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ABSTRACT Photovoltaic (PV) farms are subject to thermal faults that can degrade and reduce module
efficiency. The currently used method of detecting thermal fault is time-consuming and hard to locate the
fault position, especially in large PV areas. It can result in additional flaws, such as igniting the PV farm.
We provide a new approach for monitoring and detecting PV thermal faults through a catadioptric device
(CD) that offers fast and continual detection. As an early development stage, in this study, we concentrate
on building a mathematical model that can determine the thermal fault coordinate based on two object
images from different CD positions. The experiment then verifies the model, and the parameter variation
is performed to find the coordinate prediction characteristic. Also, a case study simulation on large PV
system monitoring was performed to figure out the thermal fault localization process. The result shows that
the mathematical model can be used to determine the coordinate position of the thermal fault with acceptable
measurement error. The parameter xk tends to affect the average measurement error of the coordinate
prediction and the error gradient of each axes couple. Greater the xk , smaller measurement and gradient
error can be achieved. In addition, the case study simulation result shows that the thermal fault position can
be predicted with the worst percentage error (PE) of less than 10%, with a mean absolute percentage error
(MAPE), mean absolute error (MAE), and root mean square error (RMSE) in a reasonable value. Also, the
sensitivity pattern can be used for CD condition monitoring.

INDEX TERMS Thermal fault, PV, catadioptric, detection, localization.

I. INTRODUCTION
Environmental issues are a matter of concern for the world
community today, especially the problem of global warming
triggered by greenhouse gas emissions that result from burn-
ing fossil fuels, including for power generation. It encourages
power generation technology to move in a more environmen-
tally friendly direction, such as using photovoltaic (PV) [1].
PV is the leading choice for areas with significant enough
irradiation because they are modular and easy to install.
PV utilization globally has reached a value of 100GW and
continues to grow along with the increasing demand for green
energy [2].

PV is made of semiconductor materials composed of small
components called cells. These small components are then
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connected in series or parallel to obtain a PVmodule with the
desired current and voltage specifications. Currently, many
types of PV cell technology have different efficiency and
prices [3].

In field operation, PV modules can experience various
kinds of disturbances, such as encapsulant damage, cracking,
delamination, connection failure, mismatch fault, corrosion,
diode failure, and arc fault [4], [5], [6]. These disturbances
can cause thermal problems, such as degrading and firing
the PV farm [7], [8]. Therefore, the proper PV monitoring
system is needed to maintain optimal PV performance [9],
[10], [11], [12].

Various methods are proposed to detect thermal faults,
including frequency analysis, electromagnetic induction, arti-
ficial intelligence, and thermal imaging [13], [14], [15],
[16], [17]. However, thermal imaging is the most used. This
method maps the PV module’s temperature distribution into
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images with different colors. The color in the thermal image
looks very contrasting if there is a hotspot on the PV module.
Hotspots on the PV module can reach temperatures of more
than 100◦C, so the hotspot points should be very clearly
visible compared to normal cells [18], [19], [20].

The use of thermal cameras to detect thermal faults on PV
in Indonesia is generally done manually. The process occurs
when the operator inspects the PV module condition one by
one. If there is a thermal fault on the module, the operator
marks the module and then moves to another module to per-
form the same steps. After the locations of the modules expe-
riencing thermal faults are mapped, maintenance planning is
carried out for these modules. The manual method’s thermal
fault detection process requires the operator tomove from one
module to another. Therefore, monitoring the condition of the
module is only in the form of sampling at certain times

In addition to the manual method carried out by the oper-
ator, a PV thermal fault detection method using drones has
been developed in other countries. The drone is flown over the
PV area and then records the image of the PV module with
a thermal camera. After the image of one area is obtained,
the drone moves to another to obtain a thermal image of the
entire PV farm. Drones are flown at particular times sched-
uled for the maintenance process; outside these times, the
thermal fault conditions on the PV cannot be monitored [11],
[21], [22].

The previous method (manual and drone) are not con-
tinuously monitoring the PV module’s condition. Besides,
this method also takes a long time to detect thermal fault
disturbances in the PV module. In PV with a capacity of
15MWp, it is estimated that there are around 60000 modules.
Using the manual method, it takes about 105 days to map the
overall condition of the module, while using a drone takes
about 15 days. Both of these methods cannot monitor the
occurrence of thermal faults on the PV module if it occurs
outside the monitoring schedule, even though thermal fault
disturbances can occur at certain times and disappear at other
times. The emergence of thermal faults that occur repeatedly
and are not detected by the monitoring system causes damage
to the module and reduces the efficiency [23], [24], [25], and
if the thermal fault occurs in the form of arcing, it can trigger
fires in the PV module [7], [8], [26].

In addition to the applicable methods in the real world
described above, there is also a method of detecting ther-
mal disturbances in the research phase, namely the artificial
intelligence (AI) method. In the AI method, the current and
voltage signals from the PV are recorded, and then training
is carried out. The results of this training are then used as the
basis for determining the fault appearance of the PV module.
However, the ability to determine fault coordinates was not
discussed [27], [28].

The shortcomings of the previous method, which is non-
continuous monitoring and takes time to determine the fault
location, are tried to face by the proposed method. This paper
describes the thermal fault monitoring model using the cata-
dioptric device (CD). The monitoring system model utilizes

FIGURE 1. Catadioptric Device (CD). (a) Object image formation on the
CD. (b) Experimental construction of CD.

the CD that contains an ellipsoid mirror and is mounted on
a pole with a certain height. Using the CD with ellipsoid
mirrors aims to produce a wide field of view [29]. With
this, more modules can be monitored in one device so ther-
mal fault detection can be carried out more effectively and
efficiently.

It is a preliminary study to determine the coordinates of
the thermal fault coordinate, so it focuses more on modelling
and its verification, which also is fulfilled with one simu-
lation case study. The presentation of this paper consists of
four sections. Section I described the research background,
including PV thermal fault problems, the gap in the existing
detection method, and the use of CD to complete the previ-
ous method. The modelling process of coordinate prediction,
including analysis and discussion, is explained in Section II.
A case study of thermal fault localization in a large PV farm
using simulation is given in Section III. Section IV is the
conclusion.

II. DETERMINATION OF OBJECT COORDINATES
A CD is an optical device combining a mirror and a lens
(camera). The concept is that the mirror captures and then
projects the object image on its surface following its cur-
vature. The lens then captures the image projected on the
mirror surface. In this study, an ellipsoid mirror is utilized in
the CD.
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A. MODELING
Determining the coordinates of the thermal fault location on
the PV is carried out first by modelling the formation of
images on the CD, as given in Figure 1.

Figure 1(a) shows a catadioptric device consisting of an
ellipsoid mirror and a camera. The ellipsoid mirror captures
the light beam emitted by object O at coordinates (x,y,z) and
projects the object’s location at position S on the mirror sur-
face. The camera receives the reflected light from the object in
position S. The light from the object image in S received by
the camera is then captured by the camera’s internal sensor
(image plane) and forms the image of the object O’. This
object image then has coordinates (a,b) on the image plane,
where the values are determined by (1) and (2) [30], [31].
e is the eccentricity of the mirror, f is the focal length of
the camera, dC is the distance between the mirror and the
camera. p is the focal length of the ellipsoid mirror. x, y, and z
are the object coordinates relative to the mirror center. a and
b represent the object image coordinates. Figure 1(b) shows
the experimental construction of the CD used to perform the
model verification in Figure 2.

epfx

dC
√
x2 + y2 + z2 + e (p+ dC ) z

= a (1)

epfy

dC
√
x2 + y2 + z2 + e (p+ dC ) z

= b (2)

In this case, the midpoint of CD is the coordinates (0,0,0).
When CD experiences a shift in the x-direction of xk , the
object’s coordinates relative to the position of CD are as in
equation (3).  x

y
z

 =

 x0 + xk
y0
z0

 (3)

If equation (1) is divided by equation (2), it is obtained
equation (4).

a
b

=
x
y

(4)

By substituting equation (4) into equation (1), it is obtained
equation (5)

k2y

dC
√
k4y2 + z2 + k3z

= a (5)

where :

k2 = epf
a
b

k3 = e (p+ dc)

k4 =

(
a2

b2
+ 1

)
By decomposing and grouping the variables in (5), it is

obtained (6).

Ay2 − Byz− Cz2 = 0 (6)

where :

A =

(
k22 − a2d2c k4

)
B = −2ak2k3

C = −

(
a2d2c − a2k23

)
By substituting the equations for x and y in (3) into (6),

we get (7).

Ay20 + By0z0 + Cz20 = 0 (7)

The relationship between the actual coordinates of objects
affected by the CD parameter is given in (7). In (7), one of
the object’s coordinates, namely the x-coordinate, has been
eliminated so that the remaining two coordinate variables are
the y-coordinate (in this case, y0) and z-coordinate (in this
case, z0). Additional data is needed to find two variable values
with one equation using two different conditions for each
object whose location is determined.

In this case, the two conditions in question are using two
accompanying CDs or using one CD but can move to another
x-coordinate with the same height. The position of the CD
that has shifted can cause a relative change in the values of x,
y, z. To see the relationship between x and y, (3) is used by
dividing x and y to obtain (8).

x
y

=
x0 + xk
y0

=
a
b

bx0 − ay0 = −bxk (8)

Two image coordinates are obtained using two CD con-
ditions: (a0, b0) and (ak , bk ). If these two coordinates are
entered into equation (8), then equations (9) and (10) are
obtained as follows.

b0x0 − a0y0 = −b0x0 (9)

bkx0 − aky0 = −bkxk (10)

The process of elimination of y0 in (9) and (10) to get the
value of x0 is carried out; equation (11) is obtained as follows.

x0 =
−bka0xk + b0akx0

bka0 − b0ak
(11)

The value of x0 from (11) is then entered into (9) so that
the value of y0 is obtained. The value of y0 is then substituted
into (7) to get the value of z0.

B. MODEL VERIFICATION
After obtaining a mathematical model to determine the
object’s coordinates, the formulation is verified by retriev-
ing experimental data. The experimental scheme is given
in Figure 2.

Figure 2 shows an illustration of the verification process.
The CD has characteristics of e = 0.5, dc=300mm, and p =

274mm. Chromium-coated metal (as a mirror) ensures 90%
visible light and infraredwaves are reflectedwhile the camera
has a focal length of f = 1.25mm. The mathematical model
is verified by placing ten square (length of 10cm) white color
objects (Obj 1 to Obj 10 in Figure 2) in front of CD, whose

VOLUME 11, 2023 75589



P. A. A. Pramana, R. Dalimi: Prediction of Photovoltaic (PV) Thermal Fault Location Using the Catadioptric Device

FIGURE 2. Illustration of the verification process. Ten square objects are
located in front of the CD. Object images are captured by the CD in the
two CD location.

TABLE 1. Position of the object relative to the CD position 0.

positions are given in Table 1. The value in Table 1 refers
to the mirror center (its position is defined as CD Position 0).
The square object is placed in the dark background to contrast
the image. In this condition, the objects (white color) are
clearly different from their background/environment (black
color), so the image processing algorithm can easily detect
the object. This condition imitates the thermal fault condition
in the field, where the thermal fault appears as a white object
(due to its higher temperature) while the surroundings appear
black.

Also, in Figure 2, one pair of images of each object
is required to calculate the approximate coordinates of an
object. The first image is obtained when the camera is at
the ‘‘CD position 0’’ location (0, 150, 0) in mm units.
On the other hand, the second image is obtained when
the CD is at ‘‘CD position k’’ (k=1, 2,3, 4) with coordi-
nates (100,150,0) for ‘‘CD position 1’’, (200,150,0) for ‘‘CD
position 2’’, (300,150,0) for ‘‘CD position 3’’, (400,150,0)
for ‘‘CD position 4’’. The first image, P0, and the second
image, Pk (k=1, 2, 3, 4), contain the images of ten verification
objects where P0 has the coordinate set a and b as (a0,b0) and
Pk has the coordinate set a and b as (ak,bk). P0 and Pk values
are calculated from the midpoint of the image plane.

The values of P0 and Pk are then displayed in a single
image to determine the object’s actual coordinates, as shown
in Figure 3. In Figure 3, measurements were made for four

pairs of CD locations (as illustrated in Figure 2). The first pair
is for ‘‘CD position 0’’ and ‘‘CD position 1’’, with the xk value
being 100mm (Figure 3(a)). The second pair is ‘‘CD position
0’’ and ‘‘CD position 2’’, with the xk value being 200mm
(Figure 3(b)), and so on for pair three and pair four where
the xk values are xk =300mm (Figure 3(c)) and xk =400mm
(Figure 3(d)). The blue dots in Figure 3 are the coordinates
of a and b for the ‘‘CD position 0’’ (P0), while the red cross
marks are the a and b coordinates for the ‘‘CD position 1’’ to
‘‘CD position 4’’ (Pk).

Furthermore, the coordinates P0 and Pk, according to
Figure 3 of each object, are then entered into equations (1)
to (11) to calculate the object’s approximate location relative
to CD. The calculation result of the object’s approximate
location with its percentage error (PE) is given in Table 2,
while the correlation between error and fault distance as well
as the other error analysis, is given in Table 3. The PE is the
difference between the calculated coordinate and the actual
coordinate, which is then divided by the actual coordinate for
each of the x, y, and z coordinates. The MAPE, MAE, RMSE,
and SD are the mean absolute percentage error, the mean
absolute error, the root mean square error, and the standard
deviation of absolute percentage error (APE).

1) ERROR CHARACTERISTIC
The deviation data of the measurement results in Table 2 is
then processed to find the correlation between the object coor-
dinate and the PE. Also, the MAPE, MAE, RMSE, and SD
with the result as given in Table 3. The PE value is processed
from Table 2 and plotted to see the APE distribution with the
results shown in Figure 4.

Table 3 shows that the correlation between object distance
and PE values is inconsistent, so no pattern of PE changes
to changes in object distance can be found. The proposed
method has aMAPE value below 6% for the x and z directions
and around 70% for the y direction. This error value occurs
because of the image processing technique’s object detection
process. In performing image processing, object detection is
carried out based on the color difference of the object, which
is then determined by the centroid value based on the average
length of the detected object perimeter points. However, the
non-linearity of CD projection affects the centroids’ value
determination. The centroid value from the image plane is
then used as a and b values in the x and y-coordinate. Based
on the experimental results, the 10 pixel error in determining
the centroids can produce a distance prediction error of 5%.
Even though the MAPE in the y direction has a large enough
value, the SD of APE in the x, y, and z directions is less
than 8%. It shows a consistency of measurement error over
a reasonably small range, so the proposed method has good
precision in the z, y, and z directions but has good accuracy
only in the x and z directions. In addition, Figure 4(a) shows
the distribution of the APE for the x, y, and z coordinates
with the xk value of 100mm. Figures 4(b) to Figure 4(d) show
the same thing but for different xk values, namely 200mm,
300mm, and 400mm, respectively.
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TABLE 2. Object coordinate and error value. The actual coordinate is the
real coordinate value of the verification object. The calculated coordinate
is the predicted coordinate from the proposed method. Error is the
deviation from the calculated coordinate and actual coordinate divided
by the actual coordinate.

Compared with the method in [32] and [33], which is
related to determining the geodetic objects using laser scan-
ning (LiDAR), the results of this proposed method do have a
more considerable error value. However, for the case of mon-
itoring thermal disturbances in the PV, the LiDAR method
cannot be used because it cannot differ the object with differ-
ent temperatures (healthy and faulty module). The proposed
method can provide early information to the operator about
the appearance of the disturbance and an initial estimate of
its location.

2) EFFECT OF xk ON MAPE
In addition to the error distribution, the MAPE from Table 3
is then plotted against the xk value change with the results

TABLE 3. Statistical analysis of model verification in CD prediction
characteristic.

shown in Figure 5. Figure 5 shows that adding the xk value
can reduce the average error value for each coordinate.
It can be used to determine the value of xk used in field
monitoring.

3) EFFECT OF xk ON ERROR SENSITIVITY
The error sensitivity referred to here is the effect of the
error on one axis on the other axes. Error sensitivity consists
of the x-y, y-z, and x-z axes. The effect of xk on the error
sensitivity is given in Figure 6. Figure 6 represents the error
sensitivity by the gradient error value. When the gradient is
more significant, the influence of one axis on the other is also
more significant. For example, for the xk value of 100mm, the
x-y gradient error value is 1.30, which means that an increase
in the error of 1 unit on the x-axis can increase the error of
1.3 on the y-axis. In the measurement process, it is expected
that errors on one axis do not cause a high increase in errors
on the other axes.

In Figure 6, the X-Y gradient error experiences a different
change pattern from the Y-Z and X-Z gradient errors. How-
ever, the overall gradient error tends to decrease as the value
of xk increases.

III. CASE STUDY
A. BACKGROUND
The utilization of large PV capacity is increasing in Indone-
sia. Difficulties monitoring thermal faults can occur in PV
farms with large capacities, generally more than 1MWp.
In this case study, we take the case of the monitoring model
for the largest PV currently in Indonesia, namely Likupang
PV farms. Likupang PV farm is located in Likupang village,
North Sulawesi province, with a capacity of 21MWp covering
an area of 29Ha. This PV farm is north of the equator, with a
tilt angle of less than 10◦, and points to the south. It is an
overview of the thermal fault detection process in the PV
system layout in the field. In addition, the case study also
explored the most significant detection error that might occur
if the proposed method is used in actual conditions, such as
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FIGURE 3. Value a and b of the image of ten verification objects when captured in two CD locations. (a) Image of verification object for CD
position 0 and 1 (xk = 100mm). (b) Image of verification object for CD position 0 and 2 (xk = 200mm). (c) Image of verification object for CD
position 0 and 3 (xk = 300mm). (d) Image of verification object for CD position 0 and 4 (xk = 400mm).

FIGURE 4. Error characteristic in predicting the actual object position based on verification result. Error is an absolute deviation of the
calculation result and actual value and then divided by the actual value (APE). (a) Error characteristic for xk = 100mm. (b) Error characteristic
for xk = 200mm. (c) Error characteristic for xk = 300mm. (d) Error characteristic for xk = 400mm.

in the Likupang PV system. The uncertainty area that occurs
due to the prediction error can be estimated through the case
study.

B. MONITORING SCHEME
The CD model developed has a viewing angle value of more
than 90◦, so for the Likupang PVmonitoringmodel, 15 points

75592 VOLUME 11, 2023



P. A. A. Pramana, R. Dalimi: Prediction of Photovoltaic (PV) Thermal Fault Location Using the Catadioptric Device

FIGURE 5. The MAPE values of x, y, and z coordinate for different xk
values.

FIGURE 6. Effect of xk in the error gradient of x-y, y-z, and x-z coordinate
pair. The gradient of error tends to be reduced when the xk increases.

of CD placement are used (with the height of y = 15m).
The layout of the Likupang PV farm and the location of the
CD placement is given in Figure 7. In this case, the PV’s
images on each CD were made using a simulator based on
equations (1) and equation (2) [30], [31] where the simulation
results are given in Figure 8. In the simulator, we made the
disturbance points yellow, while The PV and other environ-
mental areas are shown in blue and black.

The CD coordinates are given in Table 4 regarding the
coordinates (0,0,0) located at the origin point in Figure 7.
The location of this CD is chosen to ensure that the entire PV
module can bemonitored. Therefore, if a thermal fault occurs,
the CD system can determine the location of the coordinates
of the disturbance relative to the position of the CD that
detects it. In this paper, we still place CDs based on the
coverage area only so that there is a potential for two cameras
to observe overlapping areas. In the future implementation
phase in the field, we can adapt particle swarm optimization
methods, such as [34], to determine the most effective and
cost-efficient camera locations.

The entire CD set in Figure 7 has a point of view in the
direction of the z-axis with no rotation angle in the direction
of the x-axis and y-axis. Each CD device has two monitoring
conditions: condition 1, when the monitoring location corre-
sponds to the x, y, and z values in Table 4, and condition 2,
when the xk value reduces the x value in Table 4 by 1.5mwith
fixed y and z values.

In this case study, it is modelled that there are three thermal
faults in each CD view, so there are 45 thermal faults overall
in the PV farm. The thermal fault appearance for each CD
view (condition 1) is marked as ‘‘Label=1’’, ‘‘Label=2’’, and
‘‘Label=3’’, as given in Figure 7.
Detecting thermal disturbances in the field is carried out

using a thermal camera. Thermal cameras produce differ-
ent images for objects with different temperatures, generally
black for lower temperatures and white for higher tempera-
tures. To imitate a thermal camera image, in this case study,
the PV simulator gives a yellow color at the disturbance point,
while healthy PV and other environmental areas are shown in
blue and black. This image is then analyzed using image pro-
cessing into a black-and-white monochrome form. Objects
with white color are identified as thermal faults, then isolated
to form a perimeter that covers the faulted object. After the
object is detected, the center point (centroid) is determined.
This midpoint is used as object image coordinates (a and b).
Then, the a and b values are used in further calculations.

C. RESULT AND DISCUSSION
Based on the image coordinate of the thermal fault points in
Figure 8, then by using the calculations in (1) to (11), the
approximate value of the thermal fault coordinates relative to
the CD that detects it is given in Table 5.

1) PREDICTION ERROR CHARACTERISTIC
Simulated coordinates of real conditions represent the actual
coordinate conditions of the thermal disturbance, which use
as the reference for error calculation. Positive values in deter-
mining the location of the x and z axes in Table 5 represent
that the disturbance is to the left of the CD. At the same time,
the negative value indicates that the disturbance is more to
the right of the CD observation direction. For example, the
values of x=−40.15m and z=60.79m (in the calculated result
CD 1) indicate the disturbance is on the right side of CD 1
(with a distance of 40.15m). The disturbance is also located
in front of CD, with a distance of 60.79m.When viewed from
the origin coordinates (0,0,0) in Figure 6, the location of the
disturbance in the direction of the x and the z-axis is equal
to the coordinates CD minus the calculation result in Table 5.
For CD 1, the fault coordinate from the origin is x-origin =

450 -(-40.15) = 490m and z-origin = 80 – 60.79=140.79m.
The location of the coordinates to the origin for other thermal
disturbances on CD 2 to CD 15 was determined using the
same method. The error values in Table 5 are presented
on the graph in Figure 9 to provide a visual characteristic
of the error value to the distance of the disturbance point.
Figure 9 only shows the coordinate value data for the x-axis
and z-axis directions because, based on the verification results
in Figure 4 and Figure 5, thismethod is inaccurate in detecting
the y-axis coordinates.
Figure 9 shows that the error value of the x and z directions

is less than ±10%. Some statistical analysis was performed
to explore the error characteristic. A correlation (between PE
and object coordinates), MAPE, MAE, and RMSE analysis
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FIGURE 7. Lay out of the Likupang PV farm [35] and the CD position.
There are 15 CDs used to monitor all of the PV farms. The location of CDs
is chosen to cover all PV modules.

TABLE 4. CD coordinate is relative to the origin position, as given in
Figure 7.

was carried out, as given in Table 6. Correlation analysis
showed no consistency in the correlation value between the
disturbance distance and the PE value, which aligns with
the results in Table 3. The MAE and RMSE values are less
than 5m.

A MAPE of less than 6% in the x- and z directions for
objects 100m away gives an area of uncertainty of 144m2.
In addition to errors in the x-axis and z-axis directions, the
y-axis error does have a relatively large percentage of error.
However, for PV monitoring implementation conditions, the
highest distance of the panel from the ground (y-axis direc-
tion) is generally less than 3m. The y-axis direction error
is only in that range because the fault only appears on the
PV module, so the MAPE value of 14% (0.5m error) is
reasonable. Also, the MAE and RMSE values less than 5m

TABLE 5. Image coordinates based on calculation and simulation. The
calculated coordinate (CC) is the predicted coordinate from the proposed
method. The simulated coordinate of real condition (SC) is the simulated
actual coordinate value of the thermal fault in the PV farm. Error (PE) is
the deviation from the CC and SC and is divided by SC.

are still good enough to be used as an initial estimate by the
operator to detect the disturbance area.

As shown in Figure 8, the proposed method can label the
fault location, and each fault’s coordinates (a and b) is not be
swapped. Therefore, detecting multiple faults in one CD view
is not an issue. Also, because the detection process relies on
a and b values, the accuracy value of the prediction process
is not affected by the number of disturbances observed by
one CD.
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FIGURE 8. Simulation of PV farm monitoring using CD. It is simulated that the PV module experience thermal faults, and the CD detects the fault
location based on the proposed method. (a) The image perspective of PV farm from CD 1. (b) The image perspective of PV farm from CD 2.
(c) The image perspective of PV farm from CD 3. (d) The image perspective of PV farm from CD 4. (e) The image perspective of PV farm from CD 5.
(f) The image perspective of PV farm from CD 6. (g) The image perspective of PV farm from CD 7. (h) The image perspective of PV farm from CD 8.
(i) The image perspective of PV farm from CD 9. (j) The image perspective of PV farm from CD 10. (k) The image perspective of PV farm from CD
11. (l) The image perspective of PV farm from CD 12. (m) The image perspective of PV farm from CD 13. (n) The image perspective of PV farm
from CD 14. (o) The image perspective of PV farm from CD 15.
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FIGURE 9. Error value (PE) of object position. (a) Error characteristic in
the x direction. (b) Error characteristic in the z-direction.

Coordinate detection of the x and z direction can provide
a fast overview of the thermal fault location required by the
operator. Therefore, the operator can perform more detailed
checks on the small area inside the error range of the x
and z directions. This method makes determining the loca-
tion of disturbances faster and speeds up fault management
planning.

2) SENSITIVITY PATTERN
CD is expected to have good health in the disturbance mon-
itoring process. For this reason, the sensitivity pattern can
be used to indicate CD equipment condition. The sensitivity
pattern is a profile of the error value relationship between
the x, y, z directions. In this case study, the CD used has a
sensitivity pattern profile, according to Figure 10.
Figures 10 (a) to 10 (c) shows the sensitivity patterns in

the x and y, x and z, and y and z directions, respectively. The
sensitivity pattern can be approximated by linear regression
with a relationship value of R2 > 0.9. CD condition cali-
bration can be performed by comparing the measured sen-
sitivity pattern value with the sensitivity pattern reference
in Figure 10. If it turns out that the R2 sensitivity pattern
obtained from the prediction results is much smaller than the
reference value, then it can be indicated that the prediction
results from the CD are invalid or the CD is damaged.

In the future, besides detecting disturbances, the prognosis
of thermal fault disturbances needs to be considered. The

FIGURE 10. Sensitivity pattern of CD. (a) sensitivity pattern of x and y
error values. (b) sensitivity pattern of x and z error values. (c) sensitivity
pattern of y and z error values.

TABLE 6. Statistical analysis of case study in CD prediction characteristic.

process of fault prognosis using the multistage fault method
involving Bayesian networks and autoregressive moving
averages describes in [36]. This method can adequately
track the degradation process of the permanent magnet syn-
chronous generator. In addition, dynamic Bayesian networks
are also used to diagnose disturbances through multiple mod-
ular redundant closed-loop feedback, sensor data, and system
parameters. This method can detect disturbances with high
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accuracy in cases of subsea blowout preventer systems [37].
This method can potentially be used in the prognosis and
fault detection in PV, complementing the proposed method’s
performance.

IV. CONCLUSION
Thermal faults are disturbances that frequently occur in PV,
harm efficiency, and initiate accelerating aging of the PV
module. Therefore, a detection system that can work con-
tinuously and quickly provide predictions of fault locations
is needed. CD is prospective to solve this problem because
it has a wide viewing angle in detecting disturbances. With
the detection model that has been built, the CD can predict
fault locations with reasonable error values. The parameter
xk tends to affect the average measurement error of the coor-
dinate prediction and the error gradient of each axes couple.
Greater the xk , smaller measurement and gradient error can be
achieved. In addition, the case study simulation result shows
that the thermal fault position can be predicted with the worst
PE of less than 10%, with a MAPE, MAE, and RMSE in a
reasonable value. Also, the sensitivity pattern can be used for
CD condition monitoring. Future work is needed to increase
the prediction accuracy by improving the image processing
technique to detect the centroids of the thermal faults.
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