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ABSTRACT Negative sequential pattern (NSP) mining can capture frequently occurring and non-occurring
behavior information and can play an irreplaceable role in many applications. Most traditional NSP mining
algorithms adopt a support measure to discover interesting patterns. However, the support measure does not
truly reflect the interestingness of patterns in some cases. In particular, it ignores the effect of the support
of every element and the order characteristics among these elements. Hence, an influence measure was
proposed to truly reflect the interestingness of patterns. However, the current influence measure is used only
in positive sequential pattern (PSP) mining and does not involve NSPs. To address these problems, this study
proposes an algorithm, InfI-NSP, to mine interesting NSPs based on influence. First, we modify an existing
NSP mining algorithm to efficiently mine NSPs. Second, we modify the influence measure and apply it to
NSP mining to mine interesting NSPs. To the best of our knowledge, InfI-NSP is the first algorithm to mine
interesting NSPs based on influence. Experiments on real-life and synthetic datasets show that InfI-NSP is
effective.

INDEX TERMS Interestingness measure, negative sequential patterns (NSPs), negative item, negative
element, sequential patterns.

I. INTRODUCTION
Behavior analysis plays an increasingly important role in
many fields, such as in education [1], [2], [3], medical
analyses [4], [5], [6], [7], [8], recommendation systems [9],
and abnormal behavior detection [10], [11]. As an important
means of behavior analysis [12], [13], [14], sequential
pattern mining aims to find patterns in a set of sequences
that satisfy a minimum interestingness threshold [15], and
these patterns contain much valuable behavioral information.
Sequential patterns that contain only occurring behavior are
called positive sequential patterns (PSPs). Since 1995 [16],
many effective PSP mining algorithms have been proposed,
such as GSP [17], PrefixSpan [18], SPADE [19], and
SPAM [20]. However, PSPs do not consider non-occurring
behavior. Thus, negative sequential pattern (NSP) mining,
which considers both occurring and non-occurring behaviors,
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was proposed. The analysis of non-occurring behavior
can typically obtain more comprehensive information and
can play an irreplaceable role in some aspects, such as
in analyzing the association between treatment services
and disease [21]. In addition, some efficient NSP mining
algorithms have been proposed, such as Neg-GSP [22],
e-NSP [23], NegI-NSP [21], and sc-NSP [24].

Most of these algorithms use only support as a measure
of interestingness. However, the support measure does not
truly reflect the interestingness of patterns in some cases.
In particular, it has two problems in mining sequential
patterns. One problem is that, when calculating the support of
a pattern, it ignores the effect of the support of every element
in the pattern. For example, the five sequential patterns with
the highest support in the Adventures of Tom Sawyer (ATS)
text sequence record set are <and and>, <and to>, <to and>,
<of and>, and <and of > [25]. The five sequential patterns all
comprise elements and , to, and of with the highest support.
Even if and , to, and of are unrelated, the sequential patterns
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obtained by their repetition and combination are likely to
show high support. Therefore, determining whether the five
sequential patterns are truly interesting is impossible based
only on their supports. The second problem is that the support
measure does not consider the order characteristics of the
elements. For example, the support of patterns <and to> and
<to and> is 9.8% and 9.1%, respectively. Their supports
exhibit little difference, which indicates that the order of the
elements and and to is irrelevant [25]. This contradicts the
importance of order in a sequential pattern. Therefore, the
two patterns should not be considered interesting patterns.
In general, the support measure cannot truly reflect the
interestingness of patterns in some cases. In particular, when
handling large databases, the support measure may result in
numerous uninteresting frequent patterns.

To solve the aforementioned problems, an influence
measure has been proposed. The influence measure can
consider the effect of the support of every element and
the order characteristics among these elements [25]. Hence,
the interestingness of the patterns can be truly reflected.
Unfortunately, few studies discuss this measure. To the best of
our knowledge, onlyWu’s study on the ISSPM algorithm [25]
discusses it;Wu proposes the concept of an influencemeasure
and related calculation methods. However, the influence
measure has two limitations. One is that it is used only in
PSP mining and does not involve NSPs. The other is that
the influence measure targets element-based sequences (the
elements only contain single item) and does not consider
item-based sequences (the elements contain multiple items).
Obviously, item-based NSP mining is more comprehensive.
However, it has a new problem in that the number of
uninteresting patterns in the mining results may be larger
because of the larger number of frequent patterns mined.
Therefore, methods for mining truly interesting NSPs is an
urgent problem in NSP mining research.

In this study, we use the influence measure to mine item-
based interesting NSPs. However, methods for using the
influence measure in NSP mining is a new field with many
challenges, which are summarized as follows.

1) How to obtain an appropriate traditional NSP mining
algorithm to use the influence measure? As discussed,
the influence measure proposed by Wu concerns only
PSP mining as well as element-based sequences [25].
No related research on NSP mining has been conducted
in this area. Therefore, we must analyze the applicability
of the influence measure in traditional NSP mining and
determine algorithms that can use the influence measure.
Furthermore, we study the NSP mining of non-occurring
items, which is item-based. For example, the sequence
<(keyboard,mouse, ¬flash disk)> is the NSP of non-
occurring items. Element (keyboard,mouse, ¬flash disk)
indicates that the customer purchased a keyboard and mouse
but not flash disk in one purchase. Therefore, the appropriate
algorithm must also mine the NSPs of non-occurring items.
The NSP mining of non-occurring items considers more
situations. This research is more complicated.

2) How to match the candidate sequence generation
method of the influence measure? The candidate sequence
generation method of the influence measure is closely related
to the candidate sequence generation method of the tradi-
tional NSP mining algorithm. Furthermore, the candidate
sequence generation methods of different traditional NSP
mining algorithms are mostly different. To match these two
candidate sequence generation methods, we must modify
the candidate sequence generation method of the influence
measure. Thus, the generated influence candidate sequences
(the sequences before using the minimum influence threshold
(min-inf) constraint) are ensured to be consistent with the
sequential patterns mined by the traditional NSP mining
algorithm. That is, the influence candidate sequences can be
found in the sequential pattern set mined based on support.
In addition, some traditional NSP mining algorithms may
be unable to use the influence measure. This is because a
large difference may exist between the candidate sequence
generationmethod of the influencemeasure and the candidate
sequence generation method of the traditional NSP mining
algorithm.

3) Which step of traditional NSP mining can use the
influence measure appropriately? The influence measure can
be used in different steps of traditional NSP mining, such
as in generating candidate sequences or after mining the
frequent patterns. The usefulness of the influence measure
and algorithm efficiency may vary greatly depending on the
steps of using the influence measure. We must analyze which
step of traditional NSP mining is appropriate for using the
influence measure. In particular, for different traditional NSP
mining algorithms, the appropriate steps in which to use the
influence measure may differ.

Based on these problems and challenges, this study
proposes an algorithm, InfI-NSP, to mine interesting NSPs
based on influence. To the best of our knowledge, InfI-
NSP is the first NSP mining algorithm that considers
influence measure. The main contributions of this study are
summarized as follows.

First, we modified the traditional NSP mining algorithm
sc-NSP [24] such that the influence measure can be used to
mine the NSPs of non-occurring items. This is because the
candidate sequence generation method of the sc-NSP algo-
rithm has a highmatching degree with the candidate sequence
generation method of the influence measure. Furthermore,
the speed of the sc-NSP algorithm is considerably fast.
In addition, Wu’s algorithm ISSPM [25] concerns element-
based sequences; however, the sequences we study are item-
based. Because the items in an element are unordered, that is,
the order of items in an element is to be ignored, the method
of influence measure can be extended to item-based NSP
mining.

Second, we modified the influence candidate sequence
generation method in the ISSPM algorithm [25]. In splicing
the patterns to generate the influence candidate sequences,
we modify it accordingly to match the candidate sequence
generation method of the influence measure with the
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candidate sequence generation method of the traditional NSP
mining algorithm.

Third, we used the influence measure after capturing
patterns that satisfy the minimum support threshold (min-
sup) constraint. This ensures the usefulness of the influence
measure and improves the efficiency of the algorithm
compared with using it in other steps of traditional NSP
mining.

Finally, a new algorithm InfI-NSP is proposed to mine
interesting NSPs based on influence. This algorithm consid-
ers the effect of the support of every element and the order
characteristics among these elements in the mining process,
thereby truly reflecting the interestingness of the patterns.
Experiments on real-life and synthetic datasets show that InfI-
NSP is effective.

The remainder of this paper is organized as follows.
Section II discusses related work. Section III introduces
preliminaries. Section IV details the proposed algorithm InfI-
NSP, and we discuss the experiment and results in Section V.
Finally, Section VI presents conclusions and future work.

II. RELATED WORK
A. NSP MINING
In terms of research on NSP mining, Zheng et al. [22]
proposed a similar NSP mining algorithm, NegGSP, based
on the classical PSP mining algorithm GSP. Hsueh et al. [26]
proposed an effective NSP mining algorithm, named PNSP.
The algorithm converts frequent positive elements into
negative elements and then connects the positive and negative
elements to generate negative sequential candidates (NSCs)
until the size of the NSC equals the maximum size of the
data sequence. Zheng et al. [27] proposed a genetic algorithm
(GA)-based method to find NSPs with novel crossover and
mutation operations. Early algorithms as mentioned above
calculate the support of the NSC by rescanning the database,
and the time efficiency is low. The NSP mining algorithm
e-NSP calculates the support of the NSC only by using
the corresponding PSP information rather than rescanning
the sequence database, which greatly improves the time
efficiency of NSP mining [23]. e-RNSP extends e-NSP
to effectively mine NSPs with repetitive properties in the
sequence [28]. F-NSP+ uses a novel data structure bitmap
to store the PSP information, obtain the support of the NSC
only using bitwise operations, and further improves the time
efficiency of NSP mining [29]. NegI-NSP [21] and VM-
NSP [30] loosen the constraints in e-NSP to mine NSPs
and can obtain more valuable information. NegPSpan uses
the PrefixSpan depth-first method to extract NSPs with a
maximum gap constraint enabled [31]. sc-NSP is an efficient
NSP mining algorithm with an improved technique [24]. The
algorithm utilizes the improved PrefixSpan algorithm of a
bitmap storage structure to mine PSPs, loosens the frequent
constraint, exploits the NSC generation method of PNSP, and
uses the most efficient bitwise-based operation to calculate
the support of the NSCs.

B. INTERESTINGNESS MEASURE
Support is the most basic measure of pattern interestingness.
In [32], some frequent itemset mining algorithms were
introduced, such as Apriori, Eclat, FP-Growth, H-Mine, and
LCM. Gan et al. [33] described the related approaches of
parallel sequential pattern mining (PSPM) in detail including
partition-based algorithms for PSPM, apriori-based PSPM,
pattern-growth-based PSPM, and hybrid algorithms for
PSPM. However, only considering the support of patterns is
sometimes insufficient for making predictions or suggestions.
Based on support, some other measures are defined. In [34],
confidence was defined, which can reflect the relationship
between itemsets. The lift defined in [35] reflects the degree
of independence between the pattern and the contained
items. Leverage weakens the effect of items on pattern
interestingness [36]. Fournier-Viger et al. [37] defined the
standard deviation of periods and the sequence periodic ratio
to discover periodic patterns common to multiple sequences.
However, none of these interestingness measures can reflect
the distribution differences of patterns in different types of
record sets. To characterize such distribution differences,
interestingness measures such as the growth rate [38] and
odds ratio [39] have been proposed. The growth rate can
reflect the proportion of absolute support of patterns in
different types of record sets, and the odds ratio reflects
the proportion of the relative support of patterns in different
types of record sets. Utility reflects the importance of an
item. Gan et al. [40] proposed a utility mining algorithm
HUSP-ULL to discover high-utility sequential patterns.
In addition, high-utility itemset mining algorithms FHN [41]
and HUPNU [42] were proposed, which consider negative
unit profits. In [43], an efficient approach EHMIN was
proposed for mining high-utility patterns with negative unit
profits. Generally, the number of patterns that satisfy the
minimum interestingness constraint is large. To reduce the
redundancy of the results, some algorithms design a global
interestingness measure from the perspective of the pattern
set. For example, Guns et al. [44] designed coverage,
which reflects the dependence of support between patterns.
Petitjean et al. [45] defined the maximum subleverage ratio,
which considers the effect of the subpattern interestingness.
To measure the interestingness of sequential patterns more
truly, Wu et al. [25] defined influence. Influence considers
the effect of the support of every element and the order
characteristics among these elements; however, it is only for
element-based PSP mining. In [46], a metric impact was
proposed. Its general idea is to measure the effect of the
removed item on the outcome by removing the last item from
the sequential pattern; however, it is used in impact-oriented
sequential rules.

III. PRELIMINARIES
For a sequence, the items that have occurred are called
positive items, and, correspondingly, the items that have not
occurred are called negative items. If an element contains
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TABLE 1. Notation description.

a negative item, it is called a negative element. Further,
if a sequence contains a negative element, it is called a
negative sequence. The sequences in source data are data
sequences [27]. Next, we introduce some important PSP and
NSP definitions. Table 1 lists some of the main notation used
in this paper.

A. POSITIVE SEQUENTIAL PATTERNS
Let I = {x1, x2, . . . , xn} be a set of items. An itemset is
a subset of I . A sequence is an ordered list of itemsets.
A sequence s is denoted by s =< s1s2, . . . , sl >, where
sj ⊆ I (1≤ j≤ l). sj is also called an element of the sequence
and is denoted by (x1, x2, . . . , xm), where xk is an item, and
xk ∈ I (1 ≤ k ≤ m). For simplicity, brackets are omitted if
an element has only one item, that is, element (x) is coded x.
To reduce complexity, we assume that an item can appear only
once in an element but can appear many times in different
elements of a sequence.

The length of sequence s, denoted by length(s), is the total
number of items in all elements in s. s is a k-length sequence
if length(s) = k . The size of sequence s, denoted by size(s),
is the total number of elements in s. s is a k-size sequence if
size(s) = k . For example, suppose there is a sequence s =<

a(bc)d >, which has three elements a, (bc), and d and four
items a, b, c, and d ; thus, s is a 3-size and 4-length sequence.
Consider two sequences sα =< α1α2 . . . αi > and sβ =<

β1β2 . . . βk >; if there exists 1 ≤ j1 < j2 < . . . < ji ≤ k
such that α1 ⊆ βj1 , α2 ⊆ βj2 , . . . , αi ⊆ βji , we call sequence
sα =< α1α2 . . . αi > a subsequence of sequence sβ =<

β1β2 . . . βk >, which is expressed as sα ⊆sβ , and sβ is called
a super-sequence of sα . For example, s1 =< a(bc)d > is a
super-sequence of s2 =< (bc) > (and s2 =< (bc) > is a
subsequence of s1=<a(bc)d>).
The number of tuples in sequence database D is

expressed as |D|, where the tuples are < sid (sequence−

ID), ds (data sequence) >. The set of tuples containing

sequence s is denoted as {<s>}. The support of s, denoted by
sup(s), is the number of tuples contained in {< s>}. That is,
sup(s)=|{<s>}|=|{<sid, ds >,<sid, ds >∈D∧(s⊆ds)}|.
min− sup is the minimum support threshold predefined by
users. Sequence s is called a frequent sequential pattern if
sup(s) ≥ min− sup. Conversely, s is infrequent if sup(s) <

min−sup.

B. NEGATIVE SEQUENTIAL PATTERNS
In real-life applications, the number of generated NSCs
is sometimes large, but many may be meaningless [23].
Therefore, constraints are added to reduce the number of
NSCs and discover the meaningful NSP efficiently. The key
concepts and definitions of the negative constraints involved
in this study are as follows:
Definition 1 (Negative Size): The total number of negative

elements in sequence ns is called the negative size of
sequence ns. ns is an n-neg-size sequence if negsize(ns)= n.
For example, given ns =< (ab)¬cd¬e >, the number of
negative elements is 2, and thus, ns is a 2-neg-size sequence.
Definition 2 (Positive Partner): The positive partner of a

negative element (¬ab) is (ab), denoted by p((¬ab)), that is,
p((¬ab))= (ab); the positive partner of positive element (ab)
is (ab) itself, that is, p((ab)) = (ab). The positive partner of
a negative sequence ns =< s1s2, . . . , sk > changes all the
negative elements in ns to their positive partners, expressed
as p(ns), that is, p(ns)={< s1s2, . . . , sk > |sj=p(si), si∈ns}.
For example, p(<¬a(b¬c)d>)=<a(bc)d>.
Definition 3 (Maximum Positive Subsequence): Assume

that ns =< s1s2, . . . , sm > is an m-size and n-neg-size
negative sequence (m > n), and the subsequence s contains
all positive elements. Then, it is called the maximum positive
subsequence of ns and is expressed asMPS(ns). For example,
given ns=< (a¬b)c¬d>, we can obtainMPS(ns)=<ac>.
Definition 4 (1-Neg-Size Maximum Subsequence): For a

negative sequence ns, its subsequences that includeMPS(ns)
and one negative element e are called 1-neg-size maximum
subsequences, denoted by 1 − negMSi. The subsequence set
including all the 1-neg-size maximum subsequences of ns is
called the 1-neg-size maximum subsequence set, denoted by
1−negMSSns. For example, given ns =< (a¬b)c¬d(ef ) >,
1−negMS1=< (a¬b)c(ef )>, 1−negMSSns={< (a¬b)c(ef )>
, <ac¬d(ef )>}.
Constraint 1 (Element Frequency Constraint): A negative

element en cannot appear in the NSCs unless its positive
element partner p(en) is frequent, that is, sup(p(en))≥min−

sup. This is similar to the settings used in [30]. For example,
if sup(p((¬ab)))=sup((ab))≥min−sup, then element (¬ab)
satisfies this constraint.

Note that similar to the NegI-NSP algorithm [21], this
study does not consider cases such as (¬a¬b) and ¬(ab).
This is because identifying the difference between negative
elements (¬a¬b) and ¬(ab) is difficult in real life. Although
sequence < (¬a¬b) > is frequent, applying it to reality is
also difficult.
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Constraint 2 (1-length-neg Element Format Constraint):
An NSC only does not allow continuous 1-length negative
elements. For example,<¬a(¬bc)> satisfies this constraint,
unlike <¬a¬b>.

A negative containment definition can convert a negative
containment into a positive containment, and the support of
the NSP can rely on the information of the corresponding
PSP.
Definition 5 (Negative Containment): Let ds =< d1d2

, . . . , dt > be a data sequence, ns=<s1s2, . . . , sm> be an m-
size and n-neg-size negative sequence; (1) if m>2t+1, then
ds does not contain ns; (2) ifm≥1 and n=1, then ds contains
ns when p(1−negMS)⊈ds; and (3) otherwise, ds contains ns
ifMPS(ns)⊈ds∧∀1−negMSi∈1−negMSSns, p(1−negMSi)⊈
ds(1< i≤n).

For example, given ds =< ab(cd)(ade)fc >, 1) if ns =<

a(d¬e)f¬d >, 1−negMSSns = {< a(d¬e)f >, < adf¬d >},
then ds does not contain ns because p(< a(d¬e)f >) =<

a(de)f >⊆ ds; 2) if ns′ =< a¬c(¬ab)f >, 1−negMSS ′
ns =

{< a¬cbf >, < a(¬ab)f >}, then ds contains ns because
MPS(ns) =< abf >⊆ ds ∧ p(< a¬cbf >) ⊈ ds ∧ p(<
a(¬ab)f >)⊈ds.

IV. InfI-NSP ALGORITHM
The overall steps of the InfI-NSP algorithm are as follows.

First, all positive and negative patterns that satisfy
the min-sup constraint were mined from the sequence
database using themodified sc-NSP algorithm. Subsequently,
the influence was calculated separately for the positive
and negative patterns mined. Finally, all positive and
negative patterns that satisfy the min-inf constraint were
mined.

In this section, we first introduce related concepts and
calculation methods for the influence. Second, we present an
NSC generation method for the modified sc-NSP algorithm.
Third, we introduce a support calculation method for the
modified sc-NSP algorithm. Next, we present the steps and
methods used to calculate the influence of the pattern. Finally,
we present the mining steps of the InfI-NSP algorithm and
corresponding pseudocode.

A. INFLUENCE MEASURE
The two problems of using only support in sequential pattern
mining discussed in Section I can be effectively solved
using influence. For convenience, we list the following two
problems: 1) when calculating the support of a pattern,
it ignores the effect of the support of every element in
the pattern and 2) support does not consider the order
characteristics of the elements.

The steps for calculating the influence are as follows.
Step 1. Given a sequential pattern s =< e1e2, . . . , el >,

if the elements in s are independent of each other, the expected
value of the support of s is

exsup(s) =

l∏
i=1

sup(ei). (1)

The meaning expressed by the expected value is that even
if the elements of s do not have sequential connections, s has
a high probability of appearing exsup(s)× |D| times in D.
exsup(s) quantifies the effect of the support for every element
in the pattern to a certain extent.

Step 2. Next, the revised support of s is obtained by
subtracting this effect, that is,

adsup(s) = sup(s) − exsup(s). (2)

The first problem mentioned above can be solved effec-
tively by revising the support for sequential patterns.

Step 3.Assuming h(s) represents the first element of s, and
r(s) represents the elements of s except for the first element,
s can be represented as <h(s), r(s)>. Given two patterns, sa

and sb, the possible sequential pattern set ger(sa, sb) can be
calculated recursively as follows:

ger(sa, sb) = Ga ∪ Gb, (3)

Ga = {< h(sa),X > |X ∈ ger(r(sa), sb)}, (4)

Gb = {< h(sb),Y > |Y ∈ ger(sa, r(sb))}, (5)

where ger(sa, ∅) = {sa}, and ger(∅, sb) = {sb}. For
example, assuming that sa =< a(¬bc) > and sb =<

¬de >, the set of possible sequential patterns formed
by sa and sb are ger(sa, sb) = {< a¬b(¬bc)e >,

< a¬be(¬bc) >, < a(¬bc)¬be >, < ¬ba(¬bc)e >,

< ¬bae(¬bc) >, < ¬bea(¬bc) >}. If the supports of
the sequential patterns in ger(sa, sb) are not significantly
different, then the order of elements in sa and sb is irrelevant.
Hence, none of the sequential patterns in ger(sa, sb) should
be considered interesting sequential patterns.
Step 4. Next, the revised support of the sequential pattern

is further adjusted to incorporate the order characteristics of
the elements as follows:

mesup(s) = avg(
∑

s∗∈Gger
adsup(s∗)), (6)

inf (s) = adsup(s) − mesup(s), (7)

where Gger denotes the result set of ger(sa, sb), and avg()
denotes the average value of the support of the patterns in
the set Gger . This inf () is called the influence of s, which
considers the effect of the support of every element and the
order characteristics among these elements.

B. NSC GENERATION OF MODIFIED SC-NSP
Because this study targets item-based NSP mining, we mod-
ified the NSC generation method of sc-NSP [24] by
combining the NSC generation method of NegI-NSP [21].
Thus, this influence can be used to mine interesting item-
based NSPs. The details are as follows.

First, the 1-size NSC is generated by the 1-size PSP. The
basic idea behind generating an NSC is to change any item(s)
in a 1-size PSP into its (their) negative form(s). For example,
the NSC based on < (abc) > includes < (¬abc) >, <

(a¬bc) >, < (ab¬c) >, < (¬a¬bc) >, < (¬ab¬c) >,
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and < (a¬b¬c) >. Evidently, this method can generate all
possible 1-size NSCs that satisfy the constraints.

Second, the generation of an n-size (n≥2) NSC is divided
into two cases: 1) appending an (n-1)-size PSP with a 1-size
NSC. Note that the 1-size NSC includes two cases in which
the element in the sequence is the negative element of non-
occurring items (such as < (a¬b) >) and negative single-
item element (such as < ¬a>); and 2) appending an (n-1)-
size NSC with a 1-size PSP and 1-size NSC. Note that we
use an (n-1)-size NSC instead of (n-1)-size NSP to generate
the n-size NSC because the NSP does not satisfy the Apriori
property [47].

Finally, this process is repeated until no NSC is generated
or the size of NSC is greater than 2m+ 1, where m is the
maximum size of the sequence in the PSP. If the maximum
size of the sequence in the PSP is m, then the maximum size
of the generated NSP is 2m+1.
Some n-size NSCs can be pruned before their support

is calculated. According to Definition 4 (the definition of
a 1-neg-size maximum subsequence) and Constraint 1 (the
element frequency constraint), we use the following two
pruning strategies: 1) if ∀ns ∈ NSC and MPS(ns) /∈ PSP,
then sequence ns is pruned; and 2) if ∀ns ∈ NSC and
∀p(1−negMS) /∈PSP, then sequence ns is pruned.
Algorithm 1 presents the pseudocode for the NSC genera-

tion of modified sc-NSP.

Algorithm 1 NSC Generation
Input: Sequence database D, PSP
Output: NSC
1: 1-size NSC is generated from 1-size PSP;
2: for n=2; n≤2m+1; n++do
3: for each candidate sequence in (n-1)-size NSC do
4: ns = candidate sequence append with 1-size PSP;
5: if MPS(ns)∈PSP∧ ∀p(1−negMS)∈PSP then
6: ns is stored in n-size NSC;
7: end if
8: ns = candidate sequence append with 1-size NSC;
9: if MPS(ns)∈PSP∧ ∀p(1−negMS)∈PSP then
10: ns is stored in n-size NSC;
11: end if
12: end for
13: for each candidate sequence in (n-1)-size PSP do
14: ns = candidate sequence append with 1-size NSC;
15: if MPS(ns)∈PSP∧ ∀p(1−negMS)∈PSP then
16: ns is stored in n-size NSC;
17: end if
18: end for
19: end for
20: return NSCs;

Generating NSC includes the following key steps. 1)
Generate 1-size NSC using 1-size PSP (line 1). 2) (n-1)-size
NSC generates the n-size sequence ns by appending with
1-size PSP (line 4). 3) According to the pruning strategy,

ns must satisfy MPS(ns) ∈ PSP and ∀p(1−negMS) ∈ PSP
(lines 5-7). 4) (n-1)-size NSC generates the n-size sequence
ns by appending with 1-size NSC (line 8). 5) (n-1)-size PSP
generates the n-size sequence ns by appending with 1-size
NSC (line 14).

C. CALCULATING THE SUPPORT OF THE NSC
The support calculation method used in the InfI-NSP
algorithm, that is, the support calculation method of the
modified sc-NSP algorithm, is the same as that of the NegI-
NSP algorithm [21]. The support calculation equation in the
NegI-NSP algorithm conforms to the set theory principle. The
details are as follows.

Given an m-size and n-neg-size negative sequence ns,
among the n negative elements, for ∀1 − negMSi ∈ 1 −

negMSSns(1≤ i≤ n), the support of ns in sequence database
D is

sup(ns) = sup(MPS(ns)) − | ∪
n
i=1 {p(1−negMSi)}|. (8)

In particular, for negative sequences <¬e>,

sup(<¬e>) = |D| − sup(<e>). (9)

D. CALCULATING THE INFLUENCE OF THE PATTERN
The calculation method and process of the influence in this
study are based on the idea of the influence in the ISSPM
algorithm [25]. Furthermore, some modifications were made
to use the influence for NSP mining.

Because using influence in traditional NSP mining has
the matching problem of candidate sequence generation
methods, we modified the candidate sequence generation
method of the influence in the ISSPM algorithm [25].
In splicing the patterns to generate the influence candidate
sequences, we modified it to match the candidate sequence
generation method of the influence with the candidate
sequence generation method of the modified sc-NSP algo-
rithm. Thus, the generated influence candidate sequences
were ensured to be consistent with the sequential patterns
mined by the modified sc-NSP algorithm. That is, the
influence candidate sequences can be found in the sequential
pattern set mined based on support. The details are as follows.

We used the appendant method to generate NSCs in
the traditional NSP mining algorithm-modified sc-NSP.
Section IV-B presents the details. Therefore, we combined
this aspect to modify the influence candidate sequence
generation method of the ISSPM algorithm [25]. In the
ISSPM algorithm, for patterns mined using support, the
patterns that satisfy specific conditions are spliced in pairs
according to their length. Therefore, for sa and sb in Step
3 of Section IV-A, in the ISSPM algorithm, they are both
from the same length of patterns mined based on support.
Unlike in the ISSPM algorithm, we first mine all sequential
patterns that satisfy the min-sup constraint and then calculate
the influence of these patterns individually. To match the
candidate sequence generation method of the influence with
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the candidate sequence generationmethod of themodified sc-
NSP algorithm, we modified the method of obtaining sa and
sb in the calculation process of influence; that is, sa and sb

are obtained from the same patterns. In particular, we assume
that an n-size sequence s =< x1x2, . . . , xn > and take the
first (n-1) elements of s as sa and last element as sb; that is,
sa=<x1x2, . . . , xn−1>, sb=<xn>. Then, the set of possible
sequential patterns is obtained in Step 3 of Section IV-A, and
some subsequent calculations are performed.

The pseudocode of the influence calculation is shown in
Algorithm 2.

Algorithm 2 Influence Calculation
Input: Sequential pattern set Q (PSP or NSP), min-inf
Output: Sequential pattern set G satisfying the min-inf

constraint (Inf-PSP or Inf-NSP)
1: for each sequence s in Q do
2: if size(s)≥2 then
3: Calculate exsup(s) using equation (1);
4: Calculate adsup(s) using equation (2);
5: sb = the last element of s;
6: sa = the elements of s except the last element;
7: Obtain the sequential pattern set P that sa and sb can

form using equations (3), (4), and (5);
8: for each sequence s′ in P do
9: Calculate exsup(s′) using equation (1);
10: Calculate adsup(s′) using equation (2);
11: adsup(s′) is stored in setM ;
12: end for
13: Calculate mesup(s) using equation (6);
14: Calculate inf (s) using equation (7);
15: if inf (s) satisfies the min-inf constraint then
16: s is stored in G;
17: end if
18: end if
19: end for
20: return G;

For the sequential pattern s mined based on support, when
size(s)≥2, we calculate the influence of s. First, we calculate
the expected value of the support of s exsup(s) (line 3).
Second, we calculate the revised support of s adsup(s) (line
4). Subsequently, sequences sa and sb are obtained from s
(lines 5-6), and the set P of the possible patterns formed by
sa and sb is obtained according to the method in Step 3 of
Section IV-A (line 7). Third, we calculate the revised support
adsup(s′) for each sequence s′ in set P and store it in set M
(lines 8-12). Finally, the influence of s inf (s) is calculated.
If inf (s) satisfies the min-inf constraint, it is stored in set G
(lines 13-17).

E. MINING STEPS OF THE InfI-NSP ALGORITHM
Through analysis, the influence can be used when generating
candidate sequences or after mining frequent patterns.
However, numerous redundant patterns are in the generated

candidate sequences. Hence, using influence in this step
has the problem of invalid calculations, which wastes a
significant amount of time and space. In the InfI-NSP
algorithm, we use the influence after capturing patterns that
satisfy the min-sup constraint. This ensures the usefulness of
the influence and makes the algorithm more efficient than
using it in other steps of traditional NSP mining.

Next, the InfI-NSP algorithm is described in detail, and
Algorithm 3 presents the pseudocode.

Algorithm 3 InfI-NSP Algorithm
Input: Sequence database D, min-sup, min-inf
Output: Inf-PSP, Inf-NSP
1: PSPs are obtained using the modified sc-NSP algorithm;
2: Inf-PSPs are obtained using the method described in

Algorithm 2;
3: NSCs are generated using the method described in

Algorithm 1;
4: for each nsc in NSC do
5: if size(nsc)=1 ∧ length(nsc)=1 then
6: Calculate sup(nsc) using equation (9);
7: else
8: Calculate sup(nsc) using equation (8);
9: end if

10: if sup(nsc) satisfies the min-sup constraint then
11: nsc is stored in NSP;
12: end if
13: end for
14: Inf-NSPs are obtained using the method described in

Algorithm 2;
15: return Inf-PSPs and Inf-NSPs;

First, the InfI-NSP algorithm mines all PSPs from
sequence database D using the PSP mining method of the
modified sc-NSP algorithm (line 1). Second, all Inf-PSPs are
obtained by using the influence calculation method described
in Section IV-D (line 2). Third, we generate all NSCs
using the NSC generation method described in Section IV-B
(line 3). The support for each nsc in the NSC is calculated by
using equations (8) and (9) (lines 4-9). An nsc is an NSP if its
support satisfies the min-sup constraint (lines 10-12). Finally,
all Inf-NSPs are obtained by using the influence calculation
method described in Section IV-D (line 14).

V. EXPERIMENTS AND EVALUATION
We conducted experiments on two synthetic and two real-life
datasets to compare the performance of InfI-NSP with that
of modified sc-NSP. We compared the mined positive and
negative patterns separately, including the number of patterns,
the runtime of mining patterns, and the effect of different
min-inf values on the number of patterns. All algorithms
were coded in Java, implemented in Eclipse, and ran on a
Windows 10 PCwith an Intel Core i5 CPU 2.5 GHz and 4 GB
of memory. In the experiments, unless specified, all supports
(and minimum supports) were calculated in terms of the
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percentage of the frequency |< s> | of a pattern s compared
with the number of sequences |D| in the database.

A. DATASETS
Two real-life and two synthetic datasets are introduced in
detail for the experiments. The two real-life datasets were
collected from the SPMF website (www.philippe-fournier-
viger.com), and the two synthetic datasets were generated
using the IBM data generator [16].

Dataset 1 (DS1) is a conversion of the Bible as a sequence
database. It contains 36,369 sequences and 13,905 distinct
items. The average length of a sequence is 21.6 items. The
average number of distinct items per sequence is 17.84.

Dataset 2 (DS2) is a conversion of the novel Leviathan by
Thomas Hobbes as a sequence database. It contains 5,834
sequences and 9,025 distinct items. The average length of a
sequence is 33.8 items. The average number of distinct items
per sequence is 26.34.

Dataset 3 (DS3), C8_T6_S8_I8_DB10k_N100.
Dataset 4 (DS4), C10_T4_S6_I6_DB10k_N100.
For the synthetic datasets, the data factors describe the

data characteristics from different aspects, and their general
meanings are as follows [16]: C: average number of elements
per sequence; T: average number of items per element;
S: average size of maximal potentially large sequences; I:
average size of items per element inmaximal potentially large
sequences; DB: number of sequences in a database; and N:
number of items.

B. NUMBER COMPARISON OF POSITIVE AND NEGATIVE
PATTERNS
In this section, we set min-inf to a fixed value. Subsequently,
we analyze and compared the number of positive and
negative patterns mined by InfI-NSP and modified sc-NSP
under different min-sup values on DS1-DS4. To obtain
sufficient patterns to observe the differences between the two
algorithms more clearly, different datasets had different min-
inf and min-sup ranges because of their inherent properties.

As shown in Fig 1 and 2, the number of patterns mined
by InfI-NSP on DS1-DS4 is significantly reduced compared
with that of the modified sc-NSP, regardless of the number
of positive or negative patterns. This is because InfI-NSP
considers the effect of the support of every element and
the order characteristics among these elements, thereby
removing the uninteresting frequent patterns.

For example, for a real-life dataset (DS2) and synthetic
dataset (DS3), we list the partial patterns with the highest
support in the removed 2 or 3-size positive and negative
patterns (for ease of observation, we express the support as
the number of sequences here), as shown in Tables 2 and 3.
As shown in the two tables, the patterns are composed of
repeated or combined elements with high support. Hence,
the support of these patterns is primarily derived from
the elements they contain and does not truly reflect their
interestingness. In addition, these sequences, which are the
exchange order of elements in the sequence, have little

FIGURE 1. Number comparison of PSPs. (a) The experiment on DS1.
(b) The experiment on DS2. (c) The experiment on DS3. (d) The
experiment on DS4.

FIGURE 2. Number comparison of NSPs. (a) The experiment on DS1.
(b) The experiment on DS2. (c) The experiment on DS3. (d) The
experiment on DS4.

difference in terms of support; that is, the order characteristics
of the elements in the sequence are not considered, such as
<¬in the and> and <¬in and the> in Table 2. Therefore,
these sequential patterns provide valueless information and
should not be considered interesting. InfI-NSP removes these
uninteresting frequent patterns using the influence, which
reduces the number of mined patterns compared with the
modified sc-NSP.

As shown in Fig 1 and 2, on DS1-DS4, as the value of min-
sup gradually increases, the number of PSPs and NSPs mined
by both algorithms gradually decreases. This is because the
number of patterns that satisfy the min-sup constraint is
smaller as the value of themin-sup becomes larger. Therefore,
the number of patterns satisfying themin-inf constraint is also
smaller. Simultaneously, as shown in Fig 1 and 2, we note
that, as the value of min-sup becomes smaller, the difference
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TABLE 2. Removed partial positive and negative patterns on DS2
(min-sup=0.12, min-inf=0.01).

TABLE 3. Removed partial positive and negative patterns on DS3
(min-sup=0.26, min-inf=0.01).

in the number of mining patterns between the two algorithms
becomes larger. In addition, as shown in Fig 2, this feature is
more obvious when mining negative patterns. This is because
as the value of min-sup becomes smaller, the more patterns
that are mined. Therefore, as more patterns provide valueless
information, InfI-NSP removes more patterns during mining.

C. RUNTIME COMPARISON OF MINING POSITIVE AND
NEGATIVE PATTERNS
In this section, we set min-inf to a fixed value. Then, onDS1-
DS4, we analyze and compare the runtimes of InfI-NSP and
modified sc-NSP for mining positive and negative patterns
under different min-sup values.

As shown in Fig 3 (a), (b), and (c) and 4 (b), under different
min-sup values, the runtime of InfI-NSP and modified sc-
NSP are relatively close. Therefore, we can conclude that
although InfI-NSP removes uninteresting frequent patterns,
its runtime is insignificantly different from that of modified
sc-NSP. This shows that InfI-NSP is highly efficient for the
corresponding datasets. As shown in Fig 3 (d) and 4 (a), (c),
and (d), when the value of min-sup is small, the runtime of
InfI-NSP for mining patterns is relatively different from that

FIGURE 3. Runtime comparison of mining PSPs. (a) The experiment on
DS1. (b) The experiment on DS2. (c) The experiment on DS3. (d) The
experiment on DS4.

FIGURE 4. Runtime comparison of mining NSPs. (a) The experiment on
DS1. (b) The experiment on DS2. (c) The experiment on DS3. (d) The
experiment on DS4.

of the modified sc-NSP. When the value of min-sup is greater
than a certain value, the runtime of the two algorithms for
mining patterns is relatively close. This is because when the
support decreases to a certain value, the number of patterns
mined from the corresponding dataset increases significantly.
Accordingly, the time required to calculate this influence
increases significantly. Simultaneously, this is related to the
characteristics of the dataset itself. As shown in Fig 3 and
4, the runtimes of both algorithms for mining PSPs and
NSPs decrease gradually as the value of min-sup increases
gradually on DS1-DS4.

D. EXPERIMENT TO ASSESS THE EFFECT OF MIN-INF
In this section, we set min-sup to a fixed value. Then, onDS1-
DS4, we analyze and compare the effects of different min-
inf values on the number of PSPs and NSPs. In particular,
for mining PSPs and NSPs, the runtimes of InfI-NSP are
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FIGURE 5. Effect of min-inf on the number of PSPs. (a) The experiment on
DS1. (b) The experiment on DS2. (c) The experiment on DS3. (d) The
experiment on DS4.

relatively close between different min-inf values under the
same min-sup value, and the runtime does not change
significantly with min-inf. Therefore, we no longer analyze
this aspect.

For positive patterns, under different min-sup values,
we analyze and compare the effect of min-inf on the number
of PSPs on DS1-DS4. For negative patterns, the number of
NSPs mined under different min-sup values varies greatly.
To facilitate observation and analysis, we conducted only
experiments to analyze and compare the effect of min-inf on
the number of NSPs under a fixed min-sup on DS1-DS4.

As shown in Fig 5, on DS1-DS4, the number of positive
patterns decreases as min-inf is increased under different
min-sup values. This is because, when min-sup is a fixed
value, with larger values of min-inf, more positive patterns
do not satisfy the min-inf constraint. In addition, as shown
in Fig 5(a) and (c), on DS1, when min-inf is 0.01-0.02, the
reduction in the number of positive patterns is larger under
different min-sup values. On DS3, when min-inf is 0.002-
0.004, the decrease in the number of positive patterns is larger
under different min-sup values. After that, the magnitude of
the reduction in the number of positive patterns is almost
the same. This is because many positive patterns that do not
satisfy the min-inf constraint appear when min-inf is within
the above ranges. As shown in Fig 5(b) and (d), we can see
that, on DS2 and DS4, the decrease in the number of positive
patterns is almost the same with the gradual increase of min-
inf for different min-sup values. This is because the number
of positive patterns that do not satisfy the min-inf constraint is
relatively uniform when min-inf is within the corresponding
range.

As shown in Fig 6, on DS1-DS4, when min-sup is a fixed
value, the number of negative patterns decreases with the
increase of min-inf values. This is because under the same
min-sup, the larger the value of min-inf, the more negative
patterns that do not satisfy the min-inf constraint. In addition,

FIGURE 6. Effect of min-inf on the number of NSPs. (a) The experiment
on DS1. (b) The experiment on DS2. (c) The experiment on DS3. (d) The
experiment on DS4.

from Fig 6 (a), we note that, on DS1, when min-inf is
0.01-0.03, the number of negative patterns decreases greatly.
However, this changes slightly after 0.03. This is because
the appearances of negative patterns that do not satisfy the
min-inf constraint are mainly concentrated when min-inf is
0.01-0.03. As shown in Fig 6 (c), on DS3, when min-inf
is 0.002-0.006, the number of negative patterns decreases
greatly. However, this changes slightly after 0.006. This is
because the appearances of negative patterns that do not
satisfy the min-inf constraint are mainly concentrated when
min-inf is 0.002-0.006. From Fig 6 (b) and (d), we note that
the decrease in the number of negative patterns is almost the
same on DS2 and DS4 with a gradually increasing min-inf.
This is because the number of negative patterns that do not
satisfy the min-inf constraint is relatively uniform when min-
inf is within the corresponding range.

E. SCALABILITY TEST ON InfI-NSP
A scalability test was conducted to evaluate the performance
of the InfI-NSP on large datasets. We conducted experiments
on the real dataset DS2 in terms of different data sizes:
from 5 to 20 times of DS2. The performance of the InfI-
NSP was evaluated by analyzing its runtime. Fig 7 (a) shows
the runtime of the InfI-NSP on the datasets of different sizes

FIGURE 7. Scalability test of InfI-NSP on DS2. (a) The experiment on
different min-sup values. (b) The experiment on different min-inf values.

12934 VOLUME 11, 2023



F. Cui et al.: Mining Interesting Negative Sequential Patterns Based on Influence

when min-inf was a fixed value of 0.01 and the values of
min-sup were 0.16, 0.18, and 0.20, respectively. Fig 7 (b)
shows the runtime of the InfI-NSP on these datasets when
min-sup was a fixed value of 0.18 and the values of min-
inf were 0.006, 0.008, and 0.01, respectively. As shown in
Fig 7 (a) and (b), the runtime has a roughly linear relationship
as the data size increases under different min-sup and min-
inf values. The results of the scalability test show that our
algorithm InfI-NSP performs well on large datasets.

VI. CONCLUSION
NSP mining can help people analyze behavioral information
more comprehensively and has attracted increasing attention
in recent years. Traditional NSP mining algorithms use only
support as a measure of interestingness. However, the support
measure cannot truly reflect the interestingness of patterns,
and thus, the mining results may contain some uninteresting
frequent patterns. Moreover, the existing influence proposed
for this problem does not involve NSP mining. Therefore,
in this study, we propose a new NSP mining algorithm, InfI-
NSP, to mine interesting NSPs based on influence. InfI-NSP
uses the influence in traditional NSPmining, which considers
the effect of the support of every element as well as the order
characteristics among these elements. The interestingness
of the patterns is truly reflected. Experiments show that
our proposed InfI-NSP algorithm can effectively mine truly
interesting NSPs.

In the future, we plan to focus on modifying the current
influence calculation method and applying it to more
traditional NSP mining algorithms. In addition, we will try
to mine interesting NSPs based on influence on incremental
databases or stream data. Furthermore, we intend to extend
the influence to other research fields related to NSP mining,
such as negative sequential rule mining, Top-k NSP mining,
and high-utility NSP mining.

ACKNOWLEDGMENT
(Fengling Cui and Xiaoqiang Ren are co-first authors.)

REFERENCES
[1] X. Jiang, T. Xu, and X. Dong, ‘‘Campus data analysis based on positive and

negative sequential patterns,’’ Int. J. Pattern Recognit. Artif. Intell., vol. 33,
no. 5, May 2019, Art. no. 1959016.

[2] E. M. Real, E. P. Pimentel, and J. C. Braga, ‘‘Analysis of learning behavior
in a programming course using process mining and sequential pattern
mining,’’ in Proc. IEEE Frontiers Educ. Conf. (FIE), Oct. 2021, pp. 1–9.

[3] M. I. Al-Twijri, J. M. Luna, F. Herrera, and S. Ventura, ‘‘Course
recommendation based on sequences: An evolutionary search of emerging
sequential patterns,’’ Cognit. Comput., vol. 14, no. 4, pp. 1–22, 2022.

[4] L. Cao, ‘‘Health and medical behavior informatics,’’ in Biomedical
Information Technology. Amsterdam, The Netherlands: Elsevier, 2020,
pp. 735–761.

[5] S. Kang, ‘‘Personalized prediction of drug efficacy for diabetes treatment
via patient-level sequential modeling with neural networks,’’ Artif. Intell.
Med., vol. 85, pp. 1–6, Apr. 2018.

[6] B. Nelson, G. P. Amminger, H. P. Yuen, N. Wallis, M. J. Kerr, L. Dixon,
C. Carter, R. Loewy, T. A. Niendam, M. Shumway, and S. Morris, ‘‘Staged
treatment in early psychosis: A sequential multiple assignment randomised
trial of interventions for ultra high risk of psychosis patients,’’ Early
Intervent Psychiatry, vol. 12, no. 3, pp. 292–306, 2018.

[7] H. H. Le, H. Edman, Y. Honda, M. Kushima, T. Yamazaki, K. Araki, and
H.Yokota, ‘‘Fast generation of clinical pathways including time intervals in
sequential pattern mining on electronic medical record systems,’’ in Proc.
Int. Conf. Comput. Sci. Comput. Intell. (CSCI), Dec. 2017, pp. 1726–1731.

[8] A. P. Wright, A. T. Wright, A. B. McCoy, and D. F. Sittig, ‘‘The use
of sequential pattern mining to predict next prescribed medications,’’
J. Biomed. Inform., vol. 53, pp. 73–80, Feb. 2015.

[9] J. K. Tarus, Z. Niu, and D. Kalui, ‘‘A hybrid recommender system for e-
learning based on context awareness and sequential pattern mining,’’ Soft
Comput., vol. 22, no. 8, pp. 2449–2461, Apr. 2018.

[10] Y. Song, L. Cao, X. Wu, G. Wei, W. Ye, and W. Ding, ‘‘Coupled
behavior analysis for capturing coupling relationships in group-based
market manipulations,’’ in Proc. 18th ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining, Aug. 2012, pp. 976–984.

[11] M. S. Nawaz, P. Fournier-Viger, M. Z. Nawaz, G. Chen, and Y. Wu,
‘‘MalSPM: Metamorphic malware behavior analysis and classification
using sequential pattern mining,’’ Comput. Secur., vol. 118, Jul. 2022,
Art. no. 102741.

[12] L. Cao and S. Y. Philip, Behavior Computing: Modeling, Analysis, Mining
and Decision. London, U.K.: Springer, 2012.

[13] L. Cao, T. Joachims, C. Wang, E. Gaussier, J. Li, Y. Ou, D. Luo,
R. Zafarani, H. Liu, G. Xu, Z. Wu, G. Pasi, Y. Zhang, X. Yang,
H. Zha, E. Serra, and V. S. Subrahmanian, ‘‘Behavior informatics: A new
perspective,’’ IEEE Intell. Syst., vol. 29, no. 4, pp. 62–80, Jul./Aug. 2014.

[14] L. Cao, ‘‘In-depth behavior understanding and use: The behavior informat-
ics approach,’’ Inf. Sci., vol. 180, no. 17, pp. 3067–3085, Sep. 2010.

[15] J. Han, H. Cheng, D. Xin, and X. Yan, ‘‘Frequent pattern mining: Current
status and future directions,’’DataMiningKnowl. Discovery, vol. 15, no. 1,
pp. 55–86, Aug. 2007.

[16] R. Agrawal and R. Srikant, ‘‘Mining sequential patterns,’’ in Proc. 11th
Int. Conf. data Eng., Mar. 1995, pp. 3–14.

[17] R. Srikant and R. Agrawal, ‘‘Mining sequential patterns: Generalizations
and performance improvements,’’ in Proc. Int. Conf. Extending Database
Technol. Berlin, Germany: Springer, 1996, pp. 1–17.

[18] J. Han, J. Pei, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal, and
M. Hsu, ‘‘PrefixSpan: Mining sequential patterns efficiently by prefix-
projected pattern growth,’’ in Proc. 17th Int. Conf. Data Eng., Apr. 2001,
pp. 215–224.

[19] M. J. Zaki, ‘‘Spade: An efficient algorithm formining frequent sequences,’’
Mach. Learn., vol. 42, nos. 1–2, pp. 31–60, Jan. 2001.

[20] J. Ayres, J. Flannick, J. Gehrke, and T. Yiu, ‘‘Sequential pattern mining
using a bitmap representation,’’ in Proc. 8th ACM SIGKDD Int. Conf.
Knowl. Discovery Data Mining, 2002, pp. 429–435.

[21] P. Qiu, L. Zhao, and X. Dong, ‘‘NegI-NSP: Negative sequential pattern
mining based on loose constraints,’’ in Proc. 43rd Annu. Conf. IEEE Ind.
Electron. Soc. (IECON), Oct. 2017, pp. 3419–3425.

[22] Z. Zheng, Y. Zhao, Z. Zuo, and L. Cao, ‘‘Negative-GSP: An efficient
method for mining negative sequential patterns,’’ in Proc. Conf. Res. Pract.
Inf. Technol., 2009, pp. 1–5.

[23] L. Cao, X. Dong, and Z. Zheng, ‘‘e-NSP: Efficient negative sequential
pattern mining,’’ Artif. Intell., vol. 235, pp. 156–182, Jun. 2016.

[24] X. Gao, Y. Gong, T. Xu, J. Lu, Y. Zhao, and X. Dong, ‘‘Toward better
structure and constraint to mine negative sequential patterns,’’ IEEE Trans.
Neural Netw. Learn. Syst., vol. 34, no. 2, pp. 571–585, Feb. 2020.

[25] J. WU, A. OUYANG, and L. ZHANG, ‘‘Statistically significant sequential
patterns mining algorithm under influence degree,’’ J. Comput. Appl.,
vol. 42, no. 9, p. 2713, 2022.

[26] S.-C. Hsueh, M.-Y. Lin, and C.-L. Chen, ‘‘Mining negative sequential
patterns for E-commerce recommendations,’’ in Proc. IEEE Asia–Pacific
Services Comput. Conf., Dec. 2008, pp. 1213–1218.

[27] Z. Zheng, Y. Zhao, Z. Zuo, and L. Cao, ‘‘An efficient ga-based
algorithm for mining negative sequential patterns,’’ in Proc. Pacific-Asia
Conf. Knowl. Discovery Data Mining. Berlin, Germany: Springer, 2010,
pp. 262–273.

[28] X. Dong, Y. Gong, and L. Cao, ‘‘E-RNSP: An efficient method for mining
repetition negative sequential patterns,’’ IEEE Trans. Cybern., vol. 50,
no. 5, pp. 2084–2096, May 2018.

[29] X. Dong, Y. Gong, and L. Cao, ‘‘F-NSP+: A fast negative sequential pat-
terns mining method with self-adaptive data storage,’’ Pattern Recognit.,
vol. 84, pp. 13–27, Dec. 2018.

[30] W. Wang and L. Cao, ‘‘VM-NSP: Vertical negative sequential pattern
mining with loose negative element constraints,’’ ACM Trans. Inf. Syst.,
vol. 39, no. 2, pp. 1–27, Apr. 2021.

VOLUME 11, 2023 12935



F. Cui et al.: Mining Interesting Negative Sequential Patterns Based on Influence

[31] T. Guyet and R. Quiniou, ‘‘NegPSpan: Efficient extraction of negative
sequential patterns with embedding constraints,’’ Data Mining Knowl.
Discovery, vol. 34, no. 2, pp. 563–609, Mar. 2020.

[32] P. Fournier-Viger, J. C. Lin, B. Vo, T. T. Chi, J. Zhang, and H. B. Le,
‘‘A survey of itemset mining,’’ WIREs Data Mining Knowl. Discovery,
vol. 7, no. 4, p. e1207, Jul. 2017.

[33] W. Gan, J. C.W. Lin, P. Fournier-Viger, H. C. Chao, and P. S. Yu, ‘‘A survey
of parallel sequential pattern mining,’’ ACM Trans. Knowl. Discovery
Data, vol. 13, no. 3, pp. 1–34, 2019.

[34] F. Chiclana, R. Kumar, M. Mittal, M. Khari, J. M. Chatterjee, and
S. W. Baik, ‘‘ARM–AMO: An efficient association rule mining algorithm
based on animal migration optimization,’’ Knowl.-Based Syst., vol. 154,
pp. 68–80, Aug. 2018.

[35] C.-S. Wang and J.-Y. Chang, ‘‘MISFP-growth: Hadoop-based frequent
pattern mining with multiple item support,’’ Appl. Sci., vol. 9, no. 10,
p. 2075, May 2019.

[36] Y. S. Koh and S. D. Ravana, ‘‘Unsupervised rare patternmining: A survey,’’
ACM Trans. Knowl. Discovery Data, vol. 10, no. 4, pp. 1–29, 2016.

[37] P. Fournier-Viger, Z. Li, J. C.-W. Lin, R. U. Kiran, and H. Fujita, ‘‘Efficient
algorithms to identify periodic patterns in multiple sequences,’’ Inf. Sci.,
vol. 489, pp. 205–226, Jul. 2019.

[38] X. Liu, J. Wu, F. Gu, J. Wang, and Z. He, ‘‘Discriminative pattern mining
and its applications in bioinformatics,’’ Briefings Bioinform., vol. 16, no. 5,
pp. 884–900, 2015.

[39] H. H. Yu, C. H. Chen, and S. Tseng, ‘‘Mining emerging patterns from time
series data with time gap constraint,’’ Int. J. Innov. Comput., Inf. Control,
vol. 7, no. 9, pp. 5515–5528, 2011.

[40] W. Gan, J. C.-W. Lin, J. Zhang, P. Fournier-Viger, H.-C. Chao, and
P. S. Yu, ‘‘Fast utility mining on sequence data,’’ IEEE Trans. Cybern.,
vol. 51, no. 2, pp. 487–500, Feb. 2020.

[41] J. C.-W. Lin, P. Fournier-Viger, andW. Gan, ‘‘FHN: An efficient algorithm
for mining high-utility itemsets with negative unit profits,’’ Knowl.-Based
Syst., vol. 111, no. 1, pp. 283–298, 2016.

[42] W. Gan, J. C.-W. Lin, P. Fournier-Viger, H.-C. Chao, and V. S. Tseng,
‘‘Mining high-utility itemsets with both positive and negative unit profits
from uncertain databases,’’ in Proc. Pacific-Asia Conf. Knowl. Discovery
Data Mining. Cham, Switzerland: Springer, 2017, pp. 434–446.

[43] H. Kim, T. Ryu, C. Lee, H. Kim, E. Yoon, B. Vo, J. C.-W. Lin, and
U. Yun, ‘‘EHMIN: Efficient approach of list based high-utility pattern
mining with negative unit profits,’’ Expert Syst. Appl., vol. 209, Dec. 2022,
Art. no. 118214.

[44] T. Guns, S. Nijssen, and L. De Raedt, ‘‘K-pattern set mining under
constraints,’’ IEEE Trans. Knowl. Data Eng., vol. 25, no. 2, pp. 402–418,
Feb. 2011.

[45] F. Petitjean, T. Li, N. Tatti, and G. I. Webb, ‘‘Skopus: Mining top-
K sequential patterns under leverage,’’ Data Mining Knowl. Discovery,
vol. 30, no. 5, pp. 1086–1111, Sep. 2016.

[46] Y. Zhao, H. Zhang, L. Cao, C. Zhang, and H. Bohlscheid, ‘‘Mining both
positive and negative impact-oriented sequential rules from transactional
data,’’ in Proc. Pacific-Asia Conf. Knowl. Discovery Data Mining. Berlin,
Germany: Springer, 2009, pp. 656–663.

[47] X. Dong, Z. Zheng, L. Cao, Y. Zhao, C. Zhang, J. Li, W. Wei, and Y. Ou,
‘‘E-NSP: Efficient negative sequential pattern mining based on identified
positive patterns without database rescanning,’’ in Proc. 20th ACM Int.
Conf. Inf. Knowl. Manage., 2011, pp. 825–830.

FENGLING CUI received the bachelor’s degree
in software engineering. She is currently pursu-
ing the master’s degree in computer technology
with the Qilu University of Technology (Shan-
dong Academy of Sciences). Her research inter-
ests include sequential pattern mining, negative
sequential pattern mining, sequential rule mining,
and negative sequence analysis.

XIAOQIANG REN received the bachelor’s degree
from the School of Computer Science, Shandong
Institute of Light Industry, in 2000, and the
master’s degree from the School of Computer
Science and Engineering, Shandong University of
Science and Technology, in 2008. He is currently
an Assistant Professor at the Qilu University
of Technology. His research interests include
machine learning and data mining.

XIANGJUN DONG received the Ph.D. degree in
computer applications from the Beijing Institute of
Technology, China, in 2005. From 2007 to 2009,
he worked as a Postdoctoral Fellow with the
School of Management and Economics, Beijing
Institute of Technology. From 2009 to 2010,
he was a Visiting Scholar with the University
of Technology Sydney, Australia. He is currently
a Professor with the Department of Computer
Science and Technology, Qilu University of Tech-

nology (Shandong Academy of Sciences), Jinan, China. His research
interests include data mining, artificial intelligence, and big data. He has
published more than 100 journals/conference publications, including Arti-
ficial Intelligence, IJCAI, IEEE TRANSACTIONS ON NEURAL NETWORKS AND

LEARNING SYSTEMS, IEEE TRANSACTIONS ON CYBERNETICS, IEEE TRANSACTIONS

ON INDUSTRIAL INFORMATICS, Pattern Recognition, and CIKM.

12936 VOLUME 11, 2023


