
Received 16 January 2023, accepted 1 February 2023, date of publication 3 February 2023, date of current version 14 February 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3242549

Methods for Automatic Web Page Layout
Testing and Analysis: A Review
IRFAN PRAZINA , (Graduate Student Member, IEEE),
ŠEILA BEĆIROVIĆ , (Graduate Student Member, IEEE),
EMIR COGO, AND VENSADA OKANOVIĆ
Faculty of Electrical Engineering, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina

Corresponding author: Irfan Prazina (iprazina1@etf.unsa.ba)

ABSTRACT Methods for automatic analysis of user interfaces are essential for a wide range of applications
in computer science and software engineering. These methods are used in software security, document
archiving, human-computer interaction, software engineering, and data science. Even though these methods
are essential, no single research systematically lists most of the methods and their characteristics. This paper
aims to give an overview of different solutions and their applications in the separate processes of automatic
analysis of user interfaces. The main focus is on the techniques that analyze web page layouts and web page
structure. Web pages’ style, type of content, and even structure constantly (often drastically) change, as do
methods that analyze them. The fact that most methods use very different datasets and web pages of various
complexities are some of the reasons that the direct comparison of methods is difficult, if not impossible.
Another fact is that the vast applications of methods practically solve similar problems. With these facts in
mind, in the paper, we surveyed relevant scientific articles, categorized them, and provided an overview of
how these methods have developed over time.

INDEX TERMS GUI similarity detection, GUI testing, HCI, information retrieval, software engineering.

I. INTRODUCTION
The need for automatic analysis of user interfaces originates
from different fields of computer science, from computer
security to software engineering. In the last 10 to 15 years,
many new methods in various areas have been published.
However, they have never been systematically analyzed and
listed in one place. This fact is the primary motivation for
writing this paper. The paper focuses on methods for testing
and processing web page layouts. After selecting and finding
relevant articles, we noticedmany solutions that target similar
problems in different fields.

Web-based interfaces are present in a wide variety
of applications. Their importance can be seen from the
following perspectives:

• minimal setup - they are available in web browsers
which usually do not require additional setup like in
desktop of native mobile applications;

The associate editor coordinating the review of this manuscript and

approving it for publication was Mahmoud Elish .

• portability - a web-based application that users can
access on different kinds of devices. Usually, the only
requirement is the internet connection;

• availability of data - users can share data in the
application with different users, and make queries on a
vast amount of data;

• control of access - the application owners have a way to
provide their application to the users in a way that they
can reliably control.

These are some of the factors that make web applications
attractive for various fields of application. For example, in the
case of software engineering, the exciting aspect of web
applications is development and maintenance. On the other
hand, in information retrieval, they are essential due to the
amount of readily available data, and due to the number of
users and various types of users, they are also attractive for
research in the field of Human-Computer Interaction.

A web page user interface consists of an HTML code that
gives structure and content and a CSS code that defines the

13948 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0002-4504-6737
https://orcid.org/0000-0001-7776-9350
https://orcid.org/0000-0002-2767-0501


I. Prazina et al.: Methods for Automatic Web Page Layout Testing and Analysis: A Review

style of each UI element on the page. Many factors must be
considered when programming user interfaces for web pages.
Some of them are:

• Screen size - users can view a web page on devices with
widely different screen sizes. If the web page is designed
and implemented for one screen size, it does not mean
it will be usable on other screen sizes. Change in screen
size can make elements of UI overlap or protrude from
the screen;

• Web browser - each web browser can have a different
engine for processing and displaying HTML and CSS
code. Even though there are standards for CSS and
HTML, these differences can cause one web page to be
correctly displayed on one web browser and incorrectly
on another;

• Type of device or operating systems - Users can use a
web page on a wide variety of devices with different
configurations and consequently face different problems
in the web page layout;

• Localization and internationalization - a web page that
is localized in one language can change its appearance.
For example, some labels could be longer than on the
original page, which can break a web page layout;

• Different configuration of the same web browser -
changes in web browser configuration, plugins, and
themes can have different effects on the web page
appearance;

• Animations and dynamic contents - dynamic changes in
content or element animations affect methods that use
screenshots comparison. Two screenshots of the same
web page can be detected as different web pages when
dynamic contents or animations exist on the page;

• Cross effects of CSS rules - one HTML element or
component can have CSS code that overrides some
common rule on the web page which can change the
appearance of the web page when a component or
element is added or changed.

These factors are why testing and analysis of web page user
interfaces can be a difficult problem, making most methods
that work on desktop user interfaces unusable on web
pages.

In this paper, an overview of the most influential papers
on this topic is given, a chronology of the evolution of the
methods, and a list of methods and their approaches to the
problem. To the authors’ knowledge, this has never been
done in one paper. Motivations for methods are different. For
example, some methods do phishing detection by analyzing
the layout and structure of user interfaces, some do regression
testing of web page layouts, some use the layout information
as another factor in data analysis, and some test layouts on
different devices and web browsers. This paper aims to give
a better understanding of which methods exist and highlights
the main problems that are being solved. Some methods have
been developed with one application goal, possibly without
knowing other possible fields where similar problems are
considered.

TABLE 1. List of abbreviations.

During the evaluation, we asked the following questions:
• RQ1 – What research fields analyze and test web-based
user interfaces?

• RQ2 – What problems are researchers solving by
analyzing user interfaces?

• RQ3 – Is there an overlap of problems solved in separate
research areas?

• RQ4 – What research methodologies are used?
• RQ5 – Is the field of user interface analysis still active
and evolving?

We formulated research questions to cover different areas
of research. The first two questions give a comprehensive
view to discover many research areas and problems. The
significance of RQ3 and RQ4 is to provide structure and
meaning to results. Finally, the last question highlights the
context of the topic in time (past and present).

A. LIST OF ABBREVIATIONS
Multiple abbreviations of names for technologies, terms, and
approaches appear in this paper. To avoid the problem of
confusion and make it easier to find the meaning of these
abbreviations, we created a table of all the abbreviations that
appear in this work. Also, explaining abbreviations in the
text where they appear can sometimes disrupt the reading
flow. In the Table 1 we list all used abbreviations and their
meanings.

II. RELATED WORK
This section gives an overview of the papers that survey the
problem of automatic web page layout analysis in different
fields.

In [1], overview of the papers focused on GUI testing
is given. The main conclusion is that most methods are
model-based, but in a real-world application, methods such as
Selenium, JFCSUnit, and Android Monkey are not based on
models. This paper does not give insight into which methods
can perform layout analysis in graphical user interfaces.

From the aspect of web security, there is an overview [2]
of methods used to detect web-based phishing attacks. Some
of the methods mentioned in the paper are based on the visual
analysis of the web pages. Therefore, this paper is used as a
starting point for finding relevant papers in this field.

Automatic layout analysis is also used in the field of data
information retrieval. Overview of those papers can be found

VOLUME 11, 2023 13949



I. Prazina et al.: Methods for Automatic Web Page Layout Testing and Analysis: A Review

in [3] and [4]. Even though they analyzed many methods,
their focus was not only on the layouts of web pages. Many
of the methods are focused on different types of documents.
Some of the methods overlap with the topic of this paper.

Regarding Human-Computer Interaction, the paper [5]
gives an overview of methods for automatic analysis of web
interfaces’ usability. The authors show that about 33% of
methods are automated, and most methods are analytical
modeling or simulation-based. This paper gives a detailed
and systematic overview which is used as guidance. Since
publishing, many new methods have been developed that are
not covered by this paper.

To the authors’ knowledge, no work has made an extensive
analysis and review of methods for automatic analysis of user
interfaces or websites in terms of the layout.

III. RESEARCH METHODOLOGY
We used recommendations presented in [6] to write the
review. A strategy for selecting and evaluating articles based
on the advice is formulated. We divided our research strategy
into three steps: searching, filtering, and evaluating papers.
The first step’s goal is to include as extensive a set of relevant
papers as possible. The second step aims to reduce the number
of articles so that only those that deal with the topic and are
of sufficient quality remain. The last step requires a deeper
analysis of the works and a better understanding. We chose
this strategy to optimize the time that needs to be spent to
consider each paper. After the first two steps, we can study
the remaining papers in detail in a reasonable amount of time.

A. SEARCH METHODOLOGY
The research is made using different indexing services for
scientific papers. All the papers considered are in the English
language and are peer-reviewed. The selection is made in
the first stage so that all papers have at least minimal
intersection with the topic. Keywords used in the search
are ‘‘layout testing’’, ‘‘web page similarity’’, ‘‘user interface
layout testing’’, ‘‘user interface similarity’’, ‘‘visual GUI
testing’’, and ‘‘layout faults web page’’. Search engines used
are Science Direct, Google Scholar, ACMDigital library, and
Academic Microsoft (Academic Microsoft was discontinued
in the middle of the research). Different search engines are
used to obtain a more exhaustive set of papers. After the
preliminary search, more than 400 results are found. Papers
are then filtered by title and abstract. After that, all papers that
do not cover the topic are eliminated from further research.

B. FILTERING METHODOLOGY
All documents found in the first step (search) are filtered by
the rules of inclusion and exclusion formulated in Table 2.
Some articles do UI testing, which is focused on UI event
testing. This type of testing is not part of the central theme of
testing and analyzing a layout of UI elements. This exclusion
criterion filtered about 80% of papers in this step. Other
articles ruled out are not peer-reviewed self-reported articles
or short papers. We can make this first filtering step fast by

FIGURE 1. Overlap of problems in different fields.

analyzing abstracts and conclusions, and it does not require
deep paper analysis.

Rules for filtering are made to cover different research
areas but in a structured way. All papers need to follow two
basic rules:

• The goal of the research in the paper is similar or the
same as web page layout testing or analysis

• There are definedmethodologies and explanations of the
presented method

After filtering 66 papers remained (46 published in confer-
ences, and 20 published in journals). These papers are then
analyzed and evaluated in detail following research questions
(presented in I).

C. EVALUATION METHODOLOGY
After filtering, there are roughly five areas into which the
works can be classified based on their contribution. Different
problems and approaches which solve them are recognized in
these works, but in all papers, the topic of analysis of (web-
based) user interfaces is present. This classification is based
on the answer to the RQ1.

With this in mind, this paper will give an overview of the
main approaches in five domains (Figure 1).

For each domain, we have listed papers that are relevant
to it. When examining articles, we paid attention to RQ2 and
RQ4. The first part refers to the formulation of the problem
and the problem-solving approach, and the second part refers
to the experiment’s type, description, and results. Some
papers do not have quantitative results. But they have valuable
observations and recommendations. For those papers, the
main conclusions and approaches to the problem are noted
and used for overview and comparison.

After reviewing the works of each domain, we present
summary statistics on the problems being solved. This

13950 VOLUME 11, 2023



I. Prazina et al.: Methods for Automatic Web Page Layout Testing and Analysis: A Review

TABLE 2. Inclusion and exclusion criteria for filtering papers.

information, together with the individual answers to RQ4,
provides a solution toRQ3. By analyzing papers’ publication
frequency, we can get an answer to RQ5.

IV. RESULTS
The automatic analysis of web page layout can be used in
many fields of computer science and engineering (Figure 1).
In this section, five fields are considered, and their specific
problems and solutions are presented. Those fields are:

• Security - Web phishing detection
• Archiving - Web page archiving
• Human Computer Interaction
• Software Engineering - User interface testing
• Information retrieval

The list of the research fields is the answer to the RQ1.
We analyzed some statistics for all papers selected after

the filtering step in four categories (the ‘‘Web archiving’’
category has only one paper, so analysis is trivial). The first
statistic is article source type, conference, or journal (see
Figure 2). For example, in the categories of ‘‘Web phishing
detection’’ and ‘‘UI testing’’, most papers are published
in conferences, and only a few are published in scientific
journals. On the other hand, the categories ‘‘Information
retrieval’’ and ‘‘Human-Computer Interaction’’ papers are
equally published in conferences and journals.

In the following list, we present the most common journals
that include two or more papers (journals are sorted by the
number of published papers, all papers that remained after
filtering are counted):

• Elsevier - Information and Software Technology
• ACM Computing Surveys
• Elsevier - Data & Knowledge Engineering
• Springer - Empirical Software Engineering
• Wiley - Software Testing, Verification and Reliability

The list of most common conferences is made in the same
way:

• IEEE Conference on Software Testing, Validation and
Verification

• ACM International Symposium on Software Testing and
Analysis

• ACM The Web Conference or formerly known as
WWW conference

• IEEE/ACM International Conference on Automated
Software Engineering

In another analysis, we examined experiment method-
ologies in the same categories (see Figure 3). This is an

FIGURE 2. Percentage of selected papers by source type (66 papers in
total).

answer to the RQ4. We recognized four types of experiment
methodologies:

• Case-based - experiments are based on a few selected
applications or cases. They can produce quantitative or
qualitative results, which are usually less statistically
significant than experiments that are categorized as
qualitative or quantitative

• Qualitative - experiments are qualitative, usually in the
form of interviews or questioners and are statistically
validated

• Quantitative - experiments are based on larger data sets
(more than a few selected cases like in case based
approach), and results are numerical

• No experimental data - usually, papers classified in
this category are technical papers or reports of the
implemented method

This statistic shows that most papers (>57%) have done
quantitative experiments. The difference is that the qualitative
experiments were present in the ‘‘Human-Computer Inter-
action’’ category in about 30% of all experiments. In other
fields, qualitative experiments are less common - the ‘‘UI
testing’’ category had the second most significant portion of
qualitative experiments (14.3%).

While most papers recognize the significance of quan-
titative experiments, qualitative experiments are not that

VOLUME 11, 2023 13951



I. Prazina et al.: Methods for Automatic Web Page Layout Testing and Analysis: A Review

FIGURE 3. Percentage of performed experiments in selected papers (66 papers in total).

popular in all categories. When analyzing experiments not
categorized as quantitative or qualitative in the fields of ‘‘UI
testing’’ and ‘‘Web phishing detection’’, we found that many
experiments are case-based. These experiments are based on
a small set of cases representative of a research question.
These experiments can be a good way of showcasing
a solution or method presented in a paper but can not
replace quantitative experiments. All articles that have just
case-based experiments are published at conferences. This
observation can be explained by the fact that journals expect
more substantial proof of results for the paper to be published.

When we analyzed papers by the year of publishing,
we noticed that all categories except UI testing stagnated in
the last years -RQ5 (see Figure 4). Furthermore, in the case of
‘‘UI testing’’ we can see the growth of papers published in the
previous years. Keeping in mind that these categories solve
similar problems, interesting questions arise. For example,
can methods or solutions developed in the ‘‘UI testing’’ field
be applied to other fields? Another question is if the growth
we see for UI testing will follow for different areas. The next
section will present a more detailed overview and discussion
of problems in selected fields.

The paper focuses mainly on Software Engineering
because of its growing popularity and the number of new
articles in the field. Nevertheless, perspectives of all fields
give a complete picture of the topic.

A. WEB PHISHING DETECTION
Phishing is a computer security attack where a malicious user
presents a counterfeit web page as legitimate to deceive a user.
The user of the fake web page enters confidential data, which
will be sent to the malicious user. If this attack is executed
right, the user cannot see the difference between a real and
fake web page.

In [2], authors say that most attacks of this type target
companies that deal with money transactions. The number of
these attacks ismeasured in hundreds of thousands every year.

Papers presented in this section usually use one or
combination of the following approaches (Figure 5):

• Analysis of HTML elements and DOM tree - Document
Object Model tree is a tree structure used to represent
web page content in the web browser memory. The tree
depicts HTML elements and their relations as tree nodes
and children.

• Visual analysis - This approach uses web page screen-
shots for image comparison. Screenshots can be influ-
enced by many factors like a web browsing device,
a screen, and a web browser

• Analysis of multimedia content - This approach tracks
content included on the web page and checks if target
content is found on the phishing page.

There are many methods of protection. Some are based
on URL analysis, some use search engine data, and some
(relevant to this paper) assess the threat by analyzing visual
similarity. This method usually looks for the most distinct
features found on phishingweb pages. However, methods that
use web page similarity can be complex, and their results can
depend on the type of web browsers and devices a user uses.
This is the main problem solved in this section. Answer to
the RQ2 in terms of web phishing detection is solving the
problem of assessing web page similarity.

In [7] authors collect the most used CSS selectors and
attributes and form a vector that is used to train the SVM
classifier. Support Vector Machine (SVM) is a famous
machine learning technique often used as a classifier or for
data regression. Precision and recall of the method from the
paper are above 90%. This paper uses only CSS without

13952 VOLUME 11, 2023



I. Prazina et al.: Methods for Automatic Web Page Layout Testing and Analysis: A Review

FIGURE 4. Number of published papers in years 2000 — 2022 (66 papers in total).

FIGURE 5. Approaches for web phishing detection based on user
interface analysis.

visual comparison, which can be problematic if a target
web page contains unused CSS code. A more sophisticated
approach is described in [8], which is based on a classifier
ensemble. The results show that using an ensemble of
classifiers boosted detection accuracy up to 15-20% from the
basic machine learning classifier.

Many papers use hybrid approaches, a combination of the
before mentioned. Papers that combine DOM analysis and
visual analysis are [7], [9], [10], [11], and [12]. Mentioned

papers do not consider the web page’s responsiveness and
the different states and configurations of a device and a web
browser. These factors can have a significant impact on visual
comparison.

Papers [13] and [14] use only information on the frequency
of elements in the web page content. They do not analyze
elements’ relations or properties.

Few papers use HCI principles as similarity metrics for
phishing detection. In [15], a metric of perceived similarity
for a case study of login screen spoofing is evaluated.
The System detects deception with an error rate of 6-13%.
A Similar method with more metrics and tests is presented
in [16]. The method is based on Gestalt principles. Evaluation
of the method is made on four different scenarios. Results
show that the approach can consistently discriminate between
similar and dissimilar web pages.

A similar problem of phishing is present in mobile applica-
tions. The paper [17] presents a plagiarism/phishing detection
method based on appearance similarity evaluation. The
method shows promising results which are not statistically
evaluated (no data on statistical significance and validity).
The connection with a web page phishing detection method

VOLUME 11, 2023 13953



I. Prazina et al.: Methods for Automatic Web Page Layout Testing and Analysis: A Review

TABLE 3. Table of all papers in section - Web phishing detection Type of approach a) DOM tree analysis b) Visual analysis c) Multimedia analysis.

FIGURE 6. Percent of main approaches used in this section (from
11 papers in this category).

is in that this approach is based on the mix of approaches of
visual analysis and analysis of UI elements from XML layout
files.

The distribution of all approaches in web phishing
detection, divided into three categories, can be seen in
Figure 6. In web phishing detection, two main approaches
are present equally (each 40%). Visual analysis or DOM tree
analysis (or elements properties analysis)makes up 80%of all
methods. The rest is for multimedia content analysis which
does not analyze the whole web page but its multimedia
parts.

A summary of all papers discussed in this section and their
approaches to solving the problem of web phishing detection
is given in Table 3.

B. WEB PAGE ARCHIVING
Website archiving is a way of storing information published
on the internet. A lot of this information will disappear
with the shutdown of the web page if there are no archives.
Initiatives to create such archives have existed since 1996,
and 17 petabytes of information are currently archived.

Web archiving is generally done by automated scripts that
search the web and store the content of found web pages.
It is necessary to check whether the page was archived earlier
to avoid archiving redundant data. Difference detection is
usually done with a comparison of the visual similarity of
the pages. The number of differences is used to decide if
we should archive a new page copy. Similar to the previous
section, web page archiving solves the problem of assessing
web page similarity. This is the answer to the RQ2 for the
category of papers in the web page archiving section.

One paper [18] was found in this category. This paper
presents a method for detecting changes on web pages to
decide if a new version of the page should be archived. This
method uses SVM and is applied over SIFT properties - these
properties do not depend on scale. The method is successfully
tested on 1000 pages. Although many works from other
categories could probably be used in archiving as well, the
authors of these papers have not considered this application.

C. HUMAN-COMPUTER INTERACTION
The design of user interfaces should be intuitive and easy to
use. Analyzing the layout of elements on the user interface
can help designers choose the look of the user interface that
is familiar to users so that the position of the elements is
in the expected and easily accessible place. Analysis of the
layout of the elements on the website can indicate how much
visual load the user would experience. The visual load is
affected by the number of elements on one page, their mutual
relations, and deviations from expected positions. Methods
in this category often try to formalize a model of human
perception of pages so that they can evaluate the appearance
of pages in an objective way.

Another type of problem is web page segmentation. This
type of problem is often solved when we need to add some

13954 VOLUME 11, 2023



I. Prazina et al.: Methods for Automatic Web Page Layout Testing and Analysis: A Review

additional meaning to the elements in the web page (for
example, in screen navigation for differently abled persons).
The classification of problems can be seen in Figure 7 (this is
also the answer to the RQ2 for papers in the HCI category).

FIGURE 7. Two categories of problems solved in Human-Computer
Interaction.

Somemethods in this category help people with disabilities
use their websites. We have found an example of such
work in [19], where the authors propose a method for
segmenting web pages based on images. The experiments
compare their method with the VIPS image processing tool.
The method shows better results than the VIPS tool because
this tool is general-purpose, and some modern websites
cannot be processed with it. This page segmentation can
help navigate between screen reader segments and reduce
the visual complexity of pages by eliminating unnecessary
things. The authors state that this method could also be used
for generating website sketches.

The following paper that performs website segmentation
is [20]. In this paper, page segmentation is done to determine
the position on the page that will be suitable for inserting
an advertisement. The difference between this and previous
work is that segmentation, in this case, is done only with
text as an input parameter, while previous work considers
the page’s visual representation. The proposed method shows
good results, but it would be good to see if combining visual
information and text would contribute to better results.

Papers [21] and [22] deal with how people perceive
web pages. While paper [22] provides recommendations
for conducting manual comparisons of website similari-
ties, [21] provides a formalized method in the form of an
algorithm. Unlike the vast majority of papers, [21] has a
detailed description and availability of a data set and easily
reproducible experiments. We can see the use of Artificial
Neural Networks in papers [23] and [24]. The paper [23]
uses readily available metrics in ANN to assess web page
similarity without employing actual users. More detailed
experiments and approaches that combine visual similarity
and neural networks can be seen in [24]. Even though [24]
seems comprehensible, it does not use structural information
from web pages.

Analyzing user interfaces is done similarly for mobile
applications [25]. The method detects common user interface
design patterns in Android applications by analyzing static
XML files. Mobile applications need to be disassembled to
obtain XML files, unlike web pages where HTML and CSS
are available from the start.

In [26], the authors present an experiment in which they
offer users different variants of spatial transformations of the
user interface and measure how quickly they can get used to
such changes. They do this to discover which principles of
the spatial arrangement of elements should be used in the
design of user interfaces. This paper concludes that scaling
has the most negligible impact, while the process of getting
used to the changed interface is slower for moving elements
into a new row and making the page longer. The limitation of
this paper is the relatively small number of participants in the
experiment.

FIGURE 8. Percent of papers in each problem’s category solved in HCI
(from 8 papers in this category).

The main problem solved in HCI which uses user interface
data fromweb pages, is human perceptionmodeling/analysis.
We found this problem in 62.5% of papers in this section.
The rest of the papers solve the problem of web page
segmentation. This is illustrated in Figure 8.

Some papers in this category use methods used in other
areas, primarily web page segmentation. The drawback is that
most of them do not compare their results with thesemethods.

A summary of all papers discussed in this section and
their approaches to solving the problem of Human-Computer
Interaction is given in Table 4.

D. INFORMATION RETRIEVAL
The amount of information on the Internet is practically
limitless. For them to be helpful, we need methods to
find relevant information from this large set. Some of this
information is in the form of websites. Methods that find
relevant information are focused on several factors, including
analysis of textual content and analysis of the structural
appearance of the document. This section presents methods
that analyze the arrangement of elements on web pages when
calculating similarities between web pages.

In Figure 9, we can see the main problems in the field of
information retrieval where web page user interface analysis
is performed. These problems are answers to the RQ2
from the point of view of information retrieval. More about
problems and their solutions can be found in this section.

Some of the methods in this category, like some of the
previously mentioned, aim to detect similar pages. In [27],
a method based on bipartite graph pairing is presented, where
changes on web pages are detected by analyzing the tag

VOLUME 11, 2023 13955



I. Prazina et al.: Methods for Automatic Web Page Layout Testing and Analysis: A Review

TABLE 4. Table of all papers in section - Human-Computer Interaction Type of approach a) Web page segmentation b) Human perception modeling.

FIGURE 9. Main categories of problems solved in information retrieval on web pages.

structure of HTML documents. In [28], the authors present
a similar method, but unlike the previous paper, there is no
detailed description of the experiment or test data. Another
similarity metric is the frequency of tags appearing in an
HTML document. This metric is used in paper [29]. The
disadvantage of the experiments in this paper is that the test
data set is relatively old. In addition to analyzing HTML
tags, metrics for similarity can be visual information such
as element edges. One method that uses such information is
presented in [30]. In their experiments on their dataset, the
authors demonstrated that their method delivers better results
than methods that only use color information to recognize
similarities between websites.

Website segmentation is an essential step in data pro-
cessing for information retrieval. In [31], segmentation is
performed based on visual content. The results of the
experiments confirm that the method is fast and accurate,

but the disadvantage of this experiment is that it did not
use the actual web browser environment but a library
that represents an abstraction and simplification of how a
web browser behaves. This can affect the results because
the implementation of the library used deviates from the
environment of web browsers used by users. The importance
of layout information of websites in information retrieval
can be seen in papers [32], [33], and [34]. The paper [32]
uses the properties of div and table DOM elements. The
paper concludes that hybrid methods give better results
than segmentation using only structural information. Models
for learning the importance of blocks within web pages
based on neural networks and SVM are presented in [33].
The main conclusions in the paper are that people have
consistent decisions about which blocks are essential and that,
in addition to spatial features, implies that better results can
be obtained by integrating the content properties of the pages.

13956 VOLUME 11, 2023



I. Prazina et al.: Methods for Automatic Web Page Layout Testing and Analysis: A Review

Finally, the paper [34] presents a prototype tool that uses
information about the layout of elements on web pages in the
form of images. The disadvantage of the last paper is that the
tool has not been adequately tested on actual data.

In addition to segmentation for information retrieval, cate-
gorization or classification of web pages is also important.
In [35], the authors present a method based on neural
networks that analyzes the images included in the page
and determines which category of pages belongs. Another
paper [36], which is relatively older, classifies web pages
using information from the DOM tree. Due to different test
data and the way the experiments were conducted, the results
of these works are impossible to compare. Moreover, both
papers do not use available layout information in the website
classification process.

Information on websites can be found using query-based
language. One such language is presented in [37]. However,
the experiment performed in the paper is limited to only one
page and does not give quantitative results.

In this paper’s information retrieval category, we rec-
ognized two main problems: website segmentation and
similarity detection (Figure 10). These two problems are
almost equally present in selected papers, making up above
80% of all problems solved in these papers. The rest of the
methods solve issues of categorization and classification.
A summary of all papers discussed in this section and their
approaches to solving the problem of information retrieval in
web pages is given in Table 5.

FIGURE 10. Percent of main problems in information retrieval (from
11 papers in this category).

E. SOFTWARE ENGINEERING - TESTING
One of the central stages in software development is
testing. Graphical user interface testing is often based on
user-triggered events and checks on the consequent applica-
tion state changes. An aspect that can be tested is the state of
the arrangement of the elements. User interfaces of web pages
usually consist of several components. Therefore, regression
testing is essential for component-based development and
agile software development. This type of testing checks the
status of the application after a change is made to ensure that
it does not generate new errors in the system.

Many methods, which are reviewed below, test the state of
the user interface of web applications in various conditions.
Part of them deals with testing after changes to individual
components. All these tests are done because the style

specification using CSS is not interpreted the same on
different web browsers, in different environments, and the
mutual influence of the style of individual components can
affect the final appearance of the website. Pages with an
inconsistent display of elements can make it challenging to
use and sometimes lead the user to make mistakes. Taking
everything into account, below we list the methods that
test the user interface of websites by various application
categories.

In [38], the authors make recommendations based on the
empirical observations that GUI tests should not change unit
tests. The speed of execution of GUI tests is comparable to
the speed of user actions. In contrast, unit tests are performed
at speeds that are close to the processing time that a computer
can do. The disadvantage of this research, although with
valuable recommendations, is that they did not conduct an
experiment to prove some of their claims. On the other
hand, in [39], authors notice in their empirical study on
visual GUI testing that developing new tests is costlier than
maintenance, but also that frequent maintenance is less costly
than infrequent. This fact means that these tests need to be
resilient to changes. The paper [40] covers the problem of the
fragility of visual GUI tests. They stated that around 20%-
30% of the test methods had to be modified at least once
during the evolution of the app. To solve this problem, the
authors in [41] made a proof of concept library that makes
test cases independent of the internal structure of UIs. The
drawback of this paper is a small dataset. In a paper [42],
a method for generating new test scenarios for widgets and
test specifications is presented. One of the drawbacks is
that the method is semiautomatic - testers need to specify
user interactions. Another aspect of testing is developers’
perception of the tools they use to make GUI tests. In [43]
detailed study on one tool and framework for user evaluation
is presented. Conclusions point to the fact that manuals
and documentation need to be rich and descriptive, and
after the learning curve is passed, users have confidence in
writing tests using the described tool. The most significant
challenge of maintaining an end-to-end UI test for testing
web applications is the fragility of web element locators [44].
This observation is made using mutation analysis and is also
per [41] recommendations.

An essential aspect of testing user interfaces are methods
that are based on image comparison. In [45], the authors
use computer vision to automate testing user interfaces that
change as software evolves. Themethod can detect previously
described visual changes, but the disadvantage is that it
cannot detect unexpected changes. The other paper [46]
uses convolutional neural networks to detect user interface
widgets. Using this approach in random testing significantly
improved the test code coverage of 18/20 applications
on which the method was evaluated. Performance, when
compared to solutions that have perfect widget information,
indicates that there is potential for improvement. Random
testing is also researched in [47], where an approach for
adaptive random testing of web pages based on image

VOLUME 11, 2023 13957



I. Prazina et al.: Methods for Automatic Web Page Layout Testing and Analysis: A Review

TABLE 5. Table of all papers in section - Information retrieval Type of approach a) Similarity detection b) Website segmentation c) Categorization and
Classification.

sequence comparison is presented. Experiments are limited
to one resolution and show that automating the verification
of test output can be made with some help of domain
knowledge. Finally, we have found another paper [48] that
describes a method for automated detection and localization
of presentation failures in web pages. The method was
evaluated on four real-world applications and could detect
100% of presentation failures. One drawback that many
image processing methods have is a pixel-perfect match
which is not always desirable, especially in responsive web
pages. In responsive web pages, elements’ dimensions and
positions depend on the window width. This fact implies that
the same web page can result in falsely detected errors if the
comparison is done to the presentation on a browser with a
slightly different window width or even on the same widow
width but with added default margins that can differ from
browser to browser.

The program testability needs to be assessed to keep a
program code more maintainable. Different test metrics are
used for this purpose. In [49], the authors list different testing
metrics for user interfaces. The proposed metrics in the
paper are consistent and can help assess the complexity of
user interfaces. However, the paper would be complete if
the metrics were evaluated on a more significant number
of projects. In [50], they examine the influence of distance
metrics on the perceived similarity of web user interfaces and
conclude that the distance of elements on the interface does
not affect perceived similarity. The disadvantage of this paper
is the relatively small set of test data and participants in the
experiment.

Another vital aspect of great software is reusable code.
Developing reusable code involves regression testing. This
testing verifies whether modifying or creating new func-
tionality introduces errors into the system. There are papers

dealing with the regression testing of user interfaces [51],
[52]. In [51], the authors offer a method for automatically
determining reusability and repairing user interface tests. The
paper is based on a control-flow graph, and the implemented
tool is evaluated on genuine software. The evaluation shows
that the tool can efficiently and effectively fix the tests to
be reusable in case of regression. The paper [52] is more
concerned with regression testing of web pages. The method
analyzes the layout of web pages using layout graphs on two
versions of the web page (before and after the change of
functionality). The tool developed in this paper was evaluated
on 15 actual pages and shows, with only one false positive
result, an excellent ability to detect changes in the layout of
web pages. The layout graph is a data representation of a web
pagewhere elements are represented as nodes and their layout
relations as edges. Some graph implementations also capture
elements’ behavior concerning screen size (responsiveness).

In [53] and [54], the authors present declarative language
and a tool for testing the layout of web pages. The justification
for introducing a new declarative language is that CSS
is a descriptive language that is interpreted in various
environments. Differences in interpretations can be due to
various factors such as type and version of web browser,
type of client device, screen size and resolution, and others.
As an outcome of these two papers, we have an empirical
analysis and classification of various layout errors and a
tool for testing web pages. Papers would be better if they
included comparisons of results with other methods. The
authors of [55] also present their specification language,
which models a set of conditions that user interfaces need
to meet. In the experiments, we can see that the paper
can successfully detect errors. The paper’s disadvantage is
that it does not include a comparison with other similar
methods.

13958 VOLUME 11, 2023



I. Prazina et al.: Methods for Automatic Web Page Layout Testing and Analysis: A Review

Paper [56] presents a tool for detecting inconsistencies
between page views on different web browsers. The tool is
based on web crawling and methods for creating element
alignment graphs. It shows promising results in detecting
inconsistencies. In addition to detection, [57], [58] also
solves the problem of fixing errors due to different page
presentations on different web browsers. Both papers in the
presented experiments show the success of error correction in
86% of cases.

Another type of error that can occur is related to the local-
ization of websites. The paper [59] describes an automatic
technique for detecting errors in web pages’ appearance that
are caused by internationalization. The method is based on
a layout graph and has been tested on 54 different pages.
It shows promising results in the detection of this type of
error. The average detection time on the test system was
9.75 seconds. A method has been developed to correct
this type of error [60]. The solution is made using linear
programming. It has been evaluated on 23 actual pages and
shows that it can effectively correct the mentioned errors.

As well as errors caused by different web browsers and
the process of internationalization and localization, the type
of errors that occur due to flaws in the implementation of
website responsiveness is also essential. Numerous methods
for detecting errors in responsiveness have been developed,
and below, we list the most significant and their results. The
paper [61] describes a method for automatically checking the
layout of web pages for responsiveness errors. An empirical
study on about 100 websites, which are obtained using
modification operators, shows results for a recall of 91%with
15 false-negative samples. The method is based on layout
graphs and the Selenium environment. Selenium environment
is open source software used for test automation for web
pages.

A portion of the errors in responsive web pages can
occur due to how the user interface is implemented so
that parts and components are dynamically generated using
JavaScript programming language. Automatic detection of
visual errors on pages using the user interfaces state graph
is described in [62]. This approach solves the problem of
detecting errors due to inconsistencies between web browsers
and errors caused by dynamic changes in user interfaces using
JavaScript. The paper was evaluated with previous work and
showed the ability to detect different types of errors. Previous
work cannot detect errors due to dynamic changes.

Another method has been developed for detecting errors
in dynamic web pages [63]. And this method is also based
on layout graphs. The disadvantage of this work is that the
results are compared only with the method based on the
image comparison. The paper [64] tries to solve the problem
of detecting false-positive results in the errors of responsive
websites. The method was evaluated on web pages generated
with modification operators. The results show that there are
no false-positive results. A similar method was developed
in [65] but was evaluated on a set of 26 actual pages. The

experiment showed that the method on the pages could detect
a total of 33 different errors. In addition to detection, it is
sometimes necessary to show a visual verification of the
errors found. This problem is solved in [66]. The experiments
compare manual verification with automatic verification.
In conclusion, automatic verification is superior because it
can verify the error in less than one second. On the other hand,
assessing the quality of the comparison is problematic. Some
of the errors humans reject because they are not significant
enough. The authors illustrate this with an example: ‘‘For
instance, consider an element A that is overlapping the
coordinates of an element B, with n pixels of element A
overlapping n pixels of B. In this case, a human would decide
whether the n pixels of overlap are negligible and if the overall
aesthetics remain satisfactory. Both of these criteria are not
easily defined and remain, to a great extent, subjective‘‘ [66]

In addition to visual verification, an automatic classifica-
tion of errors in responsive web pages was done [67]. Based
on the performed experiments, the authors claim that the tool
developed in the paper can detect different classes of errors
with an accuracy of 78.6 % when compared with manual
classification.

All previous methods that detect errors in responsive
web pages are based on the layout graph. In addition to
this approach, the approach described in [68] is based on
mathematical logic. The results of the experiments state
that the tool can detect errors in less than 5 seconds, but
the disadvantage is that the method has not been tested on
different web browsers.

Papers [69] and [70] describe different methods that give
automatic arrangements of user interface elements. There
are a few differences between these methods. Unlike [70],
the authors of [69] offer a method that generates multiple
arrangements for the same user interface. The paper [70]
method uses a mathematical basis for calculating the
conditions that should be valid between the elements.

Formal logic is also used to verify and model web page
layouts. In paper [71], the formalization of a substantial
fragment of the CSS semantics is presented. The model
shows promising results when compared with real-life web
browsers. Results show few disagreements which originate
from rounding errors in Firefox. Verification of web page
layouts is done in papers [72] and [73]. The paper [72]
presents a method for layout proofs based on formal logic.
The paper has eight proofs, and experiments are based
on qualitative experience. Formal logic is used in [73] to
assess the accessibility of web page layouts. Accessibility is
assessed on 62 web pages using assertions based on usability
guidelines and standards. In the results, 64 errors are found
and only 13 false-positive results.

A summary of all papers discussed in this section and
their approaches to solving the problem of UI testing is given
in Table 6. The majority of papers in this section solve the
problem of testing, with a few of them trying to incorporate
human perception modeling. These problems are answers to

VOLUME 11, 2023 13959



I. Prazina et al.: Methods for Automatic Web Page Layout Testing and Analysis: A Review

FIGURE 11. Approaches in testing web pages.

FIGURE 12. Type of publication (36 papers).

the RQ2. Different approaches to testing user interfaces in
web pages, which are found in papers in this section, can be
seen in Figure 11.

1) STATISTICS OF SELECTED PAPERS
All articles (36 in total) classified in this section are analyzed
based on three approaches:

• Type of publication - conference or journal
• Type of conducted experiments
• Type of method used to solve the problem

This information is essential for answering RQ5, which
focuses on the evolution and importance of the topic in
the context of time. Papers are classified by year based on
each classification approach to present the development of
methods in the field of research.

The number of selected articles in software engineering
justifies the detailed analysis. This field of study has the most
significant number of documents that analyze web page user
interfaces. Because of this fact, we can make observations
year by year. We could not do this type of analysis in previous
sections because papers are spread evenly across years, and
the number of documents each year is not larger than two or
three.

Most of the works collected in this section have been
published at conferences. However, in the last few years,

FIGURE 13. Type of conducted experiments in 36 papers from Software
Engineering - Testing category.

FIGURE 14. Type of method used for testing (36 papers).

some papers have been published in journals (Figure 12).
The number of articles published in a year grew over time; in
2016, that number peaked. After that, the number stagnates.
These statistics indicate that the topic is relevant, which is the
answer to the RQ5.
We presented experimental methods for each paper in

Figure 13. Some of the papers have multiple types of
experiments. That is why the number of experiments in
the chart does not equal the number of papers. Most early
papers (up to 2016) have made case-based or qualitative
experiments. After the year 2016, most of the papers adopted
a quantitative approach. In most cases, the quantitative
approach included data sets of artificiallymodifiedweb pages

13960 VOLUME 11, 2023



I. Prazina et al.: Methods for Automatic Web Page Layout Testing and Analysis: A Review

TABLE 6. Table of all papers in section - Software engineering Type of approach a) Image based b) Layout/Alignment graphs c) Control flow graphs
d) Formal logic e) Other.

VOLUME 11, 2023 13961



I. Prazina et al.: Methods for Automatic Web Page Layout Testing and Analysis: A Review

or some arbitrary list of real-life web pages. Unfortunately,
most web pages in use do not have enough testable errors.
Therefore, approaches that create multiple versions of a web
page with induced errors are used.

In Figure 14, we classified papers by type of method
used for testing web page user interfaces. As shown in
figure 14, the type of approaches fluctuates over time.
In the beginning, most of the methods were image-based,
control flow graph-based, or based on formal logic. However,
after 2014, layout graph-based techniques were introduced
and became dominant or equal to image and control flow
graph-based techniques. One of the explanations for this
phenomenon is the advent of responsive web pages and
mobile-first web pages whose layout is not constant. These
observations answer the part of the question RQ5, which
covers the evolution of the topic in time.

V. DISCUSSION AND CONCLUSION
Many methods for analyzing and testing the user interface
of websites have been created recently. This paper provides
an overview of these methods’ five most important fields.
This classification of approaches is the answer to the
RQ1. However, until this paper, to the authors’ knowledge,
not a single research considered the automatic analysis
of web-based user interfaces from the different aspects of
diverse research fields.

A lack of comparison of methods’ performances could
be a study limitation. However, this aspect of research
could not have been done because of the different data sets
used in papers, their availability, different methodologies,
and the lack of publicly available implementations of
published approaches. Therefore, even without performance
comparison, we give observations that could be used in the
future to mitigate these shortcomings.

This discussion aims to overview findings for each field
of study, and outline implied connections between them.
In summary, most of the methods solve some of the following
problems:

• Web page similarity detection - methods for detecting
web phishing attacks notice the similarity between
pages and the database of malicious pages. In software
engineering, similarity detection is used in regression
testing, where it is checked whether a modification in a
web page causes an unwanted change in its appearance.
There is a similar problem with archiving a website. If a
new page appears, is it the same or similar to a page
from the archive? This problem is also crucial if you are
searching for information from similar pages.

• Segmentation of web pages - by segmenting the website,
we recognize individual components and can assign
them specific roles or recognize their function within
the page. Methods for segmentation are also used in
information retrieval and the HCI field.

• Classification and categorization of web pages - classi-
fication and categorization based on the appearance of a

web page, groups pages into classes that we can use in
the fields: information retrieval - to speed up or focus
searches, testing - to identify similar errors, HCI - to
identify patterns of similar designs.

• Modeling human perception - this problem is domi-
nantly present in the HCI field, but it can also be helpful
in testing to assess whether a change on a web page is
visible to humans.

We can see that multiple research fields have solutions for
each problem. This finding positively answers the RQ3,
which implies that similar problems are solved in numerous
research fields. Unfortunately, in the case of articles reviewed
in this paper, there is very little cooperation between different
research areas.

We believe developing new methods for analyzing user
interfaces in one area can also affect other fields. The
lack of mutual referencing and use of techniques from
other domains tells us that most scientists are unaware of
methods developed in different areas of research interest. The
cooperation of various fields could produce better results.
One of the examples is the visual verification of errors.
Having a real user verify each test result can sometimes make
automatic testing pointless. In this process, human perception
is essential, which can be modeled using techniques from the
HCI research field.

This paper presents the most significant works from
five fields and compares their problems, techniques, and
solutions. In the future, we would like to see methods from
one area be used in other areas. Collecting the answers for
RQ2 andRQ4, we saw a lot of similarities between the fields,
which gives us additional hope that some discoveries made in
one area will, in the future, find their place in other fields as
well.

Additionally, the eventual creation of uniform datasets we
could use in future works would significantly improve cross-
field methods, leading to the fact that we can easily compare
the developed solutions. We believe that the presented
problem has a vast development space and that most of the
potential has yet to be fully reached. When we got statistics
related toRQ5 in Software Engineering - Testing, we noticed
that the research area was evolving and developing. We hope
that this trend will follow in other areas as well.

REFERENCES
[1] I. Banerjee, B. Nguyen, V. Garousi, and A. Memon, ‘‘Graphical user

interface (GUI) testing: Systematic mapping and repository,’’ Inf. Softw.
Technol., vol. 55, no. 10, pp. 1679–1694, Oct. 2013.

[2] G. Varshney, M. Misra, and P. K. Atrey, ‘‘A survey and classification of
web phishing detection schemes,’’ Secur. Commun. Netw., vol. 9, no. 18,
pp. 6266–6284, Dec. 2016.

[3] S. Marinai, B. Miotti, and G. Soda, Digital Libraries and Document
Image Retrieval Techniques: A Survey. Berlin, Germany: Springer, 2011,
pp. 181–204.

[4] F. Alaei, A. Alaei, U. Pal, and M. Blumenstein, ‘‘A comparative study of
different texture features for document image retrieval,’’ Exp. Syst. Appl.,
vol. 121, pp. 97–114, May 2019.

[5] M. Y. Ivory and M. A. Hearst, ‘‘The state of the art in automating usability
evaluation of user interfaces,’’ ACM Comput. Surveys, vol. 33, no. 4,
pp. 470–516, Dec. 2001.

13962 VOLUME 11, 2023



I. Prazina et al.: Methods for Automatic Web Page Layout Testing and Analysis: A Review

[6] B. A. Kitchenham and S. Charters, ‘‘Guidelines for performing systematic
literature reviews in software engineering,’’ Keele Univ., Durham Univ.,
Durham, U.K., Tech. Rep. EBSE 2007-001, Jul. 2007. [Online]. Available:
https://www.elsevier.com/__data/promis_misc/525444systematicreviews
guide.pdf

[7] J. Mao, J. Bian, W. Tian, S. Zhu, T. Wei, A. Li, and Z. Liang, ‘‘Detecting
phishingwebsites via aggregation analysis of page layouts,’’Proc. Comput.
Sci., vol. 129, pp. 224–230, Jan. 2018.

[8] N. Sanglerdsinlapachai and A. Rungsawang, ‘‘Web phishing detection
using classifier ensemble,’’ in Proc. 12th Int. Conf. Inf. Integr. Web-Based
Appl. Services. NewYork, NY, USA: ACMPress, Nov. 2010, pp. 210–215.

[9] L. Wenyin, G. Huang, L. Xiaoyue, Z. Min, and X. Deng, ‘‘Detection of
phishing webpages based on visual similarity,’’ in Proc. Special Interest
Tracks Posters 14th Int. Conf. World Wide Web (WWW). New York, NY,
USA: ACM Press, 2005, pp. 1060–1061.

[10] W. Zhang, ‘‘Web phishing detection based on page spatial layout
similarity,’’ Informatica, vol. 37, no. 3, pp. 1–14, 2013.

[11] A. P. E. Rosiello, E. Kirda, C. Kruegel, and F. Ferrandi, ‘‘A layout-
similarity-based approach for detecting phishing pages,’’ in Proc. 3rd
Int. Conf. Secur. Privacy Commun. Netw. Workshops SecureComm, 2007,
pp. 454–463.

[12] W. Liu, X. Deng, G. Huang, and A. Y. Fu, ‘‘An antiphishing strategy based
on visual similarity assessment,’’ IEEE Internet Comput., vol. 10, no. 2,
pp. 58–65, Mar. 2006.

[13] E. Medvet, E. Kirda, and C. Kruegel, ‘‘Visual-similarity-based phishing
detection,’’ in Proc. 4th Int. Conf. Secur. Privacy Commun. Netowrks.
New York, NY, USA: ACM Press, Sep. 2008, pp. 1–6.

[14] M. Hara, A. Yamada, and Y. Miyake, ‘‘Visual similarity-based phishing
detection without victim site information,’’ in Proc. IEEE Symp. Comput.
Intell. Cyber Secur., Mar. 2009, pp. 30–36.

[15] L. Malisa, K. Kostiainen, and S. Capkun, ‘‘Detecting mobile application
spoofing attacks by leveraging user visual similarity perception,’’ in Proc.
7th ACM Conf. Data Appl. Secur. Privacy, Mar. 2017, pp. 289–300.

[16] T.-C. Chen, S. Dick, and J. Miller, ‘‘Detecting visually similar web pages:
Application to phishing detection,’’ ACM Trans. Internet Technol., vol. 10,
no. 2, pp. 1–38, May 2010.

[17] J. Zhu, Z.Wu, Z. Guan, and Z. Chen, ‘‘Appearance similarity evaluation for
Android applications,’’ inProc. 7th Int. Conf. Adv. Comput. Intell. (ICACI),
Mar. 2015, pp. 323–328.

[18] M. T. Law, C. S. Gutierrez, N. Thome, and S. Gancarski, ‘‘Structural
and visual similarity learning for web page archiving,’’ in Proc. 10th
Int. Workshop Content-Based Multimedia Indexing (CBMI), Jun. 2012,
pp. 1–6.

[19] M. Cormier, K. Moffatt, R. Cohen, and R. Mann, ‘‘Purely vision-based
segmentation of web pages for assistive technology,’’ Comput. Vis. Image
Understand., vol. 148, pp. 46–66, Jul. 2016.

[20] Z. Wu, G. Xu, C. Lu, E. Chen, Y. Zhang, and H. Zhang,
‘‘Position-wise contextual advertising: Placing relevant ads at
appropriate positions of a web page,’’ Neurocomputing, vol. 120,
pp. 524–535, Nov. 2013. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0925231213005110

[21] A. S. Bozkir and E. Akcapinar Sezer, ‘‘Layout-based computation of web
page similarity ranks,’’ Int. J. Hum.-Comput. Stud., vol. 110, pp. 95–114,
Feb. 2018.

[22] G. Martine and G. Rugg, ‘‘That site looks 88.46% familiar: Quantifying
similarity of web page design,’’ Expert Syst., vol. 22, no. 3, pp. 115–120,
Jul. 2005.

[23] M. Bakaev, V. Khvorostov, S. Heil, and M. Gaedke, ‘‘Evaluation of user-
subjective web interface similarity with kansei engineering-based ANN,’’
in Proc. IEEE 25th Int. Requirements Eng. Conf. Workshops (REW),
Sep. 2017, pp. 125–131.

[24] M. Bakaev, Assessing Similarity for Case-Based Web User Interface
Design. Cham, Switzerland: Springer, 2018, pp. 353–365.

[25] A. Sahami Shirazi, N. Henze, A. Schmidt, R. Goldberg, B. Schmidt, and
H. Schmauder, ‘‘Insights into layout patterns of mobile user interfaces by
an automatic analysis of Android apps,’’ in Proc. 5th ACM SIGCHI Symp.
Eng. Interact. Comput. Syst. (EICS). New York, NY, USA: ACM Press,
2013, pp. 275–284.

[26] J. Scarr, A. Cockburn, C. Gutwin, and S. Malacria, ‘‘Testing the robustness
and performance of spatially consistent interfaces,’’ in Proc. SIGCHI Conf.
Hum. Factors Comput. Syst., Apr. 2013, pp. 3139–3148.

[27] H. Artail and K. Fawaz, ‘‘A fast HTML web page change detection
approach based on hashing and reducing the number of similarity
computations,’’Data Knowl. Eng., vol. 66, no. 2, pp. 326–337, Aug. 2008.

[28] M. Alpuente and D. Romero, ‘‘A visual technique for web pages
comparison,’’ Electron. Notes Theor. Comput. Sci., vol. 235, pp. 3–18,
Apr. 2009.

[29] A. Tombros and Z. Ali, Factors Affecting Web Page Similarity. Berlin,
Germany: Springer, 2005, pp. 487–501.

[30] Y. Takama and N. Mitsuhashi, ‘‘Visual similarity comparison for web
page retrieval,’’ in Proc. IEEE/WIC/ACM Int. Conf. Web Intell. (WI), 2005,
pp. 301–304.

[31] J. Zeleny, R. Burget, and J. Zendulka, ‘‘Box clustering segmentation:
A new method for vision-based web page preprocessing,’’ Inf. Process.
Manage., vol. 53, no. 3, pp. 735–750, May 2017.

[32] G. Hattori, K. Hoashi, K. Matsumoto, and F. Sugaya, ‘‘Robust web page
segmentation for mobile terminal using content-distances and page layout
information,’’ in Proc. 16th Int. Conf. World Wide Web (WWW). New York,
NY, USA: ACM Press, 2007, pp. 361–370.

[33] R. Song, H. Liu, J.-R. Wen, and W.-Y. Ma, ‘‘Learning important models
for web page blocks based on layout and content analysis,’’ ACM SIGKDD
Explorations Newslett., vol. 6, no. 2, pp. 14–23, Dec. 2004.

[34] H. Yan and T. Watanabe, ‘‘Document page retrieval based on geometric
layout features,’’ in Proc. 7th Int. Conf. Ubiquitous Inf. Manage. Commun.
(ICUIMC), vol. 60. New York, NY, USA: ACM Press, 2013, pp. 1–8.

[35] D. López-Sánchez, A. G. Arrieta, and J. M. Corchado, ‘‘Visual content-
based web page categorization with deep transfer learning and metric
learning,’’ Neurocomputing, vol. 338, pp. 418–431, Apr. 2019.

[36] V. Crescenzi, P. Merialdo, and P. Missier, ‘‘Clustering web pages based on
their structure,’’ Data Knowl. Eng., vol. 54, no. 3, pp. 279–299, Sep. 2005.

[37] G. Della Penna, D. Magazzeni, and S. Orefice, ‘‘Visual extraction of
information from web pages,’’ J. Vis. Lang. Comput., vol. 21, no. 1,
pp. 23–32, Feb. 2010.

[38] C. Lowell and J. Stell-Smith, Successful Automation of GUI Driven
Acceptance Testing. Berlin, Germany: Springer, 2003, pp. 331–333.

[39] E. Alégroth, R. Feldt, and P. Kolström, ‘‘Maintenance of automated test
suites in industry: An empirical study on visual GUI testing,’’ Inf. Softw.
Technol., vol. 73, pp. 66–80, May 2016.

[40] R. Coppola, L. Ardito, and M. Torchiano, ‘‘Fragility of layout-based
and visual GUI test scripts: An assessment study on a hybrid mobile
application,’’ in Proc. 10th ACM SIGSOFT Int. Workshop Automating Test
Case Design, Selection, Eval. New York, NY, USA: ACM, Aug. 2019,
pp. 28–34.

[41] H. Pirzadeh and S. Shanian, ‘‘Resilient user interface level tests,’’ in Proc.
29th ACM/IEEE Int. Conf. Automated Softw. Eng. New York, NY, USA:
ACM, Sep. 2014, pp. 683–688.

[42] D. T. Dinh, N. P. Hung, and T. N. Duy, ‘‘A method for automated user
interface testing of windows-based applications,’’ in Proc. 9th Int. Symp.
Inf. Commun. Technol. New York, NY, USA: Association for Computing
Machinery, 2018, pp. 337–343.

[43] T. Vos, P. Kruse, N. Condori-Fernańdez, S. Bauersfeld, and J. Wegener,
‘‘Testar: Tool support for test automation at the user interface level,’’ Int.
J. Inf. Syst. Model. Design, vol. 6, no. 3, pp. 46–83, Jul. 2015.

[44] R. Yandrapally and A. Mesbah, ‘‘Mutation analysis for assessing end-
to-end web tests,’’ in Proc. IEEE Int. Conf. Softw. Maintenance Evol.
(ICSME), Sep. 2021, pp. 183–194.

[45] T.-H. Chang, T. Yeh, and R. Miller, ‘‘GUI testing using computer vision,’’
in Proc. 28th Int. Conf. Human Factors Comput. Syst. (CHI). New York,
NY, USA: ACM Press, 2010, pp. 1535–1544.

[46] T. White, G. Fraser, and G. Brown, ‘‘Improving random GUI testing with
image-based widget detection,’’ in Proc. 28th ACM SIGSOFT Int. Symp.
Softw. Test. Anal. New York, NY, USA: ACM, Jul. 2019, pp. 307–317.

[47] E. Selay, Z. Q. Zhou, T. Y. Chen, and F.-C. Kuo, ‘‘Adaptive random testing
in detecting layout faults of web applications,’’ Int. J. Softw. Eng. Knowl.
Eng., vol. 28, no. 10, pp. 1399–1428, Oct. 2018.

[48] S. Mahajan and W. G. J. Halfond, ‘‘Finding HTML presentation failures
using image comparison techniques,’’ in Proc. 29th ACM/IEEE Int. Conf.
Automated Softw. Eng., Sep. 2014, pp. 91–96.

[49] K. Magel and I. Alsmadi, ‘‘Gui structural metrics and testability testing,’’
in Proc. Conf. Softw. Eng. Appl., 2007, pp. 91–95.

[50] S. Heil, M. Bakaev, and M. Gaedke, ‘‘Measuring and ensuring similarity
of user interfaces: The impact of web layout,’’ in Proc. Web Inf. Syst. Eng.
(WISE). Cham, Switzerland: Springer, 2016, pp. 252–260.

VOLUME 11, 2023 13963



I. Prazina et al.: Methods for Automatic Web Page Layout Testing and Analysis: A Review

[51] M. Atif and M. L. Soffa, ‘‘Regression testing of GUIs,’’ in Proc. 9th Eur.
Softw. Eng. Conf. Held Jointly 11th ACM SIGSOFT Int. Symp. Found.
Softw. Eng. (ESEC/FSE). NewYork, NY, USA: Association for Computing
Machinery, 2003, pp. 118–127.

[52] T. A. Walsh, G. M. Kapfhammer, and P. Mcminn, ‘‘Automatically
identifying potential regressions in the layout of responsive web pages,’’
Softw. Test., Verification Rel., vol. 30, no. 6, pp. 183–194, Aug. 2020.

[53] S. Hallé, N. Bergeron, F. Guérin, G. L. Breton, and O. Beroual,
‘‘Declarative layout constraints for testing web applications,’’ J. Log.
Algebr. Methods Program., vol. 85, no. 5, pp. 737–758, Aug. 2016.

[54] S. Halle, N. Bergeron, F. Guerin, and G. L. Breton, Testing Web
Applications Through Layout Constraints. Piscataway, NJ, USA: Institute
of Electrical and Electronics Engineers, Apr. 2015.

[55] F. Zaraket, W. Masri, M. Adam, D. Hammoud, R. Hamzeh, R. Farhat,
E. Khamissi, and J. Noujaim, ‘‘GUICOP: Specification-based GUI
testing,’’ in Proc. IEEE 5th Int. Conf. Softw. Test., Verification Validation,
Apr. 2012, pp. 747–751.

[56] S. Roy Choudhary, M. Prasad, and A. Orso, ‘‘X-PERT: A web application
testing tool for cross-browser inconsistency detection,’’ in Proc. Int. Symp.
Softw. Test. Anal. (ISSTA). New York, NY, USA: ACM Press, 2014,
pp. 417–420.

[57] S. Mahajan, A. Alameer, P. Mcminn, and W. Halfond, ‘‘XFix: An
automated tool for the repair of layout cross browser issues,’’ in Proc. 26th
ACM SIGSOFT Int. Symp. Softw. Test. Anal., Jul. 2017, pp. 368–371.

[58] S. Mahajan, A. Alameer, P. Mcminn, and W. G. J. Halfond, ‘‘Automated
repair of layout cross browser issues using search-based techniques,’’
in Proc. 26th ACM SIGSOFT Int. Symp. Softw. Test. Anal., Jul. 2017,
pp. 249–260.

[59] A. Alameer, S. Mahajan, and W. G. J. Halfond, ‘‘Detecting and localizing
internationalization presentation failures in web applications,’’ in Proc.
IEEE Int. Conf. Softw. Test., Verification Validation (ICST), Apr. 2016,
pp. 202–212.

[60] A. Alameer, P. T. Chiou, and W. G. J. Halfond, ‘‘Efficiently repairing
internationalization presentation failures by solving layout constraints,’’
in Proc. 12th IEEE Conf. Softw. Test., Validation Verification (ICST),
Apr. 2019, pp. 172–182.

[61] T. A. Walsh, G. M. Kapfhammer, and P. Mcminn, ‘‘ReDeCheck: An
automatic layout failure checking tool for responsively designed web
pages,’’ in Proc. 26th ACM SIGSOFT Int. Symp. Softw. Test. Anal. New
York, NY, USA: ACM, Jul. 2017, pp. 360–363.

[62] Y. Ryou and S. Ryu, ‘‘Automatic detection of visibility faults by layout
changes in HTML5 web pages,’’ in Proc. IEEE 11th Int. Conf. Softw. Test.,
Verification Validation (ICST), Apr. 2018, pp. 182–192.

[63] M. A. Moyeen, G. G. M. N. Ali, P. H. J. Chong, and N. Islam,
‘‘An automatic layout faults detection technique in responsive web pages
considering Javascript defined dynamic layouts,’’ in Proc. 3rd Int. Conf.
Electr. Eng. Inf. Commun. Technol. (ICEEICT), Sep. 2016, pp. 1–5.

[64] T. A. Walsh, P. Mcminn, and G. M. Kapfhammer, ‘‘Automatic detection of
potential layout faults following changes to responsive web pages (N),’’ in
Proc. 30th IEEE/ACM Int. Conf. Automated Softw. Eng. (ASE), Nov. 2015,
pp. 709–714.

[65] T. A. Walsh, G. M. Kapfhammer, and P. Mcminn, ‘‘Automated layout
failure detection for responsive web pages without an explicit Oracle,’’
in Proc. 26th ACM SIGSOFT Int. Symp. Softw. Test. Anal., Jul. 2017,
pp. 192–202.

[66] I. Althomali, G. M. Kapfhammer, and P. Mcminn, ‘‘Automatic visual
verification of layout failures in responsively designed web pages,’’
in Proc. 12th IEEE Conf. Softw. Test., Validation Verification (ICST),
Apr. 2019, pp. 183–193.

[67] I. Althomali, G. M. Kapfhammer, and P. Mcminn, ‘‘Automated visual
classification of DOM-based presentation failure reports for responsive
web pages,’’ Softw. Test., Verification Rel., vol. 31, no. 4, p. e1756,
Jun. 2021.

[68] O. Beroual, F. Guérin, and S. Hallé, Detecting Responsive Web Design
Bugs With Declarative Specifications. Cham, Switzerland: Springer,
Jun. 2020, pp. 3–18.

[69] Ó. Sánchez Ramón, J. Sánchez Cuadrado, J. García Molina, and
J. Vanderdonckt, ‘‘A layout inference algorithm for graphical user
interfaces,’’ Inf. Softw. Technol., vol. 70, pp. 155–175, Feb. 2016.

[70] N. Jamil, X. Chen, and A. Cloninger, ‘‘Hildreth’s algorithm with
applications to soft constraints for user interface layout,’’ J. Comput. Appl.
Math., vol. 288, pp. 193–202, Nov. 2015.

[71] P. Panchekha and E. Torlak, ‘‘Automated reasoning for web page layout,’’
in Proc. ACM SIGPLAN Int. Conf. Object-Oriented Program., Syst., Lang.,
Appl., Oct. 2016, pp. 181–194.

[72] P. Panchekha, M. Ernst, Z. Tatlock, and S. Kamil, ‘‘Modular verification
of web page layout,’’ in Proc. ACM Program. Lang., vol. 3, Oct. 2019,
pp. 1–26.

[73] P. Panchekha, A. Geller,M. Ernst, Z. Tatlock, and S. Kamil, ‘‘Verifying that
web pages have accessible layout,’’ in Proc. 39th ACM SIGPLAN Conf.
Program. Lang. Design Implement., Jun. 2018, vol. 53, no. 4, pp. 1–14.

IRFAN PRAZINA (Graduate Student Member,
IEEE) received the B.Sc. and M.Sc. degrees
from the Department of Computer Science and
Informatics, Faculty of Electrical Engineering,
University of Sarajevo, Bosnia and Herzegovina,
in 2013 and 2015, respectively, where he is cur-
rently pursuing the Ph.D. degree. He is currently
a Senior Teaching Assistant with the Department
of Computer Science and Informatics, Faculty of
Electrical Engineering, University of Sarajevo. His

research interests include web technologies, software testing, and mobile
application development.

ŠEILA BEĆIROVIĆ (Graduate Student Member,
IEEE) received the B.Sc. and M.Sc. degrees
from the Department of Computer Science and
Informatics, Faculty of Electrical Engineering,
University of Sarajevo, Bosnia and Herzegovina,
in 2017 and 2019, respectively, where she is
currently pursuing the Ph.D. degree. She is cur-
rently a Teaching Assistant with the Department
of Computer Science and Informatics, Faculty
of Electrical Engineering, University of Sarajevo.

Her research interests include computer networks and security, mobile
application development, and operational research.

EMIR COGO received the B.Sc. and M.Sc.
degrees from the Department of Computer Science
and Informatics, Faculty of Electrical Engineering,
University of Sarajevo, Bosnia and Herzegovina,
in 2011 and 2013, respectively, where he is cur-
rently pursuing the Ph.D. degree. He is currently
a Senior Teaching Assistant with the Department
of Computer Science and Informatics, Faculty
of Electrical Engineering, University of Sarajevo.
His research interests include game development,
computer graphics, and procedural modeling.

VENSADA OKANOVIĆ received the B.Sc.,
M.Sc., and Ph.D. degrees from the Faculty of
Electrical Engineering, Sarajevo. She is currently
an Associate Professor with the Faculty of
Electrical Engineering, Sarajevo. She is also an
Active Collaborator with the Sarajevo Graphics
Group. She is the coauthor of their projects and
publications. Her expertise and research interests
include web andmobile applications development,
software engineering, web technologies, and
graphics programming.

13964 VOLUME 11, 2023


