
Received 19 December 2022, accepted 22 January 2023, date of publication 3 February 2023, date of current version 13 February 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3242294

A Systematic Literature Review of Issue-Based
Requirement Traceability
YIJING LYU 1, HEETAE CHO1, PILSU JUNG1,2, AND SEONAH LEE 1,2, (Member, IEEE)
1Department of AI Convergence Engineering, Gyeongsang National University, Jinju-si, Gyeongsangnam-do 52828, South Korea
2Department of Aerospace and Software Engineering, Gyeongsang National University, Jinju-si, Gyeongsangnam-do 52828, South Korea

Corresponding author: Seonah Lee (saleese@gnu.ac.kr)

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the
Ministry of Education (NRF-2021R1A2C1094167).

ABSTRACT Issue reports are software artifacts that often specify the changed requirements of software
systems. As software systems evolve according to these changed requirements, issue reports have become
the essential artifacts that should be covered by requirement traceability. While researchers have developed
automatic approaches for establishing the traceability links of issue reports, no papers have surveyed these
approaches. In this paper, we conduct a systematic literature review of issue-based requirement traceability.
We searched for articles published in renowned conferences and journals in the software engineering field
from 2011 to 2022. From 1,347 initial articles, we identified 40 relevant articles.We investigated four aspects
of issue-based traceability: problems, artifact pairs, techniques, and evaluation targets. Our findings are as
follows. First, the challenges of issue-based requirement traceability are relevant to accuracy, effort, support,
information, and trustworthiness. Second, issue reports are linked to commits, source code, user reviews,
and test cases. Third, the studies mainly adopted machine learning and information retrieval techniques to
generate and recover trace links. Finally, the main evaluation targets were open-source projects, but open
datasets were also provided.

INDEX TERMS Software issue reports, software requirement traceability, systematic literature review,
traceability links.

I. INTRODUCTION
Requirement traceability refers to the ability to trace
relationships from software artifacts to other artifacts [1].
Requirement traceability can effectively help developers
explore software artifacts or analyze the impact of a change.
Modern software projects mainly adopt Issue Tracking
Systems (ITSs), such as Jira, to rapidly reflect change
requests in their software products. In the ITS, users can
specify their requests as issue reports. Therefore, issue reports
often include change requests and are considered software
artifacts. In contrast to traditional requirement traceability,
we named the traceability study that categorized issue reports
as primary software artifacts the Issue-based Requirement
Traceability (I-RT) study.

The associate editor coordinating the review of this manuscript and

approving it for publication was Porfirio Tramontana .

Traditional requirement traceability studies did not handle
issue reports as software artifacts but handled requirements as
primary artifacts. For example, studies [2], [3], [4] generated
trace links between requirements and other artifacts, such
as use cases, source code, and architecture descriptions.
Studies [5], [6], [7] recovered trace links between require-
ments and source code. Several literature surveys have
even been conducted on requirement traceability [8], [9],
[10], [11], [12], [13], [14], [15]. However, the surveys
do not cover the studies that handle issue reports. This
situation creates a gap between traditional requirement
traceability and modern development practices that use ITSs.
To create traceability in modern development practices,
issue reports should be covered by a requirement traceabil-
ity approach. Several studies have addressed requirement
traceability with issue reports as part of software artifacts
[16], [17], [18]. Nevertheless, to the best of our knowledge,

13334 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0002-8507-1953
https://orcid.org/0000-0002-2004-2924
https://orcid.org/0000-0003-3264-185X


Y. Lyu et al.: Systematic Literature Review of Issue-Based Requirement Traceability

no comprehensive literature surveys have been conducted on
I-RT.

In this paper, we conducted a Systematic Literature Review
(SLR) of I-RT. First, we defined four research questions
that examine four aspects of I-RT: problems, artifact pairs,
techniques, and evaluation targets. Second, we searched I-RT
studies published from 2011 to 2022 and found 1,347 articles
from well-known conferences and journals in the software
engineering field. Third, we identified 40 studies that were
relevant to I-RT. Finally, we extracted and analyzed relevant
information for each research question.

The remainder of this paper is organized as follows:
Section II discusses literature surveys on requirement trace-
ability. Section III describes the procedure of the conducted
SLR regarding I-RT. Section IV reports the results obtained
for each research question. Section V discusses the future
directions of I-RT. Section VI presents the threats to the
validity of this research. Section VII concludes this paper.

II. RELATED WORK
There are two ways to conduct literature surveys: Systematic
Mapping Studies (SMSs) and SLRs. An SMS categorizes
and analyzes existing works and obtains a systematic map
that describes a classified portfolio of the research results
relevant to a particular research topic [19]. An SLR collects
and analyzes existing studies and obtains supporting evidence
to answer research questions [20]. The aims of SLRs and
SMSs differ in that an SLR is an in-depth study of a narrow
area that is completed by using specific and pointed research
questions to create new knowledge through ameta-analysis of
existing knowledge published in the literature, while an SMS
aims to create a map of a wide research field [21].

The first group of works conducted SMSs [8], [9],
[10]. Borg et al. [8] focused on Information Retrieval
(IR)-based trace recovery and collected studies published
from 1999 to 2011. They found that the inconsistent use of
IR terminology was the main problem with the IR models
used for trace recovery. Vale et al. [9] surveyed studies
on traceability for software product lines and collected
studies published from 2001 to 2015. They found that most
studies focused on the trace links between assets at different
levels of abstraction. Charalampidou et al. [10] focused
on the relationships of software artifacts in traceability
approaches and surveyed studies published before 2016.
They found that requirements and source code are the most
studied software artifacts and that the most studied quality
attribute with respect to traceability is maintainability. The
studies of Borg et al. [8] and Vale et al. [9] differ from
our literature survey in that they focused on information
retrieval techniques for traceability and software product
line traceability, respectively. In contrast, we focused on
the techniques used in I-RT. Charalampidou et al.’s study
in [10] is partially similar to ours in that they investigated
software artifacts. However, they did not include issue reports
as software artifacts.

The second group conducted SLRs on requirement trace-
ability [11], [12], [13], [14], [15]. Cleland-Huang et al. [15]
conducted an SLR to review the state-of-the-art and dis-
cuss the future directions of software traceability. They
collected papers published from 2003 to 2013. Mustafa
and Labiche [11] conducted an SLR to model traceability
among artifacts obtained from different domains of expertise.
They collected papers published from 2000 to 2016. They
found that few studies focused on heterogeneous artifacts,
traceability tools, and precise semantics for trace links.
Tufail et al. [12] focused on analyzing the models and
tools used in requirement traceability studies and collected
papers published from 2010 to 2017. They identified seven
requirement traceability models, ten requirement traceability
challenges, and fourteen requirement traceability tools.
Wang et al. [13] comprehensively studied the technologies
and challenges of traceability based on papers published
from 2006 to 2016. They identified challenges in terms of
traceability and technologies mapped to these challenges.
Aung et al. [14] focused on change impact analysis and sur-
veyed the available approaches for automatically recovering
traceability links. They identified the approaches proposed
from 2012 to 2019 and analyzed the research gaps between
the current states of the proposed approaches and the desired
states of these approaches. Tian et al. [22] surveyed studies
on traceability for software maintenance and evolution
and collected studies published from 2000 to 2020. They
found that the two main challenges that hinder practitioners
from employing the traceability practices are the quality
of traceability links and the performance of traceability
approaches and tools. None of the studies included issue
reports as software artifacts.

III. SYSTEMATIC LITERATURE REVIEW PROCEDURE
To understand the newly emerging theme, I-RT, we conducted
an SLR by following a guideline [23]. Figure 1 presents
the overall procedure of our SLR. The procedure consists
of three phases: planning, searching, and analysis. In the
planning phase, we defined Research Questions (RQs). In the
searching phase, we formed queries, identified data sources,
applied inclusion and exclusion criteria to the candidate
papers, checked full text, and did snowballing. In the analysis
phase, we assessed the quality of these studies and extracted
information.

A. DEFINING THE RQs
We derived RQs by considering our research purpose to
provide comprehensive knowledge for the research trend of
I-RT studies as follows:

• RQ1. What problems are targeted in I-RT studies?
• RQ2. Which software artifact pairs are linked to issues
in I-RT studies?

• RQ3. What techniques are used in I-RT studies?
• RQ4. What evaluation targets are used in I-RT
studies?

VOLUME 11, 2023 13335



Y. Lyu et al.: Systematic Literature Review of Issue-Based Requirement Traceability

FIGURE 1. Process of systematic literature review.

B. SEARCHING THE RELEVANT STUDIES
Our selection process consists of five steps. First, we formed
queries. Second, we then searched digital libraries with the
queries. Third, we applied inclusion and exclusion criteria
to filter out papers. Fourth, we examined the full texts
of the remaining papers to identify the papers relevant to
our research goal. Last, we performed forward/backward
snowballing with the identified papers. We explain the details
of each step as follows:

1) SEARCH TERMS
We used the PICO (Population, Intervention, Comparison,
and Outcome) criteria to define the search terms based on the
SLR guideline [23].

• Population: The population in this SLR is ‘‘issue
reports.’’ The term ‘‘issue reports’’ can be often referred
to as ‘‘bug reports.’’ In short, the terms ‘‘issue’’ and
‘‘bug’’ should be included in our search queries.

• Intervention: The intervention is ‘‘requirement trace-
ability.’’ The commonly used term for the ‘‘requirement
traceability’’ studies is ‘‘trace link.’’ We thus used a
general term ‘‘traceability’’ as well as ‘‘trace link.’’

• Comparison: Since there is no alternative approach for
the intervention, we did not consider this comparison
part in the construction of search terms.

• Outcome: The outcome can be ‘‘method,’’ ‘‘approach,’’
‘‘technique,’’ or ‘‘tool.’’ However, we did not want to
limit the outcome. Considering that researchers could
focus on other aspects, such as ‘‘model,’’ ‘‘metric,’’
‘‘guideline,’’ ‘‘checklist,’’ ‘‘template,’’ ‘‘strategy,’’ etc,
we did not include the outcome terms in our search
queries.

We formed queries with key terms of population and
intervention. The population terms are ‘‘issue’’ and ‘‘bug.’’
The intervention terms are ‘‘traceability’’ and ‘‘trace link.’’
We combined these terms with OR and AND operators in
queries. Table 1 shows the queries we applied to the digital
libraries. We adjusted the terms according to search results.

TABLE 1. Selected sources.

TABLE 2. Selected studies.

2) DIGITAL LIBRARIES
We selected digital libraries according to the suggestions
in [63]. We also considered renowned conferences and
journals in the field of software engineering and selected
the digital libraries that include such publications. As a
result, we identified four digital libraries: IEEE Xplore,
ACM Digital Library, Springer Link, and Science Direct.
To find the key I-RT papers, we searched for papers that were
published from 2017 to 2022 through the four digital libraries.

To broaden the scope of data sources, we also identified
two general data sources: DBLP, and Google Scholar.
Because DBLP is a data source that lists only computer
science bibliography, we increased the search period and
searched for the papers that were published from 2011 to
2022 through DBLP. Meanwhile, Google Scholar is a
data source that promptly lists the latest publications.
Therefore, wemainly searched the papers that were published
from 2020 to 2022 through Google Scholar.

With the queries formed in Section III-B.1), we searched
papers in the six digital libraries. As a result, we found a total
of 1,347 papers, as shown in the second column of Table 2.

13336 VOLUME 11, 2023



Y. Lyu et al.: Systematic Literature Review of Issue-Based Requirement Traceability

3) INCLUSION AND EXCLUSION CRITERIA
To select primary papers from the 1,347 identified papers,
we defined the Inclusion and Exclusion (I/E) criteria as
follows:

• Inclusion criteria:
– Papers published from 2011 to 2022;
– Papers that were available in full text;
– Papers written in English.

• Exclusion criteria:
– Papers that were classified as gray literature (e.g.,

posters, books, and technical reports);
– Papers that were not related to software (e.g., food,

medicine, and agricultural papers);
– Papers that were secondary or tertiary studies (e.g.,

SLRs, SMSs and surveys);
– Papers that did not mention issue (or bug) reports.

To apply the I/E criteria, we manually checked the titles
and abstracts of the papers. As a result, we selected a total of
121 papers, as shown in the third column of Table 2

4) CHECKING FULL TEXT
We examined the full texts of the 121 papers and identified
29 papers related to our purpose, as shown in the last row of
the fourth column of Table 2.

5) SNOWBALLING
We applied the forward and backward snowballing tech-
niques to find additional papers [64]. For the forward
snowballing method, we checked papers that cited each
selected paper. To find the papers that cited each selected
paper, we used Google Scholar. As a result, we identified
5 papers by using the forward snowballing method.

For the backward snowballing method, we checked papers
that were cited by the selected paper. Since the snowballing
method was used to identify papers strongly related to our
research topic, we did not establish a limit regarding the
publication date. As a result, we identified 8 papers by the
backward snowballing method. After this snowballing step,
we were able to identify 13 additional papers related to I-RT,
as shown in Table 3.

C. ANALYZING THE SELECTED STUDIES
We first analyzed papers with structures consisting of an
Introduction, Methods, Results, Analysis, and Discussion
(IMRAD). We then extracted information from a paper to
answer each RQs.

1) ASSESSING THE QUALITY OF THE STUDIES
To assess the quality of the selected studies, we prepared our
checklist by following the IMRAD structure [65].

• Introduction: Does the study discuss the topic of I-RT?
• Methods: Does the study propose methods or experi-
ments for I-RT?

• Results: Does the study include novel discoveries and
useful results?

• Analysis: Does the study analyze related studies?
• Discussion: Does the study discuss the pros and cons
of the research area in general and identify meaningful
points for future studies regarding the topic of I-RT?

After applying the IMRAD structure to the 42 studies,
we found that most papers were of good quality and they
were in line with our research purpose. If we estimate the
score of each study by assigning 1 score when a question
has a full answer with regard to the selected study, the score
of the papers is above 3 out of 5. Meanwhile, 2 of the
13 studies did not propose novel methods, so we excluded
these two papers [66], [67]. Finally, we identified 40 papers
[16], [24], [25], [26], [27], [28], [29], [30], [31], [32], [33],
[34], [35], [36], [37], [38], [39], [40], [41], [42], [43], [44],
[45], [46], [47], [48], [49], [50], [51], [52], [53], [54], [55],
[56], [57], [58], [59], [60], [61], [62] that were related to I-RT.
Table 3 summarizes the paper selection results.

2) ANALYZING THE EXTRACTED INFORMATION
We extracted information from the selected papers to answer
our RQs. As a result, we created the data extraction form
shown in Table 4. The form included the basic information
related to the RQs. We completed a form for each paper and
analyzed the contents to answer each RQ.

IV. RESULTS
A. WHAT PROBLEMS ARE TARGETED? (RQ1)
To answer RQ1, we need a framework to analyze the
problems of issue-based requirement traceability studies.
Cleland-Huang et al. [15] classified traceability-related
studies according to the elements of the process: planning,
creating, maintaining, and using traceability. Considering
the characteristics of issue-based requirement traceability
studies, we identified four main problem categories as
follows:

• Trace Link Generation: Studies focused on generating
trace links between issues and other artifacts, given no
previous trace links.

• Trace Link Recovery: The studies focused on addi-
tionally generating or repairing the trace links, given
previous trace links between issues and other artifacts.

• Trace Link Maintenance: Studies focused on maintain-
ing and retaining trace links as requirements change or
trace links became outdated.

• Trace Link Aid: Studies did not directly generate,
recover or maintain trace links but proposed additional
techniques to assist existing traceability techniques.

Figure 2 shows the classification results of the 40 studies.
What stands out from the results is that 50% of studies
are related to the trace link recovery problem. We observed
that there are many studies aimed at recovering trace link
issues and commits. Based on our observation, the noticeable
percentage makes sense. Other results are as follows. Trace
link generation occupied 30%. Trace link maintenance and
trace link aid took 12% and 8%, respectively.

VOLUME 11, 2023 13337



Y. Lyu et al.: Systematic Literature Review of Issue-Based Requirement Traceability

TABLE 3. Study selection results.

TABLE 4. Data extraction form.

FIGURE 2. Traceability problem categories.

We then classified the investigated studies according to
the four problem categories and their specific challenges,
as shown in Table 5. The challenges of the studies can
be grouped into five categories: accuracy, effort, support,
information, and trustworthiness.

1) ACCURACY
Studies sought to improve the low accuracy of the existing
techniques for generating, recovering, or maintaining trace
links [24], [35], [36], [45], [48], [49], [53], [55]. Researchers
attributed the low accuracy to error-prone links, semantic

gaps, and large source files. In more detail, researchers have
discussed that trace links are error-prone because developers
manually managed or classified them [28], [30], [33],
[40], [44], [49], [58]. Researchers have also addressed that
software artifacts to be linked are semantically different
[24], [37], [40], [56], [61]. For instance, the study in [56]
addressed that locating bugs is difficult because issue reports
were written in natural language but not in source code. In
addition, researchers addressed that handling large source
files and stack traces was one of obstacles to improving the
accuracy of trace links [45]. To improve the accuracy of trace
links, researchers have also studied removing false positives
from automatically generated trace links [53].

2) EFFORT
Studies have also focused on reducing a considerable
amount of developers’ manual effort when creating and
recovering trace links [28], [33], [44], [47], [52], [53], [57],
[58]. Developers spend a substantial amount of time when
manually managing traceability relationships or locating
bugs [29], [38], [40], [53], [58], [59], [60]. Developers also
spend their time finding test cases relevant to a given bug [46].
In this regard, researchers have addressed the insufficiency
of developers’ inspections of the trace links between two
software artifacts [27]. In particular, the study in [32] focused
on improving the accuracy of effort estimation for resolving
an issue, and the study in [47] addressed that recognizing and
reusing architectural knowledge from issue tracking systems
are challenging.

3) INFORMATION
Various studies have addressed the absence of information
to create, recover, and maintain trace links. Researchers
have addressed that even if developers manually link
issues and commits, the trace links are often missed

13338 VOLUME 11, 2023



Y. Lyu et al.: Systematic Literature Review of Issue-Based Requirement Traceability

TABLE 5. Problems in I-RT studies.

[26], [28], [43], [44], [57]. Researchers have also addressed
insufficient commit messages, which makes it difficult to
identify the trace links between bug reports and commits
or leads to biased defect information. [36], [37], [43].
Researchers have discussed the lack of integration between
revision control systems and issue tracking systems, which
affects the recovery of trace links, as well as the prediction
of software faults [16], [50], [51]. Researchers addressed that
issues form a complex network by themselves, but there were
no approaches to predict link types [39], [42].

Regarding the specific information for generating trace
links, Saha et al. addressed the lack of structural information
because existing IR-based techniques handle source code as
flat text [29]. Mayr-Dorn et al. addressed the problem of not
considering a part of source code that actually implements a
specific requirement (i.e., issue) or is covered by tests [38].
Wang et al. found that existing IR methods usually ignored
the existing bug fixing histories and various sources of
information (e.g., the metadata or the stack traces in the bug
reports) [62].

Regarding the specific information for recovering trace
links, Sun et al. noted that existing approaches disregarded
nonsource files and the roles of source files in commits [57].
Nguyen-Truong et al. addressed insufficient discriminative
information, which arises when existing techniques mine
only the data within a commit [34].

Regarding the specific information for maintaining trace
links, Luders et al. noted that it is difficult to maintain
an overview of dependencies among issues [31]. Çetin and
Tüzün focused on identifying the contributions of developers
based on traceability graphs [54].

4) SUPPORT
Studies have attempted to develop support for languages,
tools, etc., for trace links. First, researchers have addressed

FIGURE 3. Traceability main challenges of I-RT studies.

the problems of trace links between different languages,
such as natural languages [25] or intermingled languages
(e.g., English, Chinese, Korean) [41]. Researchers have also
addressed that existing approaches do not provide support for
artifacts and traces to other repositories and tools [27].

5) TRUSTWORTHINESS
There is a challenge including incomplete and untrustworthy
trace links [26]. Additionally, researchers have addressed the
lack of sufficient bias control for misclassified bugs, tangled
commits, and localization hints [52].

6) SUMMARY
Figure 3 shows the summary of the challenges per each
problem category. We can observe that many researchers
focused on the accuracy of trace links, human effort to
establish trace link, and additional information to set up trace
links. Especially for recovering trace links, researchers tried
to use additional information to improve the accuracy of trace

VOLUME 11, 2023 13339



Y. Lyu et al.: Systematic Literature Review of Issue-Based Requirement Traceability

links. Besides, a few researchers conducted their research on
support for trace links and trustworthiness of trace links.

RQ1: I-RT studies can be classified into four trace-
ability problem categories: trace link generation, recov-
ery, maintenance, and aid. Across the four problem
categories, the main challenges are low accuracy,
high effort, insufficient information and support, and
untrustworthiness.

B. WHICH SOFTWARE ARTIFACT PAIRS ARE LINKED?
(RQ2)
We surveyed I-RT studies and found that the studies used
issue or bug reports as the primary artifacts. Our analysis
for RQ2 reveals that researchers focused on linking issue
reports with commits, source code, user (app) reviews, test
cases, model changes, user manual, and the issue reports
themselves. Table 8 shows the number of studies that handle
different types of artifact pairs.

1) ISSUE REPORTS AND COMMITS
A total of 18 studies linked issue reports to commits
[16], [24], [26], [28], [33], [34], [35], [36], [37], [41], [43],
[47], [50], [53], [54], [55], [57], [61]. Among them, eleven
studies focused on recovering the missing trace links between
issue reports and commits [16], [26], [28], [35], [36], [37],
[43], [50], [55], [57], [61]. Two studies focused on generating
trace links between issue reports written in natural language
and commits written in programming language [24], [41].
Five studies sought different directions. The first one used
issue IDs in commit messages to assign interaction logs to
requirements [53]. The second one suggested recommending
an issue number so that developers could tag commit
messageswith the recommended issue number [33]. The third
one sought to detect vulnerability-fixing commits based on
the issues linked to the commit [34]. The fourth one sought
to generate trace links between architectural issues and code
changes [47]. The last source discussed identifying developer
contributions by building traceability graphs of developers
based on issues and commits [54].

2) ISSUE REPORTS AND SOURCE CODE
Seven studies linked issue reports to source code
[29], [40], [45], [51], [52], [56], [62]. Two studies sought
to aid in generating trace links between issue reports and
source code [40], [52]. The studies in [45], [56], [62] sought
to localize the relevant buggy source files based on the given
issue (bug) reports. One study took issues and source code
files as inputs to localize bugs [29], and another linked issue
reports to the source code in patches [51].

3) ISSUE REPORTS AND TEST CASES
Four studies linked issue reports to test cases [30], [38],
[44], [46]. One study focused on establishing trace links
between requirements and test cases by using issue reports
as requirements [38]. Three studies recovered the trace links

between issue reports and test cases [30], [44], [46]. The
studies intended to link bugs and test cases.

4) ISSUE REPORTS
Three studies focused on the trace links among issue
reports [31], [39], [42], [48]. The studies in [39], [42]
focused on the different kinds of trace links, such as related
links, duplicates, and blocks. The study in [31] refined the
relationships of the issue reports (e.g., parent-child, duplicate,
dependency, similarity, and work breakdown). The study
in [48] noticed that the ‘‘related’’ field of an issue report
contains several issue numbers, but those issues are traced
because of different reasons, such as duplicate or generic
ones.

5) ISSUE REPORTS AND USER REVIEWS
Two studies [25], [60] sought to generate trace links between
user reviews and issue reports. Among them, the study in [25]
tracked the states of user reviews by narrowing the gap
between user reviews and issue reports. The study in [60]
aimed to identify issue reports that were related to user
reviews and utilized these issue reports to identify the source
locations to change.

6) ISSUE REPORTS AND MODEL CHANGES
The study in [49] sought to recover the relationship of
artifacts between Jira issues (user stories or bugs) and model
changes (revisions in a Model-Driven Development (MDD)
context).

7) ISSUE REPORTS AND USER MANUAL
The study in [58] paid attention to classifying issue reports
according to specific software feature descriptions in a user
manual.

8) ALL RELEVANT ARTIFACTS
The study in [32] traced issues to requirements, model
elements, source code, texts, copies, wireframes, and art
designs.

Two studies did not specify pairs of artifacts [27], [59]
because the study did not focus on specific trace links. The
first studies developed a tool, TimeTracer, that supports arbi-
trary artifacts and traces by providing APIs [27]. The second
study proposed a method for automatically recommending
reviewers to review various artifacts, such as requirements,
design diagrams, changesets, code reviews, test cases, and
bugs [59].

9) SUMMARY
Many researchers studied on recovering trace links between
issue reports and commits and improving the accuracy of the
trace links. Researchers broadened the scope of trace links to
source code, test cases, and issue report themselves. Besides,
a few researchers conducted studies to establish trace links
between issue reports and other artifacts such as user review,
model changes, and user manuals.

13340 VOLUME 11, 2023



Y. Lyu et al.: Systematic Literature Review of Issue-Based Requirement Traceability

TABLE 6. Artifact pairs in I-RT studies.

FIGURE 4. Techniques used in I-RT studies.

RQ2: I-RT studies linked issue reports to commits,
source code, test cases, issue reports themselves, user
reviews, model changes, user manual, and all other
relevant artifacts.

C. WHAT TECHNIQUES ARE USED IN THE STUDIES? (RQ3)
We found that I-RT studies have utilized Information
Retrieval (IR) and Machine Learning (ML) techniques or
even hybridized them. Figure 4 shows the changes in the
techniques over the years. In the early years, several studies
applied IR techniques to address the challenges of generating
and recovering traceability links, while recently, the use of
ML techniques has gradually emerged. Table 7 summarizes
the specific techniques by year.1

1) INFORMATION RETRIEVAL-BASED APPROACHES
From 2011 to 2016, ten related studies used IR tech-
niques [16], [29], [36], [37], [43], [45], [46], [48], [50],
[51]. The studies in [16], [36], [43], [51] sought to
recover the missing links between issue reports and commits
automatically. For instance, the study in [36] used the Term
Frequency-Inverse Document Frequency (TF-IDF) similarity
and three features. The study in [51] retrieved patches
from issues, extracted patches, and recovered trace links.
The study in [43] trained a random forest model with
9 text features and 11 metadata features extracted from
issue reports and commit links after summarizing commit
messages with ChangeScribe. The study in [50] used the
SZZ algorithm proposed by Śliwerski et al. [68]. The study
in [48] applies stemming, stop word removal, and term

1We did not include the study in [55] in the RQ3 results because the
study in [55] did not propose a new approach, but it compared 10 different
approaches.

weighting of textual data in an issue tracking system to
improve the effectiveness of IR approaches for building
traceability between issues. Interestingly, the study in [46]
recommended test cases relevant to bugs by applying two
topic modeling techniques, Latent Semantic Indexing (LSI)
and Latent Dirichlet Allocation (LDA).

The studies in [29], [37], [45] sought to improve the
accuracy of trace links. The study in [29] used structured
IR to locate bugs by using an IR toolkit Indri automatically.
The study in [37] extracted textual features by analyzing
error records and change logs and passed these features
to multiple detectors (e.g., pattern-based link detectors) in
different layers according to their categories. The study
in [45] calculated the similarities between code segments and
an issue report.

In 2017, three studies used IR techniques [38], [56], [57].
Study [56] identified buggy source code files based on
the similarities. Study [57] modeled the similarity distances
among features extracted from issue reports, commits, source
code, and documents. Study [38] identified the source code
lines that implement issue reports and the test cases that
cover these source code lines. Meanwhile, in 2018, one
study used the IR technique [40], which utilized existing
project history enriched with previously unused information
to recover traceability between source code files and bug
reports and increase localization performance.

In 2018 and 2019, two studies used IR techniques
[31], [40]. The study in [40] intended to link issue reports
and commits. To recover the traceability links between bugs
and source code, the proposed approach, TestScore, selects
artifacts from project histories, calculates textual similarity,
constructs a graph for traceability, and finally calculates
a score for each source file. The study in [31] visualized

VOLUME 11, 2023 13341



Y. Lyu et al.: Systematic Literature Review of Issue-Based Requirement Traceability

TABLE 7. Techniques used in I-RT studies.

trace links in a graph map, detected duplicated, missed,
or unknown links, and checked the inconsistencies between a
release plan and the issues in a map.

In 2020, four studies used IR techniques [27], [42],
[53], [62]. To create an interaction-based trace link, the study
in [53] extracted the issue IDs and code entities that include
developers’ interactions from commits. The study in [42]
investigated network analysis techniques to generate and
maintain the trace links among issue reports. The study in [27]
used a data model generated by using Jira and Jama data to
replay trace links. The study in [62] proposed a generation
model, STMLocator+, that adopts two topic models. One is
based on the LDA and LLDA models, and the other captures
the semantic and textual similarity.

In 2021, one study proposed using traceability graphs for
recommending code reviewers [59].

2) MACHINE LEARNING-BASED APPROACHES
In 2017 and 2018, two studies used ML techniques
[26], [28]. The study in [28] distinguished positive or
unlabeled trace links, extracted features from each link, and

trained a random forest model to identify positive links. The
study in [26] identified 18 features and experimented with
several classification techniques, such as Naïve Bayes, J48
decision tree, and random forest classifiers.

In 2019, three studies used ML techniques [35], [60], [61].
The studies in [35], [61] proposed two approaches that
are different but have the same name, DeepLink. The first
DeepLink [35] used a Gated Recurrent Unit (GRU) with
a Continuous Bag Of Words (CBOW) for issue report
embedding. DeepLink created a graph-based code-based
Abstract Syntax Tree (AST) and used a Recurrent Neural
Network (RNN) to embed committed source code. The
second DeepLink [61] used LSTM with skip-grams to make
a fixed vector and recovered trace links by calculating the
cosine similarities among (commit log, issue title), (commit
log, issue description), and (commit code, issue code) pairs.
To identify the code entities for an app review, the study
in [60] clustered app reviews using hierarchical dirichlet
processes with Natural Language Processing (NLP) and
created trace links between clusters and issue reports by
calculating similarity values based on skip-grams.

13342 VOLUME 11, 2023



Y. Lyu et al.: Systematic Literature Review of Issue-Based Requirement Traceability

In 2020, three studies focused on the accuracy of bug
localization based on ML techniques [33], [41], [52].
Study [52] proposed a near-optimal technique to generate a
query from issue reports using a genetic algorithm. Study [41]
used a Generative Vector Space Model (GVSM) to generate
trace links between issue reports and commits written in two
or more languages. The study [33] recommended a possible
issue ID list for a new commit with a random forest classifier
that is trained with features extracted from issues, commits,
and source code.

In 2021, three studies used ML techniques [24], [25].
Study [24] utilized a pretrained BERT code model to
retrieve code entities according to code descriptions and
concatenate issue reports and commits. Study [25] used
a context-sensitive text embedding method to convert app
reviews and issue reports into the same vector space and
used the cosine similarity metric to match app reviews with
issue reports. The study [39] used several machine learning
techniques with TF/IDF to predict the link types of issues.

In 2022, all three related studies utilized ML tech-
niques [34], [49], [58]. The study in [49] proposed a machine
learning classifier based on random forests and gradient
boosted decision trees to classify the validity of trace links.
The study in [58] proposed a deep learning model-based
method based on a word embedding technique using a
CNN (or RNN). The study in [34] automatically identified
vulnerability-fixing commits by using 3 independent classi-
fiers (i.e., commit message classifier, code change classifier,
issue classifier).

3) IR-BASED & ML-BASED APPROACHES
In 2020 and 2021, two studies used a hybrid of IR and ML
techniques [30], [44]. The study in [44] combined similarity
metrics with LSI, LDA, BM25, and convolutional neural
networks. Additionally, the study in [30], a follow-up study
to [44], also used the same techniques (i.e., LSI, LDA, BM25,
etc.) and vectorized issue reports as input queries and test
cases as target sources. The cosine similarities between bug
reports and test cases were calculated.

4) OTHER APPROACHES
Three studies did not use IR or ML techniques. The
study in [47] constructed a dependency graph from source
code, compared two consecutive versions, and determined
the added or removed dependencies among classes and
packages. Based on the calculation, the study attempted
to link architectural issues to code changes. The study
in [32] used the design science research method proposed
by Wieringa [69] to propose a framework for designing
traceability strategies. The study in [54] used the NetworkX
package to analyze the social network of developers based on
issues and commits.

5) SUMMARY
Figure 5 visualizes the development of techniques with
time. Before 2018, researchers adopted traditional IR/ML

FIGURE 5. Techniques used in I-RT studies.

techniques such as Vector Space Model (VSM), similarity,
random forest, and scoring. After 2018, researchers began
to adopt deep learning techniques such as word embedding,
Bidirectional Encoder Representations from Transformers
(BERT), Convolution Neural Network (CNN), and Recurrent
Neural Network (RNN) techniques.

RQ3: I-RT studies used ML and IR techniques.
Recent studies have increasingly concentrated on ML
techniques.

D. WHAT EVALUATION TARGETS ARE USED IN THE
EVALUATIONS? (RQ4)
We investigated evaluationmethods and found that I-RT stud-
ies mainly conducted experiments to evaluate approaches.
We then focused on evaluation targets that were used by
the studies. Table 8 summarizes the evaluation targets by
classifying them into three groups: open-source projects,
open datasets, and student projects.

1) EXPERIMENTS WITH OPEN-SOURCE PROJECTS
Among the studies that used open-source projects for their
evaluation, twelve used Apache projects. [16], [28], [33],
[35], [36], [37], [38], [40], [43], [47], [57], [59]. The
study in [40] used 15 open-source projects to evaluate

VOLUME 11, 2023 13343



Y. Lyu et al.: Systematic Literature Review of Issue-Based Requirement Traceability

TABLE 8. Evaluation targets used.

their proposed approach (TraceScore) with state-of-the-art
approaches (SimiScore and CollabScore). The study in [28]
used 12 projects to evaluate their proposed FULink approach
with FRlink. The studies in [35], [43], [57] collected true
links (i.e., commits that fixed issue reports) from open-source
projects. The study in [33] listed 5 open-source projects
but only used the Apache crunch project to evaluate the
recommendations of issue IDs for comments. The study
in [59] used 4 projects to compare their method with 3 other
methods, Naive-Bayes, RevFinder, and Profile. Three studies
used 3 projects [36], [37], [47]. Two studies in [36], [37]
evaluated the accuracy of the trace links between issue reports
and commits or bug locations. One study in [47] estimated
the size of architectural changes based on architectural issues
and code changes. Two studies used two projects [16], [38].
The study in [38] demonstrated the capability of the proposed
approach (ReTeCe) to provide requirement coverage reports.
The study in [16] collected links between commits and issues
and used the links to evaluate the proposed approach in terms
of precision.

Next, five studies used projects belonging to Eclipse.
[29], [45], [51], [56], [62]. Studies used 34 projects to

evaluate the accuracy of the trace links between issue
reports and commits [29], [45], [56]. The study in [62]
selected 3 projects from the official Bug Tracking Website
of Eclipse. The study in [51] used 2 projects to evaluate
the proposed approach, BugTrace, where the study compared
automatically recovered trace links with manually recovered
links.

Five studies selected various open-source projects.
[26], [48], [52], [55], [61]. The study in [52] used 803 issue
reports from 15 open-source projects. The study in [61]
selected 10 projects from 1,078 Java projects. The study
in [26] selected 6 projects, where the study collected trace
data from project management systems, issue tracking
systems, and code management systems. The study in [55]
selected 5 projects to comparatively evaluate 10 issue-linking
algorithms. The study in [48] selected 4 projects and extracted
100 consecutive issues per project.

Two studies used mobile app projects. The study in [60]
used 10 projects where experts built the ground truth as an
answer set. The study in [25] used 4 projects, where the study
randomly sampled 50 app reviews for each app, manually
verified them, and linked them to issue reports for evaluation.

13344 VOLUME 11, 2023



Y. Lyu et al.: Systematic Literature Review of Issue-Based Requirement Traceability

Fifth, the study in [44] and its follow-up study [30] used
Mozilla Firefox open-source projects to evaluate the accuracy
of the trace links generated by their proposed approaches.

In addition, studies in [39], [42] used 66 open-source
projects from Jira and extracted semantic types tagged by
project contributors. The study in [27] used Dronology
open-source projects to manage the development of a frame-
work for controlling and coordinating Unmanned Aerial
Vehicles (UAVs). The study in [58] compared the proposed
method with TicketTagger on 3 open-source projects in the
domain of source code editors.

2) EXPERIMENTS WITH OPEN DATASETS
Five studies used open datasets. The study in [54] used
SEOSS 33 [70], datasets for 33 OSS projects. The study
in [54] selected Apache Hadoop, Apache Hive, Apache
Pig, Apache HBase, Apache Derby, and Apache Zookeeper
projects from the datasets for an evaluation. The study
in [24] used two datasets: CodeSearchNet and a database
that consisted of 3 open-source projects. The study used a
golden trace link set, where the committers manually linked
commits and issues. The study in [41] used 14 Chinese
and 3 non-Chinese open-source projects, where the study
automatically created golden trace links as an answer set
by using regular expressions and time-based heuristics.
The study in [49] collected data from 3 model-driven
development industry datasets from internal Mendix Studio
low-code platform projects. The study in [34] compared their
method, HERMES, with Sabetta and Bezzis approach from
the Software Application Products (SAP) manually curated
dataset.

3) EXPERIMENTS WITH OTHER PROJECTS
Two studies used industrial projects. The study in [69] used
the JIRA system of a web application where customers
registered, selected mortgages, provided documentation for
eligibility, and booked appointments with mortgage advisers.
The study in [46] used an industrial project where developers
already manually created the links of test cases, including
bug reports. One study manually created trace links from a
student project that contained 395 commits, 40 Java files,
and 26 XML files [53].

One study did not conduct a quantitative evaluation [31].

4) SUMMARY
Figure 6 shows the summary of the evaluation targets in
form of word cloud. We can observe that Apache, Commons,
AspectJ, SWT, Zookeeper, Zxing, and PIG were frequently
used as the evaluation targets. We can also observe that
researchers have used various projects as evaluation targets,
not limiting to specific projects.

RQ4: I-RT studies mainly used open-source projects as
evaluation targets, but four studies used open datasets,
and one study used student projects.

FIGURE 6. Evaluation targets of I-RT studies.

V. DISCUSSION
Through our literature review, we sought to understand the
current research status of I-RT studies. Based on our findings,
we identify the challenges in these studies and discuss future
research directions.

A. ADDITIONAL INFORMATION FOR TRACING TRACE
LINKS
Many researchers have addressed the laborious effort to
establish trace links and proposed automated methods. How-
ever, the accuracy of those automated methods is not reliable
to be used in practice. To improve the accuracy of trace
links, I-RT studies have addressed the lack of information,
such as commit messages, link types, structural information,
bug fixing histories, the information of nonsource files, etc.
Therefore, future researchers could pay more attention to
proposing novel methods that can leverage the additional
information to generate trace links between issues and other
artifacts. By doing so, researchers can improve the accuracy
of automatically generated trace links. Based on the accurate
trace links, automated methods can be developed for practical
use.

B. ISSUE-CENTRIC END-TO-END TRACEABILITY
Most I-RT studies have focused on the trace links between
issue reports and commits. However, recent studies have
linked issue reports to other artifacts, such as test cases,
user reviews, model changes, and user manuals. Since
issue reports are the primary artifacts that introduce change
requests in modern software development practices, issue
reports can be at the center of traceability management. Our
point of view is in accordance with that of Maro et al. [32],
who proposed ticket-centric traceability in agile development
teams. Based on this perspective, we need to consider an
issue-centric end-to-end traceability framework by linking
issue reports to other software artifacts, such as requirements,
designs, source code, and test cases. Since issue reports are
entry points to receive various change requests, including
requirement changes, issue-centric end-to-end traceability
will be able to make it easier to track the change propagations
to other artifacts.

VOLUME 11, 2023 13345



Y. Lyu et al.: Systematic Literature Review of Issue-Based Requirement Traceability

C. GENERATING OR RECOVERING TRUSTWORTHY TRACE
LINKS
Many IR and ML techniques have been used to create
and recover the trace links between issue reports and other
software artifacts. However, the trace links automatically
recovered by existing techniques are still inaccurate and
untrustworthy. Thus, we question whether it would be
sufficient to enhance IR and ML techniques to improve the
accuracy of trace links. We need to find a way to improve
the accuracy and trustworthiness of trace links or a way to
inform a degree of trustworthiness of trace links. When trace
links are trustworthy or a degree of trustworthiness is explicit,
stakeholders will consider using the IR/ML based automated
methods to generate or recover trace links.

D. GROWTH OF OPEN DATASETS
For evaluation purposes, many I-RT studies have targeted
open-source projects, utilizing their revision histories. Only
a few studies used open datasets created by others, which
may impede the fairness of evaluation. Thus, we encourage
the creation and sharing of open datasets when researching
the topic of I-RT studies for a fair evaluation and innovation
of traceability research. Open datasets will help researchers
experiment with different techniques to improve the accuracy
of the generated trace links. In addition, the continuously
enriching open datasets could increase the reliability of I-RT
studies.

VI. THREATS TO VALIDITY
Our SLR paper can face potential threats to validity, which
can be divided into construct, internal, and external validity.
The threats and mitigation strategies are described as follows:

A. CONSTRUCT VALIDITY
This validity concerns the process of identifying papers.
The selection results of papers depend on the coherence
of our search queries. To mitigate this threat, we carefully
identified search terms and adjusted the combination of the
terms according to the digital libraries. We also clarified the
queries we made per digital library. Additionally, we defined
exclusion and inclusion criteria to review these relevant
studies for exact identification. Meanwhile, we also utilized
snowballing techniques to obtain as many related studies as
possible.

B. INTERNAL VALIDITY
We treated studies that used issue reports or bug reports as
I-RT studies. That is, the studies could be diverse, and the
studies whosemain concerns were not traceabilitymight have
been included. For instance, bug localization papers could be
included if the papers handled traceability of issue reports.
From our point of view, such an inclusion is not a big deal
because bug localization is one of the goals that traceability
studies typically aim to achieve. Additionally, to mitigate
this threat, we carefully determined whether the studies

were related to traceability by checking which ‘‘trace’’ terms
appeared in the studies. Another threat to internal validity
is that the four authors individually extracted and analyzed
the data from the selected papers. Different participants may
have different views about data, so individual analysis could
affect the detailed analysis results of the paper. To mitigate
this threat, we conducted weekly discussions.

C. EXTERNAL VALIDITY
We searched papers with keywords in digital libraries by
focusing on top-tier conferences and journals as a starting
point. This perspective may be narrow, and their rankings
may be inaccurate or slightly changed. To mitigate external
threats, we conducted multiple rounds of comparative
analysis when selecting them.

VII. CONCLUSION
We conducted an SLR to investigate the trends of I-RT studies
in terms of four aspects: problems, artifact pairs, techniques,
and evaluation targets.We summarize our findings as follows.
First, the I-RT studies addressed the challenges of low
accuracy, manual effort, insufficient support and information,
and untrustworthiness of trace links. Second, the artifacts
linked to issue reports are commits, source code, user reviews,
test cases, etc. Third, most of the techniques used in the
studies were ML and IR approaches. Finally, the primary
evaluation targets used in the studies were open-source
projects.

With the results, we also discussed the challenges related
to I-RT. Based on our discussion, we propose future research
directions. First, we need additional information to improve
the accuracy and trustworthiness of trace links. In our future
direction, we plan to develop state-of-the-art techniques or
tools to overcome the challenge of insufficient information.
Second, we need to find a way to fairly evaluate I-RT
approaches. Therefore, it will also be essential to build large
open datasets to improve the reliability of the evaluations.

REFERENCES
[1] O. C. Z. Gotel and C. W. Finkelstein, ‘‘An analysis of the requirements

traceability problem,’’ in Proc. IEEE Int. Conf. Requirements Eng., 1994,
pp. 94–101.

[2] G. Spanoudakis, A. Zisman, E. Pérez-Miñana, and P. Krause, ‘‘Rule-based
generation of requirements traceability relations,’’ J. Syst. Softw., vol. 72,
no. 2, pp. 105–127, Jul. 2004.

[3] N. Ali, Y.-G. Guéhéneuc, and G. Antoniol, ‘‘Trustrace: Mining software
repositories to improve the accuracy of requirement traceability links,’’
IEEE Trans. Softw. Eng., vol. 39, no. 5, pp. 725–741, May 2013.

[4] F. Wang, Z.-B. Yang, Z.-Q. Huang, C.-W. Liu, Y. Zhou, J.-P. Bodeveix,
and M. Filali, ‘‘An approach to generate the traceability between restricted
natural language requirements and AADL models,’’ IEEE Trans. Rel.,
vol. 69, no. 1, pp. 154–173, Mar. 2019.

[5] G. Antoniol, G. Canfora, G. Casazza, A. D. Lucia, and E. Merlo,
‘‘Recovering traceability links between code and documentation,’’ IEEE
Trans. Softw. Eng., vol. 28, no. 10, pp. 970–983, Oct. 2002.

[6] D. V. Rodriguez and D. L. Carver, ‘‘Comparison of information retrieval
techniques for traceability link recovery,’’ in Proc. IEEE 2nd Int. Conf. Inf.
Comput. Technol. (ICICT), Mar. 2019, pp. 186–193.

[7] T. Hey, ‘‘INDIRECT: Intent-driven requirements-to-code traceability,’’
in Proc. IEEE/ACM 41st Int. Conf. Softw. Eng., Companion (ICSE-
Companion), May 2019, pp. 190–191.

13346 VOLUME 11, 2023



Y. Lyu et al.: Systematic Literature Review of Issue-Based Requirement Traceability

[8] M. Borg, P. Runeson, and A. Ardö, ‘‘Recovering from a decade: A
systematic mapping of information retrieval approaches to software
traceability,’’ Empirical Softw. Eng., vol. 19, no. 6, pp. 1565–1616,
Dec. 2014.

[9] T. Vale, E. S. De Almeida, V. Alves, U. Kulesza, N. Niu, and R. De Lima,
‘‘Software product lines traceability: A systematic mapping study,’’ Inf.
Softw. Technol., vol. 84, pp. 1–18, Apr. 2017.

[10] S. Charalampidou, A. Ampatzoglou, E. Karountzos, and P. Avgeriou,
‘‘Empirical studies on software traceability: A mapping study,’’ J. Softw.,
Evol. Process, vol. 33, no. 2, p. e2294, Feb. 2021.

[11] N. Mustafa and Y. Labiche, ‘‘The need for traceability in heterogeneous
systems: A systematic literature review,’’ in Proc. IEEE 41st Annu.
Comput. Softw. Appl. Conf. (COMPSAC), Jul. 2017, pp. 305–310.

[12] H. Tufail,M. F.Masood, B. Zeb, F. Azam, andM.W.Anwar, ‘‘A systematic
review of requirement traceability techniques and tools,’’ in Proc. 2nd Int.
Conf. Syst. Rel. Saf. (ICSRS), Dec. 2017, pp. 450–454.

[13] B. Wang, R. Peng, Y. Li, H. Lai, and Z. Wang, ‘‘Requirements traceability
technologies and technology transfer decision support: A systematic
review,’’ J. Syst. Softw., vol. 146, pp. 59–79, Dec. 2018.

[14] T. W. W. Aung, H. Huo, and Y. Sui, ‘‘A literature review of automatic
traceability links recovery for software change impact analysis,’’ in Proc.
28th Int. Conf. Program Comprehension, Jul. 2020, pp. 14–24.

[15] J. Cleland-Huang, O. C. Gotel, J. H. Hayes, P. Mäder, and A. Zisman,
‘‘Software traceability: Trends and future directions,’’ in Proc. Future
Softw. Eng., 2014, pp. 55–69.

[16] A. Sureka, S. Lal, and L. Agarwal, ‘‘Applying Fellegi–Sunter (FS) model
for traceability link recovery between bug databases and version archives,’’
in Proc. 18th Asia–Pacific Softw. Eng. Conf., Dec. 2011, pp. 146–153.

[17] M. White, M. Linares-Vasquez, P. Johnson, C. Bernal-Cardenas, and
D. Poshyvanyk, ‘‘Generating reproducible and replayable bug reports from
Android application crashes,’’ in Proc. IEEE 23rd Int. Conf. Program
Comprehension, May 2015, pp. 48–59.

[18] G. Schermann, M. Brandtner, S. Panichella, P. Leitner, and H. Gall,
‘‘Discovering loners and phantoms in commit and issue data,’’ in Proc.
IEEE 23rd Int. Conf. Program Comprehension, May 2015, pp. 4–14.

[19] M. Salama, R. Bahsoon, and N. Bencomo, ‘‘Managing trade-offs in
self-adaptive software architectures: A systematic mapping study,’’ in
Managing Trade-offs in Adaptable Software Architectures. Elsevier, 2017,
pp. 249–297, doi: 10.1016/B978-0-12-802855-1.00011-3.

[20] H. Snyder, ‘‘Literature review as a researchmethodology: An overview and
guidelines,’’ J. Bus. Res., vol. 104, pp. 333–339, Nov. 2019.

[21] B. A. Farshchian and Y. Dahl, ‘‘The role of ICT in addressing the
challenges of age-related falls: A research agenda based on a systematic
mapping of the literature,’’ Pers. Ubiquitous Comput., vol. 19, nos. 3–4,
pp. 649–666, Jul. 2015.

[22] F. Tian, T. Wang, P. Liang, C. Wang, A. A. Khan, and M. A. Babar,
‘‘The impact of traceability on software maintenance and evolution: A
mapping study,’’ J. Softw., Evol. Process, vol. 33, no. 10, p. e2374,
Oct. 2021.

[23] B. Kitchenham and S. Charters, ‘‘Guidelines for performing systematic
literature reviews in software engineering,’’ Keele Univ., Keele, U.K.,
Tech. Rep., 2007.

[24] J. Lin, Y. Liu, Q. Zeng, M. Jiang, and J. Cleland-Huang, ‘‘Traceability
transformed: Generating more accurate links with pre-trained BERT
models,’’ in Proc. IEEE/ACM 43rd Int. Conf. Softw. Eng. (ICSE),
May 2021, pp. 324–335.

[25] M. Haering, C. Stanik, and W. Maalej, ‘‘Automatically matching bug
reports with related app reviews,’’ in Proc. IEEE/ACM 43rd Int. Conf.
Softw. Eng. (ICSE), May 2021, pp. 970–981.

[26] M. Rath, J. Rendall, J. L. C. Guo, J. Cleland-Huang, and P. Mäder,
‘‘Traceability in the wild: Automatically augmenting incomplete trace
links,’’ in Proc. 40th Int. Conf. Softw. Eng., May 2018, pp. 834–845.

[27] C. Mayr-Dorn, M. Vierhauser, F. Keplinger, S. Bichler, and A. Egyed,
‘‘TimeTracer: A tool for back in time traceability replaying,’’ in Proc.
ACM/IEEE 42nd Int. Conf. Softw. Eng., Companion, Jun. 2020, pp. 33–36.

[28] Y. Sun, C. Chen, Q. Wang, and B. Boehm, ‘‘Improving missing issue-
commit link recovery using positive and unlabeled data,’’ in Proc.
32nd IEEE/ACM Int. Conf. Automated Softw. Eng. (ASE), Oct. 2017,
pp. 147–152.

[29] R. K. Saha, M. Lease, S. Khurshid, and D. E. Perry, ‘‘Improving bug local-
ization using structured information retrieval,’’ in Proc. 28th IEEE/ACM
Int. Conf. Automated Softw. Eng. (ASE), Nov. 2013, pp. 345–355.

[30] G. Gadelha, F. Ramalho, and T. Massoni, ‘‘Traceability recovery between
bug reports and test cases—A Mozilla Firefox case study,’’ Automated
Softw. Eng., vol. 28, no. 2, pp. 1–46, Nov. 2021.

[31] C. M. Lüders, M. Raatikainen, J. Motger, and W. Maalej, ‘‘OpenReq issue
link map: A tool to visualize issue links in Jira,’’ in Proc. IEEE 27th Int.
Requirements Eng. Conf. (RE), Sep. 2019, pp. 492–493.

[32] S. Maro, J.-P. Steghöfer, P. Bozzelli, and H. Muccini, ‘‘TracIMo: A
traceability introduction methodology and its evaluation in an agile
development team,’’ Requirements Eng., vol. 27, no. 1, pp. 53–81,
Mar. 2022.

[33] M. Rath, M. T. Tomova, and P. Mäder, ‘‘SpojitR: Intelligently link
development artifacts,’’ in Proc. IEEE 27th Int. Conf. Softw. Anal., Evol.
Reeng. (SANER), Feb. 2020, pp. 652–656.

[34] G. Nguyen-Truong, H. J. Kang, D. Lo, A. Sharma, A. E. Santosa,
A. Sharma, and M. Y. Ang, ‘‘HERMES: Using commit-issue linking to
detect vulnerability-fixing commits,’’ inProc. IEEE Int. Conf. Softw. Anal.,
Evol. Reengineering (SANER), Mar. 2022, pp. 51–62.

[35] R. Xie, L. Chen, W. Ye, Z. Li, T. Hu, D. Du, and S. Zhang, ‘‘DeepLink: A
code knowledge graph based deep learning approach for issue-commit link
recovery,’’ in Proc. IEEE 26th Int. Conf. Softw. Anal., Evol. Reengineering
(SANER), Feb. 2019, pp. 434–444.

[36] R. Wu, H. Zhang, S. Kim, and S.-C. Cheung, ‘‘ReLink: Recovering links
between bugs and changes,’’ in Proc. 19th ACM SIGSOFT Symp. 13th Eur.
Conf. Found. Softw. Eng., Sep. 2011, pp. 15–25.

[37] A. T. Nguyen, T. T. Nguyen, H. A. Nguyen, and T. N. Nguyen, ‘‘Multi-
layered approach for recovering links between bug reports and fixes,’’
in Proc. ACM SIGSOFT 20th Int. Symp. Found. Softw. Eng., Nov. 2012,
pp. 1–11.

[38] R. Mordinyi and S. Biffl, ‘‘Exploring traceability links via issues
for detailed requirements coverage reports,’’ in Proc. IEEE 25th Int.
Requirements Eng. Conf. Workshops (REW), Sep. 2017, pp. 359–366.

[39] A. Nicholson and G. Jin L. C., ‘‘Issue link label recovery and prediction for
open source software,’’ in Proc. IEEE 29th Int. Requirements Eng. Conf.
Workshops (REW), Sep. 2021, pp. 126–135.

[40] M. Rath, D. Lo, and P. Mäder, ‘‘Analyzing requirements and traceability
information to improve bug localization,’’ in Proc. 15th Int. Conf. Mining
Softw. Repositories, May 2018, pp. 442–453.

[41] Y. Liu, J. Lin, and J. Cleland-Huang, ‘‘Traceability support for multi-
lingual software projects,’’ in Proc. 17th Int. Conf. Mining Softw.
Repositories, Jun. 2020, pp. 443–454.

[42] A. Nicholson, D. M. Arya, and J. L. C. Guo, ‘‘Traceability network
analysis: A case study of links in issue tracking systems,’’ in Proc. IEEE
7th Int. Workshop Artif. Intell. Requirements Eng. (AIRE), Sep. 2020,
pp. 39–47.

[43] T.-D.-B. Le, M. Linares-Vásquez, D. Lo, and D. Poshyvanyk, ‘‘RCLinker:
Automated linking of issue reports and commits leveraging rich contextual
information,’’ in Proc. IEEE 23rd Int. Conf. Program Comprehension,
May 2015, pp. 36–47.

[44] L. R. J. Santos, G. Gadelha, F. Ramalho, and T. Massoni, ‘‘Improving
traceability recovery between bug reports and manual test cases,’’ in Proc.
34th Brazilian Symp. Softw. Eng., Oct. 2020, pp. 293–302.

[45] C.-P.Wong, Y. Xiong, H. Zhang, D. Hao, L. Zhang, and H.Mei, ‘‘Boosting
bug-report-oriented fault localization with segmentation and stack-trace
analysis,’’ in Proc. IEEE Int. Conf. Softw. Maintenance Evol., Sep. 2014,
pp. 181–190.

[46] N. Kaushik, L. Tahvildari, and M. Moore, ‘‘Reconstructing traceability
between bugs and test cases: An experimental study,’’ in Proc. 18th Work.
Conf. Reverse Eng., Oct. 2011, pp. 411–414.

[47] M. Soliman, M. Galster, and P. Avgeriou, ‘‘An exploratory study on
architectural knowledge in issue tracking systems,’’ in Proc. Eur. Conf.
Softw. Archit. Cham, Switzerland: Springer, 2021, pp. 117–133.

[48] T. Merten, D. Krämer, B. Mager, P. Schell, S. Bürsner, and B. Paech,
‘‘Do information retrieval algorithms for automated traceability perform
effectively on issue tracking system data?’’ in Proc. Int. Work. Conf.
Requirements Eng., Found. Softw. Quality. Cham, Switzerland: Springer,
2016, pp. 45–62.

[49] R. Rasiman, F. Dalpiaz, and S. España, ‘‘How effective is automated trace
link recovery in model-driven development?’’ in Proc. Int. Work. Conf.
Requirements Eng., Found. Softw. Quality. Cham, Switzerland: Springer,
2022, pp. 35–51.

[50] B. A. Romo and A. Capiluppi, ‘‘Towards an automation of the traceability
of bugs from development logs: A study based on open source software,’’
in Proc. 19th Int. Conf. Eval. Assessment Softw. Eng., Apr. 2015, pp. 1–6.

VOLUME 11, 2023 13347

http://dx.doi.org/10.1016/B978-0-12-802855-1.00011-3


Y. Lyu et al.: Systematic Literature Review of Issue-Based Requirement Traceability

[51] C. S. Corley, N. A. Kraft, L. H. Etzkorn, and S. K. Lukins, ‘‘Recovering
traceability links between source code and fixed bugs via patch analysis,’’
in Proc. 6th Int. Workshop Traceability Emerg. Forms Softw. Eng.,
May 2011, pp. 31–37.

[52] C. Mills, E. Parra, J. Pantiuchina, G. Bavota, and S. Haiduc, ‘‘On the
relationship between bug reports and queries for text retrieval-based
bug localization,’’ Empirical Softw. Eng., vol. 25, no. 5, pp. 3086–3127,
Sep. 2020.

[53] P. Hübner and B. Paech, ‘‘Interaction-based creation and maintenance of
continuously usable trace links between requirements and source code,’’
Empirical Softw. Eng., vol. 25, no. 5, pp. 4350–4377, Sep. 2020.

[54] H. A. Çetin and E. Tüzün, ‘‘Analyzing developer contributions using
artifact traceability graphs,’’Empirical Softw. Eng., vol. 27, no. 3, pp. 1–49,
May 2022.

[55] M. Kondo, Y. Kashiwa, Y. Kamei, and O. Mizuno, ‘‘An empirical study
of issue-link algorithms: Which issue-link algorithms should we use?’’
Empirical Softw. Eng., vol. 27, no. 6, pp. 1–50, Nov. 2022.

[56] K. C. Youm, J. Ahn, and E. Lee, ‘‘Improved bug localization based on
code change histories and bug reports,’’ Inf. Softw. Technol., vol. 82,
pp. 177–192, Feb. 2017.

[57] Y. Sun, Q. Wang, and Y. Yang, ‘‘FRLink: Improving the recovery
of missing issue-commit links by revisiting file relevance,’’ Inf. Softw.
Technol., vol. 84, pp. 33–47, Apr. 2017.

[58] H. Cho, S. Lee, and S. Kang, ‘‘Classifying issue reports according to
feature descriptions in a user manual based on a deep learning model,’’
Inf. Softw. Technol., vol. 142, Feb. 2022, Art. no. 106743.

[59] E. Sülün, E. Tüzün, and U. Doğrusöz, ‘‘RSTrace+: Reviewer suggestion
using software artifact traceability graphs,’’ Inf. Softw. Technol., vol. 130,
Feb. 2021, Art. no. 106455.

[60] T. Zhang, J. Chen, X. Zhan, X. Luo, D. Lo, and H. Jiang, ‘‘Where2Change:
Change request localization for app reviews,’’ IEEE Trans. Softw. Eng.,
vol. 47, no. 11, pp. 2590–2616, Nov. 2021.

[61] H. Ruan, B. Chen, X. Peng, and W. Zhao, ‘‘DeepLink: Recovering issue-
commit links based on deep learning,’’ J. Syst. Softw., vol. 158, Dec. 2019,
Art. no. 110406.

[62] Y. Wang, Y. Yao, H. Tong, X. Huo, M. Li, F. Xu, and J. Lu, ‘‘Enhancing
supervised bug localization with metadata and stack-trace,’’ Knowl. Inf.
Syst., vol. 62, no. 6, pp. 2461–2484, Jun. 2020.

[63] L. Chen, M. A. Babar, and H. N. Zhang, ‘‘Towards an evidence-based
understanding of electronic data sources,’’ in Proc. Electron. Workshops
Comput., Apr. 2010, pp. 1–4.

[64] C. Wohlin, ‘‘Guidelines for snowballing in systematic literature studies
and a replication in software engineering,’’ in Proc. 18th Int. Conf. Eval.
Assessment Softw. Eng., May 2014, pp. 1–10.

[65] M. Saleem and N. M. Minhas, ‘‘Information retrieval based requirement
traceability recovery approaches-a systematic literature review,’’ Univ.
Sindh J. Inf. Commun. Technol., vol. 2, no. 4, pp. 180–188, 2018.

[66] Y. Sun, Q. Wang, and M. Li, ‘‘Understanding the contribution of non-
source documents in improving missing link recovery: An empirical
study,’’ in Proc. 10th ACM/IEEE Int. Symp. Empirical Softw. Eng. Meas.,
Sep. 2016, pp. 1–10.

[67] M. Gupta and A. Sureka, ‘‘Nirikshan: Mining bug report history for
discovering process maps, inefficiencies and inconsistencies,’’ in Proc. 7th
India Softw. Eng. Conf., Feb. 2014, pp. 1–10.

[68] J. Śliwerski, T. Zimmermann, and A. Zeller, ‘‘When do changes induce
fixes?’’ in ACM SIGSOFT Softw. Eng. Notes, vol. 30, no. 4, pp. 1–5, 2005.

[69] R. Wieringa, ‘‘Design science methodology: Principles and practice,’’
in Proc. 32nd ACM/IEEE Int. Conf. Softw. Eng., vol. 2, May 2010,
pp. 493–494.

[70] M. Rath and P. Mäder, ‘‘The SEOSS 33 dataset—Requirements, bug
reports, code history, and trace links for entire projects,’’ Data Brief,
vol. 25, Aug. 2019, Art. no. 104005.

YIJING LYU received the B.S. degree from the
Department of Computer Science and Technology,
Zhengzhou Normal University, China, in 2019.
She is currently pursuing the master’s degree with
the Department of Aerospace and Software Engi-
neering and the Department of AI Convergence
Engineering, Gyeongsang National University.

HEETAE CHO received the B.S. degree from the
Department of Aerospace and Software Engineer-
ing, Gyeongsang National University, in 2018, and
the M.S. degree from the Department of Infor-
matics, Gyeongsang National University, in 2020.
He is currently pursuing the Ph.D. degree with
the Department of AI Convergence Engineering,
Gyeongsang National University. His research
interests include software visualization, explain-
able AI, and verification and validation.

PILSU JUNG received the B.S. degree in computer
science and engineering from Chungnam National
University, in 2012, and the M.S. and Ph.D.
degrees from the School of Computing, KAIST, in
2014 and 2020, respectively. He worked as a Staff
Software Engineer with Samsung Electronics,
from 2020 to 2022. Currently, he is an Assistant
Professor with the Department of Aerospace
and Software Engineering, Gyeongsang National
University. His research interests include software

reuse, software quality, software product line engineering, software architec-
ture, and software testing.

SEONAH LEE (Member, IEEE) received the
B.S. and M.S. degrees in computer science and
engineering from Ewha Womans University, in
1997 and 1999, respectively, the M.S.E. degree
from the School of Computer Science, Carnegie
Mellon University, in 2005, and the Ph.D. degree
from the School of Computer Science, KAIST,
in 2013. She worked as a Software Engineer
with Samsung Electronics, from 1999 to 2006.
She worked as a Research Professor at KAIST,

from 2014 to 2015. Currently, she is an Associate Professor with the
Department of Aerospace and Software Engineering and the Department of
AI Convergence Engineering, GyeongsangNational University. Her research
interests include software evolution, documentation updates, requirement
traceability, software architecture, and data mining.

13348 VOLUME 11, 2023


