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ABSTRACT Estimating the time of arrival (TOA), pulse width (PW), and pulse repetition interval (PRI) is
critical for identifying the low probability of intercept (LPI) radar signals as it is common in electronic
warfare (EW) to experience a pulse train being received. To determine these parameters, we need to
differentiate between pulse and noise in a pulse train. However, separating the LPI radar pulse train into
pulse and noise is challenging owing to its characteristics and modulation scheme. Therefore, we propose
a method to accurately estimate TOA, PW, and PRI using change point detection, which can effectively
classify the pulse train into pulse and noise. The main contributions of this study are as follows. First, a
denoising method robust to various modulation schemes is introduced. Second, an algorithm capable of
estimating the parameters without considering the threshold calculation is presented. Moreover, most prior
studies have entailed parameter estimations for a single pulse. In contrast, we focus on estimating parameters
when a pulse train is intercepted and generating superior results even in the signal-to-noise ratio under 0 dB.
We present experiments performed on the following eight modulation schemes: linear frequencymodulation,
Costas, Barker, Frank, P1, P2, P3, and P4 codes. Furthermore, we compare the proposed method with the
wavelet-based method, which has received much attention in EW. The results demonstrate that the proposed
method outperforms the conventional approaches.

INDEX TERMS Electronic warfare, LPI radar signal, parameter estimation, change point detection.

I. INTRODUCTION
Many radar emitters widely use low probability of intercept
(LPI) signals to prevent an opponent receiver from inter-
cepting and detecting their emissions [1]. As the LPI radar
signal is not intended to be identified by the electronicwarfare
support (ES) receiver, it has a low peak power, low signal-to-
noise ratio (SNR), high duty cycle, and large bandwidth [1],
[2]. As a result, the development of various countermeasures
for identifying LPI radar signals has been accelerated, such
as localization of radar [3], deinterleaving of pulse train [4],
waveform recognition [5], and artificial intelligence tech-
niques [6] in ES systems.

The associate editor coordinating the review of this manuscript and

approving it for publication was Brian Ng .

In general, the ES systems sequentially perform detec-
tion and analysis of the intercepted signal to recognize the
enemy’s threat. It is important to estimate the signal parame-
ters to analyze the opponent’s signal source. Time of arrival
(TOA), pulse width (PW), and pulse repetition interval (PRI)
are commonly considered as key parameters among them [7],
and threats are perceived by comparing the estimated param-
eters with the pre-stored data in electronic intelligence [8].
The processed information is immediately transmitted to the
friendly forces, assisting in the development of effective tac-
tical strategies and the quick decision of countermeasures.
Therefore, successful acquisition of the enemy’s signal infor-
mation is a prerequisite for the operation of EW systems.

Many estimation methods have been studied to collect
meaningful data from the received signal. TOA, PW, and

12796
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0002-6108-4071
https://orcid.org/0000-0001-9885-1564
https://orcid.org/0000-0003-3841-448X
https://orcid.org/0000-0002-8316-4996


J.-H. Bang et al.: Accurate Estimation of LPI Radar Pulse Train Parameters via Change Point Detection

PRI estimation methods based on an envelope detector and
dual decision thresholds were introduced in [9] and [10].
As the radar signals are strongly affected by the noise
due to power loss caused by free-space path loss, most of
them have low SNRs of less than 0 dB. Therefore, these
approaches are fragile in such a weak-signal environment.
A modified Wigner–Ville distribution (WVD) that elimi-
nates all interferences and smoothens the waveform’s rough
edges was presented in [11]. The signal is transformed into
a time-frequency representation by employing the modified
WVD, and an instantaneous power in time-frequency analysis
and a threshold are used to find the PW and PRI. However,
only linear frequency modulation (LFM) was considered.
In [12], a cross-correlation-based two-stage PW estimation
method was proposed for binary phase shift keying (BPSK).
In the first stage, the center frequency is estimated by con-
ducting the cross-correlation between the received and the
reference signals. In the second stage, the PW is extracted
by cross-correlation between them, having the estimated
center frequency in the first stage. Although this method
can determine the parameters in a high-noise environment,
performance degradation arises when the center frequency
of the received signal does not match with the reference
signal. In addition, only BPSK was considered. In [13], the
time-frequency analysis produced from the smooth pseudo-
Wigner–Ville distribution is converted into a binary map, and
the PW is determined by projecting the binary map onto the
time axis. However, the performance deteriorates when an
overlap occurs between the Costas sequences in the time axis.
A PW estimation method based on edge detection, which
utilizes a Haar filter and a threshold, was presented in [14].
However, a weak-signal environment was not considered.

In addition, a study on wavelet denoising has also
drawn considerable attention in EW. The estimation method
employing wavelet packet decomposition and kurtosis
enhanced the pulse amplitude estimation accuracy by deter-
mining the exact PW [15]. As a threshold based on kurtosis is
used to decide the presence of noise in each packet, it is suit-
able for a signal with an SNR of upper 0 dB. Noise reduction
viaGaussianwavelet increased the SNRof the received signal
by choosing the wavelet coefficient with the maximum power
ratio [16]. However, this method is only applicable to the low-
frequency band, and the filter gain is not flat. The modified
sinc wavelet addressed in [17] overcame the disadvantages
of the existing mother wavelet and improved the SNR of the
signal received in a wide range of frequency bands through
the wavelet transform. However, these wavelet transform-
based studies focus only on signal detection by mitigating
the noise. The crucial role of the ES systems is to detect and
analyze the opponent’s threat.

Since the 1950s, there has been substantial interest in
the study of change point detection (CPD) in a variety of
fields [18]. CPD aims to identify points in real-time series
data where a significant statistical change occurs. CPD was
used to monitor human health behavior and status by locating

change points in the electroencephalogram signal [19]. More-
over, applying CPD to speech signal processing improved the
segmentation of entire audio tracks from TV shows as well
as speaker diarization [20]. CPD has been actively utilized in
diverse signal processing fields but has yet to be used in EW
signal processing.

This paper proposes an estimation method of the TOA,
PW, and PRI for the LPI radar pulse train based on CPD.
The proposed method comprises two steps—denoising and
estimation. A tailor-made sinc filter for the intercepted sig-
nal is designed using CPD in the denoising step. We can
acquire the denoised pulse train through the designed opti-
mal sinc filter. After suppressing the noise, the pulse train
is split into several segments by CPD. Then, we com-
bined the segment’s mean and variance into 2-D data
and used the K -means algorithm on these data to deter-
mine whether a segment is a pulse or noise. Consequently,
we allocated 0 for the noise segment and 1 for the pulse
segment based on the classified result and estimated the
TOA, PW, and PRI by selecting any threshold between
0 and 1.

The main contribution of this study is that it provides an
accurate estimation method for the TOA, PW, and PRI in
a weak-signal environment. In addition, most studies have
not considered various modulation schemes [9], [10], [11],
[12], [13], [14], [15], [16], [17], whereas the proposedmethod
shows robust estimation performance for the eight modu-
lation schemes, such as LFM, Costas, Barker, Frank, P1,
P2, P3, and P4 codes. Furthermore, most threshold-based
estimation methods use a fixed value or a variable value
(e.g., constant false alarm rate) as a threshold [9], [10], [11],
[14], [15]. However, fixed-threshold-based methods are vul-
nerable in coping with a weak-signal environment because
the noise is dominant as SNR decreases. The estimation
performance of variable-threshold-based methods depends
on many parameters, such as the probability of false alarms,
number of reference cells, and number of guard cells [21].
To minimize these potential troubles, we take a different
approach of separating the pulse train into pulse and noise in
advance and then using a fixed threshold. Lastly, most studies
consider single pulses [12], [13], [14], [15], [16]. Although
some studies concentrate on parameter estimation for the
pulse train, they are fragile to weak signals [9], [10] or con-
sider only single modulation [11]. In this study, we focused
on overcoming these drawbacks when the pulse train is
intercepted.

The remainder of this paper is organized as follows.
Section II briefly reviews an LPI radar signal model, a CPD
exploited in the proposed method, and the K -means algo-
rithm. Section III describes the proposed TOA, PW, and
PRI estimation method based on CPD. In Section IV, the
performance of the proposed method is compared with those
of the existing methods based on wavelet transform using
the experimental results. Section V provides the conclusions
drawn from this study.
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TABLE 1. LPI radar waveform.

II. RELATED WORK
In this section, we first present a brief explanation of the eight
LPI radar signals. Then, a CPD and a K -means algorithm,
which are exploited in the proposed method, are introduced.

A. LPI RADAR SIGNAL MODEL
An intercepted LPI radar signal y[n], including the discrete-
time complex radar signal s[n] and the complex additivewhite
Gaussian noise (AWGN) w[n], is defined as

y [n] = s [n] + w [n] = Aej2π f [n](nTs)+φ[n]
+ w [n] , (1)

where A is a complex amplitude which is constant within
the pulse width τpw for 0 ≤ nTs ≤ τpw, n is a sample
index increasing every Ts for a sampling frequency, f [n] is
an instantaneous frequency, and φ[n] is a phase modulation
function.

The LPI radar signal has three types: frequency modu-
lation, phase modulation, and combined modulation [22].
In frequency modulation, the φ[n] is kept constant while the
f [n] is varied, whereas f [n] is kept constant while the φ[n]
is changed in phase modulation. Combined modulation is a
combination of frequency and phase modulation. The eight
modulation schemes used in this study are shown in Table 1.
Here, B is the bandwidth of LFM, fi is the Costas sequence,M
is the number of frequency steps,Nc = M2 is the compression
ratio, and i, j denote the phase of the ith sample of the jth
frequency.

B. CHANGE POINT DETECTION
CPD is an algorithm that detects points where a sudden
statistical change appears in real-time series data and is used
in diverse fields such as finance, climatology, network traffic

analysis, signal processing, and speech processing [23]. The
CPD is usually classified into two categories: constrained and
penalized minimization problems.

1) CONSTRAINED MINIMIZATION PROBLEM
The constrained minimization problem restricts the optimiza-
tion by fixing the maximum number of change points that can
be found. If we know the maximum number of change points
k , CPD finds τ1, τ2, . . . , τk such that the following total cost
function Ct is minimized [24].

Ct = min
τ1:k

k∑
j=0

C
(
yτj+1:τj+1

)
, (2)

where y = (y1, y2, . . . , yn) is the all input data, yτj+1:τj+1 =

(yτj+1, yτj+2, . . . , yτj+1) is the partial input data from τj+1 to
τj+1, C is the cost function, τ = (τ0, τ1, . . . , τk , τk+1) is
the set of change points, and τ0 = 0, τk+1 = n. The form
of the cost function depends on the type of change we want
to find. For instance, the cost function recognizing a drastic
mean change is expressed as follows [24]:

Caverage = min
τ1:k

k∑
i=0

 τi+1∑
j=τi+1

yj − 1
τi+1 − τi

τi+1∑
l=τi+1

yl

2
 .

(3)

2) PENALIZED MINIMIZATION PROBLEM
If the number of change points k is unknown, we must
simultaneously determine the number and the position of the
change points by solving a penalized minimization problem.
Unlike the constrained minimization problem, the penalized
minimization problem has a penalty constant β in the total
cost function [24].

Ct = min
k,τ1:k

k∑
j=0

[
C

(
yτj+1:τj+1

)
+ β

]
. (4)

Several studies have been conducted in statistical signal
processing to find the change points when the number of
change points is unknown. Among them, a pruned exact
linear time (PELT) shows high detection accuracy with low
computational complexity [25]. Because of these advantages,
we incorporate PELT to solve the penalized minimization
problem in EW.

In the penalized minimization problem, choosing the opti-
mal penalty constant is critical. If the penalty constant is
too small, overfitting occurs in which unnecessary changes
are detected. In contrast, if the penalty constant is too large,
underfitting occurs in which the necessary changes are not
recognized. Fig. 1(a) and (b) show random numbers with
rapidmean changes at indices 11, 31, and 51 to give the exam-
ple of overfitting and underfitting. As shown in Fig. 1(a),
the change points found by PELT are more than necessary
because the penalty constant is small. Although abrupt mean
changes occurred at index 51 in Fig. 1(b), PELT cannot recog-
nize it as the penalty constant is large. Therefore, the choice
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FIGURE 1. Examples of overfitting and underfitting in change point
detection; (a) overfitting, (b) underfitting.

of the penalty constant is closely related to the detection
accuracy.

3) CROPS METHOD
It is essential to pick the optimal penalty constant in the
penalized minimization problem. The change points for a
range of penalties (CROPS) is one of the algorithms to get the
optimal penalty range [26]. The motivation of the CROPS is
that there may exist a non-optimal number of change points
when the cost and the number of change points are calculated
according to the penalty constant by running CPD.

From this observation, CROPS decides whether the num-
ber of change points for the initial minimum and the max-
imum penalty range [βmin, βmax] set by the user is opti-
mal. If [βmin, βmax] is optimal by satisfying certain condi-
tions, we have divided the input into optimal segments for
β ∈ [βmin, βmax]. Otherwise, [βmin, βmax] is divided into
[βmin, βint ] and [βint , βmax], where βint is the value between
βmin and βmax defined from the theoretical results in [26].
This process is repeated for each [βmin, βint ] and [βint , βmax]
until an optimal penalty range is acquired.We can avoid over-
fitting or underfitting in the penalized minimization problem
by using CROPS.

FIGURE 2. Block diagram of the proposed method.

C. K-MEANS ALGORITHM
K -means is an unsupervised learning algorithm widely
employed in cluster analysis. It repeats the process of separat-
ing data using the nearest-centroid decision rule [27]. A brief
outline of the K -means algorithm is as follows:

i) Randomly select the centroid of each K cluster.
ii) Assign data close to the centroid of each K cluster to

the corresponding cluster.
iii) Update each centroid to the average position of the

cluster.
iv) Repeat step 2 using the updated centroid.
v) Repeat steps 2 to 4 until the centroid converges.

III. SIGNAL PARAMETERS ESTIMATION BASED ON
CHANGE POINT DETECTION
This section describes the proposed method based on CPD
to estimate TOA, PW, and PRI. Fig. 2 shows the block
diagram of the proposed method consisting of denoising and
estimation parts. Each part incorporates a CPD to accomplish
its purpose. K -means algorithm is exploited in the estimation
part to distinguish between the pulse and noise. The details
of each block are presented in the following subsections.

A. DENOISING STEP
1) POWER RATIO IN FREQUENCY DOMAIN
Assuming that the signal is stationary within the filter, the
time-frequency representation TFR(τ, f ) based on the sinc
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FIGURE 3. Received LFM signal when the SNR is 0 dB.

FIGURE 4. Power ratio of the LFM when the SNR is 0 dB.

filter bank is conducted by the inner products of a signal x(t)
and a sinc filter w(t), which can be denoted as

TFR (τ, f ) =

∫
∞

−∞

x (t)w∗ (t − τ) dt, (5)

where

w (t) =
sin (Bπ t)

π t
ej2π ft . (6)

After producing the time-frequency analysis, the following
power ratio P(f ) in the frequency axis is calculated to find
the signal bandwidth [28].

P (f ) =

∫
∞

−∞

∣∣TFRsignal (τ, f )∣∣2 dτ

E
[∫

∞

−∞
|TFRnoise (τ, f )|2 dτ

] , (7)

where TFRsignal(τ, f ) and TFRnoise(τ, f ) are the time-
frequency analysis of the input signal and noise, respectively.
Fig. 3 is a received LFM signal with the SNR of 0 dB.We can
get the power ratio values corresponding to this signal by
conducting the power ratio calculation, as shown in Fig. 4.
The power ratio in the noise region is about 1, and the power
ratio in the signal region is greater than 1. Due to this shape,
we can get the signal bandwidth by applying CPD.

FIGURE 5. Change points detection result of the Costas code power ratio
when the SNR is −5 dB.

We estimated the signal parameters with a single frequency
component because a signal with multiple frequency com-
ponents is deemed a deinterleaving problem before estima-
tion [29]. A signal with a single frequency component has two
change points in the power ratio: increasing and decreasing
portions. Therefore, we considered this problem as a con-
strained minimization problem when applying CPD to the
power ratio and fixed the maximum number of change points
to 2.

2) CHANGE POINTS DETECTION WITH CUMULATIVE POWER
RATIO
There are many modulation schemes of the LPI radar signal
in EW. Unlike other modulation schemes, the Costas code
has a frequency hopping sequence. There is a disadvantage
when finding the change point in the power ratio because of
this property. Fig. 5 shows the detection result of the Costas
code power ratio having a frequency interval of 5 MHz and
an SNR of −5 dB. Only two of the four hopping sequences
were detected. This was because of the large gap between
hopping sequences. In addition, as the amplitude of some
hopping sequences increased owing to the influence of noise
in low SNR, CPD might recognize these hopping sequences
as abrupt statistical changes.

To overcome these shortcomings, we propose the change
point detection with cumulative power ratio (CPD-CP),
where CPD is conducted on the cumulative power ratio
defined by

Pcum (f ) =

n∑
f=1

(P(f ) − 1)2 . (8)

Here, n is the number of the filter bank. The insight of the
CPD-CP is that the power ratio in the noise area is approxi-
mately 1. Accordingly, the cumulative power ratio has a shape
in which the slope gradually increases in the noise section,
whereas the slope surge in the signal section. This shape
is optimal for detecting abrupt slope changes, and the cost
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FIGURE 6. Detection result of the CPD-CP for the same Costas code in
Fig. 5.

function to recognize the slope change is as follows [30]:

Cslope = min
τ1:k

k∑
i=0

C (Pcum (τi + 1 : τi+1))

= min
τ1:k

k∑
i=0

 τi+1∑
j=τi+1

[
Pcum (j)

−

(
φτi+1 − φτi

τi+1 − τi
(j− τi) − φτi

)]2]
, (9)

where φτi is the value at the change point τi.
Fig. 6 represents the detection result of the CPD-CP for

the same Costas code in Fig. 5. The upsurge in the signal
region is prominent and can be detected well. In addition, the
cumulative power ratio for the Costas code increases stepwise
because of the hopping sequence. In contrast, the cumula-
tive power ratio of the other modulation schemes increases
linearly, as shown in Fig. 7. Here, the maximum value of
the Barker code is larger than those of the others because
its modulation bandwidth is narrower compared to the other
modulation schemes. Furthermore, P2, P3, and P4 codes also
have similar shapes. From this observation, we can determine
the signal bandwidth for variousmodulation schemes through
the CPD-CP.

3) OPTIMAL FILTERING
We can acquire two change points by performing CPD-CP
on the power ratio, and these points are denoted as cpmin
and cpmax . In addition, a margin ξ is added to get the signal
bandwidth fully. After that, we can define the minimum and
maximum values of the signal bandwidth as

Bmin = cpmin − ξ,

Bmax = cpmax + ξ. (10)

Then, the optimal sinc filter can be designed by

w (t) =
sin ((Bmax − Bmin)π t)

π t
e
j2π

(
Bmax+Bmin

2

)
t
. (11)

FIGURE 7. Cumulative power ratios when the SNR is −5 dB; (a) LFM,
(b) Barker code, (c) Frank code, (d) P1 code.

Finally, we can mitigate the noise in the pulse train by pass-
ing through the designed filter. In conclusion, the proposed
denoising step can suppress the noise of the LPI radar signal
without distortion by setting the flexible filter bandwidth
according to the signal bandwidth.

B. ESTIMATION STEP
1) MODIFIED CROPS
The denoised pulse train has an apparent statistical difference
between the noise and the pulse signal. In this respect, we can
divide the denoised pulse train into pulse and noise segments
by applying CPD. However, we cannot know the number
of pulses in the intercepted signal. Therefore, we consider
this problem as a penalized minimization problem and apply
PELT on the denoised pulse train. Because the penalty con-
stant is a critical factor in determining the detection accuracy
in PELT, we propose a modified CROPS (mCROPS) algo-
rithm to acquire the optimal penalty range in EW efficiently.

Fig. 8 shows a snapshot of the number of change points
k according to the penalty constant β from 0.5 to 9 for each
modulation scheme. We can get these outcomes by perform-
ing PELT for varying β on a denoised pulse train having
6 pulses. As the number of pulses is 6, the ideal number of
change points is 12. Fig. 8(a) is the snapshot when the PW
is minimum in the practical PW range, and SNR is −5 dB.
Fig. 8(b) represents the snapshot when the SNR of (a) is
changed to 0 dB, and Fig. 8(c) shows the snapshot when
the PW of (a) is altered to maximum. From these results,
we arrive at the following four facts.

i) The optimal penalty range is different for each modu-
lation scheme. For example, Costas code has an opti-
mal penalty range at [1, 1.9], but Frank code at [3.1,
5.5] in Fig. 8(a).

ii) The optimal penalty range is dissimilar according to
SNR and PW.

iii) In Fig. 8(a), as the penalty constant decreases, overfit-
ting appears in some modulation schemes, but others
may have an optimal. For instance, overfitting arises
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FIGURE 8. Snapshot for the number of change points according to the penalty constant; (a) SNR = −5 dB and minimum PW, (b) SNR = 0 dB and
minimum PW, (c) SNR = −5 dB and maximum PW.

Algorithm 1Modified CROPS Method
Input: y = (y1, y2, . . . , yn) where yi ∈ R

Initial penalty range, [βmin, βmax ]
Interval of the initial penalty range, βinter

Output: The details of optimal segmentations for
each β ∈ [βmin, βmax ]

1 for iteration β = βmin, βmin + βinter , . . . , βmax do
2 Run PELT for penalty value β
3 if k(β) = 0 or 1 then
4 Set βmax = β − βinter
5 break
6 end
7 end
8 Run PELT for penalty values βmin and βmax
9 Set β∗

= {[βmin, βmax ]}
10 while β∗

̸= ∅ do
11 Choose an element of β∗; denote this element as

[β0, β1]
12 if k(β0) > k(β1) + 1 then

13 Calculate βint =
Qk(β1)(y1:n)−Qk(β0)(y1:n)

k(β0)−k(β1)
14 Run PELT for penalty value βint
15 if k(βint ) ̸= k(β1) then
16 Set β∗

=
{
β∗, [βint , β1]

}
17 end
18 end
19 Set β∗

= β∗
\[β0, β1]

20 end

when the penalty constant is less than 1.6 in the
P4 code, whereas it is optimal from 1 to 1.6 for the
Costas code.

iv) When the signal is received, a penalty constant for
which the number of change points is 0 or 1 is not
required as at least two change points are needed for
a single pulse.

From these insights, the mCROPS is presented in
Algorithm 1 where k(β) is the number of change points for
β, and Qk(β)(y1:n) is the cost of having k change points when
running PELT for β on input data y1:n.

At the beginning of the mCROPS, PELT is run for every
interval βinter within the initial penalty range [βmin, βmax]
on the denoised pulse train. We can acquire the maximum
penalty constant before k becomes 0 or 1 from this process.
This penalty constant is again set to βmax , and PELT is

performed for βmin and βmax . Then if k(βmin) ≤ k(βmax)+ 1,
we find all the optimal segmentations for β ∈ [βmin, βmax].
Otherwise, we calculate βint and run PELT for βint . Then if
k(βint ) = k(βmax), we obtain all optimal segments for β ∈

[βmin, βmax]. Otherwise, we consider the range of [βint , βmax]
and repeat this procedure in this range. This continues until
there is no new penalty range to consider.

There are two distinctions between CROPS and mCROPS.
First, the penalty constant before the number of change points
becomes 0 or 1 is set to the βmax . Second, if [βmin, βmax] is
not optimal, the overall process is repeated for [βint , βmax]
instead of [βmin, βint ] and [βint , βmax]. These modifications
prevent the algorithm from running in an unnecessary penalty
range and avoid undesirable consequences in advance. For
example, the Costas, P3, and Barker codes in Fig. 8(a) have
optimal penalty ranges [1, 1.9], [2.4, 3.6], and [3.7, 9], respec-
tively. In this case, we should consider setting 1 to 9 as the
initial penalty range because we cannot know the modulation
scheme of the intercepted signal. However, the penalty range
[3.7, 9], which is optimal for the Barker code, is meaningless
for the Costas and the P3 codes as their number of change
points is 0. In addition, the P3 and the Barker codes do not
require PELT to run for β < 2 owing to overfitting, whereas
the Costas code does. In this sense, mCROPS extracts the
appropriate penalty range in EW more efficiently and the
computational cost is also naturally reduced by these changes.

Fig. 9 shows the detection result of the PELT with
mCROPS in a denoised pulse train with an SNR of −5 dB,
where 13 segments appear. Among these segments, we have
to decide which part is noise or pulse during the signal
processing. To achieve this goal and find the required param-
eters, we propose an estimation procedure with a K -means
algorithm.

2) ESTIMATION WITH K-MEANS
After segmentation by PELT with mCROPS, we can calcu-
late each segment’s mean and variance. Fig. 10 shows the
segment’s mean and variance determined from the result in
Fig. 9. The noise segment has a relatively smaller value than
the pulse segment. Based on this observation, we have devel-
oped the following estimation algorithm: estimation with
K -means.
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FIGURE 9. Detection result of the PELT with the modified CROPS.

FIGURE 10. Segment mean and variance calculated from Fig. 9.

First, we generate the feature data by converting the seg-
ment’s mean and variance into a 2-D feature data. Second,
we classify this 2-D data into pulse and noise segments by
implementing the K -means algorithm, as shown in Fig. 11.
Then, 1 and 0 are assigned to the segment’s mean (or vari-
ance) value corresponding to the data of each noise and pulse
cluster. Consequently, the output from this procedure has 1 for
the pulse domain and 0 for the noise domain, as shown in
Fig. 12. Because the outcome has 1 and 0, TOA, PW, and
PRI can be estimated by applying the fixed criterion between
0 and 1 without any calculation for selecting the threshold.
The output changes from 0 to 1 and 1 to 0 are denoted as
rising and falling edges, respectively. Then, we can determine
the parameters through the following process.

R = [r (1) r (2) · · · r (p)N ] ,

F = [f (1) f (2) · · · f (p)] ,

TOA = R (1) = r (1) ,

PW (i) = F (i) − R (i) ,

PRI (i) = R (i+ 1) − R (i) , (12)

FIGURE 11. 2-D feature data after K -means algorithm.

FIGURE 12. Output from the estimation with K -means.

where R and F are rising and falling edges, p is the number
of features classified into pulse segment, N is the end of the
time index, and i = 1, 2, . . . , p.

IV. PERFORMANCE EVALUATION
A. SIMULATION SETUP
In our experiment, we evaluated the estimation performance
of the proposed method using MATLAB. The notations for
the parameters are described in Table 2 and the experimental
environments are given in Tables 3 and 4. For performance
analysis of the TOA, PW, and PRI, we used root-mean-
square-error (RMSE), and repeatedly generated each signal
given in Table 3 500 times per SNR for RMSE calculation.
For the convenience of simulation, we fixed the numbers
of TOA samples, pulses, and sampling frequency to 2,000,
6, and 100 MHz, respectively, and randomly set the PRI of
the generated signal to have four types having fixed values:
constant, jitter, stagger, and Dwell and Switch (D&S), given
in Table 5 [31]. The range of the SNR was −5 to 5 dB, and
we observed an estimation error every 2 dB.We presumed the
generated signal was collected after passing through the dig-
ital channelizer [32]. In addition, simulation was performed
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TABLE 2. Notations for the signal generation and denoising.

TABLE 3. Parameters for the signal generation.

under AWGN, and we assumed that the information about
the mean and variance of AWGN could be known in advance
when no signal was received.

TABLE 4. Parameters for the denoising.

TABLE 5. Parameters for the pulse repetition interval.

We compared the proposed method with the modified sinc
wavelet and the Gaussian wavelet discussed in [33]. As these
methods focused only on noise suppression, parameter esti-
mation was not considered. We combined these wavelet
transform-based methods with the proposed estimation step
to analyze the performance under the same condition. In the
proposed estimation step, the PELT detected abrupt mean
changes, and we set the initial penalty range [βmin, βmax] to
[0.5, 6] and the interval βinter to 0.1 for the mCROPS. The
threshold in estimation with K -means was set to 0.5.

B. ESTIMATION RESULT
Fig. 13 represents the TOA, PW, and PRI estimation results
for the unmodulated (UM) signal given in Table 3. The results
for each parameter show similar patterns, and the estimation
accuracy tends to increase as the SNR improves in all meth-
ods. Among them, the modified sinc wavelet and the pro-
posed method have similar performance. This result indicates
that the sinc wavelet suppresses the noise without distortion
as the unmodulated signal has only a center frequencywithout
bandwidth. However, in detail, the proposed method slightly
outperforms the modified sinc wavelet. This result reflects
that unnecessary thermal noise is included when the sinc
wavelet bandwidth is larger than the signal bandwidth. In the
case of the modified Gaussian wavelet, it is inferior to others
as the filter gain is not flat.

Fig. 14 shows the TOA, PW, and PRI estimation results
generated by calculating the average RMSE for the eight
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FIGURE 13. Estimation result for the parameters of the unmodulated
signal; (a) time of arrival, (b) pulse width, (c) pulse repetition interval.

modulated signals considered in Table 3. The results for
each parameter show a similar appearance as in Fig. 13.
The proposed method decreases the estimation error as the
SNR increases and generates remarkable results even in a
weak-signal environment. However, unlike in Fig. 13, the
estimation performance of the wavelet transform deterio-
rates. In addition, the RMSE is saturated regardless of the

FIGURE 14. Estimation result for the parameters of the eight modulated
signal; (a) time of arrival, (b) pulse width, (c) pulse repetition interval.

SNR. These results can be explained through Fig. 15, which
shows the denoised pulse train produced from the modified
sinc wavelet. The wavelet transform may distort the signal
when the filter bandwidth is smaller than the signal band-
width. Consequently, the denoised pulse train appears to have
12 pulses even though the original number of pulses is 6.
Because of this distortion, it is difficult to distinguish between
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FIGURE 15. Distorted pulse train with six pulses obtained from the
wavelet transform.

pulses and noise correctly, resulting in poor performance even
when the SNR is increased. In contrast, the proposed method
mitigates the noise without distortion by using a flexible filter
bandwidth based on CPD-CP. In other words, the proposed
method accurately estimates parameters for various modula-
tion schemes and bandwidths in EW.

Additionally, we evaluated the estimation performance for
the modulation bandwidth of the eight modulated signals
considered in Table 3 using the CPD-CP. Each signal was
generated 500 times per SNR, and we also used the RMSE
for performance analysis. The modulation bandwidth1B can
be determined by using the output of the CPD-CP as follows:

1B = cpmax − cpmin. (13)

Table 6 represents the estimation result of the modulation
bandwidth. The RMSE in each SNR is about 1.3 MHz, which
does not show an accurate estimation result. This is because
the resolution of the time-frequency analysis produced by
a sinc filter bank is low. In addition, as the power ratio is
calculated by projecting the time-frequency analysis onto the
frequency axis, the frequency resolution of the power ratio
still remains to be low. Thus, the estimated bandwidth is
slightly larger than the actual bandwidth. We may improve
the frequency resolution by using other time-frequency anal-
ysis with a high resolution such as WVD or Choi–Williams
distribution instead of a sinc filter bank. However, there is
a trade-off between the performance and the computational
complexity. As this paper focused on improving TOA, PW,
and PRI estimation performance by reducing noise without
distortion, we have not presented the applicable result for the
estimation of the modulation bandwidth but will consider it
in future work.

V. CONCLUSION
We proposed a TOA, PW, and PRI estimation method based
on CPD by developing three key algorithms to estimate
parameters for LPI radar pulse trains, not single pulses. The
CPD-CP method was introduced to suppress the noise from

TABLE 6. RMSE for the modulation bandwidth of the eight modulated
signal.

signals with various modulation schemes and bandwidths
without distortion. The mCROPS, which efficiently provides
an adequate penalty constant for running PELT on a denoised
pulse train, was presented. Finally, estimation with K -means
was proposed for the authenticity of the estimation without
considering the threshold calculation. The proposed method
was compared with the existing wavelet transform-based
method. The simulation results demonstrated that the pro-
posed method precisely estimates the TOA, PW, and PRI
even in the low SNR for various modulation schemes. In con-
trast, the existing wavelet transform may cause performance
degradation by distorting the intercepted signal. Therefore,
the proposed method is expected to be effectively utilized in
ES systems. In future work, we plan to apply the proposed
method to signal in a real environment.
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