
Received 10 January 2023, accepted 27 January 2023, date of publication 6 February 2023, date of current version 14 March 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3242866

Graph-Assisted Bayesian Node Classifiers
HAKIM HAFIDI 1,2, (Student Member, IEEE), PHILIPPE CIBLAT 2, (Senior Member, IEEE),
MOUNIR GHOGHO 1, (Fellow, IEEE), AND ANANTHRAM SWAMI3, (Life Fellow, IEEE)
1TICLab, College of Engineering and Architecture, Université Internationale de Rabat, Rabat 11103, Morocco
2LTCI, Telecom Paris, Institut Polytechnique de Paris, 91764 Palaiseau, France
3U.S. Army Research Laboratory, Adelphi, MD 20783, USA

Corresponding author: Hakim Hafidi (hakim.hafidi@uir.ac.ma)

ABSTRACT Many datasets can be represented by attributed graphs on which classification methods may be
of interest. The problem of node classification has attracted the attention of scholars due to its wide range of
applications. The problem consists of predicting nodes’ labels based on their intrinsic features, features of
their neighboring nodes and the graph structure. Graph Neural Networks (GNN) have been widely used to
tackle this task. Thanks to the graph structure and the node features, they are able to propagate information
over the graph and aggregate it to improve the classification performance. Their performance is however
sensitive to the graph topology, especially its degree of impurity, a measure of the proportion of connected
nodes belonging to different classes. Here, we propose a new Graph-Assisted Bayesian (GAB) classifier,
which is designed for the problem of node classification. By using the Bayesian theorem, GAB takes into
consideration the degree of impurity of the graph when classifying the nodes. We show that the proposed
classifier is less sensitive to graph impurity, and less complex than GNN-based classifiers.

INDEX TERMS Node classification, attributed graphs, degree of impurity, Bayesian framework.

I. INTRODUCTION
Attributed graphs are useful tools for representing interactive
phenomena such as social networks [1], financial market
fluctuations [2], road or air traffic, human scene [3], brain
activity [4], or gene interaction [5]. Graphs are described by
i) a set of nodes associated with the entities (subscribers in
social networks, planes in air traffic, etc.) and ii) a set of edges
connecting them in order to represent their relationships.
Graphs are said to be attributed when nodes and/or edges
have assigned values, called features. While this type of data
is rich for inference, it is not well suited to standard signal
processing or machine learning techniques. The adaptation
of these techniques to graph data has been the subject of
numerous studies that aim to perform graph classification
(e.g., molecules, handwritten characters) [6], [7], [8], edge
prediction (e.g., social network links) [9], node regression or
classification (e.g., citation networks) [10], [11].

This works focuses on node classification, which is one
of the most important tasks of machine learning on graphs.
Its objective is to predict the class (called also label) of

The associate editor coordinating the review of this manuscript and

approving it for publication was Jolanta Mizera-Pietraszko .

each unlabeled node of the graph by relying on both nodes’
features and nodes’ connections within the graph.

In most real world graphs, connections between nodes are
far from arbitrary. In social networks for instance, people are
more likely to connect with thosewho share similar character-
istics or areas of interest [12]. A citation network has connec-
tions between articles if one cites another, so links between
articles addressing the same research topic are more likely
than links between those addressing different topics. [13].
As in social sciences literature, a homophilic graph can be
described as one where similar nodes tend to be connected
to each other [12]. Using this principle, one should make
use of the topology of the graph to determine the class of
a node, rather than relying solely on intrinsic features, as is
commonly done with standard machine learning approaches.

When taking into account the graph topology in a classifier,
the first question is: what kind of information to share over the
graph? There are two approaches.
• Label Propagation (LP): only the labels (true or esti-
mated) are propagated through the adjacent nodes in
the graph to make a new decision. Several methods
relying on voting have been developed to merge labels’
information [14]. The labels at the initial step are either

VOLUME 11, 2023 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 23989

https://orcid.org/0000-0002-8665-3197
https://orcid.org/0000-0002-2310-4115
https://orcid.org/0000-0002-0055-7867
https://orcid.org/0000-0002-2298-5037

H. Hafidi et al.: Graph-Assisted Bayesian Node Classifiers

provided or estimated using the node’s features only, i.e.
ignoring the graph.

• Feature propagation (FP): the nodes’ features are propa-
gated through the adjacent nodes at each step. Typically,
a weighted averaging of the current features of adjacent
nodes (sometimes followed by a nonlinear function) is
carried out for each node at each step.

In this paper, we focus only on the FP approach. Graph neu-
ral networks (GNN) have recently been developed in order
to adapt Neural Networks to attributed graphs. Typically,
at each layer, they linearly combine the features of adjacent
nodes and then apply an activation function. The training on
labelled nodes consists of finding out the best weights of each
linear combination. In this paper, we propose to derive in
closed-form a classifier relying on (Bayesian) decision the-
ory. As a result, we obtain an interpretable algorithm based on
some parameters whose estimation step replaces the training
phase of the GNN.

Before we go any further, let us briefly review the works
on FP based on GNN. The most common way has been to
extend the convolutional neural network (CNN) to the graph
structure [15] by redefining the convolution operator on the
graph domain. These CNN-based methods suffer from a high
computational cost due to the necessity of performing an
eigendecomposition of the graph Laplacian. To overcome
this problem, different approaches avoid explicit computation
of this eigendecomposition by using a polynomial expan-
sion to represent the filters [16], [17]. More specifically,
in [17], the authors consider a first-order polynomial approx-
imation to build a neural network which they called Graph
Convolutional Network (GCN) to do semi-supervised node
classification. The GCN can also be seen as an aggregation
operator, i.e. the representation of a node is obtained by
averaging its intrinsic features with those of its first-order
neighbors. The authors in [18] and [19] respectively intro-
duced Graph Attention Network (GAT) and Attention-based
Graph Neural Network (AGNN) where different weights
are assigned to neighbors based on nodes’ and edges’ fea-
tures. Other researchers explored higher-order (or equiva-
lently, multi-hop) information of the graph by repeatedly
mixing features of neighbors at various distances [20] or by
modifying the propagation strategy of GCN [21]. Although
these approaches have achieved remarkable results on a
number of benchmark datasets, we notice that their per-
formance vary significantly across datasets. For instance,
the gain compared to a simple logistic regression (i.e.
no contribution from the neighbors) highly depends on the
dataset.

We use the following example to explain the underly-
ing reason for the performance variations over datasets.
We define p̄ as the average probability of intra-class connec-
tion (i.e., the probability that two nodes from the same class
are connected), and q̄ as the average probability of inter-class
connection (i.e., the probability that two nodes from differ-
ent classes are connected). The degree of impurity of the
graph may be represented by the ratio q̄/p̄. Datasets with a

TABLE 1. Intra- and inter-class connection probabilities and classification
accuracies.

degree of impurity less than 1 are called assortative [22] and
correspond to graphs containing communities (nodes with
similar features are connected to each other). In Table 1,
we show the classification accuracies of a logistic regression
classifier and a two-layer GCN for two widely-used datasets
used for benchmarking GNN algorithms. We also display
the estimated values for p̄, q̄ and the degree of impurity
q̄/p̄. As expected, node classification using graph structure
is easier with graphs offering low degree of impurity (like
Cora). This may explain the performance variations over
datasets.

In this paper, a different point of view is taken by proposing
a Bayesian classifier which does not rely on a neural network
structure and is able to better adapt to the level of impurity
than GNN-based classifiers.

Our approach to tackle the node classification problem
is related to the so-called collective classification [23], [24]
which refers to the classification of a set of connected nodes
by using their intrinsic features and/or labels and their relative
connections. Optimal collective classifications are carried out
by maximizing the joint likelihood. However, optimal (and
so exact) inference is an NP-hard issue in general, and is
thus generally not well suited for the real-world networks.
As a consequence, most collective classifiers rely on devel-
oping approximate inference [23], [25]. Some recent studies
combine methods from collective classification with neural
networks to ensure a better end-to-end learning, e.g. [26].
However, all the above-mentioned algorithms only make use
of features of first-hop neighbors and thus rely on a prop-
agation step to make use of higher-hop nodes’ information
in an iterative manner. We instead introduce a new classifier
that directly takes into account higher-hop nodes. This has
the additional advantage of being more interpretable. In our
previous work [27], we proposed a first order version of
the Bayesian based classifier which is only able to take
into account first order neighbors. In this paper, we conduct
detailed derivations of the classifier which allow us to con-
sider higher orders. We also conducted a deeper comparison
between our classifier and GNN based classifiers in terms of
performance and complexity.

Let us define some notations. Let G = (V, E) be an undi-
rected graph where V is a set of nodes and E ⊆ V × V is
a set of edges. Each node u ∈ V is represented by a feature
vector xu ∈ RF×1 where F is the number of node’s features.
An adjacency matrix A ∈ RN×N represents the topological
structure of the graph where N = |V| is the number of
nodes in the graph. Without loss of generality we assume

23990 VOLUME 11, 2023

H. Hafidi et al.: Graph-Assisted Bayesian Node Classifiers

FIGURE 1. An illustration of second order GAB for a node of interest u where N1(u) = {1, 2, 3} and N2(u) = {4, 5, 6, 7, 8}. First, we estimate the
probability of belonging to each one of the classes based on nodes’ features D(xu) = (D1(xu), . . . , Dk (xu)) either by training a multi-layer perceptron or
by estimating parameters of the generating distributions of nodes’ features. Then we compute Pu = (Pu(1), . . . , Pu(k)) using R1 as a transition matrix
for nodes in N1(u) and R2 for nodes in N2(u) (See Eq. (14)).

the graph to be unweighted i.e Au,v = 1 if (u, v) ∈ E and
Au,v = 0 otherwise. Let X = [x1, x2, . . . , xN]⊤. Let yu
denote the label of the u-th node and let K denote the number
of classes, i.e. yu ∈ {1, . . . ,K }.

The objective of node classification in this paper is to
predict the class of all unlabeled nodes in the graph given
the adjacency matrix A, the feature matrix X and the set of
available labels.

The paper is organized as follows: in Section II, we intro-
duce our new graph-assisted Bayesian classifier (GAB).
In Section III, we compare our approach with GNN-based
classifiers. In particular, we show our classifier has the shape
of a GNN only in the noise-free case (i.e., q = 0) and
under further conditions on the distribution of the features.
In Section IV, complexity issues are discussed. In Section V,
numerical results are provided. Comparison with existing
GNN-based methods are done on real datasets whose degree
of impurity has been modified by injecting artificial noise
(i.e., introducing fictitious edges between classes). We see
that our proposed Bayesian classifier offers better perfor-
mance than GNN-based classifiers. In Section VI, concluding
remarks are drawn.

II. NEW GRAPH-ASSISTED BAYESIAN CLASSIFIER
A. THE CLASSIFIER DERIVATION
In this section, we derive our new GAB classifier based on
Maximum A Posteriori (MAP) principle. We develop this
classifier for a node u, called node of interest in the rest of the
paper. Obviously, in practice, any node in the graph will be
seen as a node of interest in a Round-Robin manner. We first
consider the entire graph and then, in order to simplify the
derivations, we consider only the information provided by the
hop distance between the node and a node of interest.

Let

• Vu be the set of nodes which will be involved in the
classification of node u. Node u is not included in this
set.

• Xu = {xu} ∪ {xv, v ∈ Vu} be the set of feature vectors of
node u and its ‘‘helping’’ nodes.

• Dk be the distribution generating the feature vectors of
nodes belonging to class k .

We do not assume that theses distributions are known.
We instead either assume a shape for these distributions and
then estimate their parameters, or approximate them using
a neural network. The objective is to compute the posterior
probability that a node u belongs to class k knowing informa-
tion on the graph IG (typically its partial connectivity through
the set Vu), and Xu. Consequently, the classifier makes the
following decision

ŷu = argmax
k

Pu(k).

where the posterior probability that needs to be computed is
defined as:

Pu(k) = P(yu = k|Xu, IG).

Using the Bayes’ rule, we obtain

Pu(k) = P(yu = k|Xu, IG)

=
P(Xu|yu = k, IG)P(yu = k|IG)

P(Xu|IG)
∝ P(Xu|yu = k, IG)P(yu = k) (1)

since the denominator does not depend on k and the prior
probability of an individual node u to belong to class k does
not depend on the graph information. The above posterior
probability can be rewritten as

Pu(k) ∝ Qu(k)πk (2)

with {
Qu(k) = P(Xu|yu = k, IG),
πk = P(yu = k).

Let V be the size of the set Vu. Let {v1, · · · , vV } be the
nodes of Vu. In Appendix A, we show that

Qu(k) = Dk (xu)
K∑

kv1 ,··· ,kvV =1

V∏
ℓ=1

Dkvℓ (xvℓ)

×p(yv1 = kv1 , · · · , yvV = kvV |yu = k, IG). (3)

VOLUME 11, 2023 23991

H. Hafidi et al.: Graph-Assisted Bayesian Node Classifiers

Eq. (3) cannot be simplified further since the term p(yv1 =
kv1 , · · · , yvV = kvV |yu = k, IG) cannot be split into indi-
vidual posterior probabilities. Indeed according to Example
1 below, one can see that in general p(yv1 = kv1 , · · · , yvV =
kvV |yu = k, IG) ̸=

∏V
ℓ=1 p(yvℓ = kvℓ |yu = k, IG).

Example 1: Let us consider the graph G = (V, E), where
V = {A,B,C} and E = {(B,C)}. We set the number of
classes to K = 3. We assume that only nodes belonging to
the same class can be connected. We now compute P(yB =
k, yC = k ′|yA = 1, IG) in two different cases.

In the first case, we consider that IG provides only informa-
tion on the connections between the pairs (A,B) and (A,C).
Consequently, we only know A is not connected to B and A
is not connected to C . This leads to the following expression
for k ∈ {2, 3}

P(yB = k|yA = 1, IG) = P(yC = k|yA = 1, IG) = 0.5, (4)

and

P(yB = k, yC = k ′|yA = 1, IG) = 0.25 (5)

which is equal to P(yB = k|yA = 1, IG) × P(yC = k ′|yA =
1, IG).
In the second case, we consider that IG provides informa-

tion on all possible connections. Once again, for k ∈ {2, 3}

P(yB = k|yA = 1, IG) = P(yC = k|yA = 1, IG) = 0.5. (6)

But we now have for k ̸= k ′ ∈ {2, 3}

P(yB = k, yC = k ′|yA = 1, IG) = 0, (7)

which is different from P(yB = k|yA = 1, IG) × P(yC =
k ′|yA = 1, IG). □

Consequently, in order to pursue analytical derivations
offering practical algorithms, we make the following simpli-
fying assumption:

p(yv1 = kv1 , · · · , yvV = kvV |yu = k, IG)

=

V∏
ℓ=1

p(yvℓ = kvℓ |yu = k, IG) (8)

which corresponds to assuming statistical independence
between the classes of node u’s neighboring nodes given the
graph. As seen in Example 1, this independence generally
does not hold true, but it is required to pursue closed-form
derivations.

Using Eqs. (3) and (8), we obtain

Qu(k) = Dk (xu)
K∑

kv1 ,··· ,kvV =1

V∏
ℓ=1

Dkvℓ (xvℓ)

×

V∏
ℓ′=1

p(yvℓ′ = kvℓ′ |yu = k, IG)

= Dk (xu)
K∑

kv1 ,··· ,kvV =1

V∏
ℓ=1

Dkvℓ (xvℓ)

×p(yvℓ = kvℓ |yu = k, IG)

= Dk (xu)

×

V∏
ℓ=1

(
K∑

k ′=1

p(yvℓ = k ′|yu = k, IG)Dk ′ (xvℓ)
)

.

Finally, we get

Qu(k) = Dk (xu)
V∏

ℓ=1

(
K∑

k ′=1

ru,vℓ (k, k
′)Dk ′ (xvℓ)

)
(9)

with

ru,v(k, k ′) = p(yv = k ′|yu = k, IG). (10)

The term ru,v(k, k ′) is the probability to be in class k ′ for
node v given that node u is in class k and that we have partial
(or total) information on the graph IG . Notice that the term
ru,v(k, k ′) depends on the graph statistics as we will see in
Eq. (13). In general, deriving a closed-form expression of
ru,v(k, k ′) with respect to the graph statistics is very difficult
due to combinatorial complexity.

Before going further, we make the following remark.
Remark 1 (How toTake Into Account the Labelled Nodes?):

Some of the nodes in Vu may have already been labeled,
so their classes are known. Eq. (9) should then be adapted
to account for this knowledge. Let us consider that node v1 is
labelled and belongs to class k1. The following term

K∑
k ′=1

ru,v1 (k, k
′)Dk ′ (xv1)

should be replaced with

K∑
k ′=1

ru,v1 (k, k
′)δk ′,k1 = ru,v1 (k, k1)

where δ is the so-called Kronecker index. Consequently,
if Vu = Lu ∪ Uu with Lu being the set of labelled nodes and
Uu being the set of unlabelled nodes, we have that

Qu(k) = Dk (xu)
∏
v∈Lu

ru,v(k, kv)

×

∏
v∈Uu

(
K∑

k ′=1

ru,v(k, k ′)Dk ′ (xv)

)

where kv is the class of the labelled node v.
As an example, we consider Lu = {v1} and Uu = ∅, and

obtain

Qu(k) = Dk (xu).ru,v1 (k, k1),

which is the likelihood function for xu assuming class k , cor-
rected by a term depending on the probability of connection
between class k and that of the labelled neighbor node.

In order to obtain a practical algorithm, IG for each node
of interest, u, will be made to consist of only the distances
between this node and other nodes of the graph, i.e.,

IG = {distance of each node of G to root u}.

23992 VOLUME 11, 2023

H. Hafidi et al.: Graph-Assisted Bayesian Node Classifiers

Therefore, we order Vu as follows

Vu = N1(u) ∪N2(u) · · · ∪N1u (u)

where Nd (u) is the set of d-hops neighbors of u and 1u is
the maximum distance from node u; we have that 1u ≤ V .
Hence, Eq. (9) can be rewritten as

Qu(k) = Dk (xu)

×

1u∏
d=1

∏
v∈Nd (u)

(
K∑

k ′=1

ru,v(k, k ′)Dk ′ (xv)

)
.

The above expression will be next simplified further.
We recall that ru,v(k, k ′) is equal to p(yv = k ′|yu = k, IG).

As IG now merely consists of the distances between each
node and the node of interest, ru,v(k, k ′) no longer depends on
the specific path(s) connecting u to v but only hop distance,
between node v and node u. Moreover we assume that the
probability of connection between two nodes only depends
on the nodes’ classes but not on the specific nodes. Conse-
quently, ru,v(k, k ′) is replaced with r (d)(k, k ′).

To control the contributions of neighbors to the computa-
tion of the posterior probability, depending on their distance
to node u, we propose to modify the expression of Qu(k) as
follows

Qu(k) = Dk (xu)
1u∏
d=1

∏
v∈Nd (u)

(
K∑

k ′=1

r (d)(k, k ′)γdDk ′ (xv)

)
.

(11)

where {γd }d=1,··· ,1u are hyper-parameters to tune. Simula-
tion results show that hyper-parameter γd decreases with d ,
as expected. Setting γd = 1 for all values of d implies that
all the nodes in Vu have the same weights and so contribute
equally. This can be counter-productive especially when the
degree of impurity is high. Indeed, information from distant
nodes may not be reliable, mostly because of the simplifica-
tions made to IG . The optimization of the hyperparameters
should counter-act this kind of phenomenon.

The goal now is to derive r (d)(k, k ′). Let R(d)
∈ RK×K

be the matrix whose (k, k ′)th element is r (d)(k, k ′). It is
worth pointing out that, in general, R(1) is not symmetric
but is non-negative with the row-sums equal to 1 (while the
column-sums are not necessary equal to 1). Consequently,
R(1) (shortened to R) is a row-stochastic matrix. First of all,
we have that

r (d)(k, k ′) = P(yv = k ′|yu = k, Cd)

where IG has been replaced with Cd , which is defined as
the knowledge that both considered nodes are connected in
d hops.

In Appendix B, we show that

R(d)
= Rd . (12)

Since we are able to find r (d)(k, k ′) with respect to
r (1)(k, k ′), we should now derive r (1)(k, k ′) in closed-form.
We first define the following parameters:

• Let p(k) denote the probability that any two randomly
selected nodes belonging to the same class k are directly
connected.

• Let q(k, k ′) denote the probability that two randomly
selected nodes not belonging to the same class are con-
nected. We let q(k, k) = p(k). We also assume symme-
try, i.e. q(k, k ′) = q(k ′, k).

• Let p̄ define the average probability of connection
between nodes of the the same class, i.e.

p̄ =
1
K

K∑
k=1

p(k).

Similarly, let q̄ define the average probability of connec-
tion between nodes not belonging to the same class, i.e.

q̄ =
1

K (K − 1)

K∑
k,k′=1
k ̸=k′

q(k, k ′).

• The degree of impurity (DoI), roughly evoked in
Section I, is defined as

DoI =
q̄
p̄
.

This defines a general stochastic block model (SBM),
a widely used random graph model for community detection
and clustering [28], [29]. Note that we use SBM only for
analytic tractability, and that unlike the work on community
detection, we are interested in node classification, given some
labeled samples.

By using Bayes’ rule, we have that

r (1)(k, k ′) = P(yB = k ′|yA = k, ĨG)

=
P(ĨG |yB = k ′, yA = k)P(yB = k ′|yA = k)

P(ĨG |yA = k)

=
P(ĨG |yB = k ′, yA = k)P(yB = k ′|yA = k)∑K
k ′′=1 P(ĨG |yA = k, yB = k ′′)P(yB = k ′′)

=
q(k, k ′)P(yB = k ′|yA = k)∑K
k ′′=1 q(k, k ′′)P(yB = k ′′)

=
q(k, k ′)P(yB = k ′)∑K

k ′′=1 q(k, k ′′)P(yB = k ′′)

=
q(k, k ′)πk ′∑K

k ′′=1 q(k, k ′′)πk ′′
. (13)

As an example, if the probabilities of connection do not
depend on the classes, i.e., p = p(k) for any k and q = q(k, k ′)
for any k ̸= k ′, we obtain

r (1)(k, k ′) =

pπk

pπk+q
∑

k′′=1
k′′ ̸=k

πk′′
k = k ′

qπk′
pπk+q

∑
k′′=1
k′′ ̸=k

πk′′
k ̸= k ′

.

Hence, according to Eqs. (2) and (11), we obtain

ûu = argmax
k

πkDk (xu)
1u∏
d=1

∏
v∈Nd (u)

VOLUME 11, 2023 23993

H. Hafidi et al.: Graph-Assisted Bayesian Node Classifiers

×

(
K∑

k ′=1

r (d)(k, k ′)γdDk ′ (xv)

)
(14)

with r (d)(k, k ′) given by Eq. (12). We notice that the shape
of the function to maximize is simple and corresponds to a
product over all the considered nodes of a weighted sum of
the possible distributions. The weights are perfectly charac-
terized thanks to our derivations.

B. PARAMETERS’ ESTIMATION
In order to implement our node classifier, i.e. to compute
Eq. (14), we need πk , p(k), q(k, k ′), and the distributions
Dk (·) for all k and all k ′. Since these are unknown, they have
to be estimated using the data. Here, in order to perform this
estimation using simple algorithms, we consider only the
available labeled nodes of the graph in the estimation. These
algorithms are described below:

• Estimation of πk : this is obtained by counting the num-
ber of labeled nodes belonging to class k divided by the
total number of labeled nodes.

• Estimation of p(k) and q(k, k ′): we count all the pairs of
labeled nodes belonging to class k and k ′; then we count
the number of these pairs that are connected in 1-hop.
The estimate of q̂(k, k ′) is obtained by dividing the latter
count by the former one. if these values do not depend
on k and k ′, we also average over all the involved pairs
(with k ̸= k ′ to obtain q(k, k ′) = q̄ and when k = k ′ to
obtain q(k, k) = p̄).

• Estimation of classes’ statistics Dk (·): we assume a
shape for the distribution, and this shape is dependent on
a set of parameters. For instance, in the Cora dataset, the
features are binary, so they are modeled as independent
Bernoulli random variables; the probability associated
with each feature is estimated using the proportion of
non-zero elements of this feature in the labeled nodes,
and Laplace smoothing. If the features are continuous-
valued, we use the Gaussian distribution.

It is worth pointing out that a semi-supervised estimation
approach may also be possible but this would require an
iterative approach that cycles between parameter estimation
and node classification. It is also worth noting that the estima-
tion step plays the role of the learning phase in GNN-based
classifiers or in the classifiers developed in [26].

The values of the hyperparameters γv are set to 1 by default.
The optimization of these hyperparameters is addressed in
Sections IV and V.
This optimization will be shown to improve classification

performance. Indeed, these hyperparameters will adjust the
degree to which neighbors of different orders should con-
tribute to the classification of a node.

C. WHEN DOES GRAPH STRUCTURE NOT HELP GAB
Thanks to Eq. (14), we will be able to characterize some
conditions on the graph’s parameters for which the graph
through the proposed GAB helps each node to improve its

classification performance. Reasoning by contradiction, one
can see that the classifier does not take into account the
neighbors if and only if (iff) the function

k 7→
∏

v∈Nd (u)

(
K∑

k ′=1

r (d)(k, k ′)γvDk ′ (xv)

)
is independent of k for any d . Indeed, if true, the a posteriori
distribution to maximize depends on k only through Dk (xu).
The above-mentioned function leads to the same output

regardless of k for any feature values iff the weights r (d)(k, k ′)
are identical for any k . Therefore the condition for the neigh-
bors to be useless is

r (d)(k, k ′) = t (d)(k ′),∀k. (15)

According to Eq. (12), it is easy to prove that if it is satisfied
for d = 1, then it remains true for any d . Therefore, we need
to only focus on d = 1. According to Eqs. (13) and (15),
we obtain

q(k, k ′)πk ′∑K
k ′′=1 q(k, k ′′)πk ′′

= t (1)(k ′),∀k. (16)

We will now inspect some particular cases:
• In the case of constant intra-class and inter-class proba-
bilities of connection, we obtain the following constraint
for any pair (k, k ′) such that k ̸= k ′

πk ′ + (q̄/p̄)
K∑

k′′=1
k′′ ̸=k′

πk ′′ = (p̄/q̄)πk +
K∑

k′′=1
k′′ ̸=k

πk ′′ .

By setting ν =
∑K

k=1 πk , we have

πk ′ (1− q̄/p̄)+ πk (1− p̄/q̄) = ν(1− q̄/p̄)

which implies that

πk ′ + πk
1− p̄/q̄
1− q̄/p̄

= 1 (17)

where k 7→ πk := πk/ν is a probability mass function.
As (1 − p̄/q̄)/(1 − q̄/p̄) is negative, this equation does
not hold except if p̄ = q̄. Consequently, the neighbors
are not involved in the GAB classifier when the degree
of impurity is 1 since there is no community structure.

• In the case of K = 2, Eq. (16) implies that

p(2)
q̄π1 + p(2)π2

=
q̄

p(1)π1 + qπ2

and
q̄

q̄π1 + p(2)π2
=

p(1)
p(1)π1 + q̄π2

,

which leads to

q̄ =
√
p(1)p(2). (18)

In this setup, the neighbors are not involved in the GAB
classifier when the inter-class probability of connection
is the geometric mean of the intra-class probabilities of

23994 VOLUME 11, 2023

H. Hafidi et al.: Graph-Assisted Bayesian Node Classifiers

connection, and so not necessary when the degree of
impurity (defined through the arithmetic mean) is equal
to 1. Obviously, if p(1) = p(2), we go back to the first
item leading to p = q, i.e., a degree of impurity equal
to 1. But when p(1) ̸= p(2), the degree of impurity
leading to a graph-agnostic classifier is equal to the ratio
between the geometric mean and the arithmetic mean
of the intra-class probabilities of connection which is
strictly smaller than 1 in general case.

III. LINK TO GRAPH NEURAL NETWORKS
A. RECAP OF GRAPH NEURAL NETWORKS
GNNs are a class of graph embedding architectures which
use the graph structure in addition to node and edge features
to generate a representation vector (i.e., embedding) for each
node. GNNs learn node representations by aggregating the
features of neighboring nodes and edges. The output of the
ℓ-th layer of these GNNs is generally expressed as:

h(ℓ)u = σ (ℓ)(φ(ℓ)(h(ℓ−1)u , {h(ℓ−1)v : v ∈ N1(u)})) (19)

where h(ℓ)u is the feature vector of node u at the ℓ-th layer ini-
tialized by h(0)u = xu andN1(u) is the set of first-order neigh-
bors of node u. Different GNNs use different formulations
for the non-linear function σ (ℓ) (called activation function)
and the linear function φ(ℓ) [30]. Note that a first-order GNN
based classifier relies on one layer or equivalently considers
only the 1-hop neighborhood in the graph.

1) GRAPH CONVOLUTIONAL NEURAL NETWORK (GCN)
The convolutional propagation rule used in GCN is defined
as follows

φ(ℓ)
= (W (ℓ))⊤

 h(ℓ−1)u

du + 1
+

∑
v∈N1(u)

h(ℓ−1)v
√
(du + 1)(dv + 1)

(20)

where

• W (ℓ) is a learnable weight matrix,
• du is the degree of node u.

The activation function (for any layer except the last one) is
a rectified linear unit (ReLU). For the last layer, we consider
the softmaxwhich for each node u outputs the probability that
node u belongs to class k . Then the node u is assigned to the
class with the highest probability [17].

2) GRAPH CONVOLUTION OPERATOR NETWORK (GON)
In [31] and [32], GON is defined as GCN where Eq. (20) is
replaced with the following one

φ(ℓ)
u = (W (ℓ)

1)⊤h(ℓ−1)u + (W (ℓ)
2)⊤(

∑
v∈N1(u)

h(ℓ−1)v). (21)

Unlike GCN, GON computes a transformation matrix of the
central node that is different from the transformation of its
neighbors.

3) GRAPH ISOMORPHISM NETWORK (GIN)
In [33], GIN is defined as GCN or GON where Eqs.(20)-(21)
are replaced with the following one

φ(ℓ)
u = (W (ℓ))⊤

(1+ α)h(ℓ−1)u +

∑
v∈N1(u)

h(ℓ−1)v

 . (22)

where α is a positive hyper-parameter. GIN thus attributes
a different learnable weight to the central node (through α)
when combining information from its neighbors.

4) GRAPH ATTENTION NETWORK (GAT)
In [34], GAT is defined as GCN, GON or GIN but with the
following layer link

φ(ℓ)
u =

∑
v∈N1(u)∪{u}

α(ℓ)
u,v(W

(ℓ))⊤h(ℓ−1)v , (23)

where α
(ℓ)
u,v are normalized attention coefficients computed by

an attention mechanism as follows:

α(ℓ)
u,v =

eς (w
(ℓ)[(W (ℓ))⊤h(ℓ−1)u ∥(W (ℓ))⊤h(ℓ−1)v])∑

k∈N1(u) e
ς (w(ℓ)[(W (ℓ))⊤h(ℓ−1)u ∥(W (ℓ))⊤h(ℓ−1)k])

. (24)

with ς the leaky ReLu function, the weighting row vector
w(ℓ)
∈ R2H , where H is the size of the hidden layer and ∥

corresponds to column concatenation.

B. RELATIONSHIP WITH A GNN BASED CLASSIFIER
In this Section, we compare the shape of the proposed GAB
and the GNN. In GNN, there is one activation function
between each layer which implies that the multi-hop infor-
mation has undergone several non-linear functions before
arriving at the node of interest. InGAB, themulti-hopmixture
is done prior to making the final decision and do not follow a
successive concatenation of linear combination and activation
function. All the operations are intermixed, therefore GNN
and GAB are very different in terms of structure, except for
the one-layer/one-hop case. We therefore focus here on the
relation between the first-order GAB classifier and first-order
GNN-based classifier. For doing that, we consider a binary
classification problem (i.e K = 2). According to Eq. (14),
we assign node u to class 1 if:

Pu(1) ≥ Pu(2),

which implies that :

π1D1(xu)
∏

v∈N1(u)(r(1, 1)D1(xv)+ r(1, 2)D2(xv))

π2D2(xu)
∏

v∈N1(u)(r(2, 1)D1(xv)+ r(2, 2)D2(xv))
> 1.

By setting

S(x) =
D1(x)
D2(x)

and taking the log, we obtain the following test T (where T >

0 means ‘‘decide class 1’’):

T = log
(

π1

π2

)
+ log (S(xu))

VOLUME 11, 2023 23995

H. Hafidi et al.: Graph-Assisted Bayesian Node Classifiers

+

∑
v∈N (u)

log
(
r(1, 2)+ r(1, 1)S(xv)
r(2, 2)+ r(2, 1)S(xv)

)
.

As q(1, 2) = q(2, 1), two classes in the system lead to q̄ =
q(1, 2) = q(2, 1). Consequently,

r(1, 2)+ r(1, 1)S(xv)
r(2, 2)+ r(2, 1)S(xv)

=

q̄π2+p(1)π1S(xv)
p(1)π1+q̄π2

p(2)π2+q̄π1S(xv)
q̄π1+p(2)π2

.

Therefore, the test T can be split into three parts:

T = log
(

π1

π2

)
+ log

(
q̄π1 + p(2)π2

p(1)π1 + qπ2

)
+ log (S(xu))

+

∑
v∈N (u)

log
(
q̄π2 + p(1)π1S(xv)
p(2)π2 + q̄π1S(xv)

)
.

The first part corresponds to a constant term and so is con-
nected to the threshold. The second part is the contribution
of the node of interest. The third part, which is the most
interesting, corresponds to the contribution of the neighbors
in the test. Clearly, in general, this term is not linear with
respect to the nodes’ features and so the test cannot be seen
as a one-layer GNN.

If, in addition, p(1) = p(2) = p̄, the test can be written
easily with respect to the DoI as follows

T = log
(

π1

π2

)
+ log

(
DoI.π1 + π2

π1 + DoI.π2

)
+ log (S(xu))

+

∑
v∈N (u)

log
(
DoI.π2 + π1S(xv)
π2 + DoI.π1S(xv)

)
.

For instance, we remark that if the DoI is much larger than the
pdf ratio between the classes (which may be roughly related
to the Kullback-Leibler divergence), then the third term is
almost independent of the nodes’s feature and the information
provided by the graph is not used since it is not reliable.

Consider now that the graph is pure (i.e., r(1, 2) =
r(2, 1) = 0 or equivalently q = 0), we obtain

T = log(
π1

π2
)+ |N (u)| log

(
r(1, 1)
r(2, 2)

)
+

∑
v∈N (u)∪{u}

log(S(xv)), (25)

where we consider that p(1) may be different from p(2). Once
again the proposed classifier does not boil down to a one-layer
GNN. Actually, it can be a GNN if the term log2(S(xv)) is a
linear combination of xv. This can be achieved if the function
S(xv) is at least a power-function of xv, such as the Gaussian
function or Binomial function.

Let us first consider the Gaussian case, i.e. xv ∼

N (µ(v), 6) where µ(v) is either µ1 (if class 1) or µ2 (if
class 2) and the correlation matrix is independent of the class
(if not, a second-order polynomial occurs and the GAB is

different from a GNN). According to Eq. (25), the first-order
GAB test is equal to

T = ω0 +

 ∑
v∈N (u)∪{u}

ω⊤1 xv

 , (26)

where

ω0 = log
(

π2

π1

)
+ (|N (u)| + 1)(µ⊤2 6−1µ2 − µ⊤1 6−1µ1),

ω⊤1 := [ω1,1, · · · , ω1,F] = (µ2 − µ1)
⊤6−1. (27)

Consequently this test is a GNN-based test.
Let us now consider the Binomial case. We assume that

features xv,f are independent binary random variables with
probabilities P(xv,f = 1|yv = 1) = α

(1)
f and P(xv,f = 1|yv =

2) = α
(2)
f . Eq. 25 can be written as Eq. (26) with

ω0 = log
(

π2

π1

)
+ F

F∑
f=1

log

(
1− α

(2)
f

1− α
(1)
f

)
,

ω1,f = − log

(
α
(1)
f

α
(2)
f

1− α
(2)
f

1− α
(1)
f

)
.

Consequently this test is a GNN-based test as well.

IV. DISCUSSION ON COMPLEXITY ISSUES
In this section, we compare the different versions of the
proposed GAB and the GAT in terms of parameters/weights
to tune and the number of flops for doing this tuning during
the training phase. We will consider only the two-hops case
for the GAB and the two-layers case for the GAT.

First of all, we evaluate the number of parameters to be
tuned. Let H and dmax be respectively the size of the hidden
layer and the maximum degree of the considered graph.

For a GAB classifier, we need to estimate
• K 2 parameters for the transition matrix R through the
terms {p(k)}k and {q(k, k ′)}k ̸=k ′ ;

• the parameters of the class’ distributions (obviously, this
value depends on the shape of the assumed distribu-
tions):
- - KF parameters when each class of each feature is

Bernoulli-distributed
- - (KF + KF2) parameters when each class is arbi-

trary Gaussian-distributed. The number of parame-
ters can be reduced if the Gaussian distribution per
class is structured. For instance, if the covariance is
independent of the class, we only have (KF + F2)
parameters. If in addition, the covariance matrix is
diagonal or is assumed as a diagonal matrix for the
sake of simplicity, we have (KF + F) parameters;

- - K parameters for the priors {πk}k .
When Cora or PubMed dataset are considered (see Table 5
for more details), the distribution is assumed to be Bernoulli

23996 VOLUME 11, 2023

H. Hafidi et al.: Graph-Assisted Bayesian Node Classifiers

TABLE 2. Number of parameters or weights to be tuned/learnt.

in our numerical evaluations (even if not), which implies that
the total number of parameters to estimate, Np is given by

Np = K (K + F + 1). (28)

For GAT, we need to tune/learn the weights and the atten-
tion parameters of the neural network. As only two layers
are considered we obtain FH weights for the first layer, HK
weights for the second layer, and 2H (resp. 2F) weights for
the attention mechanism for the first layer (resp. the second
one). As a consequence, the number of weights to tune,
denoted by Nw is as follows:

Nw = FH + HK + 2(H + K). (29)

According to the number of classes and features given in
Table 5 and by assuming a hidden layer of size H = 256,
we have the following values Np and Nw for the Cora and
PubMed dataset in Table 2.

We observe that the number of parameters for GAB is
much smaller (by more than an order of magnitude) than for
GAT. In addition, the parameters in GAB are interpretable.
Moreover, since for GAT, parameters are learnt using an
iterative process, the computational complexity in terms of
the number of epochs may significantly vary with the chosen
optimization algorithm.

We here consider two variants for the GAB. The first one
(denoted by GAB2) corresponds to the case where γ1 = γ2 =

1 while the second one (denoted by GAB2γ) is optimized
with respect to the pair γ = (γ1, γ2). LetNt ,Ng, andNv be the
number of training nodes, the number of tested pairs γ , and
the number of nodes for validation respectively. To estimate
the Np parameters during the training phase, we need NpNt
flops since each parameter corresponds to counts or sums
over each training node. To select the best pair of hyperpa-
rameters γ , we compute our GAB on all validation and test
nodes. A GAB evaluation leads to at most K 2D2

maxF flops by
looking at Eq. (14). Indeed we consider that to compute each
test for one class, we need d2maxKF flopswhereF corresponds
to the flops required to compute Dk (·) as it is the case for the
Bernoulli case or the diagonal correlation matrix Gaussian
case. Finally, we have that

Nflop|GAB2γ = NpNt + NgNvK 2d2maxF . (30)

When we only consider GAB2, the second term in the Right
Hand Side (RHS) has to be omitted. Note that the 2D grid for
the hyperparameter γ is [0 : 0.1 : 1]2 leading to Ng = 121.

For GAT2, we just consider the number of flops required
for learning the weights (so the hyperparameters such as the
learning rate are assumed to be obtained for free). To learn
the weights, we apply a gradient-descent like algorithm with
Ne epochs. Hereafter, we consider only the neural network’s

TABLE 3. Number of flops for the training phase.

TABLE 4. Number of flops for the inference phase.

weights which are dominant. So the weights related to the
attention mechanism are ignored.

We consider one epoch. For the first layer (resp. second
layer), we have FH (resp. HK) weights to update and so
FH (resp. HK) sums have to be computed once the gradient
is known. For estimating the gradient, we average over Nt
nodes, over the sum of the neighbors (at most dmax) and a
matrix computation of size HF (resp. KH) with the current
feature of size F (resp. H). Consequently, we have

Nflop|GAT2 = NeFHNtdmaxFH + NeHKNtdmaxHK . (31)

In Table 3, we report the rough number of flops for Cora
(with a supervision of 30% and 5%) and PubMed (with
a supervision of 5%) with three classifiers. We set Ne =
500, Nt = 140 (Cora-5%) or Nt = 1000 (Cora-30% and
PubMed-5%). Moreover dmax = 168 for Cora and dmax =

171 for PubMed.
In the inference phase, applying our classifier (GAB2)

leads to K 2d2maxF flops (which corresponds to the number
of flops in the second part of the RHS in Eq. (30) without
Ng and Nv). For GAT2, we have FHdmaxFH + HKdmaxHK
flops (actually, we apply Eq. (31) by removing Ne and Nt).
In Table 4, we report the rough number of flops during the
inference phase for Cora and PubMed.

We remark that the numbers of flops for our GAB classi-
fiers aremuch smaller (bymany orders ofmagnitude) than for
the GAT in both training and inference phases. Consequently,
the structure imposed by the derivations of the GAB enable
us to have interpretability and less complexity than the black
box GAT.

V. NUMERICAL RESULTS
In this section, we conduct experiments with two kinds of
datasets: the synthetic ones where we especially analyze
the robustness to the degree of impurity; and some real
benchmark ones where we compare our classifier to many
other approaches based on GNN. The performance of our
classifier (and the ordering with respect to standard GNN
based approaches) depend on the dataset and the level of
supervision.

A. SYNTHETIC DATASETS
For the sake of simplicity, we consider two classes, i.e.,
K = 2. Each class is associated with a different statistical
distribution of the node’s feature vector xv. We assume here

VOLUME 11, 2023 23997

H. Hafidi et al.: Graph-Assisted Bayesian Node Classifiers

FIGURE 2. GAB and GNN performance on synthetic datasets versus DoI.

that the two distributions are multivariate Gaussian, i.e. xv
followsN (µ1, 61) in class 1 andN (µ2, 62) in class 2, with
unknown mean and covariance. We assume that the features
are uncorrelated in the two classes, i.e. 61 = diag(σ 2

1) and
62 = diag(σ 2

2), where σ 2
1 and σ 2

2 are (F×1) vectors. To aver-
age over different configurations, different distributions are
generated by drawing µ1 and µ2 randomly from U([0, 1]F)
and drawing σ 1 and σ 2 randomly from U([0.5, 3.5]F). More-
over, the links are generated randomly using different values
of the probability of intra-connectivity, p̄, and the probability
of inter-connectivity, q̄ where q̄ ≤ p̄.

In each experimental setting, we evaluate the average node
classification accuracy using a Monte Carlo simulation with
1, 000 runs. We set the number of nodes to N = 5, 000 and
the number of features to F = 500. For each run, we train
each classifier on 500 (already-labeled) nodes and test its
accuracy on 2, 000 nodes. We use the remaining nodes for
validation.

In Fig. 2, we plot the classification accuracy versus the
Degree of Impurity (q̄/p̄) for one-order GAB and one-
layer GCN. Both approaches perform well when DoI is
small. Their performance decreases with increasing DoI.
We observe, however, that theGAB ismore robust to DoI than
the GCN especially beyond a DoI of one half. As expected,
the GAB is graph-agnostic when Eq. (18) is satisfied. For
instance, when p(1) = p(2) = 0.05 then the agnosticity
occurs at q̄/p̄ = 1 while when p(1) = 0.025 and p(2) =
0.075, the agnosticity is reached at q̄/p̄ = 0.866. We remark
that GNN has similar behavior with respect to the usefulness
of the information coming from the graph.

B. REAL DATASETS
Unless otherwise stated, we use the attributed graphs
described in Table 5, andwe use the training/validation/testing
split equal to 30%, 20%, 50%, respectively. To implement the
GNN based classifiers, we use Pytorch where we initialize all
the GNN weights by Glorot initialization, and we train them
to minimize the cross entropy loss using the Adam optimizer
with an initial learning rate of 0.005.

FIGURE 3. Accuracy performance with added noisy edges in Cora.

In Fig. 3, we plot the accuracy versus the DoI: on the top,
the GAB at several orders as well as the best combination
of powers γd in Eq. (14). Here, the training phase enables
us to estimate the parameters of the GAB except the γd .
The powers γd are optimized with a grid search approach
during the validation phase, on the middle panel, the GAT
with several layers, and on the bottom panel the GCN at
several layers. The dataset is here always Cora which implies
that the distributions are Bernoulli. The x-axis starts with the
real value of the DoI and we add links between previously
unconnected nodes that belong to different classes with the
goal of gradually varying the DoI to 1. The above mentioned

23998 VOLUME 11, 2023

H. Hafidi et al.: Graph-Assisted Bayesian Node Classifiers

TABLE 5. Description of the real datasets.

FIGURE 4. GAB and GNN performance on Pubmed versus the size of the
training set.

classifiers are trained for each ‘‘impure’’ graph. We remark
that the information on the graph is less accurate for any
approach when we consider more hops; actually, the confi-
dence on the ‘‘far’’ data is smaller. Nevertheless by averaging
properly the hops as in GABγ , the performance are improved
slightly. In any case, GABγ is better then the best other
approaches since it enables to better adapt to the impurity.
Moreover GABγ outperforms the graph-agnostic classifier;
so it always manages to take benefit of the graph.

In Table 6, we compare our approaches GABγ and GAB⋆

up to five hops (in GAB⋆, we approximate the unknown
distributions by two-layer NNs which are learnt during the
training phase) with the methods presented and analyzed
in [26]. We copy-paste the values given in [26] where the best
number of layers and the best version of each approach have
been selected. We select the best version of GAB in the sense
that we optimized the hyperparameters γ by allowing at most
the fifth-order case. In GABγ , the shape of the distributions
is a priori given. For instance, for PubMed, we considered
a Bernoulli one while it is inaccurate. We plot the accuracy
rate and the ranking (in brackets) for a 30%-supervised graph.
For computing the average accuracy and the ranking (for all
the considered datasets) for our GAB approach, we select the
best one. We remark that the performance of our approach
is close to GBPN and GAT which are the best ones in the
literature. When GABγ is bad, it corresponds to the case
PubMed where the used distribution does not fit well with
the true one. So improvement can be done by choosing a
better approximation. In addition to the good performance
of our proposed approach, we have interpretability of our
algorithms since we wrote them in closed-form and we are
able to understand the meaning of each element.

In Fig. 4, we plot the accuracy rate versus the training size
(in percentage) for our approach (GAB⋆) and the GCN and
GATwith two-layers/hops. In solid line, we consider PubMed
dataset and in dash line, we consider Cora dataset.We observe
that for PubMed, our approach outperforms the state of the
art regardless of the training size. Actually we should note
than as PubMed is a large dataset, a small portion of training
still leads to a large amount of data to estimate the statistics
required for GAB. In contrast, for Cora, our approach outper-
forms GCN and GAT only when the training is large enough
(and as Cora is a small dataset, large enoughmeans also when
the training set in percentage is large enough).

According to all the previous experiments, we remark that
our GAB approach is more robust to the degree of impurity
and its performance is close to or better than the tested GNN
approaches on a number of benchmark graphs.

VI. CONCLUSION
In this work, we tackled the problem of node classification
on attributed graphs. We start from the observation that GNN
based models’ performance depend on the graph topology,
and more specifically on the degree of impurity of the graph.
We adopted a different path and used the Bayesian theorem to
propose a new graph-assisted Bayesian-based node classifier.
This classifier is able to take into account the degree of
impurity of the graph. It is also shown to significantly out-
perform some GNN-based classifiers, in addition to provid-
ing more interpretability and requiring lower computational
complexity (if the model of the nodes’ distributions is well
approximated in closed-form).

APPENDIX A
DERIVATIONS FOR EQ. (3)
We first focus on the term Qu(k). We get

Qu(k) = P(Xu|yu = k, IG)
=

∑
{kv}v∈Vu

P(Xu|yu = k, {yv = kv}v∈Vu , IG)

×p({yv = kv}v∈Vu |yu = k, IG)

As the classes of the neighbors are given, the information on
the graph becomes redundant and so useless. Therefore IG
can be removed from the first term.

Qu(k) =
∑
{kv}v∈Vu

P(Xu|yu = k, {yv = kv}v∈Vu)

×p({yv = kv}v∈Vu |yu = k, IG)

Given the classes, the samples of each node are run indepen-
dently, so we get

Qu(k) =
∑
{kv}v∈Vu

∏
v′∈Vu

P(xv′ |yu = k,

{yv = kv}v∈Vu)

×p({yv = kv}v∈Vu |yu = k, IG)
=

∑
{kv}v∈Vu

P(xu|yu = k)

VOLUME 11, 2023 23999

H. Hafidi et al.: Graph-Assisted Bayesian Node Classifiers

TABLE 6. 30%-supervised node classification accuracy (%).

×

∏
v′∈Vu

P(xv′ |yv′ = kv′)

×p({yv = kv}v∈Vu |yu = k, IG)
= Dk (xu)

∑
{kv}v∈Vu

∏
v′∈Vu\{u}

Dkv′ (xv′)

×p({yv = kv}v∈Vu |yu = k, IG).

which concludes the derivations by doing a re-ordering.

APPENDIX B
DERIVATIONS FOR EQ.(12)
• Let us start with d = 2:

r (2)(k, k ′) = P(yv = k ′|yu = k, C2)

=

K∑
k ′′=1

P(yv = k ′|yu = k, yw = k ′′, C2)

×P(yw = k ′′|yu = k, C1)

As the class of w is known, the information on the class
of u becomes useless and only the fact that v and w are
1-hop neighbor remains important. Therefore, we obtain

r (2)(k, k ′) =
K∑

k ′′=1

P(yv = k ′|yw = k ′′, C1)

×r (1)(k, k ′′) (32)

=

K∑
k ′′=1

r (1)(k ′′, k ′).r (1)(k, k ′′). (33)

where w is the node connecting u and v. Such a node w
exists since u and v are 2-hop connected. According to
Eq. (33), we have

R(2)
= R2.

• For any d , we have,

r (d)(k, k ′) = P(yv = k ′|yu = k, Cd)

=

K∑
k ′′=1

P(yv = k ′|yu = k, yw = k ′′, C1)

×P(yw = k ′′|yu = k, Cd−1)

=

K∑
k ′′=1

P(yv = k ′|yw = k ′′, C1)

×r (d−1)(k, k ′′)

=

K∑
k ′′=1

r (1)(k ′′, k ′).r (d−1)(k, k ′′).

Therefore

R(d)
= R(d−1)R.

• Finally, by induction, we conclude the derivations.

APPENDIX C
ADDITIONAL DETAILS ON IMPLEMENTATIONS

Algorithm 1 The Inference Algorithm for GAB
Input: Graph topology G = (V, E); nodes’ features {xu}u∈V ;

labels of the set of labeled nodes {yu}u∈L; a feature based
classifier g; prior probabilities π = (π1, . . . , πK), transi-
tion matrix R.

Output: prediction for each unlabeled node {yu}u∈U ▷

▷ Step1: Initialize predictions
for u ∈ V do

for k ∈ (1, . . . ,K) do
if u ∈ L then

Du(k)← 1(yu=k)
else

Du(k)← g(xu; k)
end if

end for
end for
▷ Step2: Update predictions
for u ∈ U do

for k ∈ (1, . . . ,K) do
Pu(k)← Qu(k)πk ▷ Qu(k) is defined in Eq. (11)

end for
ŷu← argmaxkPu(k)

end for

We recall that V = L ∪ U where L and U are respec-
tively the sets of labeled and unlabeled nodes. The feature
based classifier g is obtained either by training a multi-layer
perceptron or by estimating parameters of the generating dis-
tributions of nodes’ features. g(xu; k) returns the probability
that node u belongs to class k based on its intrinsic features.
Prior probabilities π and transition matrix R are estimated as
explained in section II-B.

REFERENCES
[1] S. P. Borgatti, M. G. Everett, and J. C. Johnson,Analyzing Social Networks.

London, U.K.: Sage, 2018.
[2] A. Khazane, J. Rider, M. Serpe, A. Gogoglou, K. Hines, C. B. Bruss,

and R. Serpe, ‘‘DeepTrax: Embedding graphs of financial transactions,’’
in Proc. 18th IEEE Int. Conf. Mach. Learn. Appl. (ICMLA), Dec. 2019,
pp. 126–133.

24000 VOLUME 11, 2023

H. Hafidi et al.: Graph-Assisted Bayesian Node Classifiers

[3] A. Sanchez-Gonzalez, N. Heess, J. T. Springenberg, J. Merel,
M. Riedmiller, R. Hadsell, and P. Battaglia, ‘‘Graph networks as
learnable physics engines for inference and control,’’ in Proc. Int. Conf.
Mach. Learn., 2018, pp. 4470–4479.

[4] Y. Li, R. Shafipour, G. Mateos, and Z. Zhang, ‘‘Supervised graph repre-
sentation learning for modeling the relationship between structural and
functional brain connectivity,’’ in Proc. IEEE Int. Conf. Acoust., Speech
Signal Process. (ICASSP), May 2020, pp. 9065–9069.

[5] X. Li, H. Chen, J. Li, and Z. Zhang, ‘‘Gene function prediction with gene
interaction networks: A context graph kernel approach,’’ IEEE Trans. Inf.
Technol. Biomed., vol. 14, no. 1, pp. 119–128, Jan. 2010.

[6] M. Zhang, Z. Cui, M. Neumann, and Y. Chen, ‘‘An end-to-end deep
learning architecture for graph classification,’’ in Proc. 32nd AAAI Conf.
Artif. Intell., 2018, pp. 1–8.

[7] N. I. Kajla, M. M. S. Missen, M. M. Luqman, and M. Coustaty, ‘‘Graph
neural networks using local descriptions in attributed graphs: An applica-
tion to symbol recognition and hand written character recognition,’’ IEEE
Access, vol. 9, pp. 99103–99111, 2021.

[8] T. Gaudelet, B. Day, A. R. Jamasb, J. Soman, C. Regep, G. Liu,
J. B. R. Hayter, R. Vickers, C. Roberts, J. Tang, D. Roblin, T. L. Blundell,
M. M. Bronstein, and J. P. Taylor-King, ‘‘Utilizing graph machine learning
within drug discovery and development,’’ Briefings Bioinf., vol. 22, no. 6,
pp. 1–22, Nov. 2021.

[9] M. Zhang and Y. Chen, ‘‘Link prediction based on graph neural networks,’’
in Proc. Adv. Neural Inf. Process. Syst., 2018, pp. 5165–5175.

[10] H. Hafidi, M. Ghogho, P. Ciblat, and A. Swami, ‘‘GraphCL:
Contrastive self-supervised learning of graph representations,’’ 2020,
arXiv:2007.08025.

[11] H. Hafidi,M. Ghogho, P. Ciblat, and A. Swami, ‘‘Negative sampling strate-
gies for contrastive self-supervised learning of graph representations,’’
Signal Process., vol. 190, Jan. 2022, Art. no. 108310.

[12] M. McPherson, L. Smith-Lovin, and J. M. Cook, ‘‘Birds of a feather:
Homophily in social networks,’’ Annu. Rev. Sociol., vol. 27, no. 1,
pp. 415–444, 2001.

[13] E. Rahm and A. Thor, ‘‘Citation analysis of database publications,’’ ACM
SIGMOD Rec., vol. 34, no. 4, pp. 48–53, Dec. 2005.

[14] X. Zhu, Z. Ghahramani, and J. D. Lafferty, ‘‘Semi-supervised learning
using Gaussian fields and harmonic functions,’’ in Proc. Int. Conf. Mach.
Learn., 2003, pp. 912–919.

[15] M. Henaff, J. Bruna, and Y. LeCun, ‘‘Deep convolutional networks on
graph-structured data,’’ 2015, arXiv:1506.05163.

[16] M. Defferrard, X. Bresson, and P. Vandergheynst, ‘‘Convolutional neural
networks on graphs with fast localized spectral filtering,’’ in Proc. NIPS,
2016, pp. 3844–3852.

[17] T. N. Kipf and M. Welling, ‘‘Semi-supervised classification with graph
convolutional networks,’’ 2016, arXiv:1609.02907.

[18] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Lio,
and Y. Bengio, ‘‘Graph attention networks,’’ in Proc. Int.
Conf. Learn. Represent., 2018, pp. 1–12. [Online]. Available:
https://openreview.net/forum?id=rJXMpikCZ

[19] K. K. Thekumparampil, C. Wang, S. Oh, and L.-J. Li, ‘‘Attention-based
graph neural network for semi-supervised learning,’’ in Proc. Int. Conf.
Learn. Represent., 2018, pp. 1–15.

[20] S. Abu-El-Haija, B. Perozzi, A. Kapoor, N. Alipourfard, K. Lerman,
H. Harutyunyan, G. V. Steeg, and A. Galstyan, ‘‘MixHop: Higher-order
graph convolutional architectures via sparsified neighborhood mixing,’’ in
Proc. 36th Int. Conf. Mach. Learn., 2019, pp. 21–29.

[21] J. Gasteiger, A. Bojchevski, and S. Gunnemann, ‘‘Predict then prop-
agate: Graph neural networks meet personalized PageRank,’’ 2018,
arXiv:1810.05997.

[22] B. Karrer and M. E. J. Newman, ‘‘Stochastic blockmodels and community
structure in networks,’’ Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat.
Interdiscip. Top., vol. 83, no. 1, Jan. 2011, Art. no. 016107.

[23] S. Chakrabarti, B. Dom, and P. Indyk, ‘‘Enhanced hypertext categorization
using hyperlinks,’’ in Proc. ACM SIGMOD, Seattle, WA, USA, vol. 27,
Jun. 1998, pp. 307–318.

[24] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Galligher, and T. Eliassi-Rad,
‘‘Collective classification in network data,’’ AI Mag., vol. 29, no. 3, p. 93,
2008.

[25] K. Murphy, Y. Weiss, and M. I. Jordan, ‘‘Loopy belief propagation for
approximate inference: An empirical study,’’ 2013, arXiv:1301.6725.

[26] J. Jia, C. Baykal, V. K. Potluru, and A. R. Benson, ‘‘Graph belief propaga-
tion networks,’’ 2021, arXiv:2106.03033.

[27] H. Hafidi, M. Ghogho, P. Ciblat, and A. Swami, ‘‘Bayesian node classi-
fication for noisy graphs,’’ in Proc. IEEE Stat. Signal Process. Workshop
(SSP), Jul. 2021, pp. 246–250.

[28] E. Abbe, ‘‘Community detection and stochastic block models: Recent
developments,’’ J. Mach. Learn. Res., vol. 18, no. 1, pp. 6446–6531,
Jan. 2017.

[29] T. P. Peixoto, ‘‘Bayesian stochastic blockmodeling,’’ in Advances in
Network Clustering and Blockmodeling. Chichester, U.K.: Wiley, 2019,
pp. 289–332.

[30] W. Hamilton, Z. Ying, and J. Leskovec, ‘‘Inductive representation learn-
ing on large graphs,’’ in Proc. Adv. Neural Inf. Process. Syst., 2017,
pp. 1024–1034.

[31] J. Atwood and D. Towsley, ‘‘Diffusion-convolutional neural networks,’’ in
Proc. Adv. Neural Inf. Process. Syst., 2016, pp. 1993–2001.

[32] C. Morris, M. Ritzert, M. Fey, W. L. Hamilton, J. E. Lenssen, G. Rattan,
and M. Grohe, ‘‘Weisfeiler and Leman go neural: Higher-order graph
neural networks,’’ in Proc. AAAI Conf. Artif. Intell., vol. 33, 2019,
pp. 4602–4609.

[33] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, ‘‘How powerful are
graph neural networks?’’ in Proc. Int. Conf. Learn. Represent., 2018,
pp. 1–17.

[34] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio,
‘‘Graph attention networks,’’ 2017, arXiv:1710.10903.

[35] O. Shchur, M. Mumme, A. Bojchevski, and S. Gunnemann, ‘‘Pitfalls of
graph neural network evaluation,’’ 2018, arXiv:1811.05868.

[36] M. Morris and R. Rothenberg, ‘‘HIV transmission network
metastudy project: An archive of data from eight network studies,
1988–2001,’’ Inter-Univ. Consortium Political Social Res., Aug. 2011,
doi: 10.3886/ICPSR22140.v1.

[37] J. Jia and A. R. Benson, ‘‘Residual correlation in graph neural network
regression,’’ inProc. 26th ACMSIGKDD Int. Conf. Knowl. Discovery Data
Mining, Aug. 2020, pp. 588–598.

HAKIM HAFIDI (Student Member, IEEE)
received the master’s degree in big data from
the International University of Rabat, Morocco,
in 2018. He is currently pursuing the joint Ph.D.
degree with the International University of Rabat
and the Polytechnic Institute of Paris, France. His
research interests include deep learning, signal
processing, and machine learning for graphs.

PHILIPPE CIBLAT (Senior Member, IEEE) was
born in Paris, France, in 1973. He received
the Engineering degree from Telecom Paris
(also known as ENST/Telecom ParisTech),
the M.Sc. and D.E.A. (French) degrees in
automatic control and signal processing from
University Paris-Saclay, France, both in 1996,
and the Ph.D. and H.D.R. degrees from Univer-
sity Gustave Eiffel, Marne-la-Vallée, France, in
2000 and 2007, respectively. In 2001, he was a

Postdoctoral Researcher at the University of Louvain, Belgium. At the
end of 2001, he joined the Communications and Electronics Department,
Telecom Paris, as an Associate Professor, he has been a (full) Professor,
since 2011. His research interests include statistical and distributed signal
processing, signal processing for digital communications, and resource allo-
cation. From 2014 to 2019, he was a member of IEEE Technical Committee
Signal Processing for Communications and Networking. He served as an
Associate Editor for the IEEE COMMUNICATIONS LETTERS, from 2004 to 2007.
From 2008 to 2012, he served as an Associate Editor and then a Senior Area
Editor for the IEEE TRANSACTIONS ON SIGNAL PROCESSING. From 2018 to 2021,
he served as an Associate Editor for the IEEE TRANSACTIONS ON SIGNAL AND

INFORMATION PROCESSING OVER NETWORKS.

VOLUME 11, 2023 24001

http://dx.doi.org/10.3886/ICPSR22140.v1

H. Hafidi et al.: Graph-Assisted Bayesian Node Classifiers

MOUNIR GHOGHO (Fellow, IEEE) received
the M.Sc. and Ph.D. degrees from the National
Polytechnic Institute of Toulouse, France, in
1993 and 1997, respectively. He was an EPSRC
Research Fellow at the University of Strathclyde
(Scotland), from September 1997 to November
2001. In December 2001, he joined the School of
Electronic and Electrical Engineering, University
of Leeds, U.K., where he was promoted to a full
Professor, in 2008. While still affiliated with the

University of Leeds, in 2010, he joined the International University of Rabat,
Morocco, where he is currently the Dean of the College of Doctoral Studies
and the Director of TICLab (ICT Research Laboratory). His research inter-
ests include machine learning, signal processing, and wireless communica-
tion, on which he has published over 300 papers in journals and conferences.
He was a recipient of the 2013 IBM Faculty Award and the 2000 U.K. Royal
Academy of Engineering Research Fellowship. He is the Co-Founder and
the Co-Director of the CNRS-Associated International Research Laboratory
DataNet, in big data and artificial intelligence. He has coordinated around
20 research projects and supervised over 30 Ph.D. students in the U.K. and
Morocco. In the past, he served as an Associate Editor of many journals
including IEEE Signal Processing Magazine and the IEEE TRANSACTIONS ON

SIGNAL PROCESSING.

ANANTHRAM SWAMI (Life Fellow, IEEE)
received the B.Tech. degree in electrical engineer-
ing from IIT-Bombay, the M.S. degree in electrical
engineering from Rice University, and the Ph.D.
degree in electrical engineering from the Univer-
sity of Southern California (USC). He is currently
with the U.S. Army’s DEVCOM Army Research
Laboratory and the Army’s Senior Research Sci-
entist (ST) for Network Science. Prior to joining
ARL, he held positions with Unocal Corporation,

USC, CS-3, and Malgudi Systems. He was the Statistical Consultant of the
California Lottery, developed a MATLAB-based toolbox for non-Gaussian
signal processing. He has held visiting faculty positions at INP, Toulouse,
and the Imperial College, London. His work is in the broad area of network
science, including communication and information networks and cyber secu-
rity. He is an ARL Fellow. Recent awards include the 2018 IEEE ComSoc
MILCOM Technical Achievement Award and the 2017 Presidential Rank
Award (Meritorious).

24002 VOLUME 11, 2023

