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ABSTRACT Video quality enhancement methods are of great significance in reducing the artifacts of
decoded videos in the High Efficiency Video Coding (HEVC). However, existing methods mainly focus on
improving the quality of natural sequences, not for screen content sequences that have drawn more attention
than ever due to the demands of remote desktops and online meetings. Different from the natural sequences
encoded by HEVC, the screen content sequences are encoded by Screen Content Coding (SCC), an extension
tool of HEVC. Therefore, we propose a Mode Information guided CNN (MICNN) to further improve the
quality of screen content sequences at the decoder side. To exploit the characteristics of the screen content
sequences, we extract the mode information from the bitstream as the input of MICNN. Furthermore, due
to the limited number of screen content sequences, we establish a large-scale dataset to train and validate
our MICNN. Experimental results show that our proposed MICNN can achieve 3.41% BD-rate saving on
average. In addition, our MICNNmethod consumes acceptable computational time compared with the other
video quality enhancement methods.

INDEX TERMS Convolutional neural network, deep learning, HEVC, quality enhancement, SCC.

I. INTRODUCTION
With the rapid development of intelligent terminal technol-
ogy, mobile devices such as smartphones and tablets have
made Screen Content (SC) video more and more widespread.
Desktop collaboration, screen sharing, cloud gaming, etc.,
greatly increase the scope of video applications. Especially
due to the recent spread of COVID-19, the demand for online
education and virtual conferences is rapidly increasing, with
Screen Content Coding (SCC) [1] playing a critical role.
Unlike the natural video sequence, as shown in the exam-
ple of Fig. 1(a), captured by a camera, the screen content
sequence as in Fig. 1(b) can be generated from different
mobile terminals directly. It is composed of many static or
moving computer-generated images and texts. It often con-
tains many uniform and flat areas, repeated patterns and
limited pixel colors, etc. By making use of these screen
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content characteristics, SCC [1] is proposed as an extension
of High Efficiency Video Coding (HEVC) [2] to increase
the coding efficiency. In addition to the conventional HEVC
intra (INTRA) mode [3], the SCC standard adopts two ded-
icated coding modes, Intra Block Copy (IBC) and palette
(PLT) [4], [5], [6]. IBC [4] uses the reconstructed block
of the current frame as the prediction block. IBC performs
motion compensation for the current Coding Unit (CU) in the
reconstructed region of the current frame, which can improve
the compression efficiency of screen content video by more
than 30% in [5]. PLT enumerates the color value for each
coding block to generate a color table and passes an index
for each sample to indicate which color in the color table
it belongs to. With PLT, compression efficiency is further
improved by 15% over the original code with IBC mode [5].

Although the coding efficiency can be improved by intro-
ducing the coding tools, screen content videos still contain
compression artifacts corresponding to the dedicated tools in
the SCC standard.
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FIGURE 1. (a) Original natural frame, (b) original screen content frame.

FIGURE 2. Overall framework of our proposed method.

An HEVC codec utilizes a deblocking filter (DF) and
a sample adaptive offset (SAO) to eliminate blocking and
ringing artifacts, thereby enhancing the quality of the recon-
structed frames. In recent years, deep learning has made new
progress in this field and has achieved impressive perfor-
mance in video enhancement. A series of neural network
architectures were proposed to remove the artifacts in recon-
structed videos. Examples include an In-loop Filter using
the Convolutional Neural Networks (IFCNN) [7], a Variable-
filter-size Residue-learning CNN (VRCNN) [8], a DeepCNN
based Auto Decoder (DCAD) [9], a Multi-layered Deep
CNN (MDCNN) [10], and a Decoder-side Scalable CNN
(DS-CNN) [11]. Unlike other architectures that replace the
in-loop filter, DCAD and DS-CNNwere designed to improve
the video quality at the decoder side. The advantage of these
post-processing methods is that there is no need to modify
the HEVC codec inside. Hence, the structure proposed in this
paper focuses on video post-processing at the decoded side,
as depicted in Fig.2.

In addition to the development of network structures, the
rich side information in the video bitstream can also help to
guide the enhancement process of decoded videos. For exam-
ple, it was found in [12] that the partition tree in the coding
process indicates the corresponding compression loss of the
decoded video. To utilize the side information in the HEVC
codec, the work in [12] subsequently proposed a double-
input network by taking the partition mask into account.
The mask is generated based on the partition tree of HEVC,
as the side information. With the use of the partition mask,
the blocking effect is eliminated. However, this approach is
designed for natural videos. It still ignores the characteristics
of the screen content video. In other words, the utilization of
side information is not closely related to the screen content
characteristics.

In summary, the novelty and contributions of our work are
twofold:

• Wepropose a novel post-processing network for enhanc-
ing decoded screen content videos based on the coding
mode information embedded in the coded bitstream.
Three binary mode masks derived from the dedicated
coding tools in SCC are fused with the corresponding
decoded frame.

• Weestablish a large-scale dataset containing 9810 frames
for screen content videos. This dataset will be publicly
available to facilitate further research.

The remainder of the paper is organized as follows. The
related works are provided in Section II. In Section III,
we describe the generation of the proposed mode mask and
the details of our proposed network architecture. Experiments
and ablation studies are brought in Section IV. Section V
concludes this paper.

II. RELATED WORKS
A. DEEP LEARNING-BASED VIDEO QUALITY
ENHANCEMENT
In recent years, deep learning has been successfully applied
to computer vision tasks. Many works have been applied
to improve the visual quality of HEVC videos. They are
divided into two major approaches. One is to modify the
internal module within the codec, such as in-loop filtering
for visual quality enhancement [8]. Another approach uses
post-processing techniques to improve the video quality after
the decoder [9], [11]. For the former one, the HEVC standard
specifies an in-loop filter [2], which comprises a deblocking
filter and a sample adaptive offset (SAO). The in-loop filter is
embedded in the encoding and decoding loops, after inverse
quantization and before saving the decoded picture in the
decoded picture buffer to improve image quality. The work
in [7] suggested a new in-loop filtering technology in HEVC
using convolutional neural networks (CNN), namely IFCNN,
to replace the SAO filter for coding efficiency and subjective
visual quality improvement. Inspired by Deep Convolution
Networks for Compression Artifacts Reduction (ARCNN),
Dai et al. [8] proposed a Variable-filter-size Residue-learning
CNN (VRCNN), which can improve the visual quality of
HEVC videos without increasing the bit rate compared to the
original in-loop filter in HEVC. However, the above networks
cannot be directly applied to compressed videos, as they
were designed as a part of the HEVC encoder. For the latter
approach, a Deep CNN-basedAuto Decoder (DCAD) [9] was
developed to improve the visual quality through deep learning
only at the decoder side. Later, a Decoder-side Scalable CNN
(DS-CNN) was proposed by Yang et al. [11] wherein there
are two subnetworks, DSCNN-I andDSCNN-B, to reduce the
artifacts of intra-coded and inter-coded frames, respectively.
In [13], QE-CNN-I and QE-CNN-P were also proposed
to enhance the intra-coded frames and inter-coded frames,
respectively. In [14], Huang proposed a cross feature fusion
framework to enhance the gaming video in the decoder side.
Notably, these works only focus on the decoded frame as the
input of the network. They do not consider the information
extracted from the bitstream.
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FIGURE 3. Dual-input network model structure.

FIGURE 4. Examples of (a) boundary mask and (b) mean mask.

B. DUAL-INPUT CNN ON VIDEO QUALITY ENHANCEMENT
Recently, a dual-input network has been proposed for visual
quality enhancement on natural videos. The beginning of
the dual-input network in Fig. 3 is composed of two
branches –the main branch and the mask branch. The mask
branch utilizes the compressed information extracted from
the bitstream as side information for the neural network. The
main branch and the mask branch in Fig. 3 are fused at certain
position within the network. The post-processed frame with
reduced artifacts is finally obtained. For instance, a partition-
aware convolution neural network was proposed in [15],
which uses the partition information produced by the encoder
to assist post-processing at the decoder side. In particular,
it adopts the boundary mask and the mean mask to guide the
neural network. In Fig. 4(a), the boundary mask represents
CU partition information by setting the CU boundary region
as 255 and the non-boundary CU region as 0. Themeanmask,
as shown in Fig. 4(b), represents CU partition information
by filling each CU with the mean value of all pixel values
within each CU. Either one of these two masks can be input
into the model in Fig. 3 as a grayscale image. Inspired by
He et al. [12], another dual-input model proposed by Hoang
and Zhou [16], a Deep Recursive Residual Network with
Block information (B-DRRN), also employs the mean mask
as side information. However, these dual input networks only
focus on natural videos and do not consider specific features
of screen content. In contrast, this paper proposes a novel
multi-input CNN that utilizes decoded frames with the mode
information of SCC as the input. The idea is to utilize three
binary masks, including the information of IBC mode, PLT
mode, and INTRA mode to further enhance the quality of
screen content videos.

FIGURE 5. (a) Original frame, and (b) associated coding modes (red:
INTRA, yellow: PLT, blue: IBC).

III. PROPOSED MULTI-INPUT CNN FOR VIDEO
ENHANCEMENT
In this section, we describe our network architecture in detail.
The framework of the proposed MICNN is shown in Fig. 2.
To exploit the side information from the bitstream, we pro-
pose three binary masks dedicated to screen content videos.
This is the first work to enhance the SC quality using deep
learningwith the help ofmode information as the binarymask
input into the deep network.

A. MOTIVATION
Owing to the block dividing process and quantization in
HEVC, the artifact of decoded video corresponds highly to
the CU information. Because of that, there are some impor-
tant clues contained in CU information that can be used to
eliminate the artifact of decoded videos. Recently, the works
in [12] and [15] have proven that using the mean mask or the
boundary mask can achieve better performance in the post-
processing method.

However, screen content videos have different character-
istics to natural videos, they often contain many uniform
and flat areas, repeated patterns, and limited pixel colors.
CU information cannot represent these characteristics. There-
fore, various mechanisms of video quality enhancement are
required for these different types of content. To identify
natural content and screen content such that our MICNN
can effectively enhance the reconstruction quality of differ-
ent contents, it can be guided by the coding mode. Fig. 5
explains the relationship between content type and coding
mode. Fig. 5(a) shows a frame with mixed content, and
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FIGURE 6. Examples of three binary mode masks. (a) Original frame with
CU partition, (b) IBC binary mask, (c) PLT binary mask, and (d) INTRA
binary mask.

Fig. 5(b) illustrates the associated coding modes, highlighted
by different colors. As shown in Fig. 5(b), red, yellow, and
blue boxes are used to represent INTRA, PLT, and IBC,
respectively. INTRA is known to encode natural content.
IBC and PLT are designed for screen content: (1) IBC can
find almost exact matching for certain CUs within the same
frame due to the massive existence of texts and computer-
generated graphics, and (2) PLT can well handle the CUs
with only a few distinct colors. Therefore, the coding modes
embedded in the coded bitstream are good candidates for
identifying CU content types that can be used to guide the
video quality enhancement in screen content videos. In the
following section, we propose to use three binarymodemasks
devised by different coding modes, IBC, INTRA, and PLT,
in our new MICNN to improve the visual quality of screen
content. Through the input of mode information, MICNN can
eliminate different artifacts of decoded screen content videos
according to the content encoded by different coding modes.

B. BINARY MODE MASKS
Based on the above motivation, three binary mode masks,
MIBC , MPLT , and MINTRA are defined based on different
coding modes – IBC, PLT and INTRA, respectively. They
are used for different types of content, resulting in different
artifacts in the decoded SC video.

Suppose Mode(CU (x, y)) is the coding mode in which
the pixel location (x, y) belongs to a particular CU, and
Mmode(x, y) is the binary value of the element at (x, y),
where mode ∈ {IBC,PLT , INTRA}. Mmode(x, y) is set to
1 when (x, y) belongs to the CU encoded as mode ∈

{IBC,PLT , INTRA}. Otherwise,Mmode(x, y) is filledwith the
value of 0. Then, the binary values of the elements of MIBC ,
MPLT , and MINTRA can be generated as follows:

MIBC (x, y) =

{
1, if Mode(CU (x, y))ϵIBC
0, if Mode(CU (x, y)) /∈IBC

(1)

MPLT (x, y) =

{
1, if Mode(CU (x, y))ϵPLT
0, if Mode(CU (x, y)) /∈PLT

(2)

MINTRA (x, y) =

{
1, if Mode(CU (x, y))ϵINTRA
0, if Mode(CU (x, y)) /∈INTRA

(3)

Figure 6 shows the examples of the IBC binary mode mask,
PLT binary mode mask, and INTRA binary mode mask based
on the assigned values using (1)-(3).

C. PROPOSED MODE INFORMATION GUIDED
CNN (MICNN)
The baseline CNN architecture is shown in Fig.7(a), where
our proposed mode information guided CNN (MICNN) is
adopted. The MICNN architecture consists of three compo-
nents, i.e., feature extraction, feature fusion, and reconstruc-
tion. In the feature extraction stage, onemain branch and three
sub-branches are used to extract features. The decoded frame
is fed into CNN through the main branch and the binary mode
masks MIBC , MPLT , and MINTRA are the inputs of the three
sub-branches.

The binary mode masks are the side information. They are
fed into the neural network and combined with the decoded
frame. Therefore, the order of the three binary mode masks
fused in the neural network are considered, and ablation study
related to various orders will be made later. From Fig. 7(b),
we can see the detail of our proposed fusion method. The
features extracted from different binary mode masks will
be added to the feature extracted from decoded frame in
order.

Moreover, Residual Dense Blocks (RDBs) represented in
Fig. 7(c) are stacked as the main branch of the proposed
MICNN. As shown in Fig. 7(c), the RDB contains three
groups of convolutional layers that are in dense connec-
tion [17]. Each group consists of two convolutional layers
with a size of 3 × 3 and two ReLU activation functions.
Meanwhile, the residual connection in each RDB is employed
to reduce the gradient vanishing problem and help the back-
propagation. Compared with the original residual block as
shown in Figure 7(d), RDB uses dense connection which can
exploit hierarchical features.

To formulate the MICNNmodel proposed in Fig. 7(b), it is
assumed that the decoded and enhanced frames are repre-
sented by D̃ and Ỹ , respectively. The composite non-linear
mapping including convolutional operation and activation
function (ReLU) is denoted as Hcr (·). In addition, the RDB
is denoted as HRDB (·). The output of the main branch in the
feature extraction stage can then be obtained by

ỹ = HRDB(Hcr (HRDB(Hcr (HRDB(Hcr (D̃)))))) (4)

The output of the sub-branches in the feature extraction stage
can be formulated as:

m̃ibc = Hcr (MIBC ) (5)

m̃intra = Hcr (MINTRA) (6)

m̃plt = Hcr (MPLT ) (7)

where m̃ibc, m̃intra, and m̃plt are defined as the feature maps
of the IBC mode mask, INTRA mode mask, and PLT mode
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FIGURE 7. (a) The baseline CNN structure without binary mode masks, (b) the proposed MICNN structure, (c) Residual Dense Block (RDB), and
(d) Traditional Residual Block.

mask, respectively. These feature maps are then integrated
into the main branch in the feature fusion stage, which can
be formulated as:

ỹibc = ỹ+ m̃ibc (8)

ỹintra = Hcr (ỹibc) + m̃intra (9)

ỹplt = Hcr (ỹintra) + m̃plt (10)

where ỹibc, ỹintra, and ỹplt denote the output after adding the
IBC mode mask, the INTRA mode mask, and the PLT mode
mask in order, respectively. Finally, the reconstructed frame
can be generated as:

Ỹ = Hc
(
Hcr

(
ỹplt

))
+ D̃ (11)

where Hc (·) denotes the convolutional operation.
The proposed network is trained in an end-to-end man-

ner. To optimize our model, we apply Mean Squared
Error (MSE) as the loss function. Given a training set{
D̃i,MIBC,i,MINTRA,i,MPLT ,i,Yi

}N
i=1

, where N is the num-
ber of patches in the training set. Here, Yi is the

ground truth patch of the decoded patch D̃i and the set{
MIBC,i,MINTRA,i,MPLT ,i

}N
i=1 are the patches of mode infor-

mation. The loss function can be formulated as:

L (θ)=
1
N

∑N

i=1

∥∥∥H (
D̃i,MIBC,i,MINTRA,i,MPLT ,i

)
− Yi

∥∥∥2
2

(12)

where H (·) denotes our proposed network and θ denotes all
the parameters.

IV. PROPOSED POLYUSCC DATASET
The work of this paper mainly focuses on video qual-
ity enhancement of SC sequences. However, the num-
ber of SC sequences is limited. To avoid overlapping
with the sequences provided in the Common Test Condi-
tion (CTC) [19], SC sequences were gathered from other
sources [18], [20], or self- capture [21] to form our dataset,
‘‘PolyUSCC’’. Thirty-four HEVC standard video sequences
of various resolutions HEVC standard video sequences of
various resolutions (1920× 1080, 1680× 1050, 1280× 720)
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TABLE 1. Dataset.

FIGURE 8. Examples of self-captured sequences. (a) airplanevideocmd ,
(b) consoledocument , (c) consolenew , and (d) cmd3.

are adopted, as shown in Table 1. These sequences can
be divided into three types: text and graphics with motion
(TGM), animation (A), and mixed (M) content. The mixed
content contains natural content and screen content. The text
and graphics with motion (TGM) consists of text, graphic
and animation. The animation (A) only contains the gaming
content. To make the database focusing on the different types
of screen content, the number of TGM sequences is twice the
amount of the mixed content. The dataset consists of three
parts. First, to guarantee data reliability and availability, half
of the dataset (15 sequences) are provided from the JCT-VC
[18] but not included in CTC [19]. Second, there are 5 SC

TABLE 2. Different orders of the binary mode masks at QP=37.

sequences fromTsang et al. [20]. To enrich the text and graph-
ics with motion content and mixed content sequences, we fur-
ther capture 14 video sequences by ourselves. Some examples
of our self-captured videos are represented in Fig. 8. Our
self-captured sequences will be published on website [21].
During the evaluation of the proposed MICNN, 27 sequences
are used for training and the remaining 7 sequences are used
for validation, as shown in Table 1.

V. EXPERIMENTAL RESULTS
A. EXPERIMENTAL SETTING
Training of MICNN requires a dataset of training examples,
which are pairs of inputs and the corresponding outputs. The
video sequences in PolyUSCC were encoded by the HEVC
reference software HM16.20-SCM8.8 [2] under All-Intra
(AI) configuration as the input of networks, while the uncom-
pressed raw video sequences were used as the output of
networks. Considering that different Quantization Parame-
ters (QPs) in HEVC have different compression results with
varying degrees of artifacts, four different QPs of 22, 27, 32,
and 37 were set to ensure that the results of the experiments
are more representative. One model was trained for one QP.
For each frame, only the luminance channel (Y channel)
was considered as input for training. Model construction and
training were based on PyTorch. The patch size of each input
image and its corresponding ground truth were 64 × 64.
We randomly selected one patch from one frame for each
iteration. To guarantee the robustness of our dataset, we select
all frames in our training process. In our experiments, the
learning rate was set to 0.0001 for QP37. We fine-tuned
the learning rate as QP decreases. The adaptive moment
estimation (Adam) optimization method was used to train the
model for 500 epochs. A computer equipped with Windows
10 operating system, Intel i9-10900K CPU, 64 GB RAM,
and NVIDIA 3090Ti GPUs was used to perform the model
training.

The test set contains 12 video sequences provided in
the CTC [19], none of which is the same as the training
set and validation set. This is essential to avoid overfitting
issue.
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FIGURE 9. (a) Proposed fusion strategy, (b) Early Fusion by Concatenation
(EFC), and (c) Late Fusion by Concatenation (LFC).

TABLE 3. Different fusion strategies at QP=37.

B. ABLATION STUDY
As mentioned in Section III, the order of the three binary
modemasks fused in our proposedMICNNwill affect perfor-
mance. An ablation study was conducted to decide the order
of the three binary mode masks and verify the necessities
and the generalization ability of our proposed masks. Various
MICNN architectures were compared to find the optimal
order of inputting binary mode masks. It includes all possible
combinations as in Table 2 : ibc-plt-intra, plt-ibc-intra, intra-
plt-ibc ibc-intra-plt intra-ibc-plt, and plt-intra-ibc. These
notations represent different orders of the binary mode masks
by name. For example, ibc-plt-intra means first use the IBC
mode mask, then add the PLT mode mask, and finally use the
INTRA mode mask. Furthermore, to verify the superiority of
our mode mask, we input the mean mask proposed in [15]
into the baseline model in Fig. 7(a) with the same number of
layers and the same training process. The PSNR improvement

TABLE 4. Different masks at QP=37.

TABLE 5. Different baselines at QP=37.

of various combinations on the validation set under AI con-
figuration is shown in Table 2. It can be seen that ibc-intra-
plt can achieve the highest PSNR improvement (0.629 dB)
over the SCC baseline at QP=37. So, we will use the order of
ibc- intra-plt to compare other enhancement algorithms in the
following discussions. To further verify the efficiency of our
proposed fusion approach as in Fig. 9(a), we also evaluated
two different fusion strategies - Early Fusion by Concatena-
tion (EFC) and Late Fusion Concatenation (LFC), as shown
in Fig. 9(b) and Fig.9(c), respectively. In EFC,we concatenate
the decoded frame and binary mode masks as the input.
The main branch of EFC is the same with our proposed
MICNN. On the other hand, the subbranch of the LFC is the
same as our proposed MICNN. As compared with MICNN,
LFC concatenates all feature maps of decoded frame and
binary mode masks before the feature reconstruction stage.
The PSNR improvements for various fusion strategies are
shown in Table 3. It can be seen that our proposed fusion
strategy can achieve the highest PSNR improvement and it
can make better use of the mode information. In Table 4,
to further verify the contribution of our proposed mode
masks, we remove the intra mode mask, ibc mode mask, and
plt mode mask, respectively. The result shows that the best
performance can be achieved when the three mode masks are
adopted.

To verify the power of feature extraction of the RDB,
we employed the traditional Residual Block as shown in
Figure 7(d) and the traditional Dense Block [17] instead of the
RDB for compression. The results are shown in Table 5, the
RDB can achieve the highest PSNR performance. Combining
residual block and dense connection can help to extract the
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TABLE 6. Overall 1PSNR of different models at qp = 22, 27, 32, 37 under ai configuration.

TABLE 7. Overall 1SSIM(10−3) of different models at qp = 22, 27, 32, 37 under ai configuration.

TABLE 8. Overall Bd-rate(%) of different models at qp = 22, 27, 32, 37 under ai configuration.

feature and keep the high frequency details. The reason is that
the residual connection can prevent the gradient vanishing
and the dense connection can reuse the feature from previous
layers.

C. OVERALL PERFORMANCE
1) OBJECTIVE VISUAL QUALITY ASSESSMENT
In this section, we compare QECNN [13], DCAD [9],
Partition-aware CNN [15], and QECF [14] with our proposed
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FIGURE 10. PSNR improvement curves of partition-aware CNN, DCAD,
QECNN, QECF and our MICNN method for sequences, (a) scdesktop,
(b) scwebbrowsing, and (c) scflyingGraphics.

MICNN. Table 6 and Table 7 show the average PSNR
improvement (1PSNR) and the average SSIM improvement
(1SSIM), respectively, over all frames of each test sequence.
In these two tables, the best PSNR/SSIM improvement is
highlighted in bold and the underline number is the second-
best PSNR/SSIM improvement. We can see that our pro-
posed baseline and MICNN outperform other methods in
most cases.Meanwhile, the proposedMICNN achieves better
performance than the proposed single input model. It demon-
strates the benefit of using our proposed SCC mode masks.

When QP is 37, the highest PSNR improvement of our-
MICNN approach reaches 1.20 dB, i.e., for sequence scweb-
browsing. The average PSNR of our MICNN approach is
0.58 dB, which is 0.03dB higher than that of our baseline
model (0.55 dB), 0.41dB higher than that of QECF (0.17 dB),
0.18dB higher than that of Partition-aware CNN (0.40 dB),
0.14dB higher than that of DCAD (0.44 dB), and 0.27dB
higher than that of QECNN (0.31 dB). It is noted that QECF
includes some specific idea to enhance gaming content. How-
ever, it is found that our proposed method can also handle
gaming content and text content. Compared with the QECF,
our MICNN can achieve an acceptable PSNR improvement
(0.14dB) and SSIM improvement (0.0012) in gaming content
sequence scrobot and outperform other sequences. In addi-
tion, 1PSNR curves of three pure screen content videos
for DCAD, QECNN, partition-aware CNN, QECF, and our
proposed MICNN are shown in Fig. 10. The scdesktop is
mixcontent. The scwebbrowsing and scflyingGraphics are
pure screen content. By utilizing the proposed binary mode
masks, MICNN can achieve highest PSNR in each frame
of different content. That means our proposed method is
robust.

BD-rate [22] is used to indicate the bitrate savings of these
models under the equivalent PSNR. Experimental results are
compared and tabulated in Table 8. It shows that our proposed
MICNN can achieve higher BD-rate savings than its cor-
responding baseline. Again, this demonstrates the effective-
ness of using mode masks. Our MICNN obtains an average
BD-rate savings of 3.41%, while the second-best method
achieves an average BD-rate savings of only 2.97%. For
the test sequence scSlideShow, up to 6.76% BD-rate saving
is obtained for the Y component under AI configuration.
We conjecture that our MICNN well exploits the mode infor-
mation to further enhance the decoded frame quality and
reduce the BD-rate.

2) SUBJECTIVE VISUAL QUALITY COMPARISON
This section compares the subjective quality of different
models. Fig. 11 shows the subjective visual quality perfor-
mance of various models on the sequences scSlideShow,
scprogramming, and scflyingGraphics with QP = 37. From
this figure, we can see that the reconstructed frame of
HM16.20-SCM8.8 has obvious compression artifacts, which
cannot be completely removed byDCAD,QECNN, orQECF.
As shown in Fig. 11, our MICNN eliminates the artifacts
more effectively than other models. For scSlideShow and
scprogramming, it can be observed that the character is blurry,
and there are some blocking artifacts in the background
around the character, but it becomes clearer after being pro-
cessed by our proposed MICNN. For scflyingGraphics, the
lines are blurry in the reconstructed frame but becomes shaper
in MICNN. In addition, in the reconstructed frame, the flat
areas around the lines contain many artifacts. MICNN can
smooth these areas. All these examples in Fig. 11 show
that MICNN is superior to the other models in terms of
subjective visual quality. There are no uneven regions at the
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FIGURE 11. Subjective visual quality comparison at QP = 37 on (a) scSlideShow, (b) scprogramming,and (c) scflyingGraphics.

CU boundary and no visual blocking effect from the frame
processed byMICNN. This again shows that ourMICNN can
make use of the mode information to enhance the decoded
frame quality subjectively.

3) QUALITY ENHANCEMENT AT VARIOUS QPs
To verify the generalization ability of the MICNN model on
various QPs, we additionally encode all test sequences at

QP of 24, 29, 34, 39 when the model is trained at different
QPs, i.e. QP=22, 27, 32, and 37. The performance in terms
of 1PSNR is shown in Fig. 12. Fig. 12(a) shows the PSNR
improvement of the model trained at QP = 22 and tested at
QP = 22 and 24. In Fig. 12(b), the model is trained at QP =

27 and tested at QP = 27 and 29. Similarly, Fig. 12(c) and
Fig. 12(d) show 1PSNR of the model trained at QP =32
and 37 and tested at different QPs = 32 and 34, 37 and 39,
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FIGURE 12. 1PSNR of the model trained and tested at different QPs
under AI configuration. (a) Trained at QP=22, Tested at QP=22 and 24,
(b) Trained at QP=27, Tested at QP=27 and 29, (c) Trained at QP=32,
Tested at QP=32 and 34, and (d) Trained at QP=37, Tested at QP=37
and 39.

respectively. As shown in this figure, each trained model can
obtain acceptable quality enhancement on decoded videos
at adjacent QPs, which verifies the generalization ability on
various QPs.

FIGURE 13. Average 1PSNR against computational complexity of
different methods in the decoder side.

TABLE 9. Comparison of running time per frame.

TABLE 10. Comparison of model size.

4) COMPARISONS ON COMPUTATIONAL
COMPLEXITY IN DECODER
To evaluate the computational complexity of various models,
we follow the measurement metric of other post-processing
algorithms [11], [15] by computing the running time per
Coding Tree Unit (CTU) at the decoder side. Experiments
were conducted using Intel i9-10900K CPU, 64 GB RAM,
and NVIDIA 3090Ti GPUs. Fig. 13 shows the average
1PSNR against running time per CTU for MICNN, DCAD
[9], QECNN [13], QECF [14], and partition-aware CNN [15]
methods. The results shown in this figure are calculated over
all the test sequences on average. In Fig. 13, the running times
of DCAD, QECNN, QECF, partition-aware CNN are 0.40 ms
per CTU, 0.66 ms per CTU,0.91 ms per CTU, and 2.20 ms
per CTU, respectively. On the other hand, our proposed
MICNN model consumes approximately 1.08 ms per CTU
but achieves the highest PSNR improvement over other mod-
els. In Table 9, we also compare the overall time consumption
in enhancing one frame in different resolutions of different
methods. From Table 9 and Table 10, we can observe that the
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performance improvement of our MICNN consumes a rea-
sonable amount of computational time compared to QECNN
and DCAD. Moreover, MICNN outperforms partition-aware
CNN in both running time and 1PSNR.

5) MODEL SIZE
Model complexity in terms of model size for various models
is also evaluated in Table 10. Model size reflects the number
of network parameters. Compared to our baseline model,
MICNN adds sub-branches to improve performance with-
out significantly affecting model size. Besides, the proposed
MICNN can achieve higher performance than the partition-
aware CNN, but with smaller model size. It can be concluded
that our MICNN obtains better tradeoff between coding effi-
ciency and model size. In other words, our MICNN is more
model-efficient.

VI. CONCLUSION
By integrating our proposed binary mode masks into a
mode information guided deep network model, SCC modes
extracted from the bitstream can be utilized to further improve
SC video quality. Specifically, the new branch uses the binary
mode masks, which are based on the coding modes of SCC,
to exploit the characteristics of SCC, and then guide the
neural network for quality enhancement on screen content
videos. This is the first work to incorporate the SCC mode
information into the sub-branches for enhancing SC qual-
ity. Experimental results show that our proposed MICNN
is more effective than other networks. We believe that our
mask branches can be easily adopted to different single-input
models for further quality enhancement of SCC. In the future,
we will move to create a real-time model, which is essential
for the further development of real-time applications.
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