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ABSTRACT Most recent face deblurring methods have leveraged the distribution modeling ability of
generative adversarial networks (GANs) to impose a constraint that the deblurred image should follow the
distribution of sharp ground-truth images. However, generating sharp face images with high fidelity and
realistic properties from a blurry face image remains challenging under the GAN framework. To this end,
we focus on modeling the joint distribution of sharp face images and segmentation label maps for face image
deblurring in a GAN framework. We propose a semantic-aware pixel-wise projection (SAPP) discriminator
that models pixel-label matching with semantic label map information and generates a pixel-wise probability
map of realness for the input image as well as a per-image probability. Moreover, we introduce a prediction-
weighted (PW) loss to focus on erroneous pixels in the output of the decoder, using per-pixel real/fake
probability map to re-weight the contribution of each pixel in the decoder. Furthermore, we present a coarse-
to-fine training technique for the generator, which encourages the generator to focus on global consistency
in the early training stages and local details in the later stages. Extensive experimental results show that
our method outperforms existing methods both quantitatively and qualitatively in terms of perceptual image
quality.

INDEX TERMS Face image deblurring, semantic-aware pixel-wise projection discriminator, prediction-
weighted loss.

I. INTRODUCTION
Single face image deblurring (SFID) aims to restore a sharp
face image from a single blurred face image. It is one of
the significant but challenging research areas in computer
vision because face analysis plays an important role for
many applications including face detection [1], [2], [3], [4],
face recognition [5], [6], [7], [8], and age prediction
[9], [10], [11], [12]. SFID is a highly ill-posed problem that
can have many possible sharp images for a given blurred
image; therefore, recent SFID methods have typically lever-
aged face-specific priors, including face landmarks [13], face
sketches [14], face 3D shape [15], face segmentation label

The associate editor coordinating the review of this manuscript and

approving it for publication was Taous Meriem Laleg-Kirati .

maps [16], [17], [18], and deep features [19]. Despite these
efforts, these methods [13], [15], [17] often suffer from
over-smoothed and perceptually unnatural results.

Some SFID methods [14], [16], [18], [19] are effec-
tive at improving the perceptual qualities of deblurred
images on the strength of generative adversarial networks
(GANs) [20]. GANs have demonstrated an ability to gen-
erate realistic samples via a min-max game between a
generator and a discriminator. The generator captures the
training data distribution, and builds a mapping function
from a prior noise distribution to generated data distribu-
tion. The discriminator guesses whether the input sample
is from the training sharp image (real) or the generator
(fake) [21] as shown in Fig. 1 (a). Several SFID meth-
ods [14], [16], [18], [19] leverage this distribution modeling
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ability to impose a constraint that the deblurred image
should follow the distribution of sharp ground-truth (GT)
images.

However, generating sharp face images with high fidelity
and realistic properties from a blurry face image remains
challenging under the GAN framework. One possible reason
is attributed to the discriminator. In the case that additional
information, such as semantic labels, exists, the discrimi-
nator typically estimates the data distribution of only the
sharp face images, and it does not learn the joint distribu-
tion of the sharp images and semantic labels. Even though
face images are highly structured with semantic components,
the decisions of discriminator can be based on relatively
unimportant details [22] and not based on the semantically
structured features of the face [23]. In addition, the dis-
criminators in the above methods are limited to estimating
the global (per-image) real/fake decision without considering
local (per-pixel) decisions [24]. Hence, these approaches lack
pixel-level details of the generated image and do not guar-
antee that their generators can synthesize locally plausible
images [24], [25], [26].

For the joint distribution modeling of data and additional
information such as labels, conditional GANs (cGANs) are
widely used [21], [28], [29], [30], [31], [32], [33], [34], [35].
By incorporating data and additional labels, the discrimina-
tors identify real images in a principled way, thereby result-
ing in generators that produce realistic images [36], [37].
Recently, projection GANs [28], [33], [34], [35] have suc-
cessfully decomposed joint distributions into image distribu-
tion (marginal) and label matching distribution (conditional).
Specifically, as shown in Fig. 1 (b), the projection discrimi-
nator utilizes a class embedding matrix, an image embedding
network (encoder), and a linear layer. Despite their promising
distribution modeling ability, projection GANs cannot model
the pixel-wise joint distribution of the image and semantic
label map because they assume that each pixel in the input
image shares the same label information.

Meanwhile, U-Net GAN [24] has been proposed to syn-
thesize locally plausible images. As shown in Fig. 1 (c),
U-Net GAN utilizes a U-Net [38] structure-based discrimi-
nator, which consists of an encoder and a decoder acting as a
classifier and a segmenter, respectively. The U-Net discrim-
inator simultaneously outputs the probabilities of whether
the input samples are real or fake in both the entire image
and each pixel. This global and local feedback encourages
the generator to improve the quality of synthesized samples.
However, there exists a limitation in that this structure is
not designed to take an additional label information as an
input. Another limitation is that feedback to the generator
can be overwhelmed by the dominant correct pixels of the
decoder in the discriminator, resulting in inefficient training.
The qualities of face images may be dependent on small
components, such as the eyes, nose, and lips. Therefore, it is
important to focus on erroneous pixels for generating high-
quality details.

To address the limitations mentioned above, we pro-
pose a semantic-aware pixel-wise projection (SAPP) GAN
with a SAPP discriminator for face image deblurring in a
GAN framework. Our SAPP GAN exploits both the U-Net
GAN [24] and projection GAN [28]. As shown in Fig. 1 (d),
the SAPP discriminator models pixel-label matching with
semantic label map information. Unlike projection GAN [28]
that utilizes image-level label information as illustrated in
Fig. 1 (b), the proposed discriminator models pixel-wise
joint distribution of the images and pixel-wise label maps.
Furthermore, unlike U-Net GAN [24] (Fig. 1(c)) that models
data distribution of only the sharp images, our discriminator
can capture joint the distribution of sharp images and cor-
responding segmentation label maps. By using a face seg-
mentation map as condition information, the SAPP discrim-
inator considers face components when it makes pixel-wise
real/fake decisions during training. Empowered by semantic-
aware pixel-by-pixel feedback, the generator can restoremore
accurate and detailed face image with high perceptual qual-
ity. Moreover, we propose a prediction-weighted (PW) loss
to focus on erroneous pixels in the output of the decoder.
The PW loss utilizes a per-pixel real/fake probability map
to re-weight the contribution of each pixel in the decoder.
Thus, the decoder can discriminate between the generator
distribution and the target distributionmore precisely, thereby
enabling the generator to obtain more powerful and accurate
feedback. Furthermore, based on the global and local feed-
back from the SAPP discriminator, we introduce a coarse-to-
fine training technique for the generator, which encourages
the generator to focus more on global consistency in the early
training stages and local details in the later stages.

We validate the performance of our method on the MSPL
dataset [18] and Real-Blur dataset [39] and compare its per-
formance with those of the other SFID methods. Based on
these extensive experiments, we show that our method out-
performs existing methods quantitatively and qualitatively.

Our contributions can be summarized as follows:
• We present a semantic-aware pixel-wise projection dis-
criminator that models the joint distribution of sharp face
images and segmentation label maps.

• We introduce a prediction-weighted loss that gives a
high penalty for incorrectly predicted pixels.

• We propose a coarse-to-fine generator training tech-
nique that enables the generator to focus on global con-
sistency in the early stages and local details in later
stages.

• Our method achieves state-of-the-art performance for
single face image deblurring both quantitatively and
qualitatively in terms of perceptual image quality.

II. RELATED WORK
Single image deblurring has been studied extensively over
the past decades. In this section, we focus our discussion on
recent deep learning (DL)-based deblurring methods, which
can be divided into two categories: general image deblurring
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FIGURE 1. Comparison of discriminator architectures. (a) GAN-based SFID methods [16], [18], [19], [27], (b) Projection GAN [28], (c) U-Net GAN [24],
(d) proposed SAPPGAN.

and face image deblurring. We also discuss projection-based
conditional GANs and U-Net based GANs, which are highly
relevant to the proposed method.

A. SINGLE IMAGE DEBLURRING
1) GENERAL DEBLURRING
General image deblurring restores a sharp image from a
blurred image captured in a general (natural) scene. Image
deblurring has been typically considered as an ill-posed prob-
lem with a large solution space [40]. To overcome this,
various priors have been studied to regularize the solution
space, such as Gaussian mixture [41], hyper-Laplacian [42],
ℓ1/ℓ2-norms [43], ℓ0-norms [44], [45], variational Bayes
approximations [46], [47], adaptive sparse priors [48], patch
priors [49], and dark channel priors [50]. Although these
methods perform well in certain cases, they are not flexible
for real-world examples, owing to their restrictive assump-
tions due to regularization [51], [52].

DL-based approaches have recently made significant
advances in image deblurring. Early DL-based studies
[51], [53], [54] combined convolutional neural networks
(CNNs) with traditional optimization-based deconvolution
algorithms. Most of these methods used CNNs for blur kernel
estimation and then employed optimization-basedmethods to
obtain sharp images. Hence, such methods relied on accurate
kernel estimation step [55]. In contrast, Nah et al. [55] pro-
posed a deep neural network that directly restored a sharp
image from a blurry image without estimating the blur kernel.
In particular, they built a multi-scale CNN, which consisted
of multiple sub-networks at each sub-scale and predicted
sharp images in a coarse-to-fine manner. Instead of stacking
multiple sub-networks, multi-recurrent approaches [52], [56]
have proposed to implement coarse-to-fine procedures with
a single recurrent neural network (RNN). More recently,
multi-patch hierarchy methods [57], [58], [59] have been
proposed to restore sharp images progressively from non-
overlapping patches. To effectively reduce the computational
cost, Cho et al. [60] proposed a multi-input multi-output
(MIMO) architecture that accepts multi-scale input images
with a single encoder and outputs multiple scales of sharp
images with a single decoder.

2) FACE DEBLURRING
While general deblurring models have been well general-
ized to capture the natural representation of images, they
have not been specialized in specific domains, such as face
and text images [16], [61]. In contrast, most face deblurring
approaches primarily focus on facilitating face restoration by
utilizing effective and powerful face prior information, e.g.
, reference priors [62], [63], face landmarks [13], [64], face
sketches [14], face 3D shapes [15], face semantic segmen-
tation maps [16], [17], [18] and deep feature priors [19].
Reference-based approaches [62], [63], [65] use an addi-
tional sharp reference face as a guide for face deblurring.
However, such methods require a time-consuming procedure
to find an adequate reference image. Instead of searching
for similar faces, recent face deblurring methods focused
on estimating facial priors through deep neural networks
(DNNs). Shen et al. [16] first proposed a DNN-based frame-
work consisting of two sub-networks: a semantic face pars-
ing network and a multi-scale deblurring network. The face
parsing network first estimates the semantic segmentation
maps from blurry face images. Then, the deblurring network
performs restoration. Inspired by [16], Yasarla et al. [17] pro-
posed an uncertainty-based multi-stream network (UMSN)
that measures the uncertainty score to prevent the neg-
ative effects of inaccurate parsing maps. More recently,
Lee et al. [18] proposed a multi-semantic progressive learn-
ing (MSPL) framework that progressively restores sharp
faces component-by-component. Jung et al. [19] developed a
deep feature prior-based method that extracts rich informa-
tion of pre-trained face recognition network to utilize not only
the shape prior of the face but also the texture prior.

However, most existing methods still yield blurry face
images because they try to model the data distribution of
only the sharp images. In contrast to existing methods, the
proposed method focuses on modeling a joint distribution of
sharp images and their segmentation label maps for semantic-
aware restoration.

B. GENERATIVE ADVERSARIAL NETWORKS
GANs [20] have been widely known, showing ability that
generates samples similar to a given data distribution via
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a min-max game between a generator and a discrimi-
nator. The representations learned by GANs have been
leveraged in various applications, including style transfer
[66], [67], [68], [69], [70], super resolution [71], [72], [73],
image generation [29], [33], [37], [74], [75], [76], [77], [78],
[79], and hyperspectral image processing [80], [81].

1) CONDITIONAL GANs
For conditional image synthesis, cGANs [21], [28], [29],
[30], [31], [32], [33], [34], [35] extend GANs to model
the joint distribution of data and conditional informa-
tion (e.g. class labels). cGANs can be categorized into
classifier-based [29], [30], [31], [32] and projection-based
[28], [33], [34], [35] depending on how the joint distribution
is modeled. Classifier-based cGANs feed the class labels into
the generator through an additional input layer, while the dis-
criminator utilizes conditional information via an additional
classifier. Meanwhile, projection-based cGANs decompose
the joint distribution into image distribution and label dis-
tribution, utilizing a class embedding matrix and an image
embedding network to project the condition information.
These networks allows stable training by directly embedding
the class label into a feature vector.

2) U-NET BASED GANs
One of the other development directions of GANs is to gen-
erate locally coherent images [24], [27], [77]. In particular,
U-Net GAN [24] implements U-Net [38] based discriminator
architecture, which consists of an encoder and a decoder,
acting as a classifier and a segmenter, respectively. U-Net
based discriminator outputs the probabilities of the input
sample being real over the entire image and per-pixel through
the encoder-decoder architecture. The per-pixel decision pro-
vides spatially coherent feedback to the generator while the
per-image decision gives global coherent feedback. Encour-
aged by the feedback, the generator attempts to improve
the quality of synthesized samples. Owing to its powerful
data representation, U-Net GAN has been adopted in various
studies [25], [26], [82].

Although the proposed SAPPGAN is highly inspired by
the projection GAN [28] and U-Net GAN [24], there are
some key differences. Unlike the projection GAN, which
considers each pixel in the input image to share the same
label information, our method has the ability to model the
pixel-wise joint distribution of the image and semantic label
map. Moreover, the U-Net GAN [24] has a limited ability to
model the joint distribution of input data and external data
because it has been developed under unconditional settings.
In contrast, we condition the U-Net GAN [24] on additional
information (segmentation maps) to construct the conditional
framework.

III. PROPOSED METHOD
The proposed SAPPGAN consists of a deblurring network
G and a discriminator network D. The overall architecture is
shown in Fig. 2.G takes a blurred face image Iblur ∈ RH×W×3

as its input, whereH andW the represent height and width of
image, respectively. Then, G outputs a deblurred face image
Ideblur ∈ RH×W×3 as follows:

Ideblur = G(Iblur ). (1)

D takes a sharp face image x ∈ RH×W×3 and a segmentation
map ys ∈ RH×W×1 as its input and models the joint distri-
bution p(x, ys). Here, x can be a deblurred image Ideblur or a
GT sharp image IGT . ys is used for the condition information
of D. The proposed discriminator can be employed in several
SFID methods that use the GAN framework. Thus, we adopt
DFPGNet [19] as our generator. Similar to other GAN-based
networks [20], we alternatively train our generator G and
discriminator D.

In this section, we first introduce our semantic-aware pixel-
wise projection (SAPP) discriminator, which utilizes seg-
mentation maps for pixel-wise real/fake decisions. We then
describe our discriminator training technique with the pro-
posed prediction-weighted (PW) loss, which re-weights the
contribution of each pixel in the decoder using the proba-
bility map output from the SAPP discriminator. We subse-
quently introduce the generator training technique based on
the coarse-to-fine strategy.

A. SEMANTIC-AWARE PIXEL-WISE PROJECTION
DISCRIMINATOR
We propose a SAPP discriminator that considers face com-
ponent information ys when it makes the pixel-wise real/fake
decision. The encoder Denc and decoder Ddec of our SAPP
discriminator D is adopted from those of the U-Net discrim-
inator [24]. As shown in Fig. 2, the body network of the
encoder Dbodyenc takes a face image x as its input and outputs
a feature map Z ∈ R

H
32×

W
32×1024, on which the head network

of the encoder Dheadenc is applied to generate a probability of
realness as follows:

Z = Dbodyenc (x),

penc = Dheadenc (Z ), (2)

where penc denotes a global probability of x being real. There
are 5 downsampling stages in Dbodyenc , where each stage is a
series that includes 3× 3 convolution layer, ReLU activation,
3 × 3 convolution layer, and 2 × 2 average pooling layer.
Dheadenc is a series of a global sum pooling layer and fully
connected layer.

With the Z fromDbodyenc ,Ddec outputs the per-pixel real/fake
prediction. However, unlike the U-Net discriminator [24],
the SAPP discriminator leverages face semantic maps ys to
further decide whether the input image matches the semantic
label map condition. Thus, Ddec segments the input image
as real or fake, conditioned on ys, which results in Qdec ∈

RH×W×1.
As shown in Fig. 2, Ddec consists of body network Dbodydec ,

label embedding matrix V and head layer Dheaddec as in [28].
Ddec is connected with Denc through skip connections that
concatenate corresponding feature maps from the stages of
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FIGURE 2. Overall architecture of the proposed face deblurring framework. The proposed SAPP discriminator includes the encoder and decoder that
predict the real/fake decisions at the global image-level and local pixel-level, respectively. To estimate the joint distribution of sharp face images and the
semantic structure of the face, our discriminator takes the inner product between the embedding of the face segmentation label map and the feature
map of the input image.

Dbodyenc and Dbodydec . There are 5 upsampling stages in Dbodydec ,
where each stage is a series that includes ReLU activation,
↑ 2 upsampling using nearest-neighbor interpolation, a 3 ×

3 convolution layer, ReLU activation, and a 3 × 3 convolu-
tion layer. Thus, Dbodydec upsamples the input feature map as
follows:

L = Dbodydec (Z ), (3)

where L ∈ RH×W×d is the output feature map.
V ∈ RN×d contains a list of the d-dimensional row

embedding vectors of theN class labels. Note that unlike [28],
V embeds the segmentation label map ys pixel-wise to feature
map F ∈ RH×W×d . Thus, ys is first one-hot encoded and
then unrolled to ŷs ∈ RHW×N . Then the embedded matrix
F̂ ∈ RHW×d is obtained as:

F̂ = ŷs ⊙ V , (4)

where ⊙ represents matrix multiplication. Finally, F̂ is rear-
ranged to feature map F of dimension H × W × d .
By taking the inner product between L and F at the pixel

level, we can obtain a per-pixel conditional probability map
M as:

M = {Mi,j|Mi,j = Fi,j · Li,j}, (5)

where Fi,j ∈ R1×1×d and Li,j ∈ R1×1×d represent the
vector element at location (i, j) of F and L, respectively.
Mi,j ∈ R1×1×1 represents the degree of matching between
the pixel of x and semantic label of ys at location (i, j). Thus,

M represents the conditional probabilities i.e. the image-label
matching map.
Dheaddec is a 1 × 1 convolution layer that takes L as its input

and outputs per-pixel marginal probabilities i.e. an image-
based real/fake probability map. Therefore, the final decoder
outputQdec is calculated by the summation of the image-label
matching map and image-based real/fake probability map as
follows:

Qdec = M ⊕ Dheaddec (L), (6)

where ⊕ denotes element-wise summation. Giving a condi-
tion ys as a semantic face map enables Ddec to further make
an accurate per-pixel decision. Thus, G can generate more
accurate and realistic face details when driven by semantic-
aware feedback.

B. DISCRIMINATOR TRAINING
We propose a prediction-weighted (PW) loss that utilizes the
probability map from the decoder to re-weight the contri-
bution of each pixel to the loss for the decoder [24]. For
convenience in notation, we define Qrdec ∈ RH×W×1 and
Qfdec ∈ RH×W×1 for decoder output Qdec when the input is
real and fake, respectively:

Qrdec = Ddec(IGT ), ys),

Qfdec = Ddec(G(Iblur ), ys). (7)

Additionally, we define probability map pr ∈ RH×W×1 for
the real input and pf ∈ RH×W×1 for the fake input. Note
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that each pixel in both pr and pf represent the realness of the
corresponding pixel, i.e. the probability of the real class when
the input image is real and fake, respectively. Then, we can
derive pr and pf from the original GAN loss [20] as follows:

− log(pr ) = A(−Qrdec) = log(1 + exp(−Qrdec)),

− log(1 − pf ) = A(Qfdec) = log(1 + exp(Qfdec)), (8)

where A(t) = log(1 + exp(t)) refers to the SoftPlus func-
tion [28], [35]. By rearranging above equations, pr and pf are
obtained as:

pr =
1

1 + exp(−Qrdec)
= sigmoid(Qrdec),

pf = 1 −
1

1 + exp(Qfdec)
=

1

1 + exp(−Qfdec)

= sigmoid(Qfdec). (9)

Finally, our PW loss is defined as:

LDdec =

W ,H∑
i,j

[ξ (1− pr ) ⊗ A(−Ddec(IGT , ys))]i,j

+

W ,H∑
i,j

[ξ (pf ) ⊗ A(Ddec(G(Iblur ), ys))]i,j. (10)

Here, ⊗ refers to element-wise multiplication and [·]i,j repre-
sents pixel location (i, j). ξ (·) is a normalization function as

[ξ (t)]i,j = ti,j/
W ,H∑
i,j

ti,j, and 1 ∈ RH×W×1 is a matrix filled

with ones.
As PW loss aims to emphasize the erroneous prediction

of the decoder, 1− pr and pf are used as per-pixel weighting
factors for the real and fake inputs, respectively. For example,
when the discriminator incorrectly determines that a real pixel
is fake, the value of that pixel in pr becomes low, which highly
affects the PW loss. Similarly, in the fake data, misjudged
pixels have high pf values; thus they have a large impact on
PW loss and vice versa. As1−pr and pf have different values
for each pixel, PW loss can highlight regions with wrong
predictions, similar to [83].

Overall, our discriminator objective function LD consists
of an encoder loss LDenc and decoder loss LDdec as:

LD = LDenc + LDdec , (11)

where encoder loss is defined as follows [20]:

LDenc = − logDenc(IGT )

− log(1 − Denc(G(Iblur ))), (12)

and decoder loss LDdec is defined as Eq. (10).

C. GENERATOR TRAINING
The generator objective function includes reconstruction loss
Lpixel , prior feature loss Lfeat , and adversarial loss Ladv.
Reconstruction loss is defined as L1 distance between the GT

image IGT and the deblurred image Ideblur in image domain
as follows:

Lpixel = ||IGT − Ideblur ||1. (13)

Inspired by [19], we employ deep feature prior loss Lfeat
to utilize the rich information of deep features extracted from
the well-trained VGGFace [84] network θ . Let θ (·)l be the
intermediate output features of the l th layer of θ . Then, Lfeat
minimizes the L2 distance between the deep features obtained
using IGT and Ideblur as:

Lfeat =

3∑
l=1

||θ (IGT )l − θ (Ideblur )l ||2. (14)

We select the relu1_2, relu2_2, and relu3_3 layers
of VGGFace for θ (·)1, θ(·)2 and θ (·)3, respectively follow-
ing [19].
Ladv is an adversarial loss from D that encourages G to

generate more realistic details as:

Ladv = αLadv,enc + (1 − α)Ladv,dec, (15)

where Ladv,enc and Ladv,dec are defined as:

Ladv,enc = − logDenc(G(Iblur )),

Ladv,dec =

W ,H∑
i,j

[ξ (1− pf )

⊗A(−Ddec(G(Iblur ), ys)))]i,j. (16)

Here, α is a balancing coefficient that makes the training
process effective by enabling coarse-to-fine training. As the
deblurring task is a challenging and extremely ill-posed prob-
lem, it is effective to decompose the deblurring task into
smaller and easier sub-tasks. Thus, we divide the SFID task
into two sub-tasks, which are to the learn global face image
distribution and learn the structural features and detailed tex-
tures of the real face image. Thus, α is a scalar that decreases
in proportion to the current epoch ηc:

α =
ηt − ηc

ηt
, (17)

where ηt refers to the total number of epochs. In the early
stages, Ladv,enc has a higher effect on Ladv than Ladv,dec, thus,
the generator focuses more on global consistency than local
consistency by balancing Ladv,enc and Ladv,dec. As the training
proceeds, i.e. for larger ηc, the effect of Ladv,dec increases,
so that the generator focuses on local details. By doing this,
the generator can output detailed deblurred face images.

Finally, the final generator objective LG becomes

LG = λpixelLpixel + λfeatLfeat + λadvLadv, (18)

where λpixel , λfeat , and λadv are hyperparameters that are
empirically set as 1, 1, and 0.06, respectively.
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TABLE 1. Quantitative Comparisons on MSPL testset. The best and the second best results are marked in bold and underline, respectively.

IV. EXPERIMENTS
A. EXPERIMENTAL DETAILS
1) DATASETS
The training and evaluation are conducted on the MSPL
dataset [18], which has been used in recent SFID studies
[18], [19]. The MSPL dataset consists of training set and a
test set for face deblurring collected from various face images.
The detailed description of the MSPL dataset is as follows.

• The MSPL training set consists of 24, 183 pairs of
blurred face images and the corresponding sharp GT
face images. The GT face images are collected from
the CelebAMask-HQ dataset [86], which contains pairs
of high-quality (1024 × 1024 resolution) face images
and corresponding segmentation label maps. Each seg-
mentation label map is precisely and manually anno-
tated with 19 classes, including facial components and
accessories, such as the eyes, eyebrows, nose, mouth,
lips, ears, hair and skin. In practice, segmentation label
maps for face image datasets can be obtained leverag-
ing pre-trained face parsing networks [87], [88], [89].
In [18], 18000 motion blur kernels are synthesized from
random 3D trajectories, where the size of blur kernel
ranges from 13 × 13 to 27 × 27 including {13 × 13, 15
× 15, 17 × 17, 19 × 19, 21 × 21, 23 × 23, 25 × 25, 27
× 27}. Each blurred image is obtained by convolving
the sharp image with one of blur kernels and adding
Gaussian noise with standard deviation 0.015.

• The MSPL testset is further divided into the
MSPL-Center test set and MSPL-Random test set. The
former primarily consists of images with a frontal face
at the center position. The latter provides images of
randomly rotated or/and cropped versions of the former.
Each of the MSPL-Center and MSPL-Random test sets
contain 240 sharp-blurry face pairs collected from the
CelebA [90], CelebAMASK-HQ [86] and FFHQ [91].

2) IMPLEMENTATION DETAILS
We implement our model using the PyTorch [92] and train
it using two NVIDIA Titan Xp GPUs. During training,
we adopt the Adam optimizer [93] with β1 = 0.9, β2 =

0.999. The learning rates of the generator and discriminator
are initialized to 1 × 10−4 and decayed exponentially by
0.99 every epoch. For every training iteration, the pairs of
GT images, blurry images and segmentation label maps are
sampled with a batch size of 16. As in [17], [18], [19],
random horizontal flips and random rotations are performed
for data augmentation. The proposed network is trained for
300 epochs, which is sufficient for convergence.

3) EVALUATION METRICS
For the quantitative evaluation, we employ the percep-
tual image quality assessment metrics: the identity distance
(dARC ) [94] between the GT and restored face images using
the pre-trained Arcface [95] embedding vector, feature dis-
tance (dVGG) of the pre-trained VGGFace [84] to measure
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FIGURE 3. Qualitative comparison on MSPL-Center testset [18]. For a better comparison of visual quality, zooming-in is recommended.

the similarity of the facial identity between the GT and
deblurred images, and learned perceptual image patch sim-
ilarity (LPIPS) [96] for perceptual quality. Note that smaller
values of dARC , dVGG, and LPIPS indicate higher consistency

with the GT face image. Moreover, we report widely-used
image quality assessment metrics, which are the peak signal-
to-noise ratio (PSNR) and structural similarity index map
(SSIM) [97].
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FIGURE 4. Qualitative comparison on MSPL-Random testset [18]. For a better comparison of visual quality, zooming-in is recommended.

B. COMPARISONS ON MSPL DATASET
We compare the proposed SAPPGAN with state-of-the-art
deblurring models, including general models [57], [60] and
face models [16], [17], [18], [19], [61], [85]. For general
deblurring models [57], [60] which are originally trained on

natural scenes, we report additional results using the retrained
models on the MSPL training set. As existing face deblurring
models [16], [17], [18], [19] are trained on different training
set or/and synthetic blur kernels, we also retrained them on
the MSPL training set for a fair comparison. Throughout
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FIGURE 5. Qualitative comparison on Real-Blur test set [39].

TABLE 2. Comparison with recent SFID methods for average run time,
model parameters and verification accuracy.

this experimental section, those retrained models using the
MSPL training set are marked with *. The official models of
[18], [19] are not retrained because they are trained on the
MSPL training set. All experiments are conducted with offi-
cial codes provided by the authors. Note that we did not
re-implement and retrain the model in [16] because the offi-
cial training codes have not yet been released.

Table 1 reports the quantitative evaluation results on the
MSPL-Center and MSPL Random test sets. The proposed
SAPPGAN outperforms the state-of-the-art methods in terms
of perceptual metrics, such as LPIPS, dVGG, and dARC .
Importantly, our proposed SAPPGAN achieves significant
improvements in perceptual metrics over recent GAN-based
SFID methods [16], [18], [19] that were developed to restore
perceptually satisfactory images. In contrast to GAN-based
SFID methods whose objective function primarily focuses
on making the global decision of sharp face images with
the data distribution of only sharp face images, the proposed
SAPPGAN estimates the joint probability of the sharp face
images and semantic label map of the faces and is able to
provide pixel-level and global feedback to the generator.With
this powerful capability, the proposed SAPPGAN is able to
restore images that are perceptually outstanding.

The perceptual improvement of SAPPGAN is also notice-
able in visual comparisons on the MSPL-Center (see Fig. 3)
and MSPL-Random test sets (see Fig. 4). The resulting
images of [17], which are not based on GANs, appear
overly smooth and lack sharp details. Moreover, GAN-
based models (i.e. Lee et al. [18], Jung et al. [19], and our
SAPPGAN) outperform other methods in restoring realis-
tic facial details. Among them, the proposed SAPPGAN
significantly improves image quality with fine details and
realistic textures. Specifically, SAPPGAN restores the main
components (i.e. the eyes, nose, mouth and ears) of the face
with high-fidelity textures (see 3rd , 4th, 8th rows in Fig. 3 and
1st , 3rd , 7th rows in Fig. 4 for eyes, 1st , 6th, 7th rows in Fig. 3
and 1st , 2nd , 3rd rows in Fig. 4 for nose, 3rd , 6th, 7th rows
in Fig. 3 and 3rd , 5th, 8th rows in Fig. 4 for mouth/teeth and
5th, 7th, 8th rows in Fig. 3 and 4th, 8th rows in Fig. 4 for ears).
Moreover, the proposed SAPPGAN can generate realistic
skin textures i.e. wrinkle and beard (see 1st , 3rd , 5th, 6th, 7th
rows in Fig. 3 and 3rd , 7th, 8th rows in Fig. 4 for wrinkle and
1st , 2nd , 8th rows in Fig. 3 and 5th row in Fig. 4 for beard).
These semantic-aware deblurred results are attributed to the
powerful and detailed feedback from the SAPP discriminator.

C. COMPARISONS ON REAL BLURRED IMAGES
Most existing SFID methods [16], [17], [18], [19], [61],
including the proposed SAPPGAN, are trained with datasets
that are degraded by synthetic blur kernels. However, SFID
on real-world scenarios must consider more complex degra-
dation factors, such as motion blur, sensor saturation, lens
distortion, nonlinear transform functions, noise, and com-
pression [39]. We conduct experiments on the real-world
blurred images provided by [16], [39] to demonstrate the gen-
eralization capability of our proposed method on real-world
SFID task. Since GT images do not exist for the real-world
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TABLE 3. Effectiveness of different components of SAPPGAN on the MSPL-Center testset.

blurred images, qualitative results with competitive SFID
methods [16], [17], [18], [19], [61] are shown in Fig. 5. The
results of [16], [17], [61] are relatively smooth, whereas those
of [18], [19] reconstruct sharper images. Compared with
[18], [19], our method improves the restoration of the fine
details and rich textures of the face, because it benefits from
the proposed SAPPGAN.

D. EXECUTION TIME AND FACE VERIFICATION
Considering that SFID can be used in the preprocessing
step of high-level face-related vision tasks (i.e. face recogni-
tion [5], [6], [7], [8]), SFIDmethods must enable the accurate
recovery of the identity of the GT face. Therefore, we report
the performance of face verification using deblurred images
on the CelebA test set provided by [16]. For a fair comparison,
we follow the evaluation setting in [19] and measure the
estimated mean accuracy (Acc) [98]. In addition, we com-
pare the inference time and the number of model parame-
ters of the existing methods and proposed model. Following
[16], [18], [19], the average inference time for 10 images is
reported using a single NVIDIA Titan XP GPU. The spatial
size of each image is 128 × 128 × 3.
The experimental results are shown in Table 2. When

comparing the verification Acc on the GT images and blurred
images, it can be observed that Acc is remarkably degraded
from 93.47% to 77.05% by blur artifacts. The Acc of the
deblurred images using our method is 90.64%, which is the
most comparable to the Acc of the GT images. In addition,
Table 2 shows that our method maintains the parameters and
inference time of the original model from [19]. This demon-
strates that our SAPP discriminator and training method can
be easily applied to other GAN-based SFID models, and it
improves the reconstruction quality of the deblurring network
without the additional load of parameters and inference time.

E. ABLATION STUDY
In this section, we conduct an ablation study to verify the
effect of each component in our approach. Table 3 shows the
brief configurations of each experiment and its quantitative
results. Specifically, the baseline model, termed as S0 in
Table 3, is set to the generator architecture of [19] and is
trained with the sum of Lpixel (Eq. (13)) and Lfeat (Eq. (14))

without adversarial loss. S1 is a model trained using the
adversarial loss of the original U-Net discriminator [24], [25]
in addition to the loss function of the S0 model. Compared
to S0, the performance of S1 is increased in terms of dARC
and LPIPS by |0.4909 − 0.2844|/0.4909 = 42.07% and
|0.0950 − 0.0879|/0.0950 = 7.47%, respectively. This veri-
fies the effectiveness of per-pixel adversarial loss in the image
deblurring task. When the proposed PW loss is involved
(S2), our discriminator is trained to rapidly focus on difficult
and misclassified examples. This allows the discriminator
to be trained more accurately. Thus, the discriminator can
provide more accurate adversarial feedback to the genera-
tor during training. This boosts the performance of S2 in
terms of dARC and LPIPS by |0.2844 − 0.2645|/0.2844 =

8.12% and |0.0879− 0.0825|/0.0879 = 6.14%, respectively
compared to S1. The effectiveness of the incorporating the
SAPP discriminator instead of the U-Net discriminator is
shown in S3 in Table 3. The results of S3 show that dARC
is enhanced by |0.2844 − 0.2613|/0.2844 = 8.12% and the
LPIPS is enhanced by |0.0879 − 0.0824|/0.0879 = 6.26%,
compared to S1. These improvements demonstrate that our
key concept, i.e. conditional image restoration by forcing
the discriminator network to estimate pixel-wise semantic-
aware probability, is effective in face deblurring tasks. The
results of S4 in Table 3 indicate that using the PW and
SAPP discriminator together enables a better performance
than using them separately. The dARC and LPIPS values
are improved by |0.2613 − 0.2561|/0.2613 = 1.99% and
|0.0824 − 0.0816|/0.824 = 0.97%, respectively, compared
to those of S3. The final model of our method (S5 in Table 3)
outperforms S4 by |0.2561 − 0.2543|/0.2561 = 0.70% and
|0.0816 − 0.0799|/0.0816 = 2.08% in terms of dARC and
LPIPS, respectively. These results demonstrate the effective-
ness of the proposed coarse-to-fine training scheme (noted
as C2F), which allows our generator to focus first on the
global consistency of the restored image and then on the local
consistency.

V. CONCLUSION
This paper presents a semantic-aware pixel-wise projection
(SAPP) GAN, a novel GAN-based framework for single
face image deblurring. The proposed SAPP discriminator
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is designed to incorporate a label matching (conditional)
distribution into an image (marginal) distribution using a
pixel-wise projection technique. This approach enables our
discriminator to focus on the realness of the restored face
by taking into account semantically important information.
Furthermore, our SAPP discriminator provides global (per-
image) and local (per-pixel) feedback to the generator by
adopting a U-Net-like architecture. In addition, our discrim-
inator can be trained more accurately with the proposed PW
loss, which dynamically weights the incorrect predictions of
the discriminator on a pixel-by-pixel basis. The generator is
effectively trained through the proposed coarse-to-fine train-
ing technique to balance adversarial feedback between the
global and local decisions of the discriminator. Overall, the
proposed SAPPGAN improves on recent face image deblur-
ringmethods in terms of image perceptual quality.We believe
that our SAPPGAN framework can be applied to various
fields of face image restoration.
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