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ABSTRACT Face anti-spoofing (FAS) is a technology that protects face recognition systems from
presentation attacks. The current challenge faced by FAS studies is the difficulty in creating a generalized
light variationmodel. This is because face data are sensitive to light domain. FASmodels using only red green
blue (RGB) images suffer from poor performance when the training and test datasets have different light
variations. To overcome this problem, this study focuses on light detection and ranging (LiDAR) sensors.
LiDAR is a time-of-flight depth sensor that is included in the latest mobile devices. It is negligibly affected
by light and provides 3D coordinate and depth information of the target. Thus, a model that is resistant to
light variations and exhibiting excellent performance can be created. For the experiment, datasets collected
with a LiDAR camera are built and CloudNet architectures for RGB, point clouds, and depth are designed.
Three protocols are used to confirm the performance of the model according to variations in the light
domain. Experimental results indicate that for protocols 2 and 3, CloudNet error rates increase by 0.1340 and
0.1528, whereas the error rates of the RGB model increase by 0.3951 and 0.4111, respectively, as compared
with protocol 1. These results demonstrate that the LiDAR-based FAS model with CloudNet has a more
generalized performance compared with the RGB model.

INDEX TERMS Deep learning, face anti-spoofing, LiDAR, point cloud.

I. INTRODUCTION
Face recognition systems are widely used in various applica-
tions owing to their convenience and excellent performance.
However, this technology is vulnerable to presentation
attacks, such as print, replay, and 3D masks. In particular,
2D printers and mobile devices can easily generate print
and replay attacks. Advances in scanners and 3D printers
have enabled the production of high-quality 3D masks.
Now, obtaining images of certain people’s faces through the
Internet is easy; consequently, sophisticated spoofs can be
created for malicious purposes. Therefore, numerous studies
have been conducted to improve the face anti-spoofing (FAS)
model.
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Traditionally, FAS has adopted handcrafted methods, such
as eye blinking [1] or gaze tracking [2]. Owing to the
rapid developments in deep learning technology, end-to-end
deep learning-based FAS models have also been studied
extensively [3], [4], [5]. Several of these studies focused
on commercial red green blue (RGB) cameras as it is an
excellent solution that considers both the performance and
cost [6], [7], [8]. However, some industries, such as mobile
payments, require a secure model with lower errors, even if
the costs are higher. Therefore, numerous studies have been
recently conducted to further improve the performance of
FAS models using advanced sensors [9], [10], [11], [12],
[13]. Advanced sensors include near-infrared (NIR), short-
wavelength infrared (SWIR), depth sensor, thermal, light
field, and polarization cameras. In practice, these sensors
perform excellently at detecting presentation attacks. The
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FIGURE 1. Proposed framework of FAS using LiDAR sensor. (a) Detecting a face with LiDAR application to obtain RGB, point cloud, and depth image.
Depth is created based on the point cloud. (b) During data pre-processing, point cloud and depth are combined through early fusion. (c) Features of
RGB and LiDAR data are extracted by separate networks and late fusion is performed. (d) FAS model determines whether the photographed face is
bonafide or spoofing.

light detection and ranging (LiDAR) sensors also have this
advantages. LiDAR-based multi-modal FAS model uses 3D
spatial and depth information as well as color information and
it leads excellent performance.

LiDAR sensors have another advantage in that they
provide FAS models that are robust against light variations
[14], [15]. One of the challenges that FAS studies face is
creating a generalized model for environments, such as light
and background [16], [17], [18], [19], [20]. In particular, face
data are significantly affected by the intensity of light [17].
This implies that when a FAS model is delivered in an actual
service, the face data obtained from different illuminations
may be misidentified. This can have catastrophic conse-
quences for financial services, such as mobile payments.
This problem can be overcome by collecting training data
from numerous environments. However, face data is difficult
to collect because of the nature of biometric data, and
collecting such data in various environments is even more
challenging. To solve this problem, this study focused on
LiDAR sensors. LiDAR sensors measure the distance by
calculating the round-trip delay of the light signal emitted by
the laser to the target. This provides 3D spatial coordinates of
the points that make up the target and are called point clouds.
Compared with RGB data, whose values fluctuate with light
variation, LiDAR point clouds are negligibly affected by
light. Therefore, using LiDAR sensors can reduce the impact
of light on the model performance. Finally, LiDAR sensors
have recently been integrated into mobile devices, making
it convenient for creating multi-modal models without the
need for additional hardware. This is beneficial as it allows
for real-world mobile applications such as those that use both
RGB cameras and LiDAR sensors.

In this study, the so-called CloudNet, a LiDAR-based
FAS model, is proposed. As shown in Fig. 1, CloudNet
determines the liveness of a face using RGB images, point
clouds, and depth images obtained from a LiDAR-based
camera. CloudNet consists of a RGB space and LiDAR

space networks to learn the separate weights for RGB, point
clouds, and depth data. The architecture of CloudNet is a
binary classifier based on Resnet34. This is because recent
multi-modal FAS methods have adopted Resnet [21], [22],
VGG [23] and so on as backbone for image classification
tasks. To verify the model performance, a dataset collected
by the LiDAR sensor was required. Because no public face
dataset has been built with LiDAR sensors, in this study, the
LiDAR dataset for FAS (LDFAS) was built using an Apple
iPad equipped with LiDAR sensors. Three protocols were
used to confirm the superiority of the model according to
light variation. In protocol 1, the training and test sets had the
same light domains. Protocols 2 and 3 constructed these sets
with different light domains. The RGB model and CloudNet
had error rates of 0.0667 and 0 for protocol 1, 0.4618 and
0.1340 for protocol 2, and 0.4778 and 0.1528 for protocol 3,
respectively. CloudNet increased the errors by 0.1340 and
0.1528, whereas the RGB model increased the errors by
0.3951 and 0.4111. This demonstrates that CloudNet with
LiDAR sensors is a more generalized model than the RGB
model. In addition, we investigated the trade-offs caused
by using the LiDAR sensor. The details of the costs will
be discussed in the experimental results and discussion
sections in Section V. The contributions of this study can be
summarized as follows.

• A method to create a generalized model for the light
domain was devised using a LiDAR sensor.

• The LDFAS, which contains point clouds and depth
using LiDAR sensors, was built.

• CloudNet was designed to efficiently train point clouds
using a LiDAR sensor.

The remainder of this paper is organized as follows.
Section II discusses related work. Section III describes
the dataset built herein (LDFAS). Section IV explains the
proposed method in detail. Section V covers the experi-
mental setup, evaluation metrics, experimental results, and
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ablation studies; additionally, it discusses the results. Finally,
Section VI concludes the study.

II. RELATED WORK
A. MULTI-MODAL FACE ANTI-SPOOFING
Deep learning-based FAS study can be divided into
two categories depending on the sensor used [24]. The
first category utilizes only a commercial RGB camera
[25], [26]. As previously mentioned, using RGB cameras is
a excellent way for creating low-cost and high-performance
FAS models. However, in certain high-security scenarios,
such as face payment and vault entrance, a extremely low
rate of false acceptance is required. As a result, a second
category which uses a special sensor, along with or without
a commercial RGB camera has been introduced. These
specialized sensors, including NIR sensors [9], [27], [28],
SWIR sensors [9], [28], depth sensors [9], [10], [27], [28],
thermal sensors [9], [11], [28], light-field cameras [12], and
four-way polarization cameras [13], increase the accuracy of
FAS models. SWIR sensors are known to effectively protect
against 3D mask attacks caused by moisture on real faces [9].
Reference [27] has shown through ablation study to reduce
the error rate of FAS models through the addition of depth
and IR sensors. Thermal sensors effectively block attacks
based on the fact that the average temperature of the human
face is 36–37◦C [11]. Additionally, a light-field camera and
four-directional polarization sensor improve the FAS model
performance [13]. This study belongs to the second case.
Herein, a LiDAR sensor, which is a time-of-flight-based
depth sensor, was used.

B. MULTI-MODAL FUSION
Multi-modal fusion is a method of combining data col-
lected from different modalities to achieve more accurate
results [29]. It is widely used in various fields from affective
computing [30] to autonomous driving [31]. Recent studies
have demonstrated that by using a combination of visual,
vocal, and textual data, it is possible to more accurately
identify psychological patterns from multiple perspectives
[30], [32]. In the field of autonomous driving, multi-modal
fusion has also been used [29], [33]. RGB images provide rich
visual information, but are sensitive to light variation. Point
clouds do not affect by light but have limitations in terms
of resolution. Autonomous driving study fuses RGB images
and point clouds together to use the data complementarily to
overcome their own limitations [29]. Currently, multi-modal
models often use one of three methods for combining data:
early fusion, middle fusion, and late fusion. Early fusion
combines data at the pre-processing stage, middle fusion
is used during the feature extraction phase, and late fusion
combines the output from multiple models to produce the
final result [29].

C. LiDAR SENSOR AND POINT CLOUD
The LiDAR sensor measures the distance by calculating the
round-trip delay time when the light signal emitted from the

laser reaches the target [34]. It has been used as an observation
technology for precise atmospheric analysis and global envi-
ronmental observation via mounting on aircraft and satellites,
and as a important technology for laser scanners and 3D
imaging cameras in autonomous driving. Recently, mobile
applications that use LiDAR for face recognition and clothes
measurement had also been studied [35], [36]. The sensor
generates point cloud data, which is a 3D representation of
the target. Point cloud can be learned in deep learning models
via three approaches [37]. The first is to project a point cloud
onto a 2D plane and then learn the features using conventional
2D convolutional neural networks (CNNs). The second is a
Voxel-based learning method that learns using a 3D space-
based 3D CNN called Voxel. Finally, the third is learning
pixel-by-pixel. The first methodwas used in the present study.
As is well-known, the feature distribution of LiDAR images
changes drastically at different image locations despite the
similarities between regular RGB and LiDAR images [38].
Recently, some methods have been devised for deep learning
models to effectively learn from point cloud data. Typically,
SqueezeSegV3 adapts the SAC block [38], whereas FPS-Net
uses the MRF-RDB block [39]. To solve this problem,
a separate network for each dataset was designed herein.
More information is provided in Section IV.

III. LiDAR DATASET FOR FACE ANTI-SPOOFING (LDFAS)
The LDFAS was built to develop a LiDAR-based FAS
model. The Dataset is composed of 8,640 face data collected
from 36 Koreans. (2880 images in each of RGB, point cloud,
and depth configurations). This section describes the LiDAR
application, data collection procedure, comparision with
multi-modal based public datasets, and evaluation protocols.
Examples of these datasets are presented in Fig. 2.

A. LiDAR APPLICATION
An artkit-based mobile app that simultaneously generated
RGB, point cloud, and depth data was used [35]. This camera
application also provides information on how to map all
points in the point cloud to a specific pixel of the RGB image.
Depth images are derived from point clouds. A 3Dpoint cloud
had 45,192 points and depth had a resolution of 256 × 192,
and RGB was generated at 1440 × 1080 pixels. The RGB
image and the point cloud were each captured with the 12MP
Wide Camera and the TOF 3D LiDAR scanner, respectively.

B. DATA COLLECTION PROCEDURE
The participants were instructed to sit in front of the camera
and look towards the sensor. LDFAS dataset are divided into
three subsets: indoor, outdoor and indoor (dark). Table 2
shows the explanation of LDFAS’s subsets. During the indoor
subset, the participants were positioned 70-90cm away from
the camera while bonafide and 3D mask were photographed.
The lighting was maintained between 170-180 lux. The
participants were also asked to slightly rotate their heads and
20 images were taken without video. The outdoor subset was
collected during the day and data was collected at different
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FIGURE 2. Examples from the LDFAS. Face data of three persons taken from LDFAS. The samples belong to indoor, outdoor, and indoor(dark)
subsets. The point clouds are constructed using an online 3D viewer (https://www.creators3d.com/online-viewer).

TABLE 1. Summary of statistics of the LDFAS and comparison to multi-modal based public datasets. # of Bonafides and # of Spoofings means the
number of images.

locations and at different times. The distance between the
camera and the participants was also adjusted randomly.
The indoor (dark) subset was collected in a dark indoor
environment with varying degrees of darkness. The distance
between the camera and the participants was also adjusted
randomly and the participants were asked to slightly rotate
their heads, 20 images were taken without video.

TABLE 2. Table of Explanation for LDFAS subsets.

Print attack and replay attack were made with bonafide.
All print attacks and replay attacks in the three subsets were
photographed under the same lighting conditions at the same
location and at the same time, respectively. An interesting
point is that, as shown in Fig. 2, replay attacks taken
by the LiDAR sensor did not appear as a completely flat
surface. This phenomenon occurred because the light shot
from the LiDAR sensor was reflected on the surface of
the device reproducing the replay attack. Therefore, it was
important to collect all replay attacks in the LDFAS under
the same conditions. Print attacks were made with a laser
printer and replay attacks were made by playing on an
Apple’s iPad device. The 3Dmaskwasmade of thermoplastic
polyurethane (TPU) and the Cubicon 3DP 320C Single Plus

3D Printer. The numbers of bonafides and attacks are listed
in Table 3.

TABLE 3. Table that shows the number of data in subsets.

C. COMPARISION WITH MULTI-MODAL BASED PUBLIC
DATASETS
Recently, several public datasets have been built for study
on multi-modal based FAS in recent years. In comparison to
other datasets, Table 1 shows the novel aspect of LDFAS.
To the best of our knowledge, the most recent datasets
are CeFA, HQ-WMCA, and PADISI-Face [9], [27], [28].
CeFA is a large dataset with 1,607 participants and includes
presentation attacks in the form of impersonation using RGB
camera, depth, and IR sensors [27]. HQ-WMCA also is a
large dataset and includes presentation attacks in the form
of impersonation and obfuscation, it was constructed using
RGB, depth, NIR, SWIR, and thermal sensors [9]. PADISI-
Face is also a large dataset with 360 participants, it is
composed of various modalities similar to HQ-WMCA and
includes presentation attacks in the form of impersonation
and obfuscation [28]. The main difference in the LDFAS
dataset that we have built is the use of a new modality called
LiDAR. The LiDAR sensor generates point cloud data, which

VOLUME 11, 2023 16987



Y. Kim et al.: CloudNet: A LiDAR-Based Face Anti-Spoofing Model That Is Robust Against Light Variation

FIGURE 3. Architecture of CloudNet.

is why we constructed a dataset composed of RGB, point
cloud, and depth map.

D. EVALUATION PROTOCOLS
The goal of this study was to develop a generalized FAS
model considering light variations. Three protocols were
designed for this purpose. Protocol 1 corresponds to when
the learning and test datasets are in the same light conditions.
By contrast, protocols 2 and 3 used different light conditions.
The indoor, outdoor, and indoor (dark) sets were tested while
training only the indoor sets. Details of each protocol are
listed in Table 4.

TABLE 4. Description of evaluation protocols.

IV. PROPOSED METHOD
In this section, the CloudNet architecture is explained. The
structure is composed of a RGB space and LiDAR space
networks. Each network extracts facial features from theRGB
and LiDAR data (point cloud and depth). CloudNet performs
both early fusion and late fusion to classify bonafide and
spoofing images. Herein, binary cross-entropy was used as
the loss function. The architecture of the model is shown in
Fig. 3.

A. ARCHITECTURE
The input data for CloudNet are RGB, point clouds, and
depth. CloudNet performs two fusion operations. The first
one is an early fusion of point cloud and depth. The second
one is a late fusion of the RGB space network and the
LiDAR space network. The fusion operation is represented
as follows.

Ffusion = [I1, I2] (1)

where F represents the fusion operation. Accordingly, the
entire CloudNet network can be described as follows.

Y = σ ( [Nrgb(Irgb), Nlidar ([Ipc, Id ])] ) (2)

where Irgb, Ipc, and Id represent the RGB, point cloud,
and depth, respectively; Nrgb and Nlidar represent the
RGB and LiDAR networks, respectively; and σ denotes
the sigmoid function, which is a non-linear activation
function [40]. Herein, both the RGB and LiDAR networks
were implemented using Resnet34, which is a CNN-based
network exhibiting outstanding performance in image clas-
sification [41]. The difference between the networks used in
previous studies and Resnet34, which was used herein, is that
Resnet34 does not have a fully connected layer. After the first
early fusion, the input images passes through the Resnet34-
based inner networks for the second late fusion.When the late
fusion operation is completed, they go to the fully connected
layer and finally pass to the activation function.

The CloudNet consists of two networks owing to the
characteristic of point cloud. The feature distribution of
LiDAR images differs significantly from that of RGB images.
As shown in Fig. 4, the feature distribution of RGB was
confirmed to be different from that of the point cloud and
depth images. A CNN applies the same weight matrix to all
channels of the input image. Therefore, herein, a model that
learns features from RGB and LiDAR data separately was
designed.

B. LOSS FUNCTION
The FAS model is a binary classification method that
classifies input images as bonafide or spoofing. Herein,
a binary cross-entropy loss function was introduced to train
the proposed network; this function was also used in [42],
[43], and [44]. The loss function can be described as follows.

BCELoss = −(y log(p) + (1 − y) log(1 − p)) (3)

where y is the ground truth value and p is the predicted value.
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FIGURE 4. Distribution of RGB, point cloud, and depth of three random data of indoor protocol. Histograms of (a) red, (b) green, and (c) blue
contributions of an RGB image. Histograms of (d) x-, (e) y-, and (f) z-coordinates of the point cloud. (g) Histogram of the depth image. The point cloud and
depth exhibit very different distributions compared with the RGB.

V. NUMERICAL EXPERIMENTS
In this section, the experimental setup, evaluation metrics,
experimental results, which are conducted followed by
three protocols presented in Section III, ablation study, and
discussion are presented.

A. EXPERIMENTAL SETUP
This study argues that a LiDAR sensor can provide an FAS
model that is robust against light variation. Additionally,
CloudNet is suggested suitable for training with the RGB,
point cloud, and depth images. To support this argument,
three models, namely Resnet34 with RGB, Resnet34 with
three shots, and CloudNet with three shots (referred to as
RGB, LiDAR, and CloudNet models, respectively), were
employed herein. The models were trained and tested
according to the three protocols mentioned in Section III.
RGB, point cloud, and depth were all resized to 180 × 180.
In training stage, we used the Adam optimizer and set
the learning rate to 1e-3. The batch size was 4 on
single 2080Ti GPU. We trained models with maximum
1000 epochs. He Initialization was used as the weight
initialization method. All codes were implemented with
pytorch.

B. EVALUATION METRICS
To evaluate the performance of CloudNet, first, the bonafide
presentation classification error rate (BPCER), attack pre-
sentation classification error rate (APCER), and average
classification error rate (ACER) were used as the evalu-
ation metrics. These metrics were proposed in ISO/IEC
30107-3:2017 for performance assessment of presentation
attack detection mechanisms [45]. BPCER is the proportion
of bonafides incorrectly rejected as an attack. APCER is
the percentage of attacks incorrectly accepted as bonafides.
ACER is the average of BPCER and APCER. Additionally,
a receiver operating characteristic (ROC) curve was used.

To quantitatively compare the ROC curves, the area under
curve (AUC) values of the graphs were determined.

C. EXPERIMENTAL RESULTS
Table 5 reports the models’ BPCER, APCER, and ACER
values under protocol 1. The ACER values for the RGB,
LiDAR, and CloudNet models were 0.0667, 0.025, and 0,
respectively. CloudNet performed the best, followed by the
LiDAR and RGB models. The experimental results indicate
that when the test set is in the same light domain as
the training set, using point cloud and depth, although
subtle, improves the performance of the FAS model. Further,
CloudNet allows learning point cloud and depth images more
effectively.

TABLE 5. BPCER, APCER and ACER under protocol 1.

Table 6 reports the models’ BPCER, APCER, and ACER
values under protocol 2. The ACER for the RGB model
was 0.4618. The error rate of the model increased by
0.3951 compared with protocol 1. By contrast, the ACER
values for the LiDAR and CloudNet models were 0.1958 and
0.1340, respectively. This corresponds to an increase of
0.1708 and 0.1340, respectively. CloudNet had the smallest
increase in errors, followed by the LiDAR and RGB models.
This increase in the error rate shows how generalized the
model is with respect to light variation.

Table 7 reports the models’ BPCER, APCER, and ACER
values under protocol 3. Compared with protocol 1, the
ACER values of the models increased by 0.4111, 0.3340,
and 0.1528, respectively. Similar to the experimental results
obtained under protocol 2, CloudNet exhibited the smallest
ACER growth, followed by the LiDAR and RGB models.
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FIGURE 5. ROC curves of RGB model, LiDAR model, and CloudNet for protocols 1, 2, and 3, respectively. The AUC values are reported in Table 8.

TABLE 6. BPCER, APCER and ACER under protocol 2.

TABLE 7. BPCER, APCER and ACER under protocol 3.

Furthermore, the performance of themodels was compared
based on AUC values. First, ROC curves, shown in Fig. 5,
were plotted. The AUC values were measured to quantita-
tively compare the ROC curves. Table 8 reports the AUC
values of the three models. For protocol 1, the RGB, LiDAR,
and CloudNet models had AUCs of 0.9956, 0.9931, and 1.0,
respectively. For protocol 2, the AUC values decreased by
0.4594, 0.0661, and 0.1198, respectively. For protocol 3, they
decreased by 0.3705, 0.1552, and 0.1094, respectively. This
reduction in AUC values also supports the argument that
LiDAR data render FASmodels robust against light variation.
The AUC value under protocol 3 also demonstrates that
CloudNet is a better model than the LiDAR model. However,
under protocol 2, the LiDAR model had a higher AUC value
than that of CloudNet.

TABLE 8. AUC values under three protocols.

Finally, we investigated the trade-offs caused by using
the LiDAR sensor. Table 9 shows the number of model
parameters, latency and Multiply-Adds (MAdds). The delay
timewas calculated by running the program that tests 100 data
100 times and taking its average and standard deviation. The
latency of the LiDAR model was 2% higher than the RGB
model. The number of MAdds for the parameters increased

by 0.01M, 0.1G. On the other hand, CloudNet’s latency
increased by 16% compared to the RGB model and the
number of parameters and MAdds also increased by almost
double.

TABLE 9. Latency, params and MAdds of models.

D. ABLATION STUDY
In addition, ablation studies were performed. Additional
experiments were performed using the point cloud and
depth data. For the multi-modal models, the approach of
early fusion, late fusion, and hybrid fusion was applied.
Experiments in Section IV were conducted for the cases of:
point cloud only, depth only, RGB and point cloud combined,
and RGB and depth combined. The experimental results are
listed in Table 10. According to the results of the point cloud
and depth experiments conducted under protocol 1, these
data are not suitable for performing FAS operations on their
own compared to RGB model. Unlike the RGB model with
an error rate of 0.0667, the point cloud and depth models
exhibited high error rates of 0.3028 and 0.2750, respectively.
Essentially, if the learning and test datasets are in the same
domain, RGB provides stronger discrimination compared
with point cloud or depth. However, the experimental results
obtained under protocols 2 and 3 suggest that the point cloud
and depth are negligibly affected by light variations. This is an
obvious advantage that RGB does not have. Next, the model
performance was investigated using RGB and point cloud,
and RGB and depth. The experimental results indicated that
models built using RGB and depth performed better than
those constructed using RGB and point cloud. Furthermore,
additional ablation studies confirmed that training RGB and
LiDAR data separately was effective. All models, including
those using RGB and point cloud, RGB and depth, RGB,
point cloud, and depth, demonstrated better performance
when using a late fusion approach instead of an early fusion
approach. Additionally, when training RGB, point cloud, and
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FIGURE 6. Feature distribution diagrams of RGB, LiDAR, and CloudNet models expressed using T-distributed stochastic neighbor embedding (T-SNE)
technique. Blue dots represent bonafides and red dots represent spoofing attacks. Plot results obtained using (a) Resnet34 with RGB. (b) Resnet34 with
RGB, point cloud and depth, and (c) CloudNet with RGB, point cloud and depth.

TABLE 10. BPCER, APCER and ACER including ablation study under three protocols.

depth together, the use of both early and late fusion, such as
in the CloudNet model, resulted in better performance than
using only late fusion.

Lastly, the extracted features were visualized to determine
how well the proposed model classifies bonafide and spoof-
ing images. The T-distributed stochastic neighbor embedding
(T-SNE) technique was used to transform high-dimensional
features extracted by deep learning models into 2D fea-
tures [46]. This technique was applied to the models we
experimented with in section IV. Fig. 6 shows the feature
distributions of the models expressed by the T-SNE.

E. DISCUSSION
Through the experiments, we have found that the perfor-
mance of RGBmodel is severely poor when tested on datasets
with domain shift in light. Compared to protocol1 where the
light domains of the training and test sets were the same,
the performance of the RGB model greatly decreased in
protocols 2 and 3 where the light domains were different.
On the other hand, LiDAR sensors have been found to
improve the performance of FAS models and make them
more robust to light changes, as confirmed by experimental
results and an ablation study. In addition, CloudNet could
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further improve the performance of the LiDAR model. This
suggests that optimizing the way LiDAR data is trained
can improve the FAS model. Meanwhile, it is necessary
to note that there is a trade-off involved. The LiDAR
model’s computational cost, measured in the number of
model parameters and MAdds, is similar to that of the RGB
model, with only a small difference of 0.01M and 0.1G.
However, CloudNet’s computational cost is twice that of
the RGB model. This suggests that the increase in cost is
primarily due to the CloudNet structure, rather than the use
of LiDAR sensor. Therefore, it is considered a future study
to reduce the cost of the CloudNet model while maintaining
performance.

VI. CONCLUSION
In this study, an FAS model that uses a LiDAR sensor
with an RGB camera was proposed. LiDAR provides 3D
coordinate and depth information and has the advantage
of robustness to light variation. Herein, the LDFAS was
constructed to verify the superiority of the model. LDFAS
consists of three subsets with different light variations.
Based on this, with three different protocols were chosen
for experimenting: 1) the same light domain, 2) brighter
light domain, and 3) darker light domain, compared with
the training set. Additionally, CloudNet was designed to
learn separate weights for the RGB and LiDAR data (point
cloud and depth). The experimental results revealed that
using a LiDAR sensor provides robustness to light variation
compared with the RGB model. In addition, CloudNet
performed better than RGB and LiDAR models. However,
the current CloudNet model also had the drawback of being
heavier than a regular LiDARmodel. This means that there is
a possibility for LIDAR-based FAS models to improve. The
task of studying a better LiDAR-based FAS model through
model lightweighting will be left as a future study task.
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