
Received 2 January 2023, accepted 4 February 2023, date of publication 6 February 2023, date of current version 13 February 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3243132

Buried Object Characterization Using Ground
Penetrating Radar Assisted by Data-Driven
Surrogate-Models
REYHAN YURT 1,2, HAMID TORPI2, PEYMAN MAHOUTI 3, AHMET KIZILAY2,
AND SLAWOMIR KOZIEL 4,5, (Fellow, IEEE)
1Department of Electrical-Electronics Engineering, Yalova University, 77200 Yalova, Turkey
2Department of Electronic and Communication Engineering, Yıldız Technical University, 34349 Istanbul, Turkey
3Department of Avionics, Yıldız Technical University, 34349 Istanbul, Turkey
4Engineering Optimization & Modeling Center, Department of Technology, Reykjavik University, 101 Reykjavik, Iceland
5Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, 80-233 Gdańsk, Poland

Corresponding author: Slawomir Koziel (koziel@ru.is)

This work was supported in part by the Türkiye Bilimsel Ve Teknolojik Araştirma Kurumu (TÜBİTAK) through the TÜBİTAK-BİDEB
(Bilim İnsanı Destek Programları Başkanlığı) 2011—A International Ph.D. Fellowship Program under Project 119N196, in part by the
Icelandic Centre for Research (RANNIS) under Grant 206606, and in part by the National Science Centre of Poland under Grant
2020/37/B/ST7/01448.

ABSTRACT This work addresses artificial-intelligence-based buried object characterization using 3-D full-
wave electromagnetic simulations of a ground penetrating radar (GPR). The task is to characterize cylindrical
shape, perfectly electric conductor (PEC) object buried in various dispersive soil media, and in different
positions. The main contributions of this work are (i) development of a fast and accurate data driven
surrogate modeling approach for buried objects characterization, (ii) construction of the surrogate model in
a computationally efficient manner using small training datasets, (iii) development of a novel deep learning
method, time-frequency regression model (TFRM), that employes raw signal (with no pre-processing) to
achieve competitive estimation performance. The presented approach is favourably benchmarked against
the state-of-the-art regression techniques, including multilayer perceptron (MLP), Gaussian process (GP)
regression, support vector regression machine (SVRM), and convolutional neural network (CNN).

INDEX TERMS Buried object characterization, ground penetrating radar (GPR), surrogate modeling,
microwave modeling, artificial intelligence, A-scan data analysis.

I. INTRODUCTION
Ground penetrating radar (GPR) has a wide range of applica-
tions such as detection of buried mines, pipes and wires. GPR
has been used as a near-surface remote sensing technique,
and its working principle is based on electromagnetic (EM)
wave theory [1], [2], [3]. It operates by sending and receiving
electromagnetic signals using antennas. In [4], a conven-
tional C-Band horn antenna was used to transmit and receive
the signals. L-Band TEM horn antenna was used for data
collection to detect buried object by applying background
subtraction or clutter reduction techniques in [5]. In a typical
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GPR system, the antenna is moving along a path or a synthetic
aperture on the upper surface of the ground and it is scanning
underground. The received signal at a specific point is 1D
time-variable amplitude signal, and it is referred to as A-scan
signal. As a result of scanning along an axis, 2D data or
B-scan image can be obtained. Most of the available studies
have investigated scattered fields from a buried object via
B-scans, which are concatenated forms of the A-scans [6],
[7], [8], [9], [10], [11], [12]. The reason is that buried cylin-
drical object such as a pipeline, a wire or a rebar subjected to
hyperbolic regression in the B-scan [6], and a recognition of a
hyperbolic signature or pattern, is themost common detection
approach in both analytical, numerical, and artificial intelli-
gence (AI) methods [6], [7], [8], [9], [10], [11], [12].
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There are several methods available to reduce the reflec-
tions of the ground surface, and the reflections coming
from the scanned subsurface medium. These are general-
ized as data (or image) pre-processing. Some of the stud-
ies, e.g., [5], [9], and [12], report pre-processing methods
based on background subtraction for buried object detection
and figuring out object-related properties, characterization
(position, object size estimation etc.) via a hyperbola. After
pre-processing of B-scan images, column-connection clus-
tering (C3) algorithm is proposed to identify the regions
of interest, and neural network (NN) has classified C3 out-
puts to identify hyperbolic indication in [9]. Subsequently,
orthogonal-distance hyperbola fitting algorithm is applied
to identification of the hyperbola in [9]. Furthermore, upon
removing ground reflection, normalized B-scans are used as
inputs for convolutional neural networks [12]. 3D GPR data
generated with along an axis and perpendicular to an axis are
analyzed using CNN and LSTM (Long Short-TermMemory)
units together in a framework as a cascaded structure for
detection of buried explosive object and discrimination target
or nontarget alarms [13]. Another approach is permittivity
mapping of the subsurface structures for lining detection
[14], [15] by using customized CNN, deep neural network
frameworks. By this approach, an inversion of dielectric
images can be obtained from B-scan data. Also, feature
extraction techniques are applied on the average window
subtracted B-scan images [16] for detecting object using sup-
port vector machine (SVM) and NN classifiers. The buried
objects are identified using geometrical features such as
minor and major axes, along with statistical features obtained
via principal components, mean, variance and kurtosis,
etc. [16].

The literature includes a number of works that study buried
object identification/determination by means of classifier
algorithms. Therein, the purpose is to answer questions of the
form ‘‘is there an object?’’ or ‘‘what is the material type of
the object.’’ The response belongs to one of the predefined
classes. Furthermore, various tasks such as identification,
localization, estimation of the object size, dielectric features
of host medium, and classification of material type and shape,
are solved in addition to object detection [6], [7], [9], [11],
[12], [16], [17], [18]. To solve these tasks, AI-based surro-
gate modelling approaches are proposed, including cascaded
networks, e.g., NN with Hilbert Transform of time signals
for object shape, material classification and depth of the
object, dielectric properties of the host medium, and the
object size [12]. In addition, windowing on pre-processed
B-scan images, the results of material type classification,
hyperbola curvature and the depth of the object are used to
obtain estimation of the object size via Gaussian process (GP)
regression [17]. Another study predicts the object radius by
using compressed reflected signals, as well as the depth and
water content of the subsurface as the inputs of its machine
learning framework [18]. The procedure [18] is also an exam-
ple of a cascaded framework, with the object radius predicted

as being dependent on other characteristic parameters of the
model. In [18] and [19], while estimating characterization
parameters, A-scans of 2,000 randomly created scenarios are
used to obtain satisfactory results. Utilization of the A-scan
analysis in the mentioned studies, is aimed at realizing prac-
tical processing, and a reduction of the needed computational
resources for generating the training data sets.

The mentioned techniques require data obtained using a
series of signal and image processing methods for iden-
tification and characterization of a buried object. In this
work, as one of its contributions, the characterization of
buried object is achieved by using data-driven surrogate
model constructed with sparse dataset, without remov-
ing ground reflections, background subtraction operations,
B-scan image processing, and hyperbola investigations.
In particular, removing ground reflections or background
subtraction operations might be challenging for buried object
scenarios that belong to more than one soil type or host
medium dielectric features, which changes with the percent-
age of the water content. Herein, three different soil media
with respect to their water content are taken into account. The
main aim of the proposed work is to prioritize computation-
ally efficient surrogate modeling studies and propose a novel
deep learning-based framework that focuses on the object
characterization in terms of its geophysical parameters with
A-scan analysis without any background removal, extrac-
tion of hyperbola signature by using a few linear sampled
train scenarios. In addition to proposing a novel framework
that employs the aforementioned a unique methodological
approach, the performance comparison with the state of the
art techniques reported in the literature is provided for para-
metric estimation of buried object characterization. The tar-
get characterization is applied independently based on the
subsurface dielectric properties. In addition, the A-scan data
(1-D time signal) obtained from 315 scenarios is analyzed
to localize and estimate the object size by using artificial
intelligence (AI) techniques. A novel deep-learning-based
model (time-frequency regressionmodel, TFRM) is proposed
to simultaneously predict the depth, the location (the lateral
position), and the radius of the object, at low computational
cost. For supplementary evaluation of the performance of the
proposed model under realistic scenarios, additional data sets
were generated by incorporating random noise to the A-scan
signals. This allows for analysing the effects of the environ-
mental and internal noise of the GPR system on the per-
formance of the proposed surrogate modeling methodology.
Furthermore, the proposed surrogate modeling approach is
validated using the measurement data.

The remaining part of the paper is organized as follows.
Section II provides a brief explanation of the GPR model.
In Section III, the proposed modelling framework is intro-
duced along with a brief characterization of the benchmark
methods. The numerical results are discussed as well, which
include performance evaluation based on the mean abso-
lute error (MAE) and relative mean error (RME). Also,
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B-scan-based estimation of the buried objective geometry is
provided for a number of scenarios. Section IV concludes the
paper.

II. GPR MODEL AND GENERATION OF DATA SETS
This section provides a conceptual explanation of the studied
ground penetrating radar (GPR) model and the data set gen-
eration for data driven surrogate modelling for buried object
characterization. We start by explaining the GPR setup and
the studied buried object characterization problem. This is
followed by discussing the data set generation, and the details
of the selected training and test scenarios of the surrogate
model.

A. PROBLEM FORMULATION
The primary problem to be solved in this work is estimation
of geophysical parameters of buried cylindrical PEC object
[4], [6], [11], [18], [19] in different soil media by using
A-scan analysis as well as surrogate modelling techniques,
specifically, a dedicated TFRM framework, described in
detail in Section III. The details concerning the configuration
of ground penetrating radar model, as well as the datasets
being processed have been elaborated on in Sections II-B
and II-C, respectively. Section III provides the details of
surrogate modelling method developed to carry out the esti-
mation process, along with the numerical results.

B. CONFIGURATION OF GPR MODEL. DESIGN SCENARIOS
In this work, we consider a ground penetrating radar (GPR)
problem of characterizing a buried object, based on 3D full-
wave electromagnetic (EM) analysis. Here, a C-band pyra-
midal horn antenna is used in a monostatic configuration
[8]. Figure 1 shows the configuration of the characterization
process. The scatterer is defined as perfectly electric con-
ductor (PEC) object such as a wire, a pipe, or a rebar. The
travelling time of the wave transmitted by the antenna can be
computed using the object depth, the relative permittivity of
the subsurface, and the speed of light in the free space. Note
that the wave propagation time is monotonically dependent
on the depth but also the subsurface permittivity.

The dimensions of subsurface are set to 400 × 300 ×

500 [mm]. The surface itself is assumed to be a dispersive
soil parameterized by the percentage of water content and
the dielectric features, as described by the extended Debye
model [20]

ε = ε∞ +
εS − ε∞

1 + jwt0
+

σ

jwε0
(1)

where εs and ε∞ are the relative permittivity values at zero
and infinite frequency, respectively, t0 is the relaxation time,
σ is the conductivity, w is the angular frequency, and ε0
is the free space permittivity. These parameters have been
demonstrated in Table 1 [20] and used to compute the sub-
surface permittivity. Using this model, three different types
of soil media are chosen according to their water content of
0.2%, 2.8%, and 5.5% [20]. Also the buried object estimation

is carried out without any information of the soil type or
dielectric permittivity of the background media. These soil
types, distinguished with respect to the water content, have
been chosen similarly as in [18] and [19].

GPR scenarios have been configured by placing the afore-
mentioned scatterer of various radii at different depths of the
dispersive soil medium, and the object has placed at different
lateral positions based on the origin of synthetic aperture.
The geometrical structure of GPR scenarios for solving the
proposed problem has been shown in Figure 2.

In the next subsection, the generation of the training and
the test data sets for a computationally efficient construc-
tion of surrogate model for buried object characterization is
presented.

FIGURE 1. Configuration showing the 3D view of the GPR model used for
generating training and test data sets. The antenna model is monostatic
pyramidal horn and dielectric features of subsurface are modelled
according to the water content. The buried object is cylindrical and made
of PEC.

TABLE 1. Extended Debye parameters of the used water content [20].

C. DATA SET FOR CHARACTERIZATION OF BURIED
CYLINDRICAL PEC OBJECT
As mentioned earlier, one of the main contributions of this
work is to propose a method for buried cylindrical object
[4], [6], [11], [18], [19] characterization, which—to a certain
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FIGURE 2. Diagram explaining the geometry of the GPR model and the
characteristic parameters of the buried object to be identified.

extent—trades off the accuracy for exceptional computation-
ally efficiency. Achieving this goal requires a construction
of the surrogate model using a possibly small training dataset.
The parameter space has four dimensions, which include
the object depth, its lateral position, radius, and the soil
water content. Table 2 gathers information about the design
of experiments, which is a linear sampling method, used
for generating 315 sample points within the given variable
ranges. For each scenario, 16 A-scans are taken. It should be
mentioned that by increasing the number of A-scans for each
scenario, it is possible to increase the accuracy of the model
for estimating the lateral position and the object size.

However, this would also significantly increase the dataset
generation time. In this work, the 3D full-wave simulation
tool CST Microwave Studio has been used for obtaining the
data. The discretized structure of the GPR model contains
approximately 25,000,000 mesh cells, and the average sim-
ulation time of each scenario is ∼14 hours (hardware config-
uration: Intel(R) Core(TM) i7-CPU@ 2.60GHz Turbo Boost
4.5 GHz, 16 GB RAM). Thus, for the sake of computational
efficiency, the number of A-scans has been kept at sixteen.
Another comment is that although it is possible to include the
water content of the ground as another input variable, such
approach might not be feasible in practice due to the inho-
mogeneities in the examined area. To ensure a more realistic
approach, water content of the ground is variable in a discrete
sense, i.e., by using three different values. However, this
information is not provided to the model neither in training
nor the test process. Although this approach would make the
modelling process more challenging and be detrimental to the
model predictive power, it needs to be followed to be more in
line with realistic GPR applications.

As for the test data set, Latin Hypercube Sampling (LHS)
[21] method is used for creating randomly selected sample
points to prevent over-fitting of the model. Total of 63 sce-
narios is generated to be used for performance evaluation
of surrogate models. Figure 3 presents the configuration
of the characterization parameters for the training and test
data sets. The considered problem of estimating geophysical
parameters of a buried object is 2D. The training and testing
scenarios include B-scan images (2D data), which contain
16 pairs of A-scan (concatenated forms of A-scans). Each
A-scan is a time-varying normalized power amplitude signal
obtained at the one point along the synthetic aperture. In other
words, the scanning path length is 600. In addition, A-scan
combination was presented as the A-scan ID according to
points at the scanning path (400 mm). The data consists of
600 time-varying amplitudes and the A-scan ID (601 × 1).
Here, the A-scan ID is an integer between 1 and 16. The
training and testing datasets consist of 315 linearly samples
scenarios, and 63 randomly selected scenarios, respectively,
with the data acquired using a full wave EM simulator. Each
data set contains 16 A scan signals (the total of 5040 and 1008
A-scans for training and test data sets respectively).

In the studied GPR problem, the received reflected signal
or statistical features of the signal (power amplitude and
A-scan ID) are used as inputs of AI based surrogate models.
The latter are employed to predict the characteristics of the
buried objects. A-scans have been used as inputs to enable
practical processing, as well as reduction of the necessary
computational resources for generating the training/testing
datasets [18], [19]. Raw time-variable signal dataset consists
of the power amplitude of the received reflected signals ver-
sus the time of travelling wave at the penetration axis which
is taken as 12 ns using the travelling time, the depth, and the
subsurface permittivity relation. Figure 5 shows a modulated
Gaussian signal with a center frequency of 6 GHz, used as the
excitation signal, along with the example of A-scans obtained
for a specific scenario. The same figure shows a B-scan image
constructed by combining the A-scans obtained as a result
of reflections of the transmitting excitation signal along a
selected scanning path. In Fig. 4 a black-box representation
of the proposed data-driven surrogate modeling approach is
presented. 601 features that are defined on the left-hand-side
of the black box are the input variables of the problem to be
used for the characterization of the targeted outputs (depth,
lateral position, and the radius of the object), presented on
the right side of the model.

D. NOISY DATA SETS FOR CHARACTERIZATION OF
BURIED CYLINDRICAL PEC OBJECT
In this study, for the purpose of further verification of the
proposed surrogatemodel, new data sets are generated by ran-
dom noise addition [15], [22], [23], [24], [25], [26], [27], [28]
to the generated raw A-scans. The literature offers different
approaches to noise incorporation and for different purposes
such as data augmentation [14], [23], [24], [29], being closer
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to realistic scenarios [14], [22], [24], [29], [30] and obtaining
further verification to test the sensitivity and stability of the
considered models [15], [25], [26], [27], [28].

TABLE 2. Parameter space and the arrangement of the training/testing
data for the considered GPR problem.

FIGURE 3. Configuration of characterization parameters in 3D plot in
terms of depth, lateral position and radius for scenarios in the training
and test data sets.

The cases studied in [22] and [23] are arranged to bring
themodels closer to the real-time applications, specifically by
considering noisy data sets. A noise with the signal-to-noise
ratio of 10 dB [22] is added to B-scan image generated by
gprMax simulation tool. In [23], random noise is added to
B-scans generated by gprMax tool. Another technique is used
as integration of the real background reflections with B-scans
in order to generalize on realistic scenarios [14] as well as
for data augmentation purpose. Application of a similar tech-
nique is explained in the study of buried target detection with
deep learning [29] by using real background without targets
and removed air-soil boundary reflections. Another approach
is to replace randomly chosen pixels (typically, from 0.3% to
25% of the overall number of pixels) with white and black
pixels to obtain noisy data and for further verification of their
model in realistic scenarios by using noisy data [30]. This
methodology is applied toGPRB-scans generated by gprMax
tool and in predicting the object size using a CNN model
and extracted hyperbolic patterns [30]. This method is suit-
able for analysis using B-scan image or 2D data processing
techniques, thereby approaching real environmental condi-
tions because reflected waves in concatenated form (B-scan)

in different amounts are negatively affected and distorted
depending on the percentage of pixel altered.

The particular problem considered in this work is solved by
using the A-scan analysis, 1D time-varying amplitude signals
(A-scans), and A-scan ID combination, so the methodology
of randomly white and black pixel adding is not applicable
to the proposed surrogate modeling approach. Hence, for
further verification of the proposed surrogate model, sup-
plementary noisy data sets were created with different SNR
values (20 dB and 30 dB) by adding white Gaussian noise
[15] to emulate conditions that are closer to the real time or
on site applications. In Fig. 6, noisy A-scans are demonstrated
with two different scenarios and different SNR value of 20 dB
and 30 dB.

It should be emphasized that the approach to noise incor-
poration employed in this work is commonly used in the
literature. For example, addingGaussian noise is proposed for
an automatic recognition and localization of pipelines [28].
A deep convolutional neural network model is developed to
coastal hazard mitigation [24]. Therein, random Gaussian
noise is inserted to replicate field scenarios [24]. Some sub-
jects on noise suppression and denoising in addition to the
mentioned issues follow the mentioned approaches and uti-
lize Gaussian noise addition [25], [26], [27], [28]. In GPR
systems, interior or system noise lead to interferences on the
reflected signals; it is defined as similar to white Gaussian
noise [25]. The K-singular value decomposition (K-SVD)
dictionary learning method for the denoising of GPR signals
[25] has been introduced, which can effectively suppress
Gaussian noise. Another study proposes ensemble empirical
mode decomposition (EEMD) method for noise suppres-
sion on original GPR data with added white Gaussian noise
[26]. The method has been shown successful for denoising
[26] synthetic noisy and practical GPR data. Also, different
amplitudes of white Gaussian noise are added to generated
signals to test the sensitivity to noise and stability of the
model [15], [27].

To facilitate further research in this area, the data sets (with
and without noise) used in this work have been shared in
the IEEE data port [31]. To briefly describe the data sets,
the training and the testing sets are data matrices of the
size of 5040 × 605 and 1008 × 605. In the data sets, 5040
(obtained from 315 different scenarios), and 1008 (obtained
from 63 different scenarios) are the sample sizes of training
and test data sets, respectively. The features in the 1st and
601st columns are the input of the model while the Depth,
Lateral Position, Radius of the object, and water content of
the soil are present in between 602nd-605th features. As men-
tioned in Section II-B, although the water content of the soil
is a variable, this feature is not presented to the model since
such an approach might not be feasible in practice due to the
inhomogeneities in the examined area. In [31], three data set
pairs for studied cases in this work are presented with the
mentioned data set as explained above: (I) data without any
noise, (II) data with 20 dB SNR, and (III) data with 30 dB
SNR rate.
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III. DATA DRIVEN SURROGATE MODELING
This section outlines the state-of-the-art techniques utilized in
the context of model-based characterization of buried objects,
as well as introduces a novel deep-learning-based approach,
time-frequency regression model (TFRM). MATLAB has
been used as coding environment for all analysis, training,
and testing of the benchmark methods and the proposed
TFRM framework.

A. STATE-OF-THE-ART OF SURROGATE-BASED
CHARACTERIZATION OF BURIED OBJECTS
Surrogate-based characterization of buried objects has been
a subject of extensive research over the last years. Some of
popular methods utilized in this context include SVRM [32],
MLP [3], [9], [11], GP regression [17] and CNN [12], [13],
[30], [33]. These methods are briefly characterized below,
and will be used as benchmark methods compared to the
modelling approach introduced in Section III-B.

Gaussian process approach is an approximation-based
machine learning technique widely used for estimation and
classification problems. GP regression is based on generaliz-
ing Gaussian probability distributions to functions [17], [34].
In these works, the kernel function for numerical experiments
has been selected as ‘‘matern3/2’’ [35], and the prediction
method has been defined as block coordinate descent with
the block size of 250. Determination of hyper-parameters
is an important step in surrogate modelling. Here, Bayesian
optimization (an in-built optimization tool in MATLAB) has
been used for optimum hyper-parameters determination. For
validation, the K -fold technique with K = 5 has been used.
Another surrogate modeling technique in the machine

learning class is support vector regression machine (SVRM),
which has been applied not only to object and material type
detection through classification [7], [11], [16] by using sup-
port vector machine (SVM), but also to prediction of soil
permittivity and depth [32] in regression approach. It belongs
to the group of supervised statistical learning methods [7],
[11], [16], [32].

Herein, similar to the GP regression model, the hyper-
parameters of SVRM are determined via Bayesian opti-
mization to realize nonlinear mapping between the reflected
received signals and characteristic parameters of the scatterer.
The optimally selected hyper-parameters for SVRM are:
Gaussian kernel functions, Box-constraint of 1.72, Kernel
scale of 0.1977 and Epsilon 0.0008.

MLP mimics biological neural systems in the form of
interconnected neurons. This framework has demonstrated
high accuracy in surrogate modeling applications [3], [9],
[10], [11], [36]. The MLP model utilized here features
the following hyper-parameter configuration: two hidden
layers with 32 and 16 hidden neurons, respectively; log-
sigmoid activation functions, training by the Levenberg-
Marquardt algorithm. Similar to GP regression and SVRM,
these hyper-parameters are also obtained via Bayesian
optimization.

FIGURE 4. Black box representation of the proposed data driven
surrogate model for buried object characterization.

FIGURE 5. (a) Input signal and a sample of raw A-scan signals for water
content of 2.8%, depth 250mm, lateral position 210mm, and radius 40mm
(b) B-scan image construction sample for a scenario of water content of
2.8%, depth 250mm, lateral position 210mm and radius 40mm.

The last state-of-the-art benchmark surrogate model is
CNN, which is a technique derived from deep learning [6],
[12], [13], [29], [33]. It takes its name from the convolutional
layer, which is one of the main elements in the network, and
has the ability to automatically extract the features owing to
the convolution filter in this layer. To implement the CNN
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FIGURE 6. Samples of noisy A-scan signals obtained for SNR value of
30dB and 20dB. (a) A-scan samples of SNR 30dB for a scenario of water
content of 2.8%, depth 250mm, lateral position 210mm, and radius
40mm. (b) A-scan samples of SNR 20dB for a scenario of water content of
5.5%, depth 150mm, lateral position 140mm, and radius 30mm.

model, several blocks are utilized as a convolution layer
(filter), a batch normalization layer, a pooling layer, the acti-
vation function, and a fully connected (FC) layer [37], all
involved in the hidden layer. The structure and the hyper-
parameter configuration of the CNN used in this work is
as follows: three convolution layers (3 × 1) followed by
the batch normalization layer, activation function as ReLU
(Rectified Linear Unit) layer, as well as the pooling layers
(2×1) incorporated after the last convolution layer, and a fully
connected layer with three neurons to model the requested
outputs. The CNN model is trained using a version of a back
propagation algorithm (referred to as the ‘‘Adam’’ optimizer)
and a batch size of 256. The learning rate has been set to
10−3 until maximum epoch number reached to 300. Other
user-defined parameters, such as the size and the number
of the convolution filter (32, 64, 128) and pooling layer are
set up as recommended in the literature in the context of
buried object detection and characterization [13]. At the same
time, it should be mentioned that—in the cited works—the
input data is two-dimensional, therefore, the filters of the
CNN layers are of the corresponding dimensionality, whereas

the filters of the CNN model used in this work are one-
dimensional.

All the algorithms considered in this work, including CNN
and the proposed technique use the same data sets (1D)
that include time-varying reflected normalized power ampli-
tude and A-scan ID (1 × 1) according to scanning aperture.
As mentioned in Section II-C, the data set used for the
proposed surrogate modeling is a combination of 1D time-
varying amplitude signals (A-scans, 600 × 1) and A-scan
ID (601 × 1). The first input gives the A-scan ID varying
between 1 and 16 according to the along axis. It should be
reiterated that the proposed TFRM is a customized deep-
learning-based framework that internally converts the given
input data as time versus frequency spectrogram, which is the
specific form of A-scan and A-scan ID combination.

B. PROPOSED TIME-FREQUENCY REGRESSION MODEL
TECHNIQUE FOR SURROGATE MODELING OF BURIED
OBJECTS
This section introduces the proposed deep-learning-based
time-frequency regression model (TFRM) for buried object
characterization. The Short Time Fourier Transform (STFT)
of 1D signals offer a joint distribution that enables both
time and frequency analysis [38]. In addition, the STFT
images (2D data) have been used to classify sound signals in
many CNN-based studies [39]. The proposed time-frequency
regressionmodel (TFRM) has been inspired by the aforemen-
tioned developments. Here, it should be mentioned that deep
learning algorithms have shown great success in problems
featuring large data sets (e.g., in big data applications). It is
worth mentioning that applicability and success rate of deep
learning is not strictly bounded to cases featuring large num-
bers of training samples [40]. Deep learning algorithms can
be used to transform the input data to a higher-dimensionality
space using large number of neurons and layers, and then
distilling the transformed data into lower dimensions to better
handle the interrelations between the problems input and
outputs. Thus even with small amount of training samples it is
possible to use deep learning algorithms to create a globally
accurate surrogate model [41].

As mentioned earlier, the proposed methodology utilizes
GPR data as time-varying signals. In other words, A-scans
and A-scan analysis is carried out. The A-scan analysis
including data obtained from B-scans is designed by adding
A-scan ID (1 × 1) according to the lateral position at the
scanning aperture (along axis) to each of the A-scans of all
of the B-scans. Here, the A-scan ID is an integer between
1 and 16. In this way, 2D data (B-scan) is reduced to 1D
data combination of reflected field amplitude versus time,
and A-scan ID (601 × 1), so that A-scan data [31] with a
length of 601 is used in this study. It should be emphasized
that the proposed TFRM (time-frequency regression model)
is a customized deep-learning-based framework transform-
ing internally the given input data as time versus frequency
spectrogram (2D time-frequency spectrogram), which is the
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specific form of A-scan andA-scan ID combination. It should
bementioned that the literature offers a similar approach [13],
oriented towards detection of buried explosive object and
discrimination target or nontarget alarms. Therein, 3D GPR
volume data is used as an input by converting 2D data.

Firstly, the signals are zero-averaged. Then, the blocks of
the length 32 are extracted over sixteen overlapping intervals
to extract the STFT image of the signals. Each block is
multiplied by the Kaiser window [42] to prevent the spectral
leakage. Subsequently, Fast Fourier Transforms (FFT) of the
length of 64 are taken. Since the FFT is symmetrical for real
signals, the one-sided portion of the image is taken. Thus,
a spectrogram of a dimension 33 × 36 is obtained. The
magnitude spectrum is calculated to process the spectrogram
as an image. With the conversion of complex numbers to
real numbers by taking their magnitude, the STFT magnitude
spectrum images of A-scan signals are formed. Next, these
images are reduced to dimension 32 × 32 to be an exact
multiple of two (cf. Fig. 7). Before the model is trained, the
A-scans are zero-averaged. The TFRMmodel consists of five
main blocks as shown in Fig. 8. The first three blocks are
used to extract the features from the 32 × 32 × 1 STFT
image. After extracting features of the STFT image in the
convolution layers, data processing is followed with the batch
normalization operations and Leaky ReLU layer with the
scale parameter of 0.1 (a scalar multiplier of negative inputs)
as an activation function. Owing to the global average pooling
layer [43] used in the fourth block, a 1 × 1 × 256 feature
vector is obtained. In the last, fifth block, the feature vector is
processed over 512 neurons in the fully connected layer, and
converted to characteristic parameters in terms of the location
(depth, lateral position), and the radius of the object.

The Mean Absolute Error (MAE) and the Relative Mean
Error (RME) has been used as performance metrics of the
surrogate models. The models are defined as

MAE =
1
N

×

N∑
i=1

|Ti − Pi| (2)

RME =
1
N

×

N∑
i=1

|Ti − Pi|
|Ti|

(3)

where N is the total number of samples, whereas Ti and Pi
are the target and model-predicted values, respectively, for
the ith sample.

Table 3 shows the average errors of all considered surrogate
models and their corresponding average training times, aver-
aged over ten independent runs. In order to clearly demon-
strate the performance of the proposed TFRM, it is compared
with the state-of-the-art and most commonly used regression
algorithms reported in the literature (GP regression, SVRM,
MLP, CNN). To ensure a fair comparison between TFRM
and mentioned counterpart algorithms, the hyper parameter
configuration of these models are taken as standard values
in literature or based on the counterpart works given con-
figurations [13]. It can be observed that the accuracy of the

proposed TFRM framework is significantly better (given the
training datasets, which are identical for all models) than all
benchmark surrogates. In particular, the MAE of TFRM is
twice as low as for the second-best model (here, CNN). Fur-
thermore, the training time of TFRM is considerably lower
than for all benchmark methods.

Table 4 shows the modelling errors for individual charac-
teristic parameters for the proposed and the benchmark mod-
els. It can be observed that, in a qualitative sense, the results
are consistent with those presented in Table 4. As it can be
seen from the error metrics of the benchmark models and the
proposed model, the performance of parametric estimation of
geophysical parameters of buried object in terms of depth,
lateral position and radius independent of each other with
raw A-scan signal analysis is satisfactory, and it is achieved
in a computationally efficient manner even in the case of
using sparse training samples. Also, Table 5 and Figure 10
demonstrate the target and predicted parameters of selected
test samples for the second-best benchmark model and the
proposed model.

FIGURE 7. The obtained 32 × 32 Time-Frequency images for different
signals.

TABLE 3. Accuracy and the training time of the proposed and the
benchmark models, averaged with standard deviation over ten
independent runs.

The TFRM framework uses the Adam optimizer, which is
a version of the back propagation algorithm for training the
framework. Here, it is used with the batch size of 256 and the
maximum epoch number of 300, also data is shuffled in every
epoch. In Figure 9 training progress has been demonstrated
with train loss values versus the iteration number.

C. B-SCAN EVALUATION
In the proposed approach, the buried objects characteriza-
tion is obtained using the 1D data of the normalized power
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FIGURE 8. Architecture of the proposed TFRM model.

FIGURE 9. The training loss of the proposed TFRM model versus the iteration number during all epochs (epoch number equals to 300).

amplitude of the reflected signals. The latter are obtained for
different positions of the scanning aperture, by means of the
proposed TFRM framework. For additional validation, and to
better demonstrate the performance of the proposed approach
as compared to the benchmark methods, a B-scan evaluation
is studied in this section.

The B-scan images are 2D datasets that can be gener-
ated by combining the A-scan data obtained from differ-
ent positions [1], [2], [3], [4], [5], [6], [7], [8], [9], [10],
[11], [12]. In the GPR setup defined in Section II, a B-scan
data can be obtained using sixteen A-scan datasets for each
scenario. Again, it should be mentioned that by increasing
the total number of A-scans, it is possible to increase the
accuracy of the model; however, this will be at the expense
of decreasing the computation efficiency. The performance
evaluation of the best benchmark method, CNN, and the
proposed approach, TFRM, have been presented in Table 5,
and Fig. 10.
These results are the average values for all characteristic

parameters (depth, lateral position, radius) obtained from six-
teen different A-scans, compared with the actual object char-
acteristics. As it can be seen, the performance of the proposed
TFRM framework (averageMAE of 11.95) is clearly superior
in terms of object characterization over the best benchmark
technique, CNN (average MAE of 23.01).

It should be noted that TFRM can almost pinpoint the
target object center position, whereas CNN fails with this
respect.

As mentioned in Section II-D, for the supplementary eval-
uation of performance of the proposed model by using noise
addition to raw A-scans, new data sets were generated by
adding a random noise [15], [22], [23], [24], [25], [26],
[27], [28] to the A-scan signals. Thus, the environmental
and internal noise of the GPR system and its effect was
analyzed. In particular, the supplementary noisy data sets
were created with different SNR values (20 dB and 30 dB) by
adding the white Gaussian noise [15]. These noisy data sets
have been analyzed without any pre-processing to estimate
characteristic parameters under scenarios that are closer the
real time or on site applications. For this investigation, the
second best successful surrogate model, CNN, was used to
compare the performance of the proposed framework and
the results have been presented in the following table. Also,
performance evaluation of the best benchmark model CNN,
and the proposed approach TFRM for the noisy data sets have
been demonstrated in Table 7 and Figure 11.

Here, it must be emphasized that all the data samples in
training and test data sets, 315 scenarios with linear sampling
and 63 scenarios with Latin Hypercube Sampling (LHS)
method, are completely different from each other. This can
be observed in Fig. 3 and the obtained results. In the case
of high similarity between the training and test samples or
high amount of training samples compared to test samples,
all surrogate models would exhibit high accuracy (either true
performance or over-fitting). In this case, since the same data
samples are utilized to construct all models (GP regression,
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TABLE 4. Breakdown of the best prediction performance of considered
characteristic parameters.

SVRM, MLP, CNN, TFRM) it is expected that all meth-
ods present similar high accuracy in case of training and
testing sample similarity. However, the results presented in
Tables 4-7 and Figs. 10-11 suggest the opposite.

Furthermore, with respect to results in Tables 4 and 6,
in case of increasing the complexity of the data set such
as adding noise, the performance of TFRM is still superior
to the nearest benchmark method (CNN) where the average
MAE of TFRM increase from 11.9 to 27.5 for SNR value
of 30dB, the CNN average MAE is increased from 23 to
38.3. Thus, even though increasing the complexity of the data
set either via changing the training test ratio or adding noise
would definitely have an impact on the overall performance
of all models that can be seen from the presented results, and
under such case still the proposed TFRM is superior to the
benchmark methods.

In the proposed model, the characteristic parameters of the
object are estimated without any information of the back-
ground media such as dielectric permittivity or water con-
tent which is in a proportionality relation with the dielectric
permittivity and conductivity of the underground according
to the Debye model. This approach is followed to account
for complexity of the generated scenarios with regard to the
relative dielectric permittivity in different subsurface medium
being dependent on the water content. As defined in the study

FIGURE 10. Inversion results of surrogate modeling with TFRM and 1-D
CNN for B-scan evaluation of raw time signals, the image where the dark
gray shows target and light gray predicted in the geometry of subsurface,
(a) (D = 137 mm, P = 146 mm, R = 25 mm) estimated by TFRM, (b) (D =

137 mm, P = 146 mm, R = 25 mm) estimated by CNN, (c) (D = 259 mm,
P = 163 mm, R = 18 mm) estimated by TFRM, (d) (D = 259 mm,
P = 163 mm, R = 18 mm) estimated by CNN (e) (D = 147 mm, P =

193 mm, R = 42 mm) estimated by TFRM, (f) (D = 147 mm, P = 193 mm,
R = 42 mm) estimated by CNN.

of reconstruction of permittivity images with deep convo-
lutional network [33], real dielectric features of the under-
ground medium are complex and it is difficult to obtain. For
this reason and because of the relationship between the travel-
ing time of signals (the depth) and the subsurface permittivity,
the error rates in the estimation of geophysical parameters of
the object can be negatively affected.

By adding water content parameters to input data, an addi-
tional analysis has been conducted to investigate the influence
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of knowledge about the background media on the proposed
model. The resulting average MAE of 11.1 [mm] and the
average RME of %15.30 has been obtained.

TABLE 5. TFRM- and CNN-based prediction of the characteristic
parameters in comparison with their true values for the selected test
scenarios.

FIGURE 11. Inversion results of surrogate modeling with TFRM and 1-D
CNN for B-scan evaluation of noisy raw time signals, the image where the
dark gray shows target and light gray predicted in the geometry of
subsurface, (a) (D = 259 mm, P = 163 mm, R = 18 mm) estimated by
TFRM [30 dB], (b) (D = 259 mm, P = 163 mm, R = 18 mm) estimated by
CNN [30 dB)], (c) (D = 204 mm, P = 241 mm, R = 27 mm) estimated
by TFRM [20 dB], (d) (D = 204 mm, P = 241 mm, R = 27 mm) estimated
by CNN [20 dB].

The characteristic parameter prediction is as follows: the
radius predicted with MAE of 7.3 [mm], RME of %33.2;

TABLE 6. Prediction performance of considered characteristic parameters
for noisy data sets.

TABLE 7. TFRM- and CNN-based prediction of the characteristic
parameters in comparison with their true values for the selected test
scenarios for noisy data sets.

the depth predicted with MAE of 9.2 [mm], RME of %4.3,
and the lateral position predicted with MAE of 16.59 [mm],
RME of %8.3. These numbers indicate that the incorporation
of the additional knowledge has a positive effect on the error
metrics.

D. VALIDATION OF DATA-DRIVEN SURROGATE MODELING
USING MEASUREMENT DATA
In this study, the performance of the proposed surrogate
modeling approach was also validated using measurement
data. 1D A-scans have been collected through the measure-
ments in a ‘‘sand pool’’ environment. Herein, the purpose is
to demonstrate that the proposed approach is also applica-
ble when using physical measurements as a source of data.
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FIGURE 12. The picture of the experimental environment and setup used
to generate the measurement data set.

FIGURE 13. Samples of measured A-scan signals obtained from the sand
pool by using the experimental set up. A-scan samples belong to a
scenario given by the object depth 115mm, lateral position 550mm, and
radius 25mm.

TABLE 8. Accuracy and the training time of the proposed and the
benchmark model, CNN. Shown are the averaged error metrics with
standard deviation obtained for ten independent runs using the
measurement data.

The experimental samples are obtained in the laboratory at
Yıldız Technical University. During the process, raw B-scan

TABLE 9. Breakdown of the prediction performance of the considered
characteristic parameters for hold-out data.

TABLE 10. TFRM- and CNN-based prediction of the characteristic
parameters in comparison with their true values for the selected hold-out
scenarios for measurement data set.

data corresponding to various scenarios are generated by the
impulse ground penetrating radar system, which is utilized
in various subsurface imaging operations [44], [45], [46].
Figure 12 shows the experimental setup. The measurements
are taken in awooden pool filledwith inhomogeneous dry soil
consisting of a mixture of small stones and sand. The object is
buried in there used as the scanning subsurface domain. It has
the dimensions of approximately 1.40 m (width), 0.22 m
(depth) and 1.15 m (length).

The experimental setup (GPR, transmitter and receiver
antennas) is manually moved above the soil along the scan-
ning path of the approximate length of 1.40 m. Each B-scan is
set as 382 (discrete time step) × 65 (A-scan number). Hence,
the input data length is 383, the first input data being the
A-scan ID according to lateral position at the scanning axis,
and the left part of the input being the amplitude of reflected
time signals (382 discrete time steps). Figure 13 presents
A-scans from a sample test scenario. The buried object which
has various radii of 10mm, 15mm, 20mm, 25mm and 30mm
is placed at different locations (depth and lateral positions as
550mm, 650mm, 770mm and 900 mm). The data set created
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FIGURE 14. Inversion results of surrogate modeling with TFRM and 1-D
CNN for B-scan evaluation of hold-out measurement data, the image
where the dark gray shows target and light gray predicted in the
geometry of subsurface, (a) (D = 110 mm, P = 770 mm, R = 20 mm)
estimated by TFRM, (b) (D = 110 mm, P = 770 mm, R = 20 mm) estimated
by CNN, (c) (D = 165 mm, P = 900 mm, R = 15 mm) estimated by TFRM,
(d) (D = 165 mm, P = 900 mm, R = 15 mm) estimated by CNN.

using 33 scenarios to train and test of the proposed surrogate
model on the measured A-scans.

Two case studies are used to investigate the performance of
the proposed surrogate modeling approach for measurement
data. The first one (Case 1) is based on K-fold validation [47].
The second one (Case 2) is when the available data is split into
training and hold-out data sets.

The unprocessed rawB-scan images aremapped to 1D data
(A-scan and A-scan ID combination, 383 × 1) for the use
in the proposed A-scan analysis technique to simultaneously
obtain characteristic parameters of the buried object in terms
of its depth, lateral position and radius. For the sake of
comparison, the CNN method has been used as a benchmark
technique. The results can be found in Tables 8 and 9, as well
as in Fig. 14.

These results are the average values for all characteristic
parameters (depth, lateral position, radius) obtained from

different runs of the models. Figure 14 and Table 10 demon-
strate the predicted characteristic parameters compared with
the actual object parameters. As it can be seen, the perfor-
mance of the proposed TFRM framework (average MAE of
25.9) is clearly better in terms of object characterization than
the benchmark (average MAE of 35.0). In particular, TFRM-
based prediction of the geophysical parameters is satisfactory
as indicated in Table 10 and Fig. 14, and it is considerably
better than that of CNN.

IV. CONCLUSION
This work introduced a novel approach to surrogate-assisted
characterization of buried objects. The presented approach
utilized AI methods, in particular, a deep-learning-based
TFRM framework. Its major advantage is computational effi-
ciency, and the ability of constructing accurate representa-
tion of the buried object characteristics using small training
datasets. The presented framework has been comprehensively
validated using a number of specific cases of perfectly electric
conductor (PEC)-object buried in different, dispersive soil
media, at various positions. It has also been compared to
a number of state-of-the-art benchmark methods, including
GP regression, MLP, SVRM, and CNN, all commonly used
for the same purpose. The results indicate competitive per-
formance of the proposed technique with the MAE value
of less than 12 (as compared to MAE of 23 for the best
benchmark approach, CNN). These results also demonstrate
that the TFRM framework can be viewed as efficient and
accurate approach to solving GPR-based buried object char-
acterization task under low computational budget. The pro-
posed methodology for estimating characteristic parameters
has been validated using noisy data (SNR value of 20 dB and
30 dB) and the measurement data. The error metrics and geo-
metrical representations of characteristic parameters indicate
that a novel regression surrogate model, TFRM is superior to
the benchmark models, including CNN. The future work will
include the extension of the proposed data-driven surrogate
modeling approach to characterization of multiple objects
and the increased number of characteristic parameters of the
buried objects.
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