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ABSTRACT The overall goal of the paper is to derive a kinematic model for vehicle path-following systems,
where the pitch and yaw angles (θ, ψ) together with the surge velocity u can be treated as control inputs.
Then the outer control loop can be designed as a nonlinear path-following guidance law. At the same time,
the inner control loops can be stabilized using commercial autopilot systems to control the pitch and yaw
angles. The main result of the paper is a novel kinematic amplitude-phase representation of the North-East-
Down (NED) positional rates, which can replace the classical Euler angle rotation matrix representation.
The proposed kinematic model gives equivalent NED positional rates as the rotation matrix representation
for all combinations of the Euler angles and the linear velocities. The main advantage of the kinematic
amplitude-phase representation is the design of vehicle guidance laws using nonlinear control theory and
Lyapunov stability analysis. Furthermore, it is shown that nonlinear guidance laws can be designed for path
following and that the proposed methods guarantee that the origins are uniformly semiglobally exponentially
stable (USGES). A case study of an unmanned surface vehicle (USV) demonstrates how a path-following
control system can be designed using the amplitude-phase representation.

INDEX TERMS Aircraft, autonomous vehicles, guidance systems, kinematics, marine vehicles, mobile
robot kinematics, underwater vehicles.

I. INTRODUCTION
Te purpose of this paper is to introduce a new kinematic
model for the North-East-Down (NED) positional rates,
which can be used to design intuitive and efficient con-
trol systems for path following and path tracking. The pro-
posed amplitude-phase representation is an alternative to
existing models for guidance-based path following in 3-D
space parametrized by rotation matrices on SO(3), see [1].
The amplitude-phase representation of the NED kinematic
differential equations uses the pitch and yaw angles (θ, ψ),
and the surge velocity u as control inputs, see Figure 1. Pitch
and yaw angle commands can be implemented using standard
aircraft and marine craft autopilot systems, see [2] and [3],
while a speed controller can stabilize the surge velocity.

The associate editor coordinating the review of this manuscript and
approving it for publication was Xiwang Dong.

The autopilot systems are recognized as the inner control
loops in Figure 1, while the path-following guidance laws
represent the outer control loops. The structural properties of
the kinematic amplitude-phase equations are exploited when
designing the guidance laws [3]. Lyapunov stability analysis
guarantees that the line-of-sight (LOS) guidance laws for path
following will render the origin of the outer control loop
uniformly semiglobally exponentially stable (USGES) [4].

A large number of authors has discussed proportional
LOS guidance laws for path following using approximate
amplitude-phase models where couplings to the roll motion
are neglected; see [5], [6], [7], [8], [9], [10], [11], [12], [13],
and [14]. The results in the paper generalize this to six degrees
of freedom (DOFs) coupled motions.

The main result of the paper is a novel kinematic
amplitude-phase representation of the NED positional rates,
which can replace the classical Euler angle rotation matrix
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FIGURE 1. Feedback interconnection showing the LOS guidance laws (outer control loops) interacting with two commercial autopilots (inner control
loops).

representation in guidance, navigation, and control applica-
tions. The main advantage of the kinematic amplitude-phase
representation and its control inputs is simplicity when
designing and analyzing the stability of vehicle LOS
path-following control systems, as shown in Figure 1.
The rest of the paper is organized as follows. Section II

presents the classical kinematic equations of a moving vehi-
cle using Euler angle rotation matrices. Theorem 1 and
Corollaries 1 and 2 summarize the amplitude-phase represen-
tation of the NED kinematic differential equations. In Sec-
tion III, guidance laws for path following are presented,
and the effectiveness of the guidance scheme is demon-
strated by simulating an unmanned surface vehicle (USV)
exposed to ocean currents. The concluding remarks are drawn
in Section IV.

II. KINEMATICS
For marine craft and aircraft, the six different motion com-
ponents in the BODY frame {b} are conveniently defined as
surge, sway, heave, roll, pitch and yaw. The NED reference
frame is denoted by {n}.

A. NORTH-EAST-DOWN KINEMATIC DIFFERENTIAL
EQUATIONS
Let pn = [xn, yn, zn]⊤ denote the position vector expressed in
{n} and vb = [u, v,w]⊤ be the vehicle’s linear velocity vector
expressed in {b}. Consequently, the kinematic differential
equations are given by [3]

ṗn = Rnbv
b (1)

where ṗn = [ẋn, ẏn, żn]⊤ denotes the positional
rates and Rnb is the rotation matrix from {b} to {n}
defined by

Rnb=

 cψcθ −sψcφ + cψsθsφ sψsφ + cψcφsθ
sψcθ cψcφ + sφsθsψ −cψsφ + sθsψcφ
−sθ cθsφ cθcφ

 (2)

where s · = sin(·) and c · = cos(·). It is customary to describe
Rnb := Rz,ψRy,θRx,φ by three principal rotations about the
z, y and x axes (zyx convention) where φ, θ and ψ denote
the Euler angles. Expanding (1) yields the positional rates in

component form

ẋn = u cos(ψ) cos(θ)

+ v (cos(ψ) sin(θ) sin(φ) − sin(ψ) cos(φ))

+ w (sin(ψ) sin(φ) + cos(ψ) cos(φ) sin(θ)) (3)

ẏn = u sin(ψ) cos(θ)

+ v (cos(ψ) cos(φ) + sin(φ) sin(θ) sin(ψ))

+ w (sin(θ ) sin(ψ) cos(φ) − cos(ψ) sin(φ)) (4)

żn = −u sin(θ)

+ v cos(θ ) sin(φ)

+ w cos(θ ) cos(φ) (5)

B. AMPLITUDE-PHASE REPRESENTATION OF THE
KINEMATIC DIFFERENTIAL EQUATIONS
This section presents a novel kinematic representation of
the NED positional rates expressed by amplitudes and phase
angles for coupled motions in 6 DOFs. As the rotation matrix
representation (1), the proposed kinematicmodel gives equiv-
alent NED positional rates for all combinations of the Euler
angles and linear velocities. Previous work by [12] and [13]
do not include the couplings between the roll, pitch, and
yaw angles. Moreover, the roll dynamics has been neglected
such that a 5-DOF simplified model could be derived under
the assumption that φ ≡ 0. In addition, a positive surge
velocity u > 0 has been assumed. Theorem 1 below is the
paper’s main result, and it removes the previously discussed
assumptions.
Theorem 1 (Kinematic Amplitude-Phase Representation):

The kinematic differential equations (3)–(5) for positional
rates can be expressed in 3-D amplitude-phase form accord-
ing to

ẋn = Uh cos(ψ + βc) (6)

ẏn = Uh sin(ψ + βc) (7)

żn = −Uv sin(θ − αc) (8)

The phase angles (αc, βc) and amplitudes (Uh,Uv) are

αc = tan−1
(
v sin(φ) + w cos(φ)

u

)
(9)
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βc = tan−1
(
v cos(φ)−w sin(φ)
Uv cos(θ − αc)

)
(10)

Uv =

√
u2 + (v sin(φ) + w cos(φ))2 (11)

Uh =

√
(Uv cos(θ − αc))2 + (v cos(φ)−w sin(φ))2 (12)

where the inverse tangent function,1 tan−1(y/x), is defined
for all x, y ∈ R. Note that 0 ≤ Uh and 0 ≤ |u| ≤ Uv.

Proof: See the Appendix.
For aircraft [2] and marine craft [3] moving with positive

surge velocity u > 0, Corollaries 1 and 2 below can be
applied.
Corollary 1 (6-DOF Model for Flying vehicles): A flying

vehicle (under water and in air) with positive surge velocity
u > 0 is a special case of Theorem 1 where

ẋn = Uh cos(ψ + βc) (13)

ẏn = Uh sin(ψ + βc) (14)

żn = −Uv sin(θ − αc) (15)

αc = tan−1
(
v sin(φ) + w cos(φ)

u

)
(16)

βc = tan−1
(
v cos(φ)−w sin(φ)
Uv cos(θ − αc)

)
(17)

Uv = u
√
1 + tan2(αc) (18)

Uh = Uv cos(θ − αc)
√
1 + tan2(βc) (19)

for 0 < Uh and 0 < u ≤ Uv.
Corollary 2 (5-DOF Zero-Roll Model for Flying Vehicles):

If φ ≡ 0 and u > 0, Eqs. (13)–(19) reduce to

αc = tan−1
(w
u

)
(20)

βc = tan−1
(

v
Uv cos(θ − αc)

)
θ=0
= tan−1

( v
u

)
(21)

and

ẋn = Uh cos(χ ) (22)

ẏn = Uh sin(χ) (23)

where

χ := ψ + βc (24)

is the course over ground (COG) and

Uh =

√
(Uv cos(θ − αc))2 + v2 θ=0

=
√
u2 + v2 (25)

is the speed over ground (SOG). The phase angle βc is recog-
nized as the crab angle. A vehicle with nonzero βc is said to
sideslip. For the vertical motion (15) reduces to

żn = −Uv sin(γ ) (26)

1The inverse tangent function, tan−1(y/x), complies with the definition
used by Matlab [15] and other programming languages where x = 0 implies
that, tan−1(y/0) = sgn(y)π2 , where sgn(y) = |y|/y is the signum function.

where Uv = (u2 + w2)1/2 is the vertical-plane speed and

γ := θ − αc (27)

is the flight-path angle.

III. APPLICATIONS TO GUIDANCE AND CONTROL
The main advantage of the amplitude-phase representation
(6)–(8) is that the pitch and yaw angles (θ, ψ) can be treated
as control inputs for the cross- and vertical-track errors,
respectively during path following, see Figure 1. Consider
a 2-D straight-line segment in the horizontal plane specified
by two waypoints (xni , y

n
i ) and (xni+1, y

n
i+1) expressed in {n}.

Let the origin of the path-tangential coordinate system {p} be
located at (xni , y

n
i ) such that the xp-axis is pointing towards

the next waypoint (xni+1, y
n
i+1). The along- and cross-track

errors (xpe , y
p
e) expressed in {p} are obtained by rotating the

North-East tracking errors an azimuth angle πh about the zn
axis. This is mathematically equivalent to[

xpe
ype

]
= R⊤

z,πh

([
xn

yn

]
−

[
xni
yni

])
(28)

where

Rz,πh =

[
cos(πh) − sin(πh)
sin(πh) cos(πh)

]
(29)

and

πh = tan−1
(
yni+1−y

n
i

xni+1−x
n
i

)
(30)

Time differentiation of (28) and Application of Corollary 1
yields

ẋpe = Uh cos(ψ + βc − πh) (31)

ẏpe = Uh sin(ψ + βc − πh) (32)

żne = −Uv sin(θ − αc) (33)

Note that the vertical position error zne = zn−znd , where z
n
d is

the constant desired depth/altitude, is expressed in {n}. The
path-following control objective is to regulate the cross-track
error to zero (ype = 0) and the vertical position to the desired
depth/altitude (zn = znd ). In addition, the surge velocity u can
be used to control the speed Uh in (31) through (11)–(12).
This is known as path tracking.

A. HORIZONTAL-PLANE LOS GUIDANCE LAW FOR PATH
FOLLOWING
Path-following control systems for marine craft, aircraft, and
small autonomous vehicles can be designed using LOS guid-
ance laws. A surface vehicle is usually controlled using a
heading or a course autopilot. The cross-track error can be
regulated to zero (ype = 0) by designing a course autopilot
such that χ = χd where χd is the desired course angle. Since
χ = ψ + βc, we can apply the proportional LOS guidance
law

χd = πh − tan−1
(

1
1h

ype

)
(34)
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FIGURE 2. Course autopilot (inner control loop) and LOS guidance law (outer control loop) applied to a USV.

to (32) where 1h > 0 is the user specified look-ahead
distance. This gives the closed-loop dynamics

ẏpe = Uh sin
(

− tan−1
(
ype
1h

))
= −

Uh√
12
h + (ype)2

ype (35)

Consider the Lyapunov function candidate

V =
1
2
(ype)

⊤ype (36)

which after time differentiation and substitution of (35)
becomes

V̇ = −
Uh√

12
h + (ype)2

(ype)
2 (37)

Lyapunov stability theory guarantees that the equilibrium
point ype = 0 of (35) is USGES if Uh > 0, see [4]. Alter-
natively, the vector field guidance law [16] can be applied.
In some cases, it is advantageous to let the look-ahead dis-
tance 1h vary with time, e.g. by using optimization tech-
niques [17] or the explicit formula by [18].

Next, consider the NTNU Autonaut shown in Figure 3,
which is a long-endurance USV propelled by the motion of
the waves [19]. The USV is controlled by a single rudder δr .
The yaw angle transfer function is [3]

ψ

δr
(s) =

K
s(Ts+ 1)

(38)

For the Autonaut, K = 0.25 s−1 and T = 3.0 s, see [21].
Hence, the North-East positions are obtained by integrating
(22) and (23). Assume that the USV is exposed to stochastic
ocean currents with initial speed Vc = 0.2 m/s and direction
βVc = 150 deg. Hence, it follows that the ocean current
velocities are uc = Vc cos(βVc ) and vc = Vc sin(βVc ),
respectively. Furthermore, we assume that the USV moves at
forward speed U = 1.0 m/s such that the velocities become

FIGURE 3. The NTNU Autonaut [20] is propelled by the motion of the
waves. The vehicle’s length is 4.6 m and the mass is 250 kg.

u = U and v = vc during straight-line path following. Hence,
we can compute the crab angle and course angle by

βc = tan−1(v/u)

= tan−1(vc/U ) (39)

χ = ψ + βc (40)

Since the USV dynamics is well damped, a proportional-
integral (PI) controller is used to regulate the course angle

δr = −Kp ssa(χ − χd ) − Ki

∫ t

0
ssa(χ − χd )dτ (41)

where the numerical values Kp = 1.25 and Ki = 0.02 are
based on [21]. The function, ssa(x) = mod(x + π, 2π ) − π ,
is the smallest-signed angle confining the argument to the
interval [−π, π). Here mod(·) denotes the modulo operation
or the signed remainder of a division. The closed-loop system
is shown in Figure 2 where the inner control loop (41) regu-
lates χ to χd . Note that the guidance law (34) represents the
outer control loop. Consequently, the inner control loop can
be replaced by a commercial autopilot system. The guidance
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FIGURE 4. Desired waypoints and actual path during straight-line path
following when a course autopilot controls the USV.

law (34) was implemented using a look-ahead distance1h =

20 m, and the sampling time was chosen as 20 Hz.
The desired vehicle path shown in Figure 4 consists of N

straight-line segments specified by waypoints (xni , y
n
i ) where

i = 1, 2, . . . ,N . Switching between the waypoints is an
important feature when implementing straight-line path fol-
lowing control systems. The next waypoint (xni+1, y

n
i+1) is

selected based on whether or not the USV lies within a circle
of acceptance with radius R around (xni+1, y

n
i+1). In other

words, if the USV’s North-East positions (xn, yn) at time t
satisfy [3]

(xni+1 − xn)2 + (yni+1 − yn)2 ≤ R2 (42)

the next waypoint (xni+1, y
n
i+1) is selected. The desired course

angle and its true value are shown in Figure 5, confirming
that χ ≈ χd during path following. At the same time, the
magnitude of the cross-track error is less than 5 meters. The
waypoint switching algorithm causes the steps. Hence, the
accuracy will be much better, typically in the centimeter
range, during straight-line path following.

The LOS guidance law (34) can also be implemented using
a heading autopilot

ψd = πh − βc − tan−1
(

1
1h

ype

)
(43)

which guarantees that the yaw angle ψ ≈ ψd , where ψd
is the desired yaw angle. This approach requires knowledge
of the crab angle βc. The crab angle is uncertain but nearly
constant during the straight-line path following, see Figure 5.
Hence, the preferred solution to this problem is to apply an
integral LOS algorithm [22] to compensate for βc. Alterna-
tively, adaptive LOS guidance laws can be used to estimate
βc as shown by [14] and [23]. It is also possible to construct
observers for estimation and compensation of βc, see [24]
and [25].

FIGURE 5. Course angle, crab angle, yaw rate, rudder angle and
cross-track error versus time. A stochastic ocean current influences the
crab angle. The switching of waypoints is observed as steps in the
cross-track error.

B. VERTICAL-PLANE LOS GUIDANCE LAW FOR PATH
FOLLOWING
LOS guidance laws can also be used to control the depth of
an autonomous underwater vehicle (AUV) or the altitude of
an aircraft by using θ in (33), alternatively the flight-path
angle γ = θ − αc, as the control input. Application of the
proportional LOS guidance law

γd = tan−1
(

1
1v

zne

)
(44)

to (33) where 1v > 0 is the user-specified look-ahead
distance, gives the closed-loop dynamics

żn = −Uv sin
(
tan−1

(
zne
1v

))
= −

Uv√
12
v + (zne)2

zn (45)

This is based on the assumption that the inner control loop
regulates γ to γd . Again Lyapunov stability theory guarantees
that the origin zn = znd of (45) is USGES if Uv > 0 [4].
Alternatively, a pitch angle command can be computed using
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θ = γ − αc. This requires knowledge of the signal αc, which
is uncertain but nearly constant during straight-line path fol-
lowing. However, integral LOS can be used to overcome this
problem [3].

IV. CONCLUSION
This paper has presented a novel kinematic amplitude-phase
representation of the North-East-Down (NED) positional
rates, which can replace the classical Euler angle rotation
matrix representation in guidance, navigation, and control
applications. Several authors have discussed proportional
line-of-sight (LOS) guidance laws for path following using
approximate amplitude-phase models where couplings to the
roll motion are neglected. The results in the paper generalize
this to six degrees of freedom (DOFs) coupled motions by
including the roll mode. The proposed kinematic model has
three control inputs; the pitch and yaw angles (θ, ψ), and
the surge velocity u. The main advantage of the kinematic
amplitude-phase representation and its control inputs is sim-
plicity when designing and analyzing the stability of vehicle
LOS path-following control systems. A unmanned surface
vehicle (USV) case study demonstrated how a path-following
control system could be designed using the amplitude-phase
representation.

APPENDIX.
PROOF OF THEOREM 1
Let c1 = A cos(ϕ), c2 = A sin(ϕ), ϕ = tan−1(c2/c1) where
A = (c21 + c22)

1/2. The inverse tangent function, tan−1(y/x),
is defined for all x, y ∈ R. This complies with the definition
used byMatlab [15] and other programming languages where
x = 0 implies that, tan−1(y/0) = sgn(y)π2 , where sgn(y) =

|y|/y is the signum function. From this it follows that

y1 = c1 sin(x) + c2 cos(x)

= A sin(x) cos(ϕ) + A cos(x) sin(ϕ)

= A sin(x + ϕ) (46)

y2 = c1 cos(x) + c2 sin(x)

= A cos(x) cos(ϕ) + A sin(x) sin(ϕ)

= A cos(x − ϕ) (47)

Consider the kinematic differential equation (3)–(5) where
the terms in ψ and θ can be collected according to

ẋn = [−v cos(φ) + w sin(φ)] sin(ψ)

+ [u cos(θ) + v sin(θ ) sin(φ) + w sin(θ ) cos(φ)] cos(ψ)
(48)

ẏn = [u cos(θ) + v sin(φ) sin(θ) + w sin(θ ) cos(φ)] sin(ψ)

+ [v cos(φ)−w sin(φ)] cos(ψ) (49)

żn = −u sin(θ )

+ [v sin(φ) + w cos(φ)] cos(θ) (50)

Next, we define Uv = (u2 + (v sin(φ) + w cos(φ))2)1/2 and
tan(αc) = (v sin(φ) + w cos(φ))/u such that the common

terms in (48) and (49) can be rewritten as

u cos(θ ) + (v sin(φ) + w cos(φ)) sin(θ )

= Uv cos(θ − αc) (51)

Consequently, (48)–(50) can be expressed by

ẋn = [−v cos(φ) + w sin(φ)] sin(ψ)

+ Uv cos(θ − α) cos(ψ) (52)

ẏn = Uv cos(θ − α) sin(ψ)

+ [v cos(φ)−w sin(φ)] cos(ψ) (53)

żn = −u sin(θ)

+ [v sin(φ) + w cos(φ)] cos(θ ) (54)

Application of (46)–(47) to (52)–(54) prove (6)–(8) where

αc = tan−1
(
v sin(φ) + w cos(φ)

u

)
(55)

βc = tan−1
(
v cos(φ)−w sin(φ)
Uv cos(θ − αc)

)
(56)

and

Uv =

√
u2 + (v sin(φ) + w cos(φ))2 (57)

Uh =

√
(Uv cos(θ − αc))2 + (v cos(φ)−w sin(φ))2 (58)

If u ≡ 0 and/or Uv cos(θ − αc) ≡ 0, the inverse tangent
function is defined such that (55) and (56) are equal the
limiting values αc = ±π/2 and βc = ±π/2, respectively.
This guarantees that (55)–(58) are well defined for all surge
velocities u (Theorem 1). For flying vehicles, u > 0, Equation
(57)–(58) can be further simplified as

Uv = u
√
1 + tan2(αc) (59)

Uh = Uv cos(θ − αc)
√
1 + tan2(βc) (60)

which proofs Corollary 1.
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