisely do the desired symbols convey the

desired meaning? (The semantic problem.)
C. How effectively does the received meaning affect con-

duct in the desired way? (The effectiveness problem.)
The general model of a communication system is given

in Figure 2, with these three problems superimposed. All
communication systems today operate at the technical level,
i.e., trying to recover transmitted symbols at the receiver as
accurately as possible, with no regard for what the symbols
mean. Shannon himself stated in his seminal 1948 paper
that ‘‘the fundamental problem of communication is that of
reproducing at one point either exactly or approximately a
message selected at another point. Frequently the messages

have meaning. . .These semantic aspects of communication
are irrelevant to the engineering problem’’ [5].

Clearly, Shannon’s view on communication was visionary,
and it enabled the extraordinary growth that we have seen
in communication systems to this day. However, when sub-
scribing to this view today, we are limited in our options
of how to address the previously discussed challenge. If we
operate solely at the technical level, an increased demand
translates directly to an increased consumption of resources,
in the form of either power and/or bandwidth. Increased
power consumption is exactly what we are attempting to
avoid, and bandwidth is increasingly scarce. Existing usable
bandwidths are extremely crowded [6], and there are known
issueswhen operating at higher frequencies (high attenuation,
variability, etc.). Recent advances in powerful technologies
such as beam forming and massive MIMO [7] can serve
as a temporary solution to this problem, but in the face of
exponential demand growth, even these will eventually fall
short.

Instead of engaging in the unsustainable pursuit of increas-
ing resource consumption to meet demands, some have sug-
gested a turn toward operating at the second level of com-
munication instead, namely the semantic level [8]. If such a
communication system is achievable, could it enable more
efficient communication? Intuitively, the rationale is sound.
To illustrate, let us consider two scenarios of human-to-
human communication. In both scenarios, the speaker is
trying to teach the listener how compute the area of a cir-
cle. In scenario 1, let’s say that the listener is someone at
least vaguely familiar with geometric concepts, while in sce-
nario 2, the listener is a young child. In both scenarios, the
semantic problem is exactly the same; namely, convey what it
means to compute the area of a circle. However, the technical
problems will likely be very different. In scenario 1, commu-
nication may well be very efficient, and perhaps all that is
needed is to provide the formula A = πr2. In scenario 2,
much more information will be required from a technical
perspective. To enable understanding of the formula, the
speaker would first need to clarify what each piece means,
e.g., r represents the radius of the circle, which is the distance
from the center of the circle to the edge of the circle, and so
on. The speaker would likely need to speak slower and repeat
some key points to fully convey the meaning.

What influences the speaker’s approach in either scenario
is the difference in prior knowledge bases of the listeners,
and the speaker’s knowledge of this difference. Note that,
as a trivial solution, the speaker can use the approach in
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scenario 2 in both cases, i.e., the speaker can always assume
the worst case scenario (no prior knowledge base) and thor-
oughly explain every aspect of the problem. Let’s call this
the semantics-agnostic approach.While this will ensure com-
plete conveyance of meaning in both scenarios, it is clear that
the speaker is wasting resources (time, energy) by speaking
to the listener in the first scenario as if they were a child.
This key intuition is the driving force behind the push toward
semantically-aware communication systems.

We envision semantic communication as a paradigm shift
for future communication systems that embodies a natural
progression based on the three communication problems out-
lined by Shannon and Weaver. By using semantic systems
to communicate intelligently, we believe that this technology
canmeet the challenge posed by rising data demands. Despite
its early beginnings in 1952 with Carnap and Bar-Hillel’s
work on a theory of semantic information [9], the body of
literature regarding semantic communications is quite small.
Therefore, we feel that a paper surveying the works in this
field will be invaluable as the field develops out of infancy.
In this paper, we attempt to provide as clear a picture as
possible of the current state of semantic communications.
Next, we discuss some of the recent works providing their
own summaries and visions of semantic communications.
We then offer a brief discussion of what it means to define
semantics, followed by a presentation of different approaches
found in the literature, and finish with our own take on a
natural approach to the problem of engineering1 semantic
communication.

A. RELATED WORK
There have been several published works that attempt to
provide a vision of what semantic communication might look
like, and even fewer that attempt to survey the young field.
While most of these have come about in recent years, one of
the earliest examples was published in 1992 by Ouksel and
Naiman [11], in which they discuss a semantic communica-
tion protocol in heterogeneous database systems. They argue
that a semantic communication protocol provides a more
flexible vehicle of communication and can support effective
conflict resolution. Although they refer to this protocol as
semantic communication, their ideas align much more with
the concept of the semantic web, which was first introduced
by Berners-Lee et al. [12]. While related, the idea of the
semantic web is different from what we refer to as semantic
communication. The primary goal of the semantic web is
to make the information contained in pages on the internet
machine-interpretable. This field has been well-studied over
the years since its inception. The semantic web can be thought
of as an attempt to achieve the second (semantic) level of
communication between the web (source) and a machine
(receiver), and thus represents a particular case of general

1To avoid confusion, we note that by ‘‘engineering,’’ we refer to ‘‘the
action of working artfully to bring something about.’’ [10] Most of the works
described in this survey entail theoretical developments, rather than physical
systems.

semantic communication. In this paper, we aim to keep our
discussion centered on this more general problem.

One of the earliest works providing a vision for addressing
the semantic communication problem was given by Rodoplu
and Vadvalkar [13]. They introduce their idea of a seman-
tic domain, which includes semantic ‘‘atoms’’ and corre-
sponding atomic operations that act on the atoms to generate
objects. They then provide their vision of how onemight char-
acterize semantic information, making the important obser-
vation that the same object might have different semantic
information measures in different domains. The vision pro-
vided in [13] leans on the idea of using knowledge graphs
to represent prior knowledge bases at both the transmitter
and receiver, falling within the realm of what we refer to as
knowledge graph-based semantic communication, which is
the focus of section IV.

Another vision article from 2013 [14] focuses specifically
on the problem of semantic misunderstanding. An illustrative
example given is the failure of the Mars Climate Orbiter,
in which two collaborating teams of engineers were working
in different unit systems (imperial and metric), leading to
misunderstandings and failure of the mission. The article
focuses more on the effectiveness problem rather than the
semantic problem, and argues that the key theoretical notion
for successful communication is the presence of sensing;
which is described as feedback to the source indicating suc-
cessful communication. The vision presented in this article
describes agents in a communication system that can learn
to achieve successful communication (in the effectiveness
sense) despite some initial knowledge mismatch between
source and receiver.

In [15], a brief history is provided on the quantification
and transmission of information and intelligence. In addi-
tion to providing an informative summary on the history
of communication techniques and theory, the article raises
some important challenges for the design of future intelligent
communication, namely:

• Can the formulation of channel capacity include a func-
tion of significance?

• How do we define error in the transmission of
intelligence?

• How can the code set and signal shaping be defined to
support optimal transmission of intelligence?

• How can the receiver be design to optimally accomplish
reception of intelligence?

By interpreting the phrase ‘‘transmission of intelligence’’ as
the nearly synonymous term of semantic communication,
these represent some of the grand challenges of practically
achieving this higher level of communication. One possi-
ble avenue is proposed to address these challenges, which
suggests the use of Bayes’ decision theory to quantify the
‘‘significance’’ of information.

Building on the idea of information significance, in [16]
Uysal et al. envision semantics to mean just that: the signifi-
cance of information as opposed to its meaning. They argue
for an extensive cross-layer optimization of the end-to-end
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communication system, in a self-described radical depar-
ture from the well-established way of assessing communi-
cation networks. The key idea is that this optimization will
yield semantic communication by ‘‘the provisioning of the
right piece of information to the right point of computation
(or actuation) at the right point in time.’’ The development of
semantic measures is called for to quantify what information
is ‘‘right’’ such that the system can be properly optimized.
The significance-focused view on semantics is also advocated
for in [17], which describes a vision of goal-oriented seman-
tic communication, essentially combining the semantic and
effectiveness problems. In addition to outlining this vision,
utilizing these ideas is shown to greatly reduce robotic actua-
tion error in a provided example. This view on semantics has
much in common with our proposed vision in Section VII,
and is discussed in further detail in later sections.

A recent article outlining nine challenges in AI for 6G
communications [18] points out the capabilities of recent
learning techniques as a potential enabler of semantic com-
munication. The article outlines two challenges which must
be met to develop semantic communications, the first of
which is the mathematical foundation of semantic commu-
nications; while some attempts have been made at defining
a mathematical framework on which to build semantic com-
munication, we are still lacking a comprehensive theory. The
second challenge is the structure of semantic communication
systems, which is posed as a problem of choosing between
a general deep neural network (DNN) or further exploring
other structural levels of communication to facilitate semantic
communication. Another vision article promoting the use of
ML in semantic communication for 6G networks is [19]. This
extensive article provides a complete view on the current
vision for 6G networks, while also discussing details of both
semantic and goal-oriented (effective) communications, with
various examples and applications given for each. They then
provide their vision of the 6G network as incorporating online
learning-based communication and control. In contrast to our
goal of providing a clear and comprehensive view of the field
of semantic communications, [19] focuses on ML and appli-
cations of semantic communication. Similar to [18], [19],
and [20] provides an overview of end-to-end semantic com-
munications based on DL. The discussion is broken into
semantic communications for different modalities, such as
text, image and speech. Use cases, including internet of things
(IoT) networks and smart factories are discussed, and open
issues are presented.

The work that is perhaps the most similar to that presented
throughout this survey is the recent review published by
Lan et al. [21], in which the authors review princi-
ples of semantic communication, discuss existing system
architecture designs, and provide an overview of design-
ing semantic communication systems based on knowledge
graphs. Their discussion is divided into the categories of
human-human (H2H), human-machine (H2M), andmachine-
machine (M2M) communication, with example applica-
tions provided for each. While sharing many similarities,

[21] differs from the work here in a few ways. First, the
discussion contained in [21] is application-centric, while we
aim to focus more on the general techniques and foundations
of semantic communication. This leads to a natural contrast
in presentation; [21] breaks the discussion into H2H, H2M,
and M2M based on the application of semantic communi-
cation, while we partition topics in our discussion based on
the definition of semantics in communication. We believe
this provides a clearer view of the way in which seman-
tic communications are thought about today. Furthermore,
unlike [21], we discuss the classical approaches to quantify
semantic information, in order to provide perspective on how
the field has evolved since its inception.

As mentioned above, the purpose of this survey is to pro-
vide a clear picture of the history and current state of semantic
communications, with the hope that it will be a useful guide
to those wishing to pursue research within this exciting field.
To that end, the rest of this paper will be organized as follows.
In Section II, we offer some perspective on the difficul-
ties of defining semantic communication. There have been
many different ideas on just how to do this, and we attempt
to group these in a natural way. Based on this grouping,
Sections III-VI will review works that fall into each category.
In Section III, an overview of classical semantic informa-
tion theory is provided. Section IV reviews works falling
under the category of knowledge graph-based semantic com-
munication, which has traditionally been the most common
approach. ML-based semantic communication is considered
in Section V. This approach has seen a surge of activity in
recent years, and is a promising approach moving forward.
Section VI goes into more depth on the recently proposed
approach of treating semantics as the significance of infor-
mation. Building off of this idea, in section VII we present
our vision on an alternate approach to semantic communi-
cation, which emphasizes context as the core component.
Section VIII concludes the paper and offers some future
research directions.

II. OVERVIEW OF SEMANTICS IN COMMUNICATION
The ambiguity of the word ‘‘semantics’’ brings with it an
inherent difficulty when attempting to provide a definition.
Indeed, this is an issue that has drawn the attention of
engineers and philosophers alike. In [22], a brief discussion
regarding the philosophical context of semantic communica-
tion is provided. There, it is noted that the idea that ‘‘com-
munication must be considered as a means to an end’’ was
first brought about by Dewey [23], and later ‘‘brought to the
forefront of philosophy’’ by Wittgenstein [24]. In this work,
Wittgenstein fills a short book, organized into a continuous
flow of philosophical remarks, with his thoughts and reflec-
tions on the fundamental aspects of language. Clearly then,
having been at the center of a great amount of philosophical
thought, the definition of semantics is a complex one.

However, as we are interested in the engineering of seman-
tic communication, this definition is vital. Without it, we are
left blind when attempting to create systems which may
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FIGURE 3. The four existing approaches to semantic communication.

achieve this higher level of communication. The solution to
any engineering problem requires full understanding of the
problem itself, including any simplifications, assumptions,
and constraints posed by the problem. Therefore, we dedicate
this section to a brief introduction to the different engineering
problems that have been posed when attempting to create
semantic communication. Inherent in each is the way in
which this abstract idea of semantics is defined, which leads
to different implications and solutions. Figure 3 provides
a high-level view of these approaches and the ways that
meaning is represented by each.

As previously mentioned, in their 1952 paper Carnap and
Bar-Hillel attempt to outline a Theory of Semantic Commu-
nication [9] as a direct response to Shannon’s then-recently
published ‘‘AMathematical Theory of Communication.’’ The
core of their work is to base information measures around
logical probabilities rather than the statistical probabilities
which underlie what we now call Information Theory. This
definition of semantics is concernedwith the so-called logical
truth of a statement, from which information measures can be
derived. We classify this definition and its derivatives clas-
sical semantic information. However, it is noted in [9] that
this definition of ‘‘semantic information is a concept more
readily applicable to psychological and other investigations
than its communicational counterpart.’’ Regardless, there are
still some important works that embrace this idea of semantic
information for the engineering problem.

Perhaps the most pervasive method of defining semantics
throughout the literature is to do so by using some sort of
structured knowledge base. This structured knowledge base
can take on many names, such as ‘‘semantic network’’ [25],
‘‘taxonomy’’ [26], ‘‘ontology’’ [27], and others. All of these
essentially refer to the same idea, which is to use a graph

structure, or knowledge graph to represent knowledge in the
system [28]. Hence, we refer to these techniques as knowl-
edge graph-based semantic communication. Having close
ties to the semantic web, it is clear why this approach is
popular. By defining knowledge over a graph, it is relatively
straightforward to define metrics of ‘‘semantic similarity,’’
which can then be analyzed using well-developed graph the-
ory techniques. Furthermore, recent work on graph neural
networks brings about the opportunity to incorporate modern
learning techniques over such graphs [29].

Another prevalent approach that is seeing a surge of interest
is the idea of usingML techniques to ‘‘learn’’ the semantics of
a problem. Akin to model-based vs. data-driven approaches
to general inference problems (see [30] for more on this),
predefined knowledge graphs impose model-based seman-
tics on the problem at hand while ML methods use data
to determine these semantics. Borrowing techniques from
natural language processing (NLP) and computer vision, deep
networks can be taught to communicate in the most efficient
manner while preserving semantic content [31]. Similarly,
by implementing reinforcement learning (RL) methods, these
networks can be refined over time and even adapt to dynamic
changes in the communication problem. We refer to this
approach as machine learning-based semantic communica-
tion. Initial studies examining this approach to semantic com-
munication over several modalities have emerged in recent
years [30], [31], [32], [33].

Finally, a fourth definition which differs significantly from
those previously described is the one first mentioned in
Section I-A: the idea of semantics as the ‘‘significance’’ of
information; we call this significance-based semantic com-
munication. While classified as an approach toward semantic
communication, this approach essentially addresses the third
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TABLE 1. Summary of works in classical semantic information.

level of communication problem: the effectiveness problem.
Rather than concern ourselves with themeaning of amessage,
advocates of this approach call for communication of the
right information. Of course, what information is ‘‘right’’ will
depend on the application and the desired outcome, therefore
leading to the idea of effective or goal-oriented communi-
cation. This approach lends itself well to machine-machine
communication, in which we are less concerned with the
conveyance of ‘‘meaning’’ and more concerned with what the
system accomplishes. One well-studied way of quantifying
what information is ‘‘right’’ is the popular age of information
metric [35], which relates to generating and delivering infor-
mation at the right time. By defining other metrics to quantify
what is ‘‘right’’ for the problem at hand, a joint optimization
can be carried out to achieve optimal communication.

These four approaches to defining semantics roughly par-
tition the previous research regarding semantic commu-
nication. Based on this analysis of the current literature,
we broadly define semantics as any definition of informa-
tion or the transfer thereof that considers something beyond
the statistical nature of the symbols used to represent that
information.This view unites the definitions discussed above,
despite their differences in the ‘‘something beyond’’ that
is considered by each. Of course, these definitions are not
mutually exclusive. ML can be used to determine which
information is ‘‘right,’’ just as classical semantic information
metrics can be used to design and tune neural networks. Just
as model-based deep learning (DL) incorporates both prior
knowledge and data-driven techniques for inference, graph
neural networks can be used to learn knowledge graphs for
semantic communication. However, by treating each of these
definitions individually, a complete picture is given of the
current state of semantic communication. In the next sections,
we dive into each definition, the engineering approaches that
come as a result, and some of their potentials and challenges.

III. CLASSICAL SEMANTIC INFORMATION
As mentioned earlier, Carnap and Bar-Hillel’s paper An Out-
line of a Theory of Semantic Information attempts to tackle
the problem of engineering semantic communication through
the quantification of semantic information [9]. This quan-
tification is the first step towards efficient semantic commu-
nication, as it allows us to consider ideas such as semantic
compression and semantic error. Therefore, we begin our

discussion with the ideas and methods related to classical
semantic information. The works discussed in this section are
summarized in Table 1.

A. THEORY OF WEAKLY SEMANTIC INFORMATION
Following the convention of [36], we will refer to the theory
laid out by Carnap and Bar-Hillel as the Theory of Weakly
Semantic Information (TWSI), for reasons that will be dis-
cussed later. TWSI is defined over a language system Lkn
which contains n ‘‘things’’ (or individuals) and k primitive
one-place predicates (descriptors). An atomic sentence is said
to consist of a single predicate describing a single thing, while
a molecular sentence is formed from two or more atomic
sentences joined with some logical connective, including:
or, and, if. . . then, if and only if. Any sentence can either
be logically true, logically false, or logically indeterminate.
Furthermore, logical relations are defined. For example, for
sentences i and j, we have i logically implies j defined to mean
that ‘‘if i then j’’ is logically true. A state description is a sen-
tence in which each of the k predicates is specified for each
of the n individuals; thus completely specifying all aspects of
the universe. Common set notation can be used to talk about
‘‘classes’’ of entities within the universe. For example, [9]
describes a system consisting of three individuals, {a, b, c},
and two binary predicates, young or old (Y or O) and male
or female (M or F). Then an example of a state description
could be given as ‘‘(a is F and Y ) and (b is M and Y ) and
(c is M and O).’’ Some other possible states are given below
in Table 2.

TABLE 2. Some states of an example universe.

Note that, for binary predicates, a universe will consist of
2nk possible state descriptions. Similar to the process inwhich
Shannon developed entropy as a measure of information [5],
Carnap and Bar-Hillel begin with requirements/axioms that
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semantic information (and its corresponding measures) must
satisfy. Denoting the semantic information of a sentence as
In(·), the first axiom is given as

In(i) includes In(j) ⇐⇒ i logically-implies j, (1)

meaning that i says everything that is said by j (and possibly
more) if and only if j is implied by i within the logical
framework. For example, take i = (a is F and Y ) and j =

(a is F). Clearly, j is implied by i, and thus the semantic
information of i includes that of j (though the converse is not
true). This axiom requires us to treat information as a set or
class of something; it is important to note that the amount of
information is arbitrary at the moment, and must be defined
on this set. Some theorems are derived from this axiom, and
the concept of relative information is defined as

In(j/i) := In(i and j) − In(i) (2)

where In(j/i) is again some set or class. Continuing the exam-
ple above, we can see that In(j/i) = ∅ (the empty set), since
In(i and j) = In(i). However, In(i/j) ̸= ∅.
Based on (1) and (2), a concept of the information of a

sentence is defined, and is termed the content of a sentence.
Content is derived from what is called a content-element,
which is simply the negation of a state description. The
content of a sentence i, denoted Cont(i), is then defined as
the set of content-elements logically implied by i. Intuitively,
Cont(i) can be thought of as the set of state descriptions in the
overall state-space (i.e. universe described by our language
system) that are eliminated with knowledge of the sentence i.
Take i = (a is F and Y ) as before. Out of the 26 = 64 possible
state descriptions in the universe, this sentence eliminates all
48 in which a is not F or a is not Y , and Cont(i) is composed
of the negations of all such state descriptions. Clearly then,
a self-contradiction will ‘‘say the most’’ (by eliminating all
state-descriptions) and a tautology will ‘‘say the least’’ (by
eliminating no state-descriptions). Similarly, a complete state
description can be thought of as carrying much information,
since it eliminates all other state descriptions. Note that this
notion of information has nothing to do with the truth of a
sentence, which is a point we will revisit. With this idea of
information in place, the primary question is addressed: how
shall the amount of information be defined?

The amount of semantic information carried by sentence i
is denoted as in(i), and the following requirements are stated:

Cont(j) ⊆ Cont(i) ⇒ in(i) ≥ in(j) (3)

Cont(j) ⊂ Cont(i) ⇒ in(i) > in(j) (4)

Cont(i) = ∅ ⇒ in(i) = 0 (5)

Note the subtle difference between In(·) and in(·); In(·) rep-
resents the information itself, while in(·) is used to quantify
how much information is given by In(·) Using Cont(·) as the
information content of a sentence, these requirements are
straightforward and make intuitive sense. By (3) and (4),
a sentence containing all the information of another should
have a greater than or equal amount of information, with

equality only if the information carried is the same. By (5), the
amount of information is zero if the information of a sentence
is the empty set.

Based on these requirements, two measures are offered
as the main contribution of [9]. The first is termed the
content-measure of a sentence, denoted cont(·) (different
from Cont(·)), and is defined as any proper m-function of
the negation of a sentence. We will not go into the details
of what constitutes an m-function here (see [9, Section 6]
for further reading), but suffice it to say that it
satisfies (3)-(5), and defines a measure taking values between
0 and 1, thus representing a logical probabilitymeasure. How-
ever, a problem arises with this measure regarding another
intuitive requirement not yet stated, namely additivity. Just as
in classic Information Theory, we would like the information
measure of two independent sentences to follow additivity,
i.e. in(i and j) = in(i) + in(j) for i, j independent; it is shown
that cont(·) does not satisfy this intuition [9, Thm. 6-15].
Thus, a second measure is proposed and is termed measure
of information, denoted by inf(·), not to be confused with the
infimum operator. This second measure is defined as

inf(i) = log2
1

1 − cont(i)
. (6)

Observe that this measure is analogous to the classical
information-theoretic definition of entropy, making use of
the logical probability cont(i) instead of the statistical
probability p(i).

A comparison of these two measures is given in [9], and it
is shown that both exhibit intuitively desirable properties, and
likewise they both exhibit intuitively undesirable properties.
The lack of additivity of cont(·) is one example. Another
is that inf(·) lacks a counterpart to the property of cont(·)
stating that cont(i and j) ≤ cont(i) + cont(j). Thus, it is
concluded that neither represent an ideal measure of semantic
information, but rather that they both have specific strengths
and weaknesses.

B. THEORY OF STRONGLY SEMANTIC INFORMATION
A problem with TWSI occurs when presented with a sen-
tence that constitutes a contradiction, e.g., ‘‘i and not i.’’
As mentioned above, under the definition of Cont(·), this
sentence would carry with it maximum semantic information.
Intuitively, however, we know that a contradiction should
carry no information; it is obviously untrue and leaves the
receiver no less informed than before the reception of the
message. This ambiguity manifests itself in the mathematics
of TWSI as well, and is known as the Bar-Hillel-Carnap Para-
dox (BCP). Therefore, in [36] Luciano Floridi proposes that
truth lies at the root of this paradox, which can be solved by
the incorporation of truthfulness considerations into TWSI.

The theory which follows is outlined in [36] and is deemed
a Theory of Strongly Semantic Information (TSSI). Again,
the goal is to develop a theory from which semantic informa-
tion can be quantified, which would clearly be a useful theory
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for the engineering of semantic communication. As a starting
point, three desiderata are given:
D.1 Avoid any counterintuitive inequality comparable

to BCP.
D.2 Treat the alethic (truth) of a sentence not as a superve-

nient but as a necessary feature.
D.3 Extend a quantitative analysis to the whole family of

information-related concepts.
The core of TSSI is the definition of degrees of vacuity and

inaccuracy. The intuitive idea is that semantic information
is related to ‘‘how true’’ and ‘‘how false’’ a sentence is.
A highly vacuous sentence is one that is true, but carries with
it little information. Similarly, a highly inaccurate sentence is
false and also carries little information. This brings about the
strange idea that a false sentence may carry more information
than a true sentence. As an example, consider the system of
three individuals and two predicates described earlier. The
tautology i = ‘‘(a is F) or (a is M )’’ clearly provides no
information, yet it is always true nonetheless. In contrast,
consider the sentence j = ‘‘(a is F) and (b is M ) and (c is F)
and (a is Y ) and (b is Y ) and (c is O)’’ when c is actually M .
While j is false, it is not too difficult to reason that it carries
more information than i.

Mathematically, these concepts are formalized as a positive
or negative degree of ‘‘semantic distance’’ of a sentence i
from a fixed point, which is defined as the given situation
w to which i is supposed to refer. True statements take on
positive degrees between 0 and 1, while false statements take
on negative degrees between −1 and 0. This mapping is
denoted by the function f (i). For false statements, the degree
of inaccuracy simply counts the number of false atomic
statements e in i and divides by the total number of atomic
statements, or the length l of i

f (i) = −e(i)/l(i), (7)

where i is a false sentence. On the other hand, the degree of
vacuity is more difficult to define since all atomic statements
of a true sentence are true. Therefore, this degree is defined as
the number of situations n (including the true situation) with
which i is consistent divided by the total number of possible
situations (sl for a system with s predicates),

f (i) = n(i)/sl, (8)

where i is a true sentence, and a ‘‘situation’’ is nothing more
than a complete state description as was defined for TWSI.
Note the lack of symmetry between (7) and (8); this is one
argument against TSSI.

Using these degrees, the degree of informativeness is
defined as

ı(i) = 1 − f 2(i). (9)

Continuing the previous example, the tautology is consis-
tent with all situations, and thus has a degree of vacuity
f (i) = 26/26 = 1 and a degree of informativeness of
ı(i) = 1−12 = 0. Meanwhile the false statement j has degree

of inaccuracy f (j) = −1/6 and a degree of informativeness
ı(j) = 1 − (−1/6)2 ≈ 0.972, and we see that ı(·) is
consistent with intuition. The relationship between degrees of
vacuity and inaccuracy and degree of informativeness is given
in Figure 4.

FIGURE 4. Relationship between degrees of inaccuracy, vacuity, and
informativeness.

The amount of vacuous information is then defined as the
integral of this curve from 0 to the degree of vacuity;
the maximum amount of vacuous information is then simply
the integral from 0 to 1, yielding 2/3. Defining this maximum
as α and the amount of vacuous information carried by i
as β(i), the amount of strongly semantic information carried
by i is denoted as ı∗ and is defined as

ı∗(i) = α − β(i) (10)

It is finally argued that ı∗(i) provides a solution to the BCP,
in that it shows that ‘‘semantic information about a situa-
tion presents an actual possibility that is inconsistent with
at least one but not all other possibilities. A contradiction
is not information-rich because it is not a possibility.’’ It is
stated that in TSSI, a contradiction is simply a limit instance
of ‘‘uninformation,’’ or lack of both positive and negative
misinformation.

C. SEMANTIC INFORMATION WITH TRUTHLIKENESS
TSSI is a step in the right direction, but still has some short-
comings with regards to quantifying semantic information.
First, the degrees of vacuity and inaccuracy are inherently
asymmetric; the former is a measure depending on the model,
and the second is a measure based solely on the sentence
at hand. In addition, it is unclear how to quantify vacuity
and inaccuracy for more complex sentences beyond simple
conjunctions of atomic statements.

In [37], Simon D’Alfonso builds on the foundations laid
by TWSI and TSSI by expanding on Floridi’s idea of
using ‘‘truthlikeness’’ for quantifying semantic information.
Two existing approaches to quantifying truthlikeness are
offered. The first, termed the Tichie-Oddie approach, com-
putes truthlikeness, denoted Tr, as the compliment of some
distance function 1(·) from the statement i and the true
statement t [37]:

Tr(i) = 1 − 1(i, t) (11)
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TABLE 3. Summary of classical semantic information measures.

where 1(·) takes values in [0, 1]. We can see that (10) is a
particular case of (11) with1(i, t) = f 2(i). LetWi denote the
set of states in which statement i is true. Furthermore, define
δ
(t)
i as the number of mismatched atomic statements between
state wi and the true state wt , i.e., the number of false atomic
statements in wi. This value is weighted by the inverse of
the number of propositions in the universe. The Tichie-Oddie
approach [37] specifies the distance function as

1(i, t) =

∑
wi∈Wi

δ
(t)
i

|Wi|
(12)

Continuing with the example in the previous subsection,
i agrees with all state descriptions, so |Wi| = 64. After
computing the sum in the numerator we have 1(i, t) =

32/64 = 1/2 regardless of the true state. Thus, a statement
that is always true provides little information no matter the
true state of the universe. For the second involving sentence j,
we obtain 1(j, t) = 1/6 and Tr(j) = 5/6, again matching
intuition that the false j carries more information than the
true i.

In general, the function 1(·) can be any distance measure
between the state specified by the sentence i and that of the
true statement t . The Niiniluoto approach [37] makes use of
a different distance metric, namely the min-sum measure

1
γ λ
ms(i, t) = γ1min(i, t) + λ1sum(i, t) (13)

where

1min(i, t) = min
wi∈Wi

1(wi,wt ) (14)

1sum(i, t) =

∑
wb∈Wi

1(wi,wt )∑
wb∈B 1(wb,wt )

(15)

and B is the set of all states in the logical space. The state
distance is defined as

1(wi,wt ) =
δ
(t)
i

n
(16)

where n is some atomic weight. Niiniluoto shows that
the min-sum measure of (13) satisfies certain adequacy
conditions.

Finally, D’Alfonso proposes a novel measure, termed the
value aggregate measure, which is claimed to lie in between
the Tichy/Oddie and Niiniluoto approaches. First, each state
is assigned a value, denoted val, with

val(w) =
t (w)

n2n
(17)

where t (w) is the number of true atoms in state w, and n is the
number of propositional variables in the logical space. The
following algorithm is used to calculate information yield for
a statement i:

1. DetermineWi.
2. Place members ofWi into an array X1 and order from

lowest to highest value.
3. Create empty array X2 of length 2n. Fill the first |Wi|

elements with the array X1. Use the last (highest value)
element of X1 to fill the remain spaces of X2.

4. Sum the values of X2 to get the information measure.
It is claimed without proof that the value aggregate measure
satisfies many of the adequacy conditions listed by Niinilu-
oto. A summary of the measures discussed in this section is
provided in Table 3.

D. EXTENSIONS OF TWSI
These approaches to quantifying semantic information,
namely TWSI, TSSI, and truthlikeness, all provide the
groundwork for a theory of semantic information, which
could enable semantic communication. In [38], TWSI is used
as a foundation for a general, abstract semantic communica-
tion model. First a semantic information source is defined as
a tuple (Ws,Ks, Is,Ms), where

• Ws is the world model (potentially observable by the
source),
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• Ks is the background knowledge of the source,
• Is is the inference procedure of the source,
• Ms is the message generator used by the source.

Similarly, the semantic receiver is defined by the analogous
tuple (Wr ,Kr , Ir ,Mr ). The source model is further specified
by assuming that theworldmodelWs is a set of interpretations
with probability distributions µ; for the familiar example of
propositional logic, an interpretation would be a set of posi-
tive propositions. The inference procedure Is is then defined
as a satisfiability reasoner for the propositional logic, and the
message generator Ms employs a fixed coding strategy. The
model entropy is then given by

H (W ) = −

∑
w∈W

µ(w) log2 µ(w) (18)

Letting m(x) denote the logical probability of a message x
within this model, the semantic entropy of x is defined as

Hs(x) = − log2(m(x)). (19)

Note that this is equivalent to the TWSI measure given by
(6) with m(x) = 1 − cont(x). When the knowledge base
Ks is included in this formulation, the set of possible worlds
is restricted to a set compatible with Ks. This brings about
the notion of conditional semantic entropy, where m(x|K )
now denotes the logical probability of x conditioned upon the
background knowledge, and we have

Hs(x|K ) = − log2(m(x|K )). (20)

Letting X be a finite set of allowed messages with proba-
bility distribution P(X ), we know the classic Shannon entropy
of X as

H (X ) = −

∑
x∈X

P(x) log2 P(x). (21)

The following theorem relates the model (semantic) entropy
(18) to the message (syntactic) entropy (21):
Theorem 1: H (X ) = H (W ) + H (X |W ) − H (W |X ).
Proof: See [38]. □

The main implication of Theorem 1 is a formal method of
quantifying semantic uncertainty that is rooted in the TWSI
and relating it to classic Shannon entropy. As entropy is used
to quantify information in classic Information Theory, this
gives a way of comparing the syntactic information and the
semantic information under the present world model.

The authors in [38] then discuss the idea of using seman-
tics for data compression. Intuitively, the idea is that some
messages may be semantically equivalent without being syn-
tactically equivalent. For example, many times we are able to
understand the truemeaning of text despite someminor errors
in spelling or grammar. Hence, a syntactic error does not
necessarily induce a semantic error. Based on this principle,
the idea is that we can achieve maximum compression by
choosing the smallest semantically equivalent message for
communication. Let X denote the smallest subset of X such
that each x ∈ X is semantically equivalent to some x ∈ X .

Theorem 2: For a semantic source with interface language
X , there exists a coding strategy to generate a semanti-
cally equivalent interface language X ′ with message entropy
H (X ′) ≥ H (X ). No such X ′ exists with message entropy
H (X ) < H (X ).

Proof: See [38]. □
Theorem 2 provides bounds on the maximum achievable
data compression give a model as described above. Note
that Theorem 2 is analogous to the classical source coding
theorem, in that it gives existence of such a code but no insight
into how to design the coding strategy.

The final major result of [38] is the so-called Semantic
Channel Coding Theorem. Some notations used include:

• I (X;Y ) = H (X ) − H (X |Y ) is the traditional
information-theoretic mutual information between X
and Y

• Hs(Y ) = −
∑

y p(y)Hs(y) is the average logical informa-
tion of received messages

Theorem 3: For every discrete memoryless channel, the
channel capacity

Cs = sup
P(X |W )

{I (X;Y ) − H (W |X ) + Hs(Y )} (22)

has the following property: For any ϵ > 0 and R < Cs, there
is a block coding strategy such that the maximal probability
of semantic error is < ϵ.

Proof: See [38]. □
Similar to Theorem 2, Theorem 3 provides a result that

parallels the classic Channel Coding Theorem of Information
Theory. This result gives a bound on the maximum amount
of information that can be transmitted for some arbitrary
probability of semantic error.

In [39], the general model and results of [38] are extended
and practical semantic compression algorithms are given
based on graph theoretic results. However, basic definitions,
such as the semantic source and receiver, are different from
those in [38], making it difficult to relate this work to pre-
vious results. Perhaps the most useful contribution of [39]
is a discussion of some practical techniques for semantic
compression.

The first suggested idea is to allow non-uniquely decodable
codes. This fits the case in which a certain syntactic message
represents two semantically equivalent states, i.e., message
x could be decoded as either state a or b. Another idea is
to extend the concept of erasure channel codes, such that
some bits are intentionally ‘‘erased.’’With this approach, only
partial information may be recovered at the receiver, with
some intentional semantic ambiguity.

A practical algorithm is then suggested for a system in
which the source and the receiver share a knowledge base that
is defined as a bipartite fact-conclusion graph, see Figure 5.
The problem studied is that in which the source wants to
convey a set of conclusions to the receiver in as few symbols
as possible (where both facts and conclusions can be trans-
mitted and are equally expensive). This problem reduces to
computing the minimum-vertex cover which is solvable in
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FIGURE 5. Example bipartite fact-conclusion graph model of a knowledge base.

polynomial time for bipartite graphs. This simple example
represents a situation in which semantic compression is com-
putationally feasible, given the assumption on background
knowledge.

E. SUMMARY
The classical semantic information approach attempts to mir-
ror the path followed in the monumental development of
Information Theory to define and quantify semantic informa-
tion. TWSI attempts to achieve this through the use of logical
probabilities rather than statistical probabilities. However,
this theory contains a paradox in which a contradiction carries
maximal semantic information. As a remedy, TSSI introduces
the use of truth values to quantify semantic information,
based on the idea that both false and true statements can
carry varying degrees of information. This idea has been
extended through the introduction of various truthlikeness
measures for quantifying semantic information. Recently,
some have attempted to extend the original TWSI, relating
semantic entropy to traditional information-theoretic entropy
and providing analogous source-coding and channel-coding
theorems. All of these approaches seek to quantify semantic
information of a sentence through the use of logical probabil-
ities and truth values.

With regards to the motivating problem described in Sec-
tion I, namely, the trend of exponentially increasing global
data traffic, the works described in this section provide no
quantitative results addressing this issue. This is due to the
fact that these works are more concerned with the develop-
ment of semantic information theory, rather than the subse-
quent use of this theory for semantic communication. That
is not to say that the presumed benefits are nonexistent,
however, and future work in this area should seek to confirm
this potential.

F. CHALLENGES AND OPPORTUNITIES
Given the ability to quantify semantic information, devel-
opment of optimal coding techniques (source and channel)
should follow. However, as can be seen from the previous
discussion, this quantification is no trivial task. A definition

of semantic information itself is elusive, and attempts to quan-
tify it become mired with paradoxes and counter-intuitive
results. However, should such a complete theory exist, the
benefits that would follow are clear, thus presenting a major
opportunity.

Previous work seems to point to the idea of truthlikeness as
the best approach to quantifying semantic information. The
main challenge with this approach is the need for a large
knowledge base. Simple examples are given using proposi-
tional logic models consisting a few objects and propositions,
but the size of these models explodes for more realistic and
practical systems. Furthermore, these models must be pre-
defined and known at both the source and receiver, which
introduces further complications. Another challenge is selec-
tion of the correct information measure. As we have seen,
there is no single measure for semantic information (yet); the
available measures all come with their respective strengths
and shortcomings.

A clear opportunity lies in the further development of the
theory of semantic information. While significant progress
has been made on the subject, a unifying and ubiquitous
theory does not yet exist. Another promising opportunity is
the incorporation of existing semantic information measures
into practical systems. In particular, neurosymbolic AI has
become a field of great interest as of late [40]. By combining
the strengths of symbolic logic and DL, neurosymbolic AI
could enable powerful learning systems that are capable of
logical reasoning. By applying neurosymbolic AI to the prob-
lem of semantic communication, perhaps the logical model
at the source and receiver could be learned from data. Then,
the DL architecture could be used to efficiently facilitate
semantic communication. As all of the previous work on
semantic information quantification relies to some degree
on propositional logic, the application of neurosymbolic AI
seems to be a perfect fit.

IV. KNOWLEDGE GRAPH-BASED SEMANTIC
COMMUNICATION
Semantic communication necessarily requires a knowledge
base at both the transmitter and receiver. The engineering of
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TABLE 4. Summary of works in knowledge graph-based semantic communication.

semantic communication thus requires some form of knowl-
edge representation to encapsulate the knowledge at the trans-
mitter and receiver. One prevalent method of representing
knowledge is through the use of a knowledge graph (KG).
Although a particular KG may be defined in different ways,
in general a KG can be said to use a graph structure to
model a given knowledge base. For example, nodes of the
graph could represent objects, while edges represent relations
between the objects. By referencing the KG, a system can
then perform communication that is semantically-aware. The
works discussed in this section are summarized in Table 4.

A. KNOWLEDGE REPRESENTATION WITH KGs
One of the earliest works making use of this idea was
published in 1989, which proposes a so-called ‘‘semantic
network architecture’’ for AI processing [25]. Arguing that
knowledge representation and manipulation is required for
artificial intelligence, a multi-processor architecture is pro-
posed. This semantic network takes the form of a KG,
in which nodes are defined as concepts and edges are
defined as relationships between concepts. Figure 6 gives
a simple example of a KG. The architecture is composed
of a grid of processing elements (PEs) which compute the

corresponding links and nodes associated with the semantic
network. By building the architecture in such a manner, it is
argued that the system can perform intelligent actions, such
as labelling the scene of a given image (computer vision).

Other early studies into knowledge representation with
KGs include [27] and [41], published in 1996 and 1997,
respectively. In [27], the problem of a distributed knowl-
edge base is studied using KGs. Specifically, the challenges
of evolving the distributed knowledge and controlling this
evolution are considered. This distributed knowledge base is
framed as a multi-agent system in which some communica-
tion exists between the agents. Within the system, each agent
possesses a simple KG and agents collaborate to perform
global inferencing. Participating agents receive distributed
rewards after correct inferences, resembling a mutli-agent
reinforcement learning scheme. A crossover operator is
adopted from genetic algorithms to facilitate knowledge evo-
lution. Distributed knowledge bases are also the focus of [41],
which uses the idea of a large-scale shared ontology. Here,
an ontology is defined as ‘‘a hierarchically structured set of
terms for describing a domain,’’ from which a knowledge
base can be constructed. The key idea is that if two knowledge
bases are formed from the same ontology, knowledge can
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FIGURE 6. An example knowledge graph.

be easily shared between the two. An analogy would be two
people from the same culture; the shared cultural norms and
ideas would serve as the so-called ontology, and though their
knowledge bases will not be the exact same, intuitively it will
be easier for them to communicate given their shared back-
ground. A set of desiderata for ontologies is given, essentially
proposing that ontologies should represent large-scale, living
documents from which we can define smaller, application-
specific knowledge bases. This idea is the basic premise
behind the Web Ontology Language (OWL) standards that
shape the semantic web [42].

B. SEMANTIC SIMILARITY MEASURES ON KGs
As was seen in the previous section, an important idea for
semantic communication is the idea of semantic similarity.
In the sense of classical semantic information, logical prob-
abilities and truthlikeness were used to define this similarity.
How should one quantify semantic similarity given a KG
representation? This is a question that some began to address
around the time KGs emerged as a way of representing
knowledge. In [26], a metric of semantic similarity, or dis-
tance, is proposed and simply termed Distance. The authors
assume a KG that consists of an is-a hierarchy, see Figure 7
below. This Distance metric is defined for sets of concepts
and is dependent upon the path lengths between nodes in
a KG; formally, it is defined as the average minimum path
length over all pairwise combinations of nodes between two
sets of nodes, i.e., for sets of nodes X and Y ,

Distance(X ,Y) =
1

|X ||Y|

∑
y∈Y

∑
x∈X

d(x, y), (23)

where d(x, y) is the shortest path between x and y. For
example, consider the distance between the sets {Sphere,
Earth} and {Basketball} in the KG shown in Figure 7. The
shortest path between Sphere and Basketball is 1, while the
shortest path between Earth and Basketball is 2, yielding a
total distance of 3/2. Repeating for the sets {Sphere, Earth}
and {Cricket}, we obtain a distance of 7/2, and thus we can
conclude that the concepts {Sphere, Earth} are more simi-
lar to the concept {Basketball} than {Cricket}. It is shown

FIGURE 7. Example of an is-a KG, where all edges represent an is-a
relationship.

through experimental results that (1) Distance can simulate
human assessments of conceptual distance and (2) Distance
can evaluate some cognitive aspects of semantic networks.
However, it is also found that Distance is less applicable to
nonhierarchical KGs.

An alternate measure is presented in [43], again for an
is-a taxonomy KG. First, it is noted that link-based measures,
such as (23), suffer from the fact that links in the taxonomy
are assumed to represent uniform distances, while in reality
some linked concepts may be ‘‘closer’’ than others. Indeed,
for the average person in the United States, {Basketball}
probably shares a stronger intuitive link to {Game} than
{Cricket} does, while this association may differ elsewhere.
Therefore, a node-based measure is proposed based on the
notion of information content. First, the KG is augmented
with a function p : C → [0, 1] where C is the set of all
nodes in the graph. p(c) can be thought of as the probability
of encountering a concept c; thus, concepts higher in the
taxonomy will have greater probability. Then we can define
the semantic similarity between two concepts as

sim(c1, c2) = max
c∈S(c1,c2)

− log p(c) (24)

where S(c1, c2) is the set of concepts that subsume both
c1 and c2. Intuitively, this measure computes the log-inverse
probability of the most-specific node (farthest ‘‘down’’ in the
taxonomy) which branches to both concepts; therefore, the
farther down this node, the smaller its probability, and the
greater the similarity measure. For example, in Figure 7, this
would imply that {Cricket} is more similar to {Basketball}
than to {Earth}.

Combining (23) and (24), [44] develops a new measure
for the is-a taxonomy KG that provides an even higher
correlation with human similarity judgement benchmarks.
It involves a link-based calculation which takes into consid-
eration node-based edge weights. First, information content
is defined in the same way as [43]:

IC(c) = − log p(c). (25)
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TABLE 5. Summary of KG-based semantic similarity measures.

Then it is argued that the strength of a child link is dependent
on the information content of the parent node,

LS(c, pc) = IC(c) − IC(pc), (26)

where pc is the parent node of c. This link strength, among
other factors, is used to compute an overall edge weight
wt(pc, c) between the child c and parent pc. Finally, the
semantic similarity, denoted as Dist, is defined as summation
of edge weights along the shortest path linking two nodes

Dist(c1, c2) = min
path(c1,c2)

∑
c∈{path(c1,c2)−LSuper(c1,c2)}

wt(c, pc)

(27)

where LSuper(c1, c2) is the lowest super-ordinate of c1 and
c2. Note that in [44], Dist(w1,w2) is used, where w1 and
w2 are introduced to address the scenario when one node
belongs to multiple inheritances. An evaluation of this met-
ric shows a correlation value of 0.828 with human similar-
ity judgements, higher than the node-based and link-based
measures alone. This implies that considering link strength
within a KG can lead to much more reasonable similarity
judgements. A summary of the KG-based semantic similarity
metrics described here are given in Table 5.

While (23), (24), and (27) all give ways to measure seman-
tic similarity within a KG, a more recent work [45] proposes
a semantic metric to assess the quality of an entire ontology.
It is argued thatmost existingmetrics for ontology assessment
consider only structural properties, and ignore the semantics
of the ontology. The proposed metric is termed the ‘‘rela-
tionship deviation metric’’ and is determined by the number
of breadthwise and depthwise relationships in the KG. It is
shown that the proposed metric captures the quality of some
example ontologies.

C. THE SEMANTIC SENSOR WEB
One prevalent use of KGs for semantics is the so-called
semantic sensor web (SSW) proposed in [46], which uses
ideas from the semantic web. Namely, metadata is captured
along with the desired data from each sensor, such that bet-
ter sense can be made of the observations (similar to how
metadata can be used to determine what is contained within
a webpage). For example, providing the total lifetime of a
sensor may lead to more informed decision-making; a sensor

that has been operating well past its expected lifetime may
be more likely to produce faulty measurements. With regards
to communication, this metadata can provide the context
necessary for semantically efficient communication within
the network. The suggested core set of attributes in [46],
as adopted from the RDFa language [47], are

• about: a triple that specifies the resource metadata is
about

• rel and rev: specify a relationship or reverse-relationship
with another resource

• href, src, and resource: specifies the partner resource
• property: specifies a property for the content of an
element

• instanceof: optional, specifies the RDF type of the object
Furthermore, [46] advocates for the use of ontologies along
the three types of semantics associated with sensor data:
spatial, temporal, and thematic. Once these ontologies have
been defined, rule-based reasoning can be implemented to
provide better inferences from sensor observations.

Building on this idea of an SSW, [49] proposes a
semantic-based approach to automatically combine, enrich,
and reason about machine-to-machine (M2M) data to sup-
port IoT applications. One key idea is that the meaning of
new information is pre-defined in an ontology, and there-
fore the ontology can facilitate the fusing of cross-domain
knowledge. Suppose we possess an ontology which stores
weather-related knowledge and soil-related knowledge and
the relations between the two; by leveraging this shared
knowledge, it might be possible to achieve smarter fusion of
the data for agricultural decision-making. A concept called
‘‘Linked Open Rules’’ is defined as a means of sharing and
reusing semantic rules, and some examples are given that
demonstrate the proposed concept, including a weather mon-
itoring application. In [50], an IoT directory, called IoT-DS,
is proposed to support semantic description, discovery, and
integration of new objects as an alternative approach to build-
ing a SSW. One key difference is that IoT-DS distinguishes
static and dynamic components, based on whether other
attributes vary with time. It is shown that IoT-DS provides
a 40% reduction in communication overhead as compared to
a naive approach.

Some more recent works that look at the idea of a SSW
are [51], [52], [53]. In [51], a survey of data processing
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FIGURE 8. Simplified diagram of the framework proposed in [48] for semantic document analysis.

techniques for SSW is provided, as well as another take on
the architecture of a SSW, which is partitioned into physical,
semantic, application and controller layers. Reference [52]
considers again the problem of a semantic interface for M2M
communication, this time with the intended application of
building automation. Requirements are defined for the build-
ing automation problem, from which an interface is devel-
oped and an ontology formed. Reference [52] provides a great
example of how KG-based semantics can be utilized to engi-
neer a SSW for a specific application. Finally, [53] studies the
general problem of semantic interoperability, or the ability
to interact and exchange data with shared meaning, between
systems. An interoperability mechanism termed SEMIoTICS
is proposed, in which an IoT application request is received
by a directory which then connects the corresponding sensor
and actuator to fufill the request.

D. KNOWLEDGE GRAPHS FOR SEMANTIC
COMMUNICATION
The works discussed in the previous subsection are similar
to the idea of the semantic web, in that they focus more
on how to semantically describe objects rather than the task
of semantic communication itself. One of the first works
utilizing a KG for semantic communication is [54], which
focuses on semantic error correction for spoken query pro-
cessing. Spoken query processing, or question answering, has
become a hot topic as of late (more on this in Section V).
Reference [54] proposes the use of two KGs: a domain
dictionary and an ontology dictionary. The first represents
application-specific knowledge, while the second contains
the pure general knowledge of the world. In the agricultural
setting mentioned above, the ontology dictionary might con-
tain general information that does not vary between crops
or location, while the domain dictionary might consist of
site-specific information. For a spoken query, the semantic
recovery stage involves the use of a semantic confusion table
based on the domain knowledge to replace semantic errors.
Lexical, or syntactic, recovery is then performed based on
the corrected semantic phrase. Experiments performed on
the domain of in-vehicle telematics show that the technique
yields a 37% reduction in term-error-rate as compared to
baseline models. This decreased error rate bodes well for traf-
fic reduction in communication systems, as less information
will need to be retransmitted due to errors.

In recent years, some have sought to apply KG-based
semantics to text-based communication. Reference [55] looks
to apply KGs to the problem of natural language processing
(NLP), and proposes an enhanced language representation
model termed ERNIE, which is an enhancement of the popu-
lar NLPmodel BERT [56]. Themodel operates by first recog-
nizing entities in some text, and matching these to entities in
a pre-defined KG. The KG representation is then embedded
using known algorithms, such as TransE [57], and then used
in conjunction with standard text embeddings as the input
to an aggregator. DL encoder-decoder techniques are then
used to perform common NLP tasks. In [48], a hybrid KG-
ML approach is proposed to perform text analysis through
character recognition. The model first uses DL to perform
character recognition over two bodies of text, then uses
semantic measures to quantify how similar the bodies of
text are. To quantify the semantic similarity, each word is
modeled as a word in a graph, and corresponding distance
metrics are proposed. The general framework is illustrated
in Figure 8. Through experiments carried out on Dickinson’s
Portfolio, it is concluded that the performance of the proposed
technique can meet real-time recognition requirements.

Another application of KGs for semantic communication
involves recommendation systems, in which the goal is for
an automated system to make the best possible recommen-
dations to some user. One way that KGs have been used
for this task is to enhance explainability of the recommen-
dations [58]. Explainability can enhance a user’s experience
when receiving recommendations, e.g., Amazon suggesting
products to a user ‘‘based on previous purchases.’’ In [58],
a model termed Knowledge Path Recurrent Network (KPRN)
is proposed as a hybrid KG-ML model. This model works on
a KG which contains objects in the recommendation system
and performs reasoning based on the paths in the KG to infer
user preference. In the Amazon example, products would be
modeled as nodes in the KG, and the software might suggest
to a user a product with the shortest path length to that just
purchased by the user. A long short-term memory (LSTM)
network is adopted to model the sequential dependencies
of objects and relations, from which a pooling operation is
used to obtain the prediction. By modeling the sequential
dependencies, the system can offer an explanation for each
prediction. One scenario where a recommendation system
is useful is wireless network management, where an auto-
mated system can recommend the best course of action to an
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operator. The growing complexities of these networks can
make management difficult for a human operator, while auto-
mated methods might not always make the best decisions.
Thus, a hybrid approach has some benefits. Reference [59]
focuses on gathering context from a wireless network and
correlating it with useful information from documents in the
network provider’s domain using KGs. The KG is formed
from two types of documents: product troubleshooting man-
uals and incident/troubleshooting reports by technicians. The
first provides well-structured problem solving instructions,
while the second provides important links between symptoms
and issues. This KG is then used to reason about new prob-
lems that arise, and recommend a course of action for the
operator. Experiments show a decrease of up to 91% of the
documents that are presented to an operator, drastically reduc-
ing the amount of information involved in the communication
process.

Finally, there has been some work on the more general sce-
nario where two agents strategically communicate to achieve
some goal, in which KGs are used to facilitate communica-
tion. Reference [60] studies a symmetric collaborative dia-
logue setting in which two agents communicate to achieve
a common goal. Each agent possesses private knowledge.
The model, termed Dynamic Knowledge Graph Network
(DynoNet) models the dialogue state as a KG which evolves
as the conversation advances. The graph contains three types
of nodes, namely item, attribute, and entity nodes. These
nodes are embedded, and used as an input to a LSTM net-
work. Provided this embedding and an embedded utterance
from another agent, the network generates an utterance in
response. Experiments show that DynoNet is able to hold
a coherent and strategic conversation with a human, and
that the number of entities and attributes uttered to achieve
the goal are reduced by 47% and 17%, respectively, when
compared to baseline rule-based communication strategies.
Goal-oriented communication naturally lends itself to game-
theoretic analysis, which is the focus of [61]. In goal-oriented
communication, as in game theory, there are two or more
agents that seek to achieve some goal, and can employ mul-
tiple strategies to reach said goals. Similar to [60], in [61]
communication is modeled as taking place between two
agents, with the addition of a third agent who could aim to
either improve/deteriorate communication performance. The
optimal transmission policies are characterized, where opti-
mality is defined as minimizing end-to-end semantic error.
This error is derived from the semantic similarity measures
proposed in [26], [43], and [44]. The interaction is modeled
as a Bayesian game, where uncertainty is introduced about
the characteristics of other agents. It is shown that, in the
static scenario, that finding encoding/decoding strategies to
minimize average semantic error is an NP-hard problem,
and two algorithms are proposed. In addition, it is demon-
strated that when the third agents signals its true nature to the
communicating agents, a sequential equilibrium is attainable,
i.e., when sufficient information is available regarding the
intentions of agents involved in the communication, efficient

semantic communication can be achieved. It is shown that
judicious transmission policies can greatly reduce semantic
errors.

E. WORKING WITH KGs
In the previous subsections, we have seen how KGs can
be used to facilitate semantic communication. If our goal
is to engineer semantic communication through the use
of KGs, then we must develop effective methods of working
with KGs. Reasoning over, i.e., deriving knowledge from,
a KG is a challenge that becomes more difficult with increas-
ing scale of the KG. In [62], a reasoning system is proposed
for large-scale KGs. This system, termed KGRL, is based on
the web ontology language 2 rules logic (OWL2 RL) which
was developed for the semantic web. Using the rules defined
by OWL2 RL, the iterations of the reasoning procedure are
reduced based on dependency relations and multiple applica-
tions of these rules. Experiments show that KGRL is able to
greatly increase reasoning efficiency as compared to state-of-
the-art reasoning systems.

Many of the works previously discussed combined KG
methods with DL methods, which requires an embedding of
the KG into some vector space. This embedding essentially
aims to preserve the knowledge represented by the graph in
the embedding space. Similar to reasoning, this task becomes
difficult at large scales. Reference [63] studies the prob-
lem of training KGs at scale, proposing a technique termed
DGL-KE to efficiently perform KG embeddings. DGL-KE
provides optimized embeddings for three types of hardware
configurations: (1) many-core CPU machines, (2) multi-
GPU machines, and (3) a cluster of CPU/GPU machines.
For each hardware type, the DGL-KE takes advantage of
parallel processing to fully utilize the computing hardware.
The allocation of memory resources throughout the process is
specifically designed for each hardware type, and mini-batch
training is utilized to perform the embedding. Other optimiza-
tion techniques employed by DGL-KE are graph partitioning,
negative sampling, data access to relation embeddings, and
applying gradients to global embeddings. Experiments for
hardware types (1) and (2) demonstrate improved efficiency
compared to other methods.

Another interesting problem is that of KG fusion. For
example, say that when a new agent joins the network,
we wish for its knowledge to be merged with the overall
knowledge of the network. If both knowledge bases are repre-
sented by KGs, how should we fuse them together? One way
is by instance matching, which establishes a semantic link
between instances in KGs. Reference [64] proposes a method
called Follow-the-Regular-Leader Instance Matching (FTR-
LIM), which is able to match instances between large-scale
KGs with approximately linear time complexity. The FTR-
LIM framework is based on an blocking algorithm called
MultiObJ, which divides instances into blocks and is also
developed in [64]. Through various experiments, FTRLIM is
shown to perform effective and scalable KG fusion.
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For more information on the field of KGs, we direct the
interested reader to [28], which provides a recent and com-
prehensive survey covering (1) KG representation learning,
(2) knowledge acquisition and completion, (3) temporal KGs,
and (4) knowledge-aware applications (such as semantic
communication).

F. SUMMARY
Following the large amount of research that has been dedi-
cated toward the semantic web, there have been many works
which seeks to utilize KGs for semantic communication.
This idea stems from the fact that some kind of knowledge
representation is required for semantic communication, and
a common way of representing knowledge is with KGs.
Furthermore, some have proposed similarity measures for
concepts within a KG, which can be used to quantify seman-
tic similarity. This form of knowledge representation has
been proposed for use in the so-called semantic sensor web,
which extends the semantic web to physical sensor networks.
Various works have attempted to leverage KGs for differ-
ent semantic communication scenarios, including recommen-
dation systems and general goal-oriented communication.
Methods such as hybrid ML-KG systems, game theoretic
techniques, and others have been applied to achieve this com-
munication. Finally, some have studied the specific problem
of working with the KG itself, which will be important when
implementing these systems at scale. The key idea behind
KG-based semantic communication is that knowledge, and
therefore meaning, can be captured by a KG and utilized by
the semantic system.

Some of the works mentioned above have provided quan-
titative results demonstrating improved performance with
regards to communication efficiency. As mentioned, results
in [50] indicate a reduction of around 40% in overall net-
work traffic. Results from [54] show decreased error rates
using semantic techniques, which in turn has implications
for reduced communication traffic. Experiments in [60] show
that goal-oriented semantic communication can reduce the
amount of entities and attributes communicated by 47%
and 17% respectively. In a more specific example, results
from [59] demonstrate that semantic communication can
reduce the amount of total information conveyed in a rec-
ommendation system by up to 91%. These results, stemming
from diverse examples and use-cases, show that KG-based
semantic communication can address the issue of increasing
data demands with more efficient communication.

G. CHALLENGES AND OPPORTUNITIES
KGs are a popular way of representing knowledge in a sys-
tem, which can then be used to facilitate semantic commu-
nication. However, this approach does not come without its
challenges. First of all, as knowledge in the system grows,
the KG can become massive. As was discussed in the previ-
ous subsection, working with KGs becomes difficult as they
grow larger. Scalability is a challenge that must be addressed
for efficient semantic communication. This difficulty is

amplified in systems with stringent communication require-
ments, such as those requiring real-time operation. Another
challenge is that a KG must be predefined with some prior
knowledge of the system, reducing the ease of deployment.
Building these graphs can be time-consuming and therefore
costly.

These challenges present opportunities as well. Further
development of scalable methods, such as those in [62], [63],
[64], will be required for the practical use of large (and
thus more expressive) KGs. Furthermore, techniques such
as transfer learning present a promising approach toward
reusing existing KGs for new applications, such that a KG
does not need to be built from scratch for each deployment.
Another exciting field is of ML and DL on graphs. These
techniques can be employed to learn optimal embeddings and
relations from existing data, and bring with them all of the
benefits that have been achieved with DL in other domains.

V. MACHINE LEARNING-BASED SEMANTIC
COMMUNICATION
The field of ML has seen an explosion of activity in recent
years. At its core, ML seeks to learn from data in order to bet-
ter perform some task. The availability of massive amounts
of data and advanced algorithms have enabled the practical
implementation ofML inmany domains, includingNLP [65],
computer vision [66], and others. Over the past few years,
some have sought to utilize the power and flexibility ofML to
develop semantic communication systems. The general idea
behind these approaches is to ‘‘learn’’ the semantics of the
problem. Just as in image processing, where the key features
for classifying an image may be hidden to us, the semantic
aspects of communication may be unknown. Through the
use of ML methods, these latent semantic features can be
learned through training and added to the system’s knowl-
edge base automatically. Thus, by utilizing learning methods,
these systems address one of the key challenges inherent to
KG-based semantic communication, namely the requirement
of a predefined knowledge base. In this section, we will take a
closer look at some of these works to illustrate the ML-based
approach to semantic communication. The works discussed
in this section are summarized in Table 6.

A. DEEP LEARNING METHODS
DL is a subset of ML which utilizes deep neural net-
works (DNNs) to perform prediction and decision-making
tasks [67]. These networks are trained through an iterative
update of the network parameters, which is typically accom-
plished through some gradient-based method. Modern DNNs
come in many different forms, such as the classic multi-layer
perceptron [68], convolutional neural network (CNN) [69],
recurrent neural network (RNN) [70], etc. As with any DL
problem, a key consideration is how to choose the loss func-
tion, which will determine how the parameters are tuned. For
more on information on DL, please see [67].

Regarding semantic communication, DL can be used in
many different ways, often depending on the modality of
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TABLE 6. Summary of works in machine learning-based semantic communication.

communication (text, images, speech, etc.). One of the first
works employing DL for semantic communication provides
an illustrative example. In [71], aviation radiotelephony com-
munication (ARC) is considered, where a statement spo-
ken by one party is repeated by the other to ensure under-
standing. In this scenario, clear and reliable communication
is crucial, as misunderstandings can lead to accidents and
crashes. Tominimize semantic errors (i.e., misunderstandings
between pilots and air traffic control), a long short-termmem-
ory RNN (LSTM-RNN) is proposed. The LSTM-RNN takes
as its input a pilot-air traffic control sentence pair. To train the
network, statement pairs are assigned a similarity R, ranging
from R = 0 to R = 1, with 1 indicating the strongest semantic
similarity. Clearly, a strong similarity is desired; we want
the pilot and air traffic control to be on the same page. The
network is then trained to minimize the cross-entropy error:

L = −

N∑
n=1

R∗ log(R) + (1 − R∗) log(1 − R) (28)

where R∗ is the true label value and R is the predicted consis-
tency value. After training, the network can be used to classify
new statement pairs; if a pair is found to be semantically
inconsistent, a signal can be given to either party to correct
the misunderstanding.

Another interesting problem involving semantic commu-
nication is that of cross-modal retrieval, in which the format
of the query is different than that of the information being
queried, e.g., a voice request for certain textual document in
a database. In [72], a generative adversarial network (GAN)
is proposed to address this problem by performing seman-
tic correlation on multi-modal data, specifically image and
text data. A GAN is a network composed of two networks,

FIGURE 9. Basic framework of the multi-modal GAN approach proposed
in [72].

namely a generator and a discriminator. The generator learns
by attempting to ‘‘fool’’ the discriminator, while the dis-
criminator is optimized to discern between outputs of the
generator. [72] proposes a framework in which the generator
takes both an image and a body of text as inputs and learns
their representations. The goal of the discriminator is to dis-
tinguish between the two modalities. The basic framework
of this approach is illustrated in Figure 9. After training, the
generator will have learned the representations of the hetero-
geneous modalities in a common space, in which data with
similar semantics will be close, i.e., the meaning common
to both the text and the image is captured in this space. The
proposed method is shown to outperform both traditional and
deep methods with respect to the mean average precision
metric.
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Another work utilizing a GAN is [73], in which DL is
implemented with the goal of semantic coding of images.
The goal of semantic coding is to minimize the bit rate of
transmission while preserving the semantic information of
the image. Again, the semantics of interest here are unknown,
and the goal is to learn them throughout the training process.
Here, the generator network is used to learn and restore
semantic information which is used as a ‘‘base layer’’ of
the image. The generator loss function is formed as a rate-
perception-distortion trade-off, including a combination of
the VGG loss [74] and LPIPS [75]. Then, Better Portable
Graphics (BPG) residual coding is used to refine the image.
The overall network explores different strategies to opti-
mize the rate-perception-distortion tradeoff, and is shown
to exhibit similar performance to baselines models while
utilizing a 2-4 times reduced bit rate.

Similar to [55] and [76] also looks to enhance standard
encoder-decoder NLP techniques (this time without the use
of a KG), specifically for the problem of recognizing some
text within an image, or scene text recognition. For example,
in the case of a self-driving vehicle, it would be beneficial
for the vehicle to be able to recognize the text located on
street signs within the field of vision, as a human driver
would. In their model, termed SEED, semantic information
is used in both the encoder module for supervision and the
decoder module for initialization. The semantic information
is predicted from the image features which are first extracted
with a CNN and RNN. To predict this information, a simple
fully-connected DNN is trained with a dual cross-entropy and
cosine embedding loss function. Then, the image features
and the semantic information are both fed to the decoder to
perform text recognition. Using ASTER [77] as an exemplar
to demonstrate the framework, it is shown that the semantic
enhancement improves performance of the model.

A CNN along with federated learning (FL) is proposed
to facilitate audio-based semantic communication in [78].
FL is a branch of DL in which distributed, local models
are trained individually and then combined to form a global
model. In [78], FL is implemented in a system consisting
of a single server and many devices. The devices train local
models based on data, to reduce communication overhead to
the server. Each local model consists of an autoencoder with
a convolutional layer for extracting the semantic information
of the audio. Normalized root mean square error is used as a
loss function to evaluate the quality of semantic reconstruc-
tion, and experiments show that the proposed architecture
can achieve around 100 times improved performance (with
respect to the mean square error) with around 1/3 the trans-
mitted data of traditional methods.

Yet another type of DNN is the transformer, which has
seen wide success in the field of NLP [65]. Transform-
ers rely on the idea of attention, which provides different
weights to different features of the input data, similar to how
our brains pay more attention to certain perceptual inputs.
In [79], an adaptive universal transformer is implemented
for text-based semantic communication. The optimization

goal is ‘‘to minimize the semantic errors while facing differ-
ent communication situations.’’ The universal transformer is
able to accomplish this by adding a circulation mechanism
which can dynamically allocate greater computation time to
semantically complex statements. Intuitively, this is similar to
how a human might read some text. Passages with a simple
meaning are easier to understand and thus can be read faster,
while passages with complex meaning demand more thought
(equivalently, computation time). Cross-entropy is used as
the loss function for training the network, and simulations
performed on the standard proceedings of the European Par-
liament [80] show an improved performance over traditional
methods.

The transformer has also been proposed for semantic com-
munication in [81]. In this work, an end-to-end architecture
is proposed which performs communication with semantic
symbols, which are used to represent semantics. The seman-
tic communication model is defined, including the encoder,
decoder, channel and noise. The transformer model is then
designed for this model, including both source and channel
coding in a joint architecture. This architecture is trained
using the cross-entropy loss, and experiments in a NLP set-
ting demonstrate that the proposed system can achieve a
similar performance to traditional techniques with a 21%
decrease in the number of symbols.

1) DeepSC AND ITS VARIANTS
One particular DL model for semantic communication that
has been the subject of various studies was first proposed
in [31], where it was given the name DeepSC. DeepSC is also
based on the transformer DL model, and the model proposed
in [79] takes its inspiration from DeepSC. Similar to other
works, [31] defines the model for the semantic communi-
cation system, which consists of a transmitter performing
both semantic encoding and channel coding, and a receiver
performing the inverse operations. The architecture of the
proposed network is shown in Figure 10. Both transmitter
and receiver possess some background knowledge. The goal
is stated as simultaneously minimizing semantic errors (mea-
sured with the cross-entropy loss function) and transmitted
symbols. This is accomplished through an end-to-end trans-
former network, which uses a self-attention mechanisms for
extracting semantic information from text; here, the meaning
is captured by this attention mechanism and which input text
is emphasized by the model. Various metrics are used to
demonstrate the superior performance of DeepSC compared
with traditional communication methods.

There have been a few variants inspired by DeepSC, which
all aim to facilitate semantic communication within different
modalities. One example is [33], which proposes a semantic
communication system for speech signals, termedDeepSC-S.
It is claimed that the end-to-end communication system
‘‘learns and extracts the essential speech information.’’ This
is a very intuitive idea, as it is clear how non-verbal qualities
of speech can impact a conversation (tone, volume, etc.).
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FIGURE 10. Architecture of the end-to-end semantic communication system DeepSC proposed in [31]. Each box represents a different
section of the network, which are all trained in a joint manner.

Specifically, DeepSC-S employs an attention-based CNN
for speech coding and a CNN for channel coding, and the
mean-squared error loss function is used for training. It is
confirmed through simulations that DeepSC-S outperforms
traditional systems with equivalent bit rates under AWGN,
Rayleigh and Rician channels.

Another variation of DeepSC is proposed in [34], which
considers a multimodal communication system and is termed
MU-DeepSC. The task-oriented system is implemented for
visual question answering (VQA), where the transmitter
sends an image and a question about that image (text) and the
receiver aims to correctly answer the question (e.g., is there
a red ball present?). The transmitter consists of two net-
works; one employs ResNet-101 [82] and aCNN for semantic
image encoding, and the other utilizes Bi-LSTM [83] and
a dense DNN for semantic text encoding. These encodings
are transmitted over the channel, where the receiver then
implements a memory, attention, and composition (MAC)
network to generate the answer. The end-to-end network is
trained with the cross-entropy loss, and simulation results
using the CLEVR dataset [84] demonstrate accuracy gains
of up to 80% compared to traditional methods with a 70%
reduction in transmitted symbols.

As we’ve seen in the discussion of the semantic sensor
web, a prevalent idea is the use of semantic communication
in IoT applications. In [32], a ‘‘lite’’ version of DeepSC,
named L-DeepSC, is proposed for use with IoT networks.
In L-DeepSC, the semantic communication model is trained
and updated in the cloud and distributed to IoT devices.
These devices then implement the model to perform seman-
tically aware data collection and text transmission with low
complexity. The system first uses a least-squares estimator
to obtain channel state information (CSI), and then a deep
de-noise network to refine the CSI estimates. The trained
model is then compressed through sparsification and quan-
tization and broadcast to the IoT devices. The devices then
use this model to perform semantic communication with text
data, uploading new data to the cloud. It is shown that the pro-
posed system performs competitively with traditional meth-
ods, especially in the low SNR domain. Moreover, L-DeepSC

reduces the model parameters of the original DeepSC
network by around 60%, which translates to reduced com-
munication upon model distribution to IoT devices.

As ML-based semantic communication is based on learn-
ing the semantics of the problem, explicit semantic metrics
are not defined. However, the chosen loss function affects
how the semantics are learned. Table 7 provides the loss
functions used in each of the discussed DL approaches.

B. REINFORCEMENT LEARNING METHODS
Another popular approach to ML is reinforcement learning
(RL) [85]. In reinforcement learning, the model is viewed as
an agent in a state space. From its current state, the agent
can take some action, for which it is provided a reward.
The goal of the agent is to discover the action-taking policy
which will maximize long-term rewards from any given state.
Rather than use existing data to determine this policy, in RL
the model is trained by letting the agent ‘‘explore’’ different
policies; the model takes some sequence of actions, and then
tunes the parameters based on the rewards received. A simple
illustration of this learning process is given in Figure 11. Due
to the agent/reward set up of RL, it is a method which is
well-suited for learning to play different games, such as chess
and Go. Indeed, learning models including both RL and DL

FIGURE 11. Reinforcement learning framework.
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TABLE 7. Summary of DL-based semantic communication loss functions.

have been used to create artificial players which outperform
human world champions in both games [86].

Recently, some have turned to using RL as a means to
achieve semantic communication. In [87], a RL solution
is proposed to carry out general semantic communication.
It is argued that the objective functions of many of the
ML-based approaches to semantic communication demon-
strate a ‘‘semantic blindness,’’ and are still biased toward
bit-level accuracy. The proposed joint source-channel coding
solution, termed SemanticRL-JSCC, is formulated using a
Markov decision process framework. The reward function
is based on any general semantic similarity function. This
method differs from those DL methods discussed, as the
semantics of the problem are defined by the chosen sim-
ilarity function, and thus SemanticRL focuses on how to
best communicate given some semantics, rather than learning
what those semantics are. A distinct feature of SemanticRL
as opposed to other ML approaches is that this similarity
function is not necessarily differentiable. In the training of
the model, a self-critic approach [88] is taken, resulting in
a quicker and simpler solution. Experiments carried out over
the European parliament dataset demonstrate superior perfor-
mance with regard to common metrics, as well as a stable
learning trajectory.

Another work combines a KG representation of semantic
information with RL for semantic communication using text
data [89]. First, a KG is extracted from a body of text, and this
KG is treated as the semantic information of that text. Based
on this KG representation, two metrics, namely semantic
accuracy and completeness are derived. Combining these
two metrics gives the overall metric of semantic similarity.

Semantic communication is then formed as an optimization
problem which seeks to maximize the semantic similarity
of the text at the transmitter and receiver through resource
allocation and information transmission, under a delay con-
straint. Using an attention-based RL framework to solve this
optimization problem, it is shown that the proposed semantic
communication solution outperforms a traditional RL scheme
as well as typical wireless communication techniques.

Collaborative RL is a form of RL in which multiple agents
are present in the system, and they collaborate to determine
the optimum policy. In [90], collaborative deep RL (CDRL) is
used to train a group of heterogeneous agents over a wireless
cellular network. First, the algorithm selects the best subset
of semantically relevant DRL agents for collaboration. This
semantic relevance between two agents is based on their
policies; if a target agent returns a large average reward under
a source agent’s policy, the target is said to be similar to the
source. Here, the semantics are captured by the policies of
each of the agents; similar meaning is implied by a similar
policy. Once the similar subset of agents is obtained, the
training loss and wireless bandwidth are jointly minimized
to obtain the optimal policies for each agent. Simulations
of the proposed technique show improved training perfor-
mance compared to other CDRL methods and classic DRL.
It is also shown that the proposed approach is able to use
resources more efficiently, demonstrating better performance
with fewer resource blocks than other approaches.

Looking to implement RL-based semantic communication
for a specific application, [91] proposes a DRL framework
for air-to-ground URLLC communcation using unmanned
aerial vehicles (UAVs). Similar to [90], this work proposes
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the use of a multi-agent DRL framework, coined graph atten-
tion exchange network (GAXNet), for semantic communi-
cation. Self-attention is used to determine the attention a
UAV gives to other UAVs in the network, and based on
this attention, training is performed in a centralized manner.
Once the optimal policies have been obtained, the central unit
distributes the model to the UAVs and actions are carried
out in a decentralized manner. It is shown that the proposed
GAXNet achieves more efficient training than the state-
of-the-art centralized training and decentralized execution
algorithm QMIX [92], and is better able to avoid collisions
between UAVs.

C. SUMMARY
ML-based semantic communication is an approach that has
seen a spike of interest with the recent boom in AI tech-
nology. In ML-based semantic communication, the seman-
tics of the problem are not predefined as in classical and
KG-based semantic communication, but rather they are
learning through data-driven training. This learning is per-
formed either through DL or RL. Many different DL mod-
els have been proposed to facilitate semantic communica-
tion, include the transformer, GAN, CNN, and others. One
notable example is DeepSC, which was originally proposed
as a text-based semantic communication system using a
transformer-based network. Variants of DeepSC have been
proposed in recent years which target different modes of
communication. Though not as prominent, some RLmethods
have been proposed to learn semantics as well. One benefit of
this approach is the loss function need not be differentiable.
In ML-based semantic communication, meaning is charac-
terized by the parameters of a model which are learned in a
data-driven manner.

Many of the discussed works provide quantitative results
demonstrating efficient semantic communication. The results
of [73] show a 2-4 times reduction in bit rate, while
experiments in [78] indicate large performance gains over
traditional systems for around 1/3 the original bit rate.
Reference [81] demonstrates a 20% reduction in transmitted
symbols to achieve a similar performance as baseline sys-
tems. DeepSC and its variants also indicate potential for traf-
fic reduction; DeepSC-S [33] can achieve improved speech
performance for similar bit rates, and MU-DeepSC [34]
achieves superior accuracy with a 70% reduction in trans-
mitted symbols. Finally, L-DeepSC [32] reduces traffic in
another way, by drastically reduce the parameters of a ML
model which is to be broadcast to IoT devices. All in all,
as in KG-based semantic communication, existing works in
ML-based semantic communication indicate the potential for
this approach to address the issues raised at the outset.

D. CHALLENGES AND OPPORTUNITIES
One of the challenges with ML-based approaches to seman-
tic communication was pointed out in [87], which is the
difficulty in working with semantic metrics. As most

DL techniques use gradient-based methods for optimization,
we must necessarily work with differentiable metrics, while
many semantic similarity metrics are non-differentiable.
Another critical challenge is the black-box nature of many
DL models. A challenge within the field of DL as a whole,
this quality of deep networks obscures our ability to analyze
and evaluate why a model does or does not perform well.
Finally, the improved performance that DL has enjoyed due
to big data is approaching a limit, where futher gains can only
be reached through massive training, which imposes a huge
computational burden [30].

Opportunities can be found in the solutions to these chal-
lenges. First, there is certainly no ubiquitous metric of seman-
tic similarity, and it is likely that many metrics will be
application-specific. Development of such metrics is of crit-
ical importance to the advancement of semantic communi-
cation. As each approach to semantic communication we’ve
seen thus far (classical, KG-based, ML-based) employs its
own unique metrics, it is likely that a convergence of these
ideas and combination of metrics could yield novel imple-
mentations and improved results. Furthermore, development
of methods similar to [87] that relax the differentiability
requirement of the semantic metric is a promising avenue for
further study.

Regarding the lack of interpretability and ever-growing
appetite for data associated with deep networks, one promis-
ing solution is the development ofmodel-based deep learning
techniques [30]. Model-based methods are those that derive
some inference rule based on prior knowledge of the problem,
while data-driven methods (including DL) rely solely on
data to form the inference rule. Model-based methods are
typically more interpretable and efficient than data-driven
methods, while data-driven methods are more expressive and
robust in new situations. Techniques utilizing the strengths
of both methods to create a single model are referred to as
model-based DL [30], and are another promising method of
addressing some of the challenges facing ML today.

VI. SIGNIFICANCE-BASED SEMANTIC COMMUNICATION
One last view on semantic communications has been pro-
posed only recently, and involves defining the semantics
of information as the significance of this information [16].
Recall ‘‘The effectiveness problem’’ defined in Section I:
‘‘How effectively does the received meaning affect conduct
in the desired way?’’ Defining the semantics of information
as significance of information essentially addresses this prob-
lem, as significance is inherently determined by what one
is trying to achieve with communication, or the goal. As a
simple example, if the goal of communication is to control
a robot performing remote surgery (a necessarily real-time
application), information that was just obtained will be much
more significant than information obtained 10 seconds ago.
Based on this general idea, [16] calls for ‘‘a redesign of the
entire process of information generation, transmission and
usage in unison.’’ In this section, we survey the few recent
works that support this idea of significance-based semantic
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TABLE 8. Summary of works in significance-based semantic communication.

communication. The works discussed in this section are sum-
marized in Table 8.

In [16], some examples of measures which relate to the
significance of information are given. The first of these is
information freshness, which is determined by the time taken
since the information was generated to when it was received.
Age of Information (AoI) is a measure which captures this
idea of freshness, and has been well-studied over the past
decade or so. We will discuss AoI further in the following
subsection as a prime example of a significance-based seman-
tic measure; [16] presents results indicating energy savings of
different age-aware protocols ranging from 10-64%. Another
example of a semantic measure is relevance. Consider a
process that is being sampled; consecutive samples that cap-
ture little change in the process are typically of less interest
than those for which sudden changes occur. We could say
that the latter samples are more relevant than the former.
As an extension of relevance of information, a more powerful
example is given as the value of information, which is defined
as the difference between the benefit of a sample and the cost
of its transmission. It is argued in [16] that developing met-
rics that capture these ideas is critical for achieving seman-
tic communication. Those mentioned here are summarized
in Table 9.
Reference [16] also presents a vision for an end-to-end

semantic communication architecture. This architecture takes
into considerations the elements of freshness, relevance, and
value to optimize the entire system. A simplified flowchart
of the proposed architecture is provided in Figure 13.
Specifically, semantic sampling is implemented to relax the
assumption that data arrives in an uncontrolled manner, i.e.,
only significant information is generated in the first place.
Semantic channel encoding, multiuser scheduling, channel
access and flow control are proposed to increase the effi-
ciency and effectiveness of each of these processes. It is
stated that the realization of this architecture will involve
an entirely new paradigm shift that is incompatible with
previous designs of communication systems. A few specific

examples are envisioned, which include semantic commu-
nication for networked control systems, smart cities, and
mMTC/IoT systems.

Reference [17] is a seemingly independent work from that
of [16] which emerged around the same time and shares
the idea of significance-based semantic communication.
Reference [17] defines semantics of information as ‘‘the sig-
nificance and usefulness of messages.’’ A similar argument
to that of [16] is given, stating that simple generation and
communication of data often leads to reception of stale or
irrelevant information at the receiver and wasted resources.
This again brings about the need for a goal-oriented com-
munication system, one that addresses ‘‘The effectiveness
problem.’’

A new concept presented in [17] is the idea of defin-
ing semantics at different scales. At the microscopic scale,
specific pieces of information from the source may be of
different significance, e.g., that a safety risk is present or
not. The mesoscopic scale is the intermediate level, which
takes into consideration link-level semantics. This includes
both innate (objective) measures such as freshness (AoI)
and precision, and contextual (subjective) measures such as
timeliness and completeness. Finally, the macroscopic scale
takes system-level semantics into consideration, specifically
looking at end-to-end distortions and delays that affect the
end goal.

An end-to-end semantic architecture is proposed, which is
strikingly similar to that envisioned in [16], including seman-
tic sampling and semantics-aware signal processing blocks.
A specific example of an end-to-end communication system
is given, involving a remote actuation application. The source
monitors the actual state of a robotic arm, while the receiver
aims to construct and maintain a digital twin of this robotic
arm. Communicating over a wireless erasure channel, it is
shown that an end-to-end semantics approach performs much
better than other, more semantically-unaware approaches in
terms of real-time reconstruction error and cost of actuation
error.
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TABLE 9. Summary of significance-based semantic measures [16].

A. AGE OF INFORMATION AND VALUE OF INFORMATION
Two proposedmeasures that capture the significance of infor-
mation are AoI and VoI. In this subsection, we will discuss
some of the work that has been done with regards to these
two measures to illustrate their use as semantic measures.

Reference [93] provides a compilation of some recent
works examing AoI in practical scenarios and looks at issues
such as synchronization, transport layer protocols, conges-
tion, and the use ofML. First, the status age of an information
flow (characterized as a flow of data packets) is defined as the
difference between the current time and the generation time of
the most recently received data packet, which is illustrated in
Figure 12. Other derivative metrics are defined as well, such
as averageAoI and peakAoI. Depending on the application at
hand, one may desire to minimize either the average or peak
AoI to best maximize information freshness.

FIGURE 12. Example of AoI, where t (g)
n and t (r )

n is the generation and
reception time of the nth packet, respectfully.

Next, [93] discusses the measurement of AoI in practical
systems. It is noted that first and foremost, accurate tim-
ing information is required for age measurement. Second,
synchronization is required at the transmitter and receiver.
Once these have been established, AoI can be computed at
the transmitter, receiver, or centrally and used for network
optimization. It is also shown how timing imperfections, such
as clock bias, can affect AoI measurement.

Reference [93] then looks at a specific work which exam-
ines the AoI performance of some modern transport layer
protocols. In [94], the AoI performance of User Datagram
Protocol (UDP) and Transmission Control Protocol (TCP) are
examined for different testbed setups. It is shown that UDP
is able to maintain a lower average AoI at higher data rates
than TCP for a multi-hop network testbed. Both protocols
tend to perform relatively well up to a certain rate, above
which the system becomes ‘‘panicked’’ and AoI performance

becomes poor. In contrast, evaluated with respect to an IoT
tesetbed, the opposite holds true, and TCP is shown to achieve
a slightly better AoI performance. Overall, [93] provides a
useful summary of how AoI can be practically integrated to
evaluate communication systems.

As an example application of VoI, [95] proposes a
value-based method of information management of a net-
worked system for state estimation. Essentially, this system
will allocate a time slot to the estimator with the highest-
priority information, where priority is determined by the VoI.
The VoI of each estimator is computed as a function of
the expected overall weighted squared error, given the cur-
rent data at that local estimator. Therefore, by choosing the
data which minimizes this error, the system is essentially
choosing the information with the highest value to the task
at hand. To illustrate the performance of the proposed sys-
tem, an automated driving scenario with multiple vehicles is
simulated. It is shown that the VoI-based scheme is able to
avoid collisions with very high probability, while a simple
time-triggered scheduling approach resulted in a collision in
19.7% of the experiments.

Another work has directly compared the impact of AoI
and VoI on the performance of a cellular networked control
system [96]. Here, VoI is defined as quantifying the amount
of reduction in uncertainty of a stochastic process at the
recipient. It is interesting to note the similarity between this
definition and that of Shannon’s definition of entropy [5],
which also quantifies uncertainty reduction. Here, VoI is con-
cerned with the content of a new update, while AoI focuses
only on the timeliness of this update. The AoI is defined in
the usual fashion, while a VoI metric is proposed for both
uplink and downlink transmissions, and in both cases is a
function of the expected squared-error. Simulations demon-
strate that a system implementing a VoI-based scheduler is
able to achieve a lower absolute error as opposed to a system
with anAoI-based schedule for the cellular networked control
system.

B. SEMANTIC SAMPLING
Another important aspect of a significance-based semantic
communication system, as proposed by both [16] and [17] is
the idea of semantic sampling. Basically, the aim of seman-
tic sampling is to generate information at the source in a
‘‘smart’’ way, such that only necessary information is gen-
erated and transmitted over the system. As a general example
of this, [97] considers the problem of tracking an unstable
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FIGURE 13. Overview of the significance-based semantic architecture proposed in [16].

stochastic process by using causal information of another
stochastic process. Essentially, by using some information
related to the process of interest, we can determine when to
take ‘‘significant’’ samples that allow for accurate tracking,
thereby implementing semantic sampling. This work can be
seen as contributing to a theory of semantic sampling as
discussed in [16]. In [97], necessary conditions are provided
for tracking integer-valued sources using causal information.
These results are expressed in terms of the Rényi entropy
and information density; essentially, the information density
between the two processes must be greater than a thresh-
old that is set by the Rényi entropy of the process being
tracked. Furthermore, [97] also provides sufficient conditions
for tracking integer-valued sources using causal information.
The first of these is based on MAP estimator of the source
information based on the causal information, and the second
is based on a different estimator which considers a notion
of distance. With regards to semantic sampling, the results
of [97] imply that one could perhaps only sample and trans-
mit the causal information over the channel instead of the
source information itself. If the causal information results in
fewer transmitted symbols, this would theoretically increase
the efficiency of our system while preserving reconstruction
fidelity at the receiver.

Looking at a more practical implementation of semantic
sampling, [98] addresses the problem of semantics-aware
active sampling and transmission over a shared communica-
tion medium. The goal of the system is to use joint sampling
and transmission to compute the probability of a quantity
of interest at the receiver. In this work, semantics-aware
communication refers to a system in which the receiver aims
to recover the aggregated information of interest, rather than
the individual messages. For example, perhaps the average
measurement from a number of sensors is of interest; in this
case, meaning is captured by the aggregated value rather than
the individual data. An active sampling scheme is adopted,
such that each device takes samples according to a Bernoulli
distribution, where the parameter of this distribution can vary
between devices. To obtain the empirical probability of the
quantity of interest, each device transmits over a time slot,
and the receiver averages over the time slots. The estima-
tion technique is shown to perform well with respect to
both mean squared-error and Kullback-Leibler Divergence
metrics.

C. SUMMARY
Onefinal approach to semantic communication is significance-
based communication, which addresses both the semantic and
the effectiveness problems of communication. This recent
approach makes use of metrics which quantify the signif-
icance of information, such as freshness, value, relevance,
and others. Two prime examples of metrics corresponding
to significance-based semantic communication are AoI and
VoI. AoI is a popular metric which has been well-studied
compared to VoI, and some work has been done comparing
the two measures. Furthermore, a key idea of this approach
is semantic sampling, which has received some attention as
well. Overall, significance-based semantic communication
looks to solve the semantic problem by first solving the
effectiveness problem, and assigning meaning to information
based on what impact that information will have at the
receiver.

As the most recent of the discussed methods, quantita-
tive results demonstrating the potential of significance-based
semantic communication for data traffic reduction are few.
In [16], results are presented demonstrating energy savings,
resulting in decreased transmission, of 10-64% for different
age-aware protocols. While there are not many quantitative
results in this area, the potential is clear. Significance-based
communications center around the reduction of insignificant
information, and thereby inherently work to reduce traffic in
a communication system.

D. CHALLENGES AND OPPORTUNITIES
One clear challenge faced by significance-based semantic
communication, similar to other methods of semantic com-
munication, is the development of applicable metrics. AoI
and VoI are two examples which have been the focus of prior
work, however we anticipate that other useful metrics will
be proposed as this approach to semantic communication is
being developed in the literature. The quest for appropri-
ate metrics presents a rich opportunity for future research.
Clearly these measures are highly application-specific, and
thus the utility of one measure may vary greatly from one
scenario to another.

Another challenge relates to the general progression to
such a semantic communication system. As stated in [16], this
approach entails a radical departure from the ways in which
current communication systems operate. However, to be a
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viable path forward for modern communication systems,
a certain level of backward-compatibility must be present,
such that the vast existing wireless infrastructure need not be
replaced from scratch. Methods which involve some degree
of compatibility with legacy systems will be important for the
progression to semantic communication.

Many opportunities lie in the development of significance-
based semantic communication systems. With the
advancement of IoT and cyber-physical systems, wireless
communication is increasingly being used for highly specific
goal-oriented tasks. Designing systems which communicate
as efficiently as possible under the constraints imposed by
the specific task at hand will be important for optimizing
the efficiency of wireless technologies, as well as improving
performance of these technologies.

VII. A DIFFERENT APPROACH: CONTEXT-BASED
SEMANTIC COMMUNICATION
Throughout this survey, we have presented a review of the
history and state of the art of semantic communication by
examining the different approaches toward engineering this
higher level of communication. Each of these approaches
differ in how they treat the semantics of the problem. Clas-
sical approaches attempt to quantify semantic information in
probabilistic terms, much the same way as traditional infor-
mation theory. KG-based semantic communication uses KGs
to represent knowledge of the semantic source and receiver,
from which semantic methods can be derived. In ML-based
semantic communication, data is used to learn the latent
‘‘semantic’’ relationships and optimize communication based
on these relationships. Significance-based semantic commu-
nication essentially combines ‘‘The semantic problem’’ with
‘‘The effectiveness problem’’ and emphasizes efficient, goal-
oriented communication.

In this section, we present a novel approach to the semantic
communication problem. We first argue that context is at the
heart of all semantic communications. While context is cer-
tainly an implicit consideration in each of the aforementioned
approaches, we believe than an explicit and deliberate focus
on the context of communication will lead to novel and valu-
able semantic communication systems. We then present our
view of how to define context, and our vision of a systematic
design procedure which frames semantic communication as
a context-dependent, goal-oriented optimization problem.

A. THE IMPORTANCE OF CONTEXT
To motivate the utility of a context-based approach, recall
again the example from Section I, where a speaker wants
to communicate how to compute the area of a circle to
a listener. Semantic communication in scenario 1 (listener
vaguely familiar with geometrical concepts) can be much
more syntactically efficient than the same semantic com-
munication in scenario 2 (listener is a small child). As was
illustrated in Section I, the key observation is that the listener
in either scenario starts with a different prior knowledge base.

However, it is important to note that this is not the only
characteristic of the scenario which will affect communica-
tion. What if scenario 1 takes place in a one-on-one office
meeting, while scenario 2 takes place in a crowded classroom
of restless children of similar age? Certainly the efficiency-
of-communication gap between the two scenarios will widen.
Furthermore, say that the speaker has a one-hour one-on-one
office meeting with the listener in scenario 1, but has four
15-minute sessions in the crowded classroom with the young
listener of scenario 2 held on different days. This again will
impact how tomost efficiently communicate in each scenario;
it is likely that some review will be needed in each of the
disjoint sessions of scenario 2.

Take any situation in which communication occurs, and
a similar analysis can be done to determine the factors that
impact the way in which communication is carried out.
Based on this observation, the characterization of these fac-
tors is clearly an important step in designing an efficient
semantic communication system. While context is inherent
in any approach to semantic communication, the previously
discussed methods only implicitly consider this key factor.
Based on the above example, we argue that an explicit focus
on context is needed for optimal semantic communication.

B. DEFINING CONTEXT
We broadly refer to any factors that impact how one effi-
ciently communicates as being part of the context of the
problem. In the example, one factor was the parties involved
in the communication process. Another was the setting, i.e.,
a quiet office vs. a noisy classroom. The third factor involved
temporal aspects of the situation, i.e., a long, uninterrupted
session vs. short sessions spanningmultiple days.We observe
that these factors each correspond to difference pieces of the
overall context (people, place, and time). We therefore postu-
late that context can be completely described by considering
what are sometimes referred to as the ‘‘five Ws’’:

• Who: Agents involved in the communication process
– Includes source(s), receiver(s), and/or other agents

that are involved indirectly
• What: The mode of communication

– Could be text, speech, etc.
• Where: Qualities of the environment in which commu-
nication occurs
– Specifies channel characteristics

• When: Temporal aspects of the problem/environment
– Considers static vs. dynamic agents, mode, channel,

and goal
• Why: The purpose of communication

– Defines what is to be achieved
These aspects of context can in turn be incorporated into

the mathematical model of the communication problem at
hand. For example, the What aspect dictates the space of
signals or symbols available to the source for communication,
the Where aspect defines which channel model is to be used,
and the Why aspect may be some function which specifies
quality of service or other desired outcomes. By explicitly
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FIGURE 14. Proposed design flow for context-based semantic communication systems.

considering Why as part of the context, this is similar to
significance-based communication in that it also addresses
‘‘The effectiveness problem.’’ Another term for this is goal-
oriented communication. Once a mathematical description of
each aspect of the context is available, they can be incor-
porated into an optimization framework to achieve efficient
semantic communication. This contextual knowledge may be
available a priori, or it may need to be learned online using
modern data-driven techniques. In either case, just like the
speaker in the example, an optimal communication strategy
can be devised by explicitly taking these different aspects into
consideration.

C. CONTEXT-BASED DESIGN
Using context as it is defined above, we propose a gen-
eral design procedure for semantic communication sys-
tems. Note that we use the term ‘‘context-based’’ to imply
that some optimization is being carried out based on
explicit consideration of the context. The procedure, illus-
trated in Figure 14, involves the systematic construction
of an optimization problem and consists of the following
steps:

1) Goal definition: First, the why aspect of the context
is determined. As is true in any engineering setting,
we must first know what problem we are solving; what
is it we are trying to accomplish? This will be a con-
straint in the overall optimization problem.

2) Objective definition: This step will determine exactly
what is to be optimized, e.g., energy efficiency, spectral
efficiency, etc. As the name implies, this will determine
the objective function to be optimized.

3) Context definition: Now, define the remaining aspects
of the context, namely who, what, where, and when.
These will also manifest as constraints in the optimiza-
tion problem.

4) Problem definition: Define a set of communication
strategies to be optimized over. Use this set, along with
the objective function and constraints derived from
steps 1-3, to define the optimization problem.

As a general example, suppose we first obtain a goal
represented by a constraint CG. An objective function f that
we wish to minimize is identified, followed by N context-
based constraints C1,C2, . . . ,CN . Finally, a set of possible
communication strategies is determined and denoted by S.
Then, context-based semantic communication is performed
by selecting a strategy as a solution to the optimization

problem defined by

min
S∈S

. f (S) (29)

s.t. CG,C1, . . . ,CN (30)

Depending on the characteristics of the resulting problem,
how to solve it becomes a challenge in itself. If the resulting
problem is convex, then well-known methods of solving are
readily available [99]. In the likely case that the problem is
non-convex, the problem becomes harder to solve, in which
methods such as convex relaxation or ML may be needed to
make the problem tractable.

As a concrete example, consider smart agriculture, which
is expected to play a prominent role in the 6G network [100].
Furthermore, suppose we desire to accurately monitor soil
moisture in the field using context-based semantic commu-
nication between a set of J sensors and a single fusion node
(FN). Following the framework above, the goal is to produce
an accurate picture of the soil moisture throughout the field;
mathematically, this can be expressed by a metric called
confident information coverage [101]:

8(x) =

√√√√ 1
T

T∑
t=1

(zt (x) − ẑt (x))2 (31)

where zt (x) and ẑt (x) are the actual and estimated soil mois-
ture values at point x and time t , respectively, and T is the
time period over which estimation takes place. We say that
the field is ‘‘completely confident information covered’’ if
8(x) < ϵ for all x in the field X . We take this to be our goal,
and correspondingly the first constraint of the optimization
problem.

Next, we must define the objective. Suppose that we are
interested in maximizing the lifetime of the sensor network,
and thus minimizing the power of the sensors, as is typical
in an IoT application. Suppose that associated with sensor j
is a set of sensing powers P (j)

sense and transmit powers P (j)
TX .

Intuitively, we assume that greater sensing power will pro-
duce more accurate sensing, and greater transmit power will
produce higher quality communication. Then the total power
of the sensors is given by

P =

J∑
j=1

(P(j)sense + P(j)TX ), (32)

where P(j)sense ∈ P (j)
sense and P(j)TX ∈ P (j)

TX for all j ∈

{1, 2, . . . , J}. We can now also define a set of communication

VOLUME 11, 2023 13991



D. Wheeler, B. Natarajan: Engineering Semantic Communication: A Survey

strategies asS = ×j∈J (P (j)
S ×P (j)

T ), and the objective becomes

min
S∈S

P =

J∑
j=1

(P(j)sense + P(j)TX ). (33)

To define the context, we must consider the ‘‘four Ws’’
listed above. We will use a state-space representation to
define the context. To address the Who question, let �s =

{ω1, ω2, . . . , ωJ } and �r = {ωr } represent the states of
the sensors and the FN, respectively. For example, ωi could
indicate whether sensor i is online or offline, and ωr might
indicate whether the FN is receiving or computing. What
refers to the symbols used to communicate; e.g., under some
strategies a sensor may use more precise quantization than
others, resulting in longer symbols. Where will encompass
the channel effects between each sensor and FN, and can
be represented by �c = {ω1, ω2, . . . , ωJ }. Taking the cross
product of the individual state-spaces gives the overall state-
space � = {�s × �r × �c}. Finally, the When question is
addressed by temporal changes in the state space. Assuming
that we observe the state at discrete time instances, this can
be expressed by representing the state-space as a function of
time �[n], n = 1, 2, . . . ,∞.

Putting all of this together as the final step in the process,
we arrive at the context-based optimization problem

min
S∈S

. P =

J∑
j=1

(P(j)S + P(j)T ) (34)

s.t. 8(x) < ϵ, ∀ x ∈ X (35)

� = �[n]. (36)

By framing communication in this optimization framework,
the system is acting as the teacher from our initial exam-
ple, namely by communicating with the underlying goal of
efficiency, which is achieved by considering the context in
which communication is taking place. As mentioned above,
this formulation only presents us with a problem for which
solving is another matter. As our goal here is to introduce the
framework itself, we leave further study of this second stage
of the problem for future work.

Semantic communication is regarded as a promising solu-
tion for improving the efficiency of communication systems.
More so than the previously discussed techniques, the pro-
posed context-based method is formulated with this specific
aim in mind. By considering this aim at the outset, and taking
into consideration the context of the communication prob-
lem, we believe that the resulting semantic communication
systems will have the potential to advance the state of the art
once more.

VIII. CONCLUSION
The aim of this survey is to provide a comprehensive and clear
picture of the current state of the emerging field of semantic
communications. The push toward semantic communication
systems is motivated by the explosion of global data traf-
fic demand in recent years, and the intuitive benefits that

can be achieved through efficient communications. Defining
semantics is a non-trivial problem, and some approaches have
emerged in the literature.

Classical semantic information-based approaches attempt
to extend the ideas of information theory to capture the
semantics of information, and are based on ideas of logical
probabilities and truthlikeness. Two prominent theories are
TWSI and TSSI, and truthlikeness-based approaches extend
these theories. The key idea of this approach is to follow
the path of classical Information Theory by first quantifying
semantic information, and developing results based on this
quantification.

KG-based semantic communication focuses on the aspect
of a knowledge base at a semantic source and receiver, using
a KG to model such knowledge bases. This approach follows
from the extensive work revolving around the semantic web.
By representing knowledge in a graph structure, semantic
similarity measures can be devised and forms of reasoning
can be performed. This form of structure and working with
knowledge is the key driver of this approach.

ML-based semantic communications uses modern learn-
ing techniques to carry out semantic communication in a
data-driven manner. This includes DL methods, which learn
semantics through neural network structures, and RL tech-
niques, which learn semantics with an action-reward frame-
work. Unlike the classic and KG-based approaches, this
approach assumes no formal structure of the semantics to be
learned, and puts the burden of learning these semantics on
the model itself. Consequently, meaning is captured by the
tuned model parameters that are found as a result of data-
driven training.

Finally, significance-based semantic communications take
a goal-oriented approach and look to communicate in a way
that best achieves the goal. Significance is quantified by
metrics pertaining to different qualities of information, such
as freshness and value. Semantic sampling is also a critical
point of this approach, which seeks to generate only infor-
mation that is pertinent to the task at hand. By addressing
the effectiveness problem of communication, this approach
circumvents the semantic problem and inherently assumes
that the semantics will be addressed within the effectiveness
solution.

Regarding the problem of data traffic reduction, various
works in KG-based and ML-based semantic communication
have demonstrated quantitative results illustrating the poten-
tial to address this growing issue for diverse applications
and use-cases, from simple text-based speech to network
operations recommendation systems. For the classical and
significance-based approaches, these results are fewer. One
conclusion that can be drawn upon examination of these
various results, is the need for standard evaluation procedures
across the different approaches. If efficient communication
is to be one of the main goals of semantic communication,
standard metrics capturing this idea should be chosen as the
field develops to facilitate the comparison between compet-
ing methods.
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For each approach, we provide some challenges and
opportunities that could inspire future work in the field.
For the classical approach, a clear opportunity lies in the
further development of a theory of semantic information.
The KG-based approach includes many existing methods
which can be extended; particularly, scalability and learn-
ing methods are two areas which require further improve-
ments. A major drawback of the ML-based approach is
a lack of interpretability, and model-based DL and neu-
rosymbolic AI are two potential solutions to this issue.
The significance-based approach is the most recent of the
four, and thus provides many exciting opportunities for
future work, particularly in the development and study of
significance-oriented metrics. The most important challenge
to the success of semantic communication is the ability to
define and work with ‘‘meaning.’’ We believe that future
semantic communication systems will leverage techniques
across the different approaches to optimize these systems, and
thus we view future work corresponding to each approach as
important to the overall field.

Furthermore, we advocate for a fifth approach to engineer-
ing semantic communication, namely context-based semantic
communication. This approach places an emphasis on the
context of the communication problem, which in turn impacts
the strategy that leads to efficient communication. Based
on the observation that humans naturally optimize commu-
nication as a result of the context, our approach involves
the formulation of the strategy selection as an optimization
problem, which can be solved using traditional or modern
techniques. We demonstrate the details of this approach with
a smart agriculture example based on a soil moisture moni-
toring application.

Realizing this higher level of communication is an exciting
problem that presents a plethora of challenges and oppor-
tunities for future work. In the age of ever-expanding AI
and ML, it is only natural that we apply this intelligence to
communication systems to reap the benefits therein. Our hope
is that this survey will prove to be a useful guide to anyone
interested in the engineering of semantic communication.
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