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ABSTRACT Establishing a highly accurate positioning of radio sources for radio wave monitoring and
frequency spectrum sharing is attracting considerable attention. Because the positioning method generally
requires specific processing of the position target, it is not applicable when the position target cannot
perform any processing. The location fingerprinting method uses multiple sensors to observe the received
signal strength indication (RSSI) emitted by a radio source and estimates the position from the radio
wave propagation characteristics. This does not require a certain process for the target position. However,
it takes time to gather RSSI from many sensors by wireless communication. In this study, we propose
an RSSI gathering method using physical wireless parameter conversion sensor networks (PhyC-SN) for
the high-speed positioning of radio sources. In the proposed method, each sensor selects the radio carrier
frequency corresponding to its measured RSSI and transmits the signal. Projecting the RSSI distribution of
each sensor onto the frequency distribution of the received signal enables the center to detect the RSSI of
multiple sensors simultaneously. Furthermore, to improve the gathering accuracy, we established a sensor
group method by considering the regional characteristics and access timing control based on each sensor
group. Computer simulations and experimental evaluations show that the proposed method significantly
reduces the data-gathering time compared with conventional packet communications and achieves a high
positioning accuracy.

INDEX TERMS Location fingerprinting, PhyC-SN.

I. INTRODUCTION
Recently, many services using location information have been
provided, and various studies have been conducted to advance
the location estimation technology [1]. The most famous
positioning scheme is the global positioning system (GPS)
[2]. However, GPS cannot be used in indoor environments
because it requires the reception of signals emitted from
multiple satellites. Additionally, it is necessary to attach a
GPS receiver to the target position. It is difficult to attach

The associate editor coordinating the review of this manuscript and
approving it for publication was Hongwei Du.

a receiving device for positioning to a phenomenon that
spontaneously generates a positioning target, such as a heat
source [3] or an earthquake source [4]. Moreover, it is impos-
sible to attach a receiving device for positioning to an illegal
radio source in a radio monitoring system [5] and the primary
access wireless system for frequency spectrum sharing [6].

Various positioning methods that do not use reception
processing for positioning the targets have been considered.
Positioning methods using spatial ripple effects have been
studied when the positioning target is the wave source.
Specifically, the centroid method based on the received signal
strength indication (RSSI) of the radio source [6], a method
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using the angle of arrival and arrival time of the sound
source [7], and the location fingerprinting method [8], which
utilizes the spatial peculiarity of ripple effects such as the
heat source for enlarging the temperature and the radio source
for enlarging the RSSI, have been proposed. In these meth-
ods, many sensors that measure characteristics such as the
strength of the ripple effect are placed uniformly within the
observation range in advance, and they inform the sens-
ing data to the data center station via wireless sensor net-
works (WSN). To improve the positioning accuracy, sensors
need to be set with fine spatial granularity; therefore, it is
necessary to gather sensing data from a large number of
sensors.

In the fifth-generation wireless communication standard
(5G), massive machine-type communication (mMTC) sup-
ports a large amount of sensor information [9]. Its large
running cost and complicated procedure are barriers to its
introduction. The low-power wide area (LPWA) is attract-
ing attention as a WSN operating in unlicensed frequency
bands [10]. To deal with packet access from many sensors,
orthogonal radio resource allocation with time and frequency
division multiple access is required. Reference [11] proposed
a method to gather sensor information at high speed by
time-division multiple access, where the unit of time for a
packet access is defined as a slot. Because an exclusive time
slot should be assigned to each sensor for packet access, and
the waiting time for packet collision avoidance is necessary,
the time required for data gathering is long. Simultaneous
access among multiple sensors by non-orthogonal multi-
ple access (NOMA), which demodulates using the power
difference of packets, is considered [12]. NOMA fails to
demodulate packets owing to multipath fading, and thus, the
steadying of data gathering is difficult. Positioning results
can be used for evacuation during disasters, such as earth-
quakes [4], control applications [13], and protection of exist-
ing systems during frequency spectrum sharing [14]. It is
necessary to gather sensor information in a short period of
time, and it has been pointed out that the time taken to gather
sensor information by aWSN is a large overhead [11]. To our
best knowledge, the positioning scheme without requiring the
receiving device attached to the positioning target as well as
with the short time by completing the position estimation has
not been considered, yet.

Physical wireless parameter conversion sensor networks
(PhyC-SNs) have been proposed as a communication method
that enables the simultaneous access of multiple sensors [15].
Each sensor transmits a carrier by switching the carrier fre-
quency according to the sensing data. Although multiple
sensors simultaneously access the data center by emitting
the carrier, the intensity of the sensor data appears as a
power distribution of the frequency spectrum of the received
signals. Therefore, the sensor information of all sensors can
be detected instantaneously by determining the existence
of the signal from the power distribution. Therefore, using
PhyC-SN to collect sensor data for positioning, the realization

of positioning within a short time is expected, but it has not
been clarified yet.

This study proposes a positioning method based on fin-
gerprints [8] using the PhyC-SN for sensor data gathering
from multiple sensors. Each sensor measured the RSSI when
the positioning target was a radio source. Each sensor trans-
mits a carrier whose center frequency is determined by the
measured RSSI value. The proposed positioning method has
two phases: a pre-observation phase and an estimation phase.
In the pre-observation phase, the position of the target is
known, and each sensor measures the RSSI. The RSSI is
then sent to the data center by PhyC-SN. The center station
analyzes the frequency spectrum of the received signal and
then counts the number of carriers with power over a certain
threshold in each frequency sub-band. The center station
recognizes the number of informed RSSIs. The dataset is
composed of the number of informed RSSIs and the posi-
tion information of the positioning target. In the estimation
phase, when the position of the position target is not deter-
mined, each sensor measures the RSSI and then informs
the measured RSSI of the center station by the PhyC-SN.
The center station counts the RSSIs in the same manner as
in the pre-observation phase. The center station selects one
dataset among the datasets measured by the pre-observation
phase in terms of the minimum squared Euclidean distance
criterion from the dataset measured by the estimation phase.
The location information indicated in the selected dataset was
considered as the estimated location of the positioning target.

In data gathering by PhyC-SN, the number of sensors is
estimated from the magnitude of the power of the frequency
component to deduce that multiple sensors select and transmit
the same frequency component [16]. Its accuracy is signifi-
cantly degraded owing to the power fluctuations caused by
multipath fading. In this study, we establish an ‘‘on-off iden-
tification’’ with a single threshold to determine whether more
than one sensor is transmitted. Consequently, the effect of
the power fluctuation caused by multipath fading is limited.
However, as the number of sensors becomes uncertain, the
identification accuracy of the sensor information deteriorates.
Because each sensor measures various RSSI, although the
information on the number of sensors is lost due to the ‘‘on-
off identification,’’ the tendency of the spatial distribution of
RSSI is not completely lost, and it can be used as a location
fingerprinting method.

Furthermore, we introduce time-division transmission,
in which sensors are formed into multiple groups, and the
particular access timing to the data center is assigned to
each group. This can reduce the number of sensors that
transmit simultaneously, the number of sensors that notify
the same RSSI, and the number of sensors that become
indefinite owing to the ‘‘on-off identification’’. Furthermore,
by considering the regional characteristics in the design of the
observation area, we can improve the accuracy of identifying
the regional characteristics of the measured RSSI as well as
the positioning accuracy.
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The contributions of this study are as follows: 1. We estab-
lished a positioning method using PhyC-SN as a data-
gathering scheme for many sensors. It was shown that a
significant reduction in the gathering time and equivalent
positioning accuracy compared to the packet access was
achieved. The effectiveness of this method was demonstrated
through computer simulations and experimental evaluation.

2. Tomitigate the effects of power fluctuations that occur at
the time of aggregation in PhyC-SN, we establish an ‘‘on-off
identification’’ method.

3. We established a sensor group construction method and
a time division transmission method that are excellent in
improving the identification accuracy of gathered informa-
tion by ‘‘ on-off identification’’ and measuring the regional
characteristics of the observation area.

Authors in an international conference proposed the appli-
cation of PhyC-SN location fingerprinting [17]. There is
no discussion on countermeasures against the influence of
deterioration in the identification accuracy of the number
of sensors caused by power fluctuations during aggregation.
Furthermore, Reference [18], who proposed a method of
forming sensor groups, did not fully consider the effective-
ness of group formation, and the policy of the formation
method was unclear. In this study, we propose the ‘‘on-off
identification’’ as a new method for recognizing the sensing
data in PhyC-SN to maintain the robustness of the power
fluctuations. Furthermore, we consider three types of sensor
grouping methods and clarify the suitable sensor grouping
for improving the location accuracy of the radio source.
Computer simulation results have shown that the required
data gathering time of the proposed scheme is shorter than
1/17 of the conventional packet access scheme with the same
positioning accuracy

The remainder of this paper is organized as follows.
Section II presents conventional studies related to this work.
Section III explains the assumed positioning system based
on WSN. Section IV presents the details of the proposed
fingerprinting method based on PhyC-SN. Sections V and VI
present the numerical results of the computer simulation and
experimental evaluation, respectively. Section VII presents
the conclusions of the study.

II. RELATED PAPERS
As a positioning method that uses a sensor network, the
position estimation method is based on the center of gravity,
which is referred to as the centroid method. This method
estimates the position by adding the position information of
each sensor and weighting the RSSI measured by it [19]. Ref-
erefence [20] proposed the improvement of the positioning
accuracy of the centroid method. To achieve this, a gathering
scheme based on packet communication from each sensor to
the center station was proposed [11]. However, data gather-
ing takes a long time, which causes a delay in the position
estimation.

The time-of-arrival (ToA) positioning method was pro-
posed to reduce the effects of fading in NLOS environments

using high-gain antennas in sensor radios [21]. It is necessary
to specify the time, and a specific method for time acqui-
sition has not yet been considered. Reference [22] actively
discussed positioning methods using sensor networks from
the viewpoint of security.

Positioning methods that conform to the wireless com-
munication standards have also been proposed. Positioning
methods using the IEEE 802.11 standard (WiFi) have been
proposed mainly for indoor positioning. Positioning is per-
formed by constructing a database using the MAC address
of the access point in the location fingerprinting method,
which uses the RSSI of Wi-Fi. The database was used as
pre-learning data, and a probabilistic model of the RSSI was
applied to improve the positioning accuracy [23]. In IEEE
802.11mc, the Wi-Fi round-trip time was also proposed
for positioning [24]. However, the processing delay directly
impacted the degradation of the position accuracy.

Positioningmethods using various wireless standards other
than Wi-Fi have also been proposed. A multivariable finger-
print based on the observable received parameters in 5GNR
was proposed [25]. The annealing and genetic algorithms for
optimization are applied to the fingerprint based on the RSSI
of Zigbee [26]. As a joint positioning method, a positioning
method using 2.4 GHz and 5.8 GHz Wi-Fi RSSI and Deep
Neural Network (DNN) is proposed, and the positioning
accuracy is improved by combining the characteristics of
radio wave propagation that differ depending on the fre-
quency band [27]. However, all of them are premised on
establishing communication with a measurement target and
are difficult to apply to a positioning target without a com-
munication function.

The construction method of the database for location fin-
gerprinting was considered. A dedicated collector was used
to measure the RSSI of Wi-Fi and automatically create a
database for indoor fingerprinting [28]. An update of the
database for fingerprinting assisted by IoT sensors was pro-
posed [29]. Reference [30] proposed a uniform platform for
the construction of a map and real time navigation, which
is necessary for the entire process of the indoor positioning
system based on fingerprinting. As the database for finger-
printing is constructed using the above schemes, methods for
positioning within a short time are required.

Position fingerprinting based on the RSSI of Wi-Fi
has been considered [31]. Its positioning accuracy can be
improved by the combined use of other types of sensing
data, such as accelerometers, gyroscopes, and geomagnetic
sensors, and an adaptive quantum filter compensates for
the non-line-of-sight error. A dead reckoning scheme with
mobility of the positioning target and map information was
considered [32], [33], [34]. It is still available even when
the RSSI and geomagnetism are lost. Additionally, a method
was proposed to improve the positioning accuracy using sen-
sors from the inertial measurement unit along with position-
ing by RSSI fingerprints using machine learning recurrent
neural networks and conditional generative adversarial net-
works [35]. However, the above positioning methods depend
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FIGURE 1. System overview of radio source positioning system based on
radio sensors.

on the process of the positioning target; thus, they are unavail-
able without the assistance of the positioning target.

A scheme for improving the accuracy of indoor position-
ing is considered. In the position fingerprint, a probabilistic
model of the RSSI is assumed to mitigate the fluctuations
of the RSSI, and the positioning accuracy is improved by
the k-nearest neighbor (k-NN) method [36]. A modified
k-NN method for improving the position accuracy was pro-
posed [37]. Position fingerprinting with the RSSI measured
by large radio sensors is applied to a support vector machine
(SVM) to improve the position accuracy [38]. A correction
method using a Kalman filter for indoor positioning results
was proposed [39]. A correction to the position estimation
method of RSSI-based fingerprinting using a gradient descent
algorithm was proposed [40]. However, in these schemes, the
positioning target must measure the RSSI.

Many of the studies thus far require positioning process-
ing, such as signal reception processing and RSSI measure-
ment for the positioning target. Additionally, in the centroid
method and the positional fingerprint method, a method is
proposed in which a large number of sensors measure the
RSSI, eliminating the need for reception processing and
measurement by the observation target. However, gathering
information from a large number of sensors in a short period
of time requires an enormous amount of resources, and delays
due to the consumption of frequency and time resources are a
serious problem. A short-time positioning method, including
a method for gathering sensor information, has not been
sufficiently studied.

III. SYSTEM OVERVIEW
A. RADIO SENSOR NETWORKS
Figure 1 shows an overview of the radio source positioning
system based on the WSN system assumed in this study.
The radio sensors were placed uniformly within the area
of interest. Each sensor has a sensing function to measure
the RSSI and a wireless function to transfer the measured
RSSI to the center station (CS). We assume that the RSSI is
the sensor information. We also assume that the frequency
band measured by the sensor function is different from that
accessed by the wireless function.

FIGURE 2. Communication method of PhyC-SN.

TABLE 1. Mapping table between subcarrier number and RSSI.

B. DATA GATHERING BY PhyC-SN
All the radio sensors report the detected RSSI to the
CS via wireless communication. Therefore, we assumed a
star-shaped network topology with access from multiple sen-
sors to one CS. The CS broadcasts a control signal indicating
a sensor information notification request for all sensors. The
sensor receives control signals and transmits the detected
sensor information to the CS. It is assumed that the access
timing is corrected by the notification of the control signal
and that the access timing error of each sensor is shorter
than that of the CS, where the signal detection interval is
determined by the frequency resolution of the fast Fourier
transform (FFT). Consequently, the transmission signals of
all the sensors were present in the signal detection interval.

PhyC-SN is used [15] as a communication method for
transmitting the RSSI of each sensor to the CS. Figure 2
shows an image of the data-gathering flow by PhyC-SN.
First, the detected RSSI were quantized at regular intervals.
Consequently, the magnitude of the RSSI was converted
to an integer value. PhyC-SN is premised on orthogonal
frequency-division multiplexing (OFDM), divides the entire
occupied band into narrow bands of fixed divisions, and trans-
mits on subcarriers with the center frequency of the narrow
band. At this point, a subcarrier number corresponding to
the RSSI level was assigned. A table corresponding to the
RSSI levels and subcarrier numbers is generated and stored
in the transmitter and receiver, where the table is referred
to as the conversion table. Table 1 shows the mapping table
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used by figure 2. The radio sensor, which is the transmitter,
selects a subcarrier number corresponding to the conversion
table. Subsequently, a continuous sine wave is transmitted
to the subcarrier of the selected subcarrier number, and the
other subcarriers are not used but are assigned to nulls. The
receiver detects the frequency component of the subcarrier
based on the FFT after detecting the received signal for the
detection time interval. When a subcarrier is transmitted at
the transmitter, the frequency components of the subcarrier
detected at the receiver exhibit high power. Therefore, the
power of the frequency component of each subcarrier is
compared with a predetermined threshold, and if the power is
greater than or equal to the threshold, the transmitter transmits
the signal. The receiver can recognize the transmitted RSSI
level according to the conversion table. In the PhyC-SN, each
sensor informs the measured RSSI to the CS by using the
particular subcarrier corresponding to the measured RSSI.

Next, we consider a case in which a plurality of radio
sensors transmits signals. In PhyC-SN, the transmitted signal
does not have a sensor-specific ID; therefore, the receiver
does not specify the radio sensor, which is the transmit infor-
mation source of the detected RSSI. If a plurality of radio
sensors detects the same RSSI level and transmits it with
the same subcarrier, the signals of the plurality of subcar-
riers are combined and received. In this case, the average
power of the frequency components detected by the receiver
increases according to the number of sensors. Therefore,
we used a multilevel threshold to identify the number of
sensors that transmit the same subcarrier. However, the power
of the combined signal fluctuates significantly because of
the asynchronous combination of multiple subcarriers and
multipath fading. Because the physical distance between each
sensor and CS is different, the propagation loss is different
for each sensor. To simplify the configuration of the sensors,
the average received power was also different for each sensor
when transmission power control was not applied. Conse-
quently, the accuracy of identifying the number of subcarriers
using the threshold values of multiple stages is significantly
degraded.

C. POSITION FINGERPRINTING
The location fingerprinting method has two phases of
processing: the pre-observation phase, and the position-
estimation phase. The radio frequency fingerprint is consid-
ered as one of the supervising learnings. The pre-observation
phase is considered as the training with the radio source
with known position. The position-estimation phase is the
actual location estimation of the radio source with unknown
position.

In the pre-observation phase, the radio source to be posi-
tioned is equipped with a device capable of positioning (eg,
a global positioning system (GPS), etc.). Therefore, in the
pre-observation phase, the position of the radio source was
used as teacher data. The radio sources were placed at various
positions within the target area. Each radio sensor transmits
the measured RSSI to the CS. In the following explanation

of conventional position fingerprinting, we assume a packet
access scheme for gathering data from the sensors. The RSSI
was added to the payload, and the ID of the transmitting
station was added to the header and transmitted to the CS.
The CS gathers the ID and RSSI datasets from all sensors.
Here, the d th radio sensor (d ∈ 1, 2, . . . ,ND) at the lth source
(l ∈ 1, 2, . . . ,NL) measures the RSSI as pld , whereNL andND
are the total number of radio source positions and the total
number of radio sensors placed in the pre-observation phase,
respectively. Consequently, the RSSI distribution of the radio
sensor at the lth radio source is given by

pl = [pl1, p
l
2, . . . , p

l
ND ]. (1)

This RSSI distribution is defined as the location fingerprint
vector of the lth radio source.

Next, in the position-estimation phase, there is no device
capable of positioning with respect to the radio source. The
CS sends control signals to all the sensors to provide a posi-
tion estimate of the radio source. Consequently, each sensor
measures the RSSI and then sends it to the CS with the sensor
ID by packet access. The CS receives the RSSIs from all
sensors with the sensor ID. Subsequently, it constructs the
following location fingerprint vector.

p∗
= [p∗

1, p
∗

2, . . . , p
∗
ND ]. (2)

From the position fingerprint vectors of the pre-
observation phase, the position of the source in advance l⋆

is specified by the minimum squared Euclidean distance
criterion between the position fingerprint vectors in the
pre-observation and position estimation phases. Thus, the
following formula was obtained:

l⋆ = argmin
∀l
(p∗

− pl)(p∗
− pl)T , (3)

where ()T denotes the vector transposition. The position of
the radio source specified in the pre-observation phase in l⋆ is
considered as the position of the radio source to be estimated.

In the position fingerprint method, the position estimation
error is the difference in the distance between the actual
position of the radio source and the position of the nearby
radio source estimated in the pre-observation phase. This can
be suppressed if the spatial resolution of the radio sources
in the pre-observation phase is finer. It is difficult that the
radio source in the position-estimation phase is perfectly
matched to the radio sources in the pre-observation phase.
This reason is as follows. As the spatial resolution between
the radio sources in the pre-observation becomes shorter,
the significantly more radio sources in the pre-observation
phase are required. It is difficult to use all the constructed
relationships for positioning because of huge computational
complexity for selecting themost suitable location fingerprint
vector from the constructed relationships and the necessity
of huge data base. In addition, the location fingerprint vector
is not so particular that the two radio sources with the quite
small distance cannot be distinguished. In radio fingerprint
positioning, the spatial resolution between the radio sources
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in the pre-observation phase is limited and thus the position
gap between the radio source in the pre-observation phase
and that in the position-estimation phase is not completely
avoidable.

The position fingerprint method requires packet transmis-
sion to send the RSSI and the transmitting station ID of all
sensors. A method using polling [41] and a method using
autonomous access [11] were proposed to gather information
from all sensors in the packet access. In either method, each
sensor requires an independent access timing to avoid packet
collisions. Therefore, the time overhead for access control
and the allocation of independent time resources to each
sensor leads to an extremely long data-gathering time.

IV. PROPOSED METHOD: LOCATION FINGERPRINTING
BY PhyC-SN
PhyC-SN is used when gathering sensor information from
each sensor during location fingerprinting.

In the pre-observation phase, the RSSIs measured by the
sensors were reported to the CS by PhyC-SN. The CS detects
the number of notified sensors for each quantized RSSI level
based on the frequency spectrum of the received signal. Next,
the position fingerprint vector was generated by arranging the
detected RSSI levels in descending order. Let p̃ld be the d th
magnitude RSSI at the lth source. The location fingerprint
vector by the PhyC-SN notification at the lth source is as
follows:

p̃l = [p̃l1, p̃
l
2, . . . , p̃

l
ND ]. (4)

The location fingerprint vectors were obtained from
PhyC-SN notifications at various radio sources.

In the position-estimation phase, the CS sends a control
signal to all sensors. Each sensor that receives the control
signal notifies the measured RSSI by PhyC-SN. The CS
obtains the position fingerprint vector by the PhyC-SN notifi-
cation using the same procedure as the pre-observation phase,
as shown in the following equation:

p̃∗
= [p̃∗

1, p̃
∗

2, . . . , p̃
∗
ND ]. (5)

Consequently, using the positional fingerprint vector from
the PhyC-SN notification, the nearest radio source of the
pre-observation phase is identified using the minimum
squared Euclidean distance criterion. The following formula
holds:

l⋆ = argmin
∀l
(p̃∗

− p̃l)(p̃∗
− p̃l)T . (6)

The position of the radio source in the pre-observation phase
at l⋆ was specified as the position of the radio source to be
estimated.

PhyC-SN does not specify the sensor ID that measures
the RSSI. If an error occurs when estimating the number
of sensors at each RSSI level, then the size of the location
fingerprint vector may be smaller or larger than the total
number of sensors. If there were fewer gathered RSSI levels
than the total number of sensors, we added the data of the

lowest RSSI level and made the size of the location finger-
print vector equal to the total number of sensors. Otherwise,
we delete the data from the small RSSI levels to make the
size of the location fingerprint vector equal to the total num-
ber of sensors. To rearrange the RSSI in descending order
when generating the position fingerprint vector, the process
of adding or deleting the elements of the RSSI maintains the
order of the position fingerprint vector. Therefore, adding
or deleting data to the tail of the position fingerprint vector
prevents a significant change from occurring with respect to
the tendency of the position fingerprint vector.

A. ACCESS PROTOCOL FOR IMPROVING
POSITION ACCURACY
To count the number of sensors selecting the subcarrier from
the received signal in PhyC-SN, the fact that the magnitude
of the power of the detected subcarrier is proportional to the
number of sensors is used. In other words, multiple thresholds
are prepared in the direction of the magnitude of the RSSI
power, and the detected power is compared to identify the
number of corresponding sensors. However, if the power
fluctuates because of multipath fading or propagation loss,
the identification accuracy is significantly degraded. Deteri-
oration in the identification accuracy distorts the positional
fingerprint vector, and a source far from the actual source is
erroneously recognized as the nearest neighbor, resulting in a
positioning error.

To improve the positioning accuracy, the multistage thresh-
old for each subcarrier is limited to one stage. That is, for
each subcarrier, we identify whether one or more sensors
transmit or no sensor does; the identification is referred to as
‘‘on-off identification’’. Using receive diversity with multiple
receiving antennas [42], the received signal attenuation can be
stable. Therefore, when more than one sensor is transmitted,
reliable detection is possible at the receiving station, and
recognition errors of the sensor information owing to fluctu-
ations in the received signal power can be avoided. However,
the ‘‘on-off identification’’ cannot identify the number of
sensors if more than one sensor selects the same subcarrier.
Consequently, the recognition information is lost and the
positioning accuracy deteriorates.

Figure 3(a) shows a heat map of the RSSI strength of each
sensor detecting the emitted signal from the radio source.
Figures 3(b) and (c) are the images of the RSSIs gathered
by PhyC-SN with the determination of the number of sensors
and with ‘‘on-off identification,’’ respectively. No identifica-
tion errors occurred during this evaluation. The horizontal
axis of the image indicates equally spaced subcarrier bands
and each divided subcarrier corresponds to a unique quan-
tized RSSI. The colors in Figure 3(b) indicate the number of
sensors transmitted on the same subcarrier. However, black
and white in Figure 3 (c) show the case where one or more
sensors are transmitted and the case where none of the sensors
are transmitted, respectively. The three figures have sources at
the same locations. As shown in the figure, three-dimensional
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FIGURE 3. Heat map of radio monitoring and results of data gathering by
PhyC-SN.

data, including sensor planar deployment and the RSSI inten-
sity, are gathered by PhyC-SN and projected onto the fre-
quency axis. The number of sensors that detect each RSSI can
be determined in Figure 3(b), similar to the one-dimensional
histogram. Figure 3 (c) loses information on the number of
sensors, hence the actual 3D heat map features are limited
compared to figure3(b), but not completely lost.

B. COMBINED USE OF PhyC-SN TIME-DIVISION
TRANSMISSION AND GROUP FORMATION
CONSIDERING AREA
In the ‘‘on-off identification’’, the RSSI, which is the reported
sensor information, is lost when one or more sensors select
the same subcarrier. We propose time-division multiple
access for each group. In the proposed time-division multiple
access, the simultaneous accessing groups of sensors are set,
different access timings are assigned to each group, and then
all the sensors within the group simultaneously access the CS.
If the total number of access timings is NT ∈ 1, 2, . . ., the
number of sensors notified in the same time slot is at most
⌈ND/NT ⌉, where ND is the total number of sensors and ⌈·⌉

is the ceiling function. Consequently, the number of sensors
notified at the same time can be reduced, and the possibility
of selecting the same subcarrier can be reduced.

The RSSI measured by each sensor was spatially corre-
lated. If the source emits radio waves with an omnidirectional
antenna, the radio waves spread on the spherical surface.
Sensors that are uniformly distributed on a two-dimensional
plane detect the same RSSI if they are located at the same
distance from the radio source, and there is no reflecting
object in the free space. The similarity of the RSSI exists
in real-world environments with reflective objects depending
on the distance of each sensor from the source. Because
of such RSSI similarities between sensors, multiple sensors
may select the same subcarrier for data gathering by PhyC-
SN. To suppress this similarity, when forming simultaneous
access groups of sensors, the positional relationship of the
sensors within the observation area was considered.

We assume there are ND,g sensors in the gth group (g ∈

1, 2, . . . ,NG), where NG is the number of groups. The

FIGURE 4. Example of location fingerprint vector in each data gathering
scheme.

position fingerprint vector of each group was generated by
arranging the detected RSSI levels in descending order. Note
that the position fingerprint vector was generated in group by
group. Let p̃ld,g be the d th magnitude RSSI of the gth group
at the lth source in the pre-observation phase. The location
fingerprint vector of the lth radio source in the gth group is
given by

p̃lg = [p̃l1,g, p̃
l
2,g, . . . , p̃

l
ND,g,g]. (7)

In the position-estimation phase, the location fingerprint vec-
tor of the radio source in the gth group is

p̃∗

g = [p̃∗

1,g, p̃
∗

2,g, . . . , p̃
∗
ND,g,g]. (8)

The nearest radio source of the pre-observation phase is
identified using the minimum squared Euclidean distance
criterion. The following formula holds:

l⋆ = argmin
∀l

NG∑
g=1

(p̃∗

g − p̃lg)(p̃
∗

g − p̃lg)
T . (9)

For clarifying the difference of the location fingerprint
vectors among the data gathering schemes, Figure 4 shows
the example of the location fingerprint vectors in the packet
access scheme, the PhyC-SN without the group division,
and the PhyC-SN with the group division. We assume the
two radio sources in the pre-observation phase and the radio
source is different position to the other one. The constructed
location fingerprint vector should be different for distin-
guishing the position of each radio source. In the PhyC-SN
without group division, the two location fingerprint vectors
constructed by the descending ordering of RSSIs are the
same, each other. This is because the sensor Id of the informed
RSSI is lost and then the particularity of the location finger-
print vector is lost. If we use the group division, we calculate
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FIGURE 5. Group division format.

FIGURE 6. Heat map of radio monitoring and results of data gathering by
PhyC-SN with zonal group division.

the location fingerprint vector constructed by the descend-
ing order in group by group. Since the location fingerprint
vectors are different each other, these have particularity that
these can be distinguished. Therefore, the radio sources in
the pre-measurement phase can be distinguished with higher
accuracy.

Three types of simultaneous access group formations were
examined. Fig. 5 shows three types of groups. The first type
is the zonal group. The observation area was divided horizon-
tally or vertically to form areas, and each area was considered
as one group. The second type is the square group. When
the observation area was divided into squares, the areas were
formed to form squares whose sides were as equal as possible.
The third type is the granular group. Paying attention to the
fact that the sensors are arranged in a row, different sensor
group numbers are assigned from the top starting from 1,
and when all the sensor group numbers have been assigned,
they are assigned again from 1. Consequently, the sensors
that belong to the same group are scattered, and the entire
group has a shape that spreads uniformly over the obser-
vation area. The effects of time-division transmission and
group formation are shown using a data-gathering example.
Figure 6(a) shows a heat map of the RSSI observation results
of each sensor at the source and the relationship between the
monitoring area and zonal group division. Four groups were
formed using the zonal group. The sensors in each group
accessed the CS simultaneously, but those in the different

FIGURE 7. Sensor locations in computer simulation.

groups accessed the CS at different times. In Figure 6(b),
the color of the PhyC-SN data-gathering result indicates
the number of sensors accessed simultaneously, whereas in
Figure 6(c), the monochrome indicates the case where one
or more sensors are accessed and the case where none of the
sensors is accessed. It can be observed that the spatial features
of the sensors spread over two dimensions can be captured
simultaneously by the access group and time-division trans-
mission. Compared with Figure 3(b), the subcarriers selected
by two or more sensors are reduced in Figure 6(b). By com-
bining the time-division transmission and group formation in
this manner, it is possible to suppress duplication in which
sensors transmit the same subcarrier. Moreover, Figure 6(c)
reflects more spatial features on the time and frequency axes
than Figure 3(c); therefore, the source identification accuracy
is expected to improve.

V. SIMULATION RESULTS
Radio wave propagation was simulated using a ray trac-
ing simulation. In the simulation environment, 136 sensors
(Fig. 7) were placed at regular intervals in an urban space
of 800 m × 800 m. The sensors were arranged at intervals
of 50 m.

Figure 8 shows the position of the source during the
pre-observation phase of the position fingerprinting method.
Thirty-seven sources were placed and the position of each
source was determined. The positions of the sources in the
pre-observation phase were set at approximately equal inter-
vals, with an interval of approximately 100 m.

The generation source to be estimated in the position esti-
mation phase is set as follows. As shown in Figure 8, the
source of the pre-observation phase and its adjacent source
were paired, and the two locations were divided into 20 m
intervals. Consequently, the target radio sources in the posi-
tion estimation phase were set in the divided position. The
divided positions were constructed from the five selected
source pairs. In these settings, the positioning target was
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FIGURE 8. Position of radio sources.

TABLE 2. Configuration of LoRa (radio source).

changed at intervals narrower than the arrangement intervals
of the sources in the pre-observation phase. It is difficult for
fingerprinting positioning, and thus, we evaluate the position
accuracy of each positioning scheme in the worst cases.

Table 2 lists the parameters of radio wave propagation
at the source. In this evaluation, the source is a parameter
conforming to the LoRa standard of a low-power wide area
(LPWA).

We assume that the radio sensor detects the lowest and
highest RSSI at −120dBm and −35 dBm, respectively. The
quantization interval when transmitting the RSSI in PhyC-SN
is the value obtained by dividing the interval between the
lowest and highest RSSI by the total number of subcarriers
minus one. It is assumed that transmission errors do not occur
during wireless transmissions. When calculating the squared
Euclidean distance between the position fingerprint vector of
the pre-observation phase and that of the position estimation
phase, the RSSI is calculated using the dBm domain values.

A. SIMULATION RESULTS
Fig. 9 shows the cumulative distribution function (CDF) per-
formance for the root mean square error (RMSE), where the
RMSE is defined as the value of the square root of error
between the actual position of the radio source and estimated
position and it is defined as follows.

RMSE =

√
(rt − re)2 (10)

FIGURE 9. CDF of RMSE in various data gathering schemes.

where rt and re are the true position vector and the estimated
one of the radio source, respectively. The position vector
is composed of the two coordinates of x-axis and y-axis.
In addition, Table 3 shows the measurement results of the two
radio sources with unknown position, where figure 8 shows
the positions of the two resources. The conventional method
and PhyC-SN are respectively the case of data gathering by
packet access and the proposed PhyC-SN. In PhyC-SN, the
number of subcarriers was 128, the time-division transmis-
sion and group formation were used, and the number of time
divisions was eight. Simultaneous access groups are formed
in three ways: zone, square, and granular. In the packet access
scheme, assuming data gathering by time-division multiple
access, each sensor is assigned a particular time slot to access
the CS. Therefore, the time required for data gathering was
136 time slots, which is equal to the total number of sensors.
However, PhyC-SN requires eight time slots, which is the
number of area divisions, because the sensors within the
group access the CS in the same time slot. Therefore, the time
required for data gathering is reduced to approximately 1/17
or less than that of the packet access scheme, and thus the
PhyC-SN realizes high speed. In PhyC-SN, the ‘‘on-off iden-
tification’’ is applied to three types of group formations: zone,
square, and granular groups. For comparison, the results of
‘‘identification of the number of sensors’’ are shown assum-
ing that the number of sensors transmitting each subcarrier
can be identified without any error only for the zone group
of PhyC-SN. Additionally, the number of subcarriers used in
PhyC-SN is 128.

The ‘‘Ideal’’ of figure 9 is the case where the source of the
pre-observation process, which is the nearest neighbor to the
source to be estimated, is estimated without error. It achieves
the best estimation accuracy in the fingerprinting method,
and thus corresponds to the upper bound of the estimation
accuracy.
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TABLE 3. Numerical example of estimation accuracy.

Figure 9 shows that ‘‘Packet Access,’’ ‘‘PhyC-SN with
Zone Group and on-off identification,’’ and ‘‘PhyC-SN with
Zone Group and Sensor Number Identification’’ achieve
the same position accuracy at the CDF = 1.0, where the
CDF = 1.0 is the worst accuracy of the position estimation.
These achieve the 5% degradation of the position accuracy
compared to the ‘‘Ideal’’. Notably, ‘‘Packet Access’’ requires
considerably larger time slots than ‘‘PhyC-SN with Zone
and on-off identification’’. Therefore, ‘‘PhyC-SN with Zone
Group and on-off Identification’’ achieves a good position
accuracy with a much smaller data-gathering time. Further-
more, it is possible to omit the identification of the number
of sensors, and thus, it is possible to secure a high resis-
tance to the received power fluctuations caused by radio
propagation.

‘‘PhyC-SN with Square Group and on-off identification’’
and ‘‘PhyC-SN with Granular Group and on-off identifica-
tion’’ achieve the worst position accuracy than ‘‘PhyC-SN
with Zone Group and on-off identification’’. Their RMSEs
at CDF = 1.0 are significantly degraded. The reasons for
this are as follows: The zone and square groups are con-
structed by dividing the observation area into regions so that
the characteristics of the region can be detected from the
RSSIs informed in the particular access timing. However,
in the granular group, sensors that report at the same time are
uniformly distributed in the observation area; therefore, there
is little regional difference in space over time. Furthermore,
the spatial feature trends of RSSI become rough, resulting in a
deterioration in the accuracy of identifying the spatial feature
trends. Consequently, the position estimation accuracy of the
radio source deteriorated. In the square and zone groups, the
RSSI tendency of the local site is separately recognized owing
to the time division of data gathering. The sensors within
each granular group were widely distributed over the entire
monitoring area. The RSSI tendency informed by the sensors
within each sensor is similar, and its spatial resolution is
worse than that of the zone and square groups because the
distance interval among the sensors in the granular group is
larger than that in the zone and square groups. Consequently,
the position accuracy of the former is worse than that of the
latter.

FIGURE 10. CDF of RMSE in various group numbers.

The mutual distances between the sensors in the square
group were smaller than those in the zone group. Therefore,
some sensors in the former detect a more similar RSSI than
those in the latter. In PhyC-SN, the selection probabilities
of the common subcarriers among sensors become larger,
and thus, more informed RSSIs are deleted by the ‘‘on-off
identification’’. Therefore, the position accuracy of the square
group is degraded.

B. COMPARING NUMBER OF GROUP DIVISIONS
Figure 10 shows CDF characteristics in the RMSE for various
numbers of groups. The zone group included and the number
of subcarriers is 128. In the PhyC-SN, the ‘‘on-off identifi-
cation’’ is used. For comparison, the positioning accuracies
of ‘‘Ideal’’ and ‘‘Packet Access’’ are shown. As shown in the
figure, increasing the number of area divisions improves the
position accuracy. An increase in the number of area divisions
caused an increase in the number of time divisions for data
gathering, resulting in a longer time required for positioning
recognition. The RMSE is significantly degraded when the
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FIGURE 11. CDF of RMSE in various subcarrier numbers.

number of divisions is 4, whereas there is no difference in
the RMSE at CDF=1.0 between the number of divisions of
8 and 16. An increase in the number of divisions results in a
trade-off relationship between the time required for data gath-
ering and positioning accuracy, and this relationship varies
depending on the environment. In this evaluation environ-
ment, 8 is considered appropriate for the number of group
divisions to achieve high-precision positioning accuracy in a
short period of time.

C. COMPARISON OF NUMBER OF SUBCARRIERS
Figure 11 shows the CDF of RMSE for various subcarriers of
PhyC-SN. For comparison, the ‘‘Ideal’’ and ‘‘Packet Access’’
results are also shown. The number of subcarriers was 64,
128, and 256 in PhyC-SN, respectively. Eight zone groups
were used in this study. Additionally, the ‘‘on-off identifica-
tion’’ is used. The figure shows that the RMSE was improved
by increasing the number of subcarriers. As the number of
subcarriers increases, the quantization interval of the RSSI
becomes narrower,making it possible to identify a finer RSSI.
Consequently, the possibility of multiple sensors selecting
the same subcarrier is reduced, thus, the phenomenon of
losing information on the number of sensors owing to ‘‘on-
off identification’’ can be suppressed. An increase in the
number of subcarriers results in an increase in the occupied
bandwidth; therefore, in this evaluation environment, a total
of 128 subcarriers are appropriate to achieve both excellent
positioning accuracy and a small, occupied bandwidth.

D. EFFECT OF ERROR IN DATA GATHERING
Previous evaluations assumed that wireless access for data
gathering is error-free. Next, we consider the effects of error
on the wireless access of PhyC-SN with the ‘‘on-off identi-
fication’’. Fig. 12 shows the CDF in the RMSE. PhyC-SN
uses 8 zone groups and 128 subcarriers. As a model of the

FIGURE 12. CDF of RMSE in gathering failures.

identification error, we assumed the following two errors in
the ‘‘on-off identification’’. In the first error identification,
it is true that one or more sensors transmit the continuous
wave of the subcarrier but it is recognized that no sensor
transmits it. In the second error identification, it is true that
no sensor transmits any wave of the subcarrier but one or
more sensors do. Their error occurrences were modeled as
random, and two occurrence probabilities, 10−2 and 10−3,
were assumed. Additionally, it is possible to suppress the
occurrence of errors by increasing the received power and
acquiring a time diversity effect. The time loss required to
obtain the time diversity effect can be accepted in the pre-
observation phase. Therefore, we also evaluated the case
where error occurrence cannot and can be avoided in the
estimation and pre-observation phases, respectively. For com-
parison, the results of the ‘‘Ideal’’ and ‘‘Packet Access’’ are
also shown, where error free is assumed in ‘‘Packet Access’’.

From the figure, when the error probability is 10−3, the
result is equivalent to no misjudgment regardless of the pres-
ence or absence of errors during the pre-observation phase.
However, when the error probability degrades to 10−2, the
RMSEs with and without the error of the pre-observation
phase are 20 m and 8 m larger than those without any error,
respectively. Although significant degradation at CDF =

1.0 is confirmed, in the other cases, the PhyC-SN without
the error of the pre-observation phase usually achieves a good
position estimation accuracy. It is important to avoid the error
for the pre-observation phase, and the error probability of
recognizing the signal in each subcarrier should be smaller
than 10−2.

VI. EXPERIMENTAL EVALUATION OF RADIO SOURCE
MONITORING
The experimental evaluation of radio source monitoring was
conducted using an actual wireless device. We assume that
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FIGURE 13. Radio source in 920 MHz band LoRa gateway.

FIGURE 14. Radio sensor in 920 MHz band LoRa node.

the CS and radio sensor of the 920 MHz band LoRa are the
radio source and radio sensor, respectively, where the former
and latter are the Dragino LoRaWAN gateway (LPS8-JP,
figure(13)) and a Dragino (LHT65), figure(14), respectively.
To measure the RSSI, the radio sensor transmits the signal
to the CS, which then measures the RSSI from the received
signal. Based on the symmetry of radio propagation, we can
assume that the RSSI from the radio sensor to the CS is
the same as that from the CS to the radio sensor. Therefore,
the RSSI measured by the CS was considered to be that
measured by the radio sensor. Additionally, in this experi-
mental evaluation, packet data gathering and PhyC-SN of the
RSSI measurement results of each sensor were performed
by simulation. It is assumed that packet and identification
errors do not occur during data gathering. It should be noted
that the 920 MHz band LoRa in this experiment was used
for positioning the radio source and was not used for data
gathering.

FIGURE 15. Positions of radio sensors and sources.

FIGURE 16. CDF of RMSE in experimental results.

Fig. 15 shows the sensor arrangement (red circle), the posi-
tion of the radio source in the pre-observation phase (black
triangle), and the position of the radio source in the estimation
phase (blue square). There were 34 sensors, 74 radio source
positions for the pre-observation phase, and 35 radio source
positions for the estimation phase. The observation area is
190 × 110[m2]. In the proposed method, PhyC-SN, the num-
ber of groups is four, and the number of subcarriers is 128.

Fig. 16 shows the CDF of the RMSE. Figure 16 shows
the results for ‘‘Ideal’’ and ‘‘Packet Access’’. In the proposed
method of PhyC-SN, there are three types of groups: zone,
square, and granular groups, and the ‘‘on-off identification.
For comparison, we show the results using PhyC-SN’s ‘‘iden-
tification of the number of sensors’’ and the four zone groups.
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The RMSE of ‘‘Ideal’’ in this figure is smaller than that of
figure 9. This reason is as follows. The minimum distances
between the two radio sources in the pre-observation phase
are about 100 m in figure 9 and about 10 m in figure 16.
As the minimum distance between the two radio sources
becomes smaller, the position gap between the radio source in
the pre-observation phase and that in the position-estimation
phase is smaller.

From this figure, compared to ‘‘Ideal’’, ‘‘Packet Access’’
and ‘‘PhyC-SN with Zone Group and Identification of Num-
ber of Sensors’’ are degraded by approximately 30 m at
CDF = 1.0. From Figure 16, it is considered that the identi-
fication accuracy deteriorated because tall buildings are reg-
ularly arranged, and the position-specific RSSI distribution
of the radio sensors has a highly partial correlation. ‘‘Packet
Access’’ and ‘‘PhyC-SN with Zone Group and Identification
of Number of Sensors’’ achieve almost the same position
accuracy. The time required to aggregate the number of sen-
sors was 34 time slots for the former conventional method
and four time slots for the latter proposed method, signifi-
cantly reducing the time required for data gathering. More-
over, ‘‘PhyC-SN with zone group and on-off identification’’
deteriorates by approximately 8 m on average compared to
‘‘Packet Access’’ and significant deterioration occurred only
at CDF= 1.0. The performance degradation is that the loss of
information on the number of sensors distorts the measured
RSSI distribution, which causes the deterioration in accuracy.
However, it has a high resistance to power fluctuations during
data gathering through wireless communication, which is
realistic. Additionally, ‘‘PhyC-SNwith zone group’’ achieved
superior positioning accuracy compared to ‘‘PhyC-SN with
square group’’ and ‘‘PhyC-SN with Granular Group’’ except
for CDF = 1.0 points, indicating the superiority of the zone
group. From this, it is confirmed that the proposed method
achieves excellent positioning accuracy even in an actual
radio-monitoring environment.

VII. CONCLUSION
This study proposed a fingerprint position estimation method
using sensor information data gathering by physical wireless
parameter conversion sensor networks (PhyC-SN), which
does not require the complicated access control and gather
sensing data from many sensors. In the proposed method,
to estimate the position of the radio source, when transmitting
the RSSI measured by each sensor with PhyC-SN, the ‘‘on-
off identification’’ method using one threshold judgment to
suppress the influence of power fluctuation was adopted.
To suppress the distortion of the aggregation results due to
‘‘on-off identification,’’ we proposed the construction of a
sensor group for assigning a particular accessing time slot to
each group based on time-division multiple access. We clari-
fied the suitable shape of the group for avoiding duplication
of the sensing data and detecting the RSSI distribution ten-
dency. Through computer simulations and experimental eval-
uation, the time required for aggregation was significantly
reduced compared with aggregation by conventional packet

communication; high-precision position estimation accuracy
was achieved.

In the computer simulation, we do not assume any chan-
nel model. The evaluation of positioning accuracy under
the wireless communication through the practical channel
model is an important future work. The system limitations are
decided by the frequency bandwidth for subcarrier selection.
As the usable frequency bandwidth is larger, the number
of subcarriers becomes larger. Thus, the sensing data loss
by the on-off identification is more effectively avoided. For
securing the frequency bandwidth, the frequency spectrum
sharing between the other wireless system and the PhyC-SN
is necessary. However, the spectrum appearance caused by
the wireless access from the other system causes the mis-
understanding of the continuous signal sent by the sensor.
Therefore, distinguishing between the continuous signal sent
by the sensor and the other signal should be required and thus
its construction is important future work.
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