
Received 8 January 2023, accepted 30 January 2023, date of publication 3 February 2023, date of current version 9 February 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3242124

A Reinforcement Learning Based Grammatical
Inference Algorithm Using Block-Based
Delta Inverse Strategy
FARAH HANEEF AND MUDDASSAR AZAM SINDHU
Department of Computer Science, Quaid-i-Azam University, Islamabad 45320, Pakistan

Corresponding author: Farah Haneef (farah@cs.qau.edu.pk)

This work was supported by the Higher Education Commission of Pakistan (HEC) under Grant 9223/Federal/NRPU/RD/HEC/2017.

ABSTRACT A resurgent interest for grammatical inference aka automaton learning has emerged in several
intriguing areas of computer sciences such as machine learning, software engineering, robotics and internet
of things. An automaton learning algorithm commonly uses queries to learn the regular grammar of a
Deterministic Finite Automaton (DFA). These queries are posed to aMinimum Adequate Teacher (MAT) by
the learner (Learning Algorithm). The membership and equivalence queries which the learning algorithm
may pose, are often capable of having their answers provided by the MAT. The three main categories of
learning algorithms are incremental, sequential, and complete learning algorithms. In the presence of aMAT,
the time complexity of existing DFA learning algorithms is polynomial. Therefore, in some applications
these algorithms may fail to learn the system. In this study, we have reduced the time complexity of DFA
learning from polynomial to logarithmic form. For this, we propose an efficient complete DFA learning
algorithm; the Block based DFA Learning through Inverse Query (BDLIQ) using block based delta inverse
strategy, which is based on the idea of inverse queries that John Hopcroft introduced for state minimization
of a DFA. The BDLIQ algorithm possess O(|6|N .logN) complexity when a MAT is available. The MAT
is also made capable of responding to inverse queries. We provide theoretical and empirical analysis of the
proposed algorithm. Results show that our suggested approach for complete learning; BDLIQ algorithm,
is more efficient than the ID algorithm in terms of time complexity.

INDEX TERMS Automaton learning algorithm, complete learning, inverse query, machine learning,
reinforcement learning.

I. INTRODUCTION
Automaton learning, also known as grammatical inference,
is a field in which a system is inferred in the form of an
automaton by providing a sequence of inputs (i1, i2, . . . , in),
and then synthesising the corresponding output sequence
(o1, o2, . . . , on).There are two main concepts used in the
automated learning; the Learner and the Minimal Adequate
Teacher (MAT) [4]. Depending on the setting that the learning
algorithm provides, the learner learns the regular set through
questions and counterexamples. The learner asks questions
to the MAT, and the MAT provides answers regarding the

The associate editor coordinating the review of this manuscript and

approving it for publication was Yu-Da Lin .

unidentified regular set. It responds to two different ques-
tions:A membership query is the first type and consists of the
string t ∈ 6∗. Depending onwhether or not string t is a part of
the unidentified regular set, the teacher responds as ‘‘yes’’ or
‘‘no’’. The second sort of query is a conjecture, which is made
up of a description of the regular set S. If S is behaviorally
equivalent to the unknown language, the response is ‘‘yes,’’
otherwise it is a string t in the symmetric difference between S
and the unknown language. In the second instance, the string
t is referred to as a witness or a counterexample because it
serves to refute the conjectured set S.

Automaton learning algorithms are created in such a way
that they learn in the limit to produce the isomorphic rep-
resentation of the desired Deterministic Finite Automaton

VOLUME 11, 2023 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 12525

https://orcid.org/0000-0002-3538-2622
https://orcid.org/0000-0002-3411-9224
https://orcid.org/0000-0001-5100-6072

F. Haneef, M. A. Sindhu: Reinforcement Learning Based Grammatical Inference Algorithm

(DFA). E.M. Gold [19] developed the idea of ‘‘learning in the
limit’’ for the first time in 1967. In his paper, he demonstrated
how a regular language corresponding to some unidentified
target DFA may be inferred by a finite number of inquiries
or guesses using a grammatical inference or an automaton
learning algorithm.

There are three main categories of algorithms proposed in
literature for automaton learning [35], [36], including incre-
mental learning algorithms, sequential learning algorithms
and complete learning algorithms. In incremental learning,
the system under learning (SUL) is learnt in a series of
increments i = 1, 2, . . . , n. At the conclusion of each incre-
ment, the learner formulates the hypothesis DFA Mi and
asks the teacher an equivalence question. The teacher may
or may not give a counterexample in the event that the
equivalency question receives a negative response. If the
teacher gives a counterexample, the learner expands its learn-
ing process based on the counterexample it received and
incorporates the learning material from the prior increment(s)
into the new increments. Similarly, learning is also done
in a number of increments in sequential learning, but the
learner begins learning from scratch and does not draw on
the knowledge from earlier increments. A complete learning
involves learning the entire system what it needs to know
in order to produce a hypothesis. The hypothesis DFA, M ,
is generated only when the learner has mastered the entire
system (SUL).

The ability of grammatical inference [32], [39] to address
a variety of real-world applications of machine learning [18],
[20], [45], software engineering [1], [2], [37], robotics, arti-
ficial intelligence and big data [27] has led to its use in
recent years by the computer science research community.
In general, these applications employ the idea of inferring an
automaton by creating a model of a system under learn (SUL)
and examining it to determine whether its behaviour adheres
to a specification.

In the presence of MAT, the current automaton learning
algorithms have polynomial time complexity (at least in cubic
form). The current automaton learning algorithms require a
lot of time when inferring the model of the System Under
Learn (SUL). These algorithms can occasionally fail to learn
extremely complicated systems. In the paper [40] authors
specifically give some real-world examples of 6 transition
systems of CSS processes [13], [14], [15] like buffers, sched-
ulers, vending machines, and mutual exclusion protocols
[34], [44] where they fail to learn them due to inefficient
learning algorithms (in terms of time) and a lack of storage
space. In there study, authors also emphasize the need for a
good automaton learning algorithm that is sufficiently effi-
cient in terms of execution time and memory. According to
the existing literature [7], even though significant progress
has been made in the development of DFA learning algo-
rithms, many researchers agree that more effective automaton
learning algorithmsmust still be developed in order to address
real-world learning issues and situations [42].

Due to the fact that the notion of the minimal adequate
teacher (MAT) was first time introduced in the ID (Identi-
fication of Regular Languages) algorithm and without it the
learning of a DFA is an NP-hard problem therefore in this
study we propose a new efficient DFA learning algorithm
called BDLIQ based on the ID algorithm. In contrast to
the DLIQ algorithm described in our earlier work [21], the
BDLIQ algorithm does not employ the live complete set (as
an input) for learning purposes, which poses a limitation to
learning the System Under Learn (SUL) in many practical
applications. The BDLIQ algorithm substitutes it with a set
of input alphabet 6 for block-based learning. This learning
approach also reduces its complexity from polynomial to
logarithmic form.

By partitioning the states of System Under Learn (SUL)
into blocks of final and non-final states, the BDLIQ algorithm
identify behaviorally equivalent and non-equivalent states by
traversing back to the initial state using inverse queries, which
were first put forth by John Hopcroft for state minimization
of DFA.

The main contributions of this research work are as
follows:

1) We develop a novel and an efficient DFA learning
algorithm that reduces the worst-case time complexity
of complete learning process to logarithmic form.

2) We introduce the concept of delta inverse (δ−1) and
Inverse Queries(IQ) in DFA learning.

3) We improve the capabilities of the current MAT to
make it capable of answering inverse queries.

The remainder of the paper is structured as follows: in
Section II, we provide background information to help read-
ers comprehend the proposed algorithm and in Section III,
we discuss relevant research in the field. The proposed
BDLIQ algorithm is presented in Section IV. In Section V
we study and describe the BDLIQ algorithm’s time com-
plexity, the BDLIQ algorithm’s termination and correctness
are proven in Section VI, and a functioning example of the
algorithm is demonstrated in Section VII. We contrast the
effectiveness of our suggested BDLIQ algorithm and the
ID algorithm in Section VIII. At the end, in Section IX,
we conclude our findings.

II. PRELIMINARIES AND NOTATIONS
A Deterministic Finite Automaton (DFA)A consists of a five
tuples ⟨Q, 6, δ, q0,F⟩ where:
Q denotes the finite set of states.
A finite set of input symbols is represented as 6.
The transition function δ determines the subsequent state
when an input symbol is read from a certain state
δ : Q× 6 → Q.
The start state is represented by the state q0 ∈ Q.
The collection of final states is F ⊆ Q.
Definition 1: Let for a DFA A, having transition function

δ : Q × 6 → Q which can also be written as δ(qi, σ) =

qj and the iterated transition function δ∗
: Q × 6∗

→ Q

12526 VOLUME 11, 2023

F. Haneef, M. A. Sindhu: Reinforcement Learning Based Grammatical Inference Algorithm

inductively defined by δ(q, λ) = qwhere λ is an empty string
and δ∗(qj, b1, b2, . . . , bn) = δ(δ∗(q, b1, b2, . . . , bn−1), bn)
Likewise, we inductively define δ−1∗ using the inverse

transition relation δ−1. Where δ−1
: Q × 6 ⊆ Q and

can also be written as δ−1(qj, σ) ⊆ Q where 6−1 denotes
an inverse transition by reading an element of 6 from a
state Q to give its predecessor states. The inductive def-
inition of δ−1∗ is now simple to follow as δ−1(q, λ) =

q, if and only if q is a starting state otherwise it returns
∅ and δ−1∗

(qj, b1, b2, . . . , bn) = δ−1(δ−1∗

({q}, b2, . . . ,
bn), b1). □
The Inverse Query (IQ) is a question which is asked by the

learner from theMAT about the predecessor state(s) of a state
qj, by reading some string α ∈ 6∗ from it, i.e., δ−1∗(qj, α) =?
The teacher’s response is either an empty set or a set of one
or more states.

A block is a collection of states indicated by the symbol
B(num), where num is the block number.
Let B(k) stand for the k th block in the collection of blocks.
The number of states in a block is indicated by the symbol
|B(k)|, which also serves as the block’s size.
A LearningBlock is a collection of all the blocks that have
already been en-queued for learning purposes in BlockQueue,
where BlockQueue is a queue and each element is represented
as Bnew.
A collection of blocks called Bnum is used to keep predecessor
states in the corresponding block number, such as B(num′′).
The BlockSet is a collection of blocks that correspond to the
states of the hypothesis DFA.

III. RELATED WORK
Many studies have been done on automaton learning during
the previous few decades. Some researchers have concen-
trated in particular on previously developed learning algo-
rithms and have attempted to determine the effects of the
size of the alphabet and the number of states on the required
number of membership queries. Some researchers have con-
tributed by outlining the restrictions placed on equivalence
queries, using [5]. Numerous of them have concentrated
primarily on the kinds of queries and their importance in
automaton learning [6], [8], [9], [10], [11], [22] and in learn-
ing regular expressions [26].

Some researchers have studied how to use grammati-
cal inference in various contexts like robotic planning [12]
vehicle platooning [31], [25] and automated verification of
distributed control programs [24]. Some researchers have
proposed the algorithms to learn the random DFA [7], non-
deterministic input enabled labelled transition systems [43]
and Buchi Automata based on families of DFA’s [28].

Grammatical inference algorithms have been proposed by
numerous scholars such as L* [4], ID [3], IID [33], IDS
[38], IKL [30], kerans [23], RPNI [16], RPNII [17] and DKL
[29] for learning and testing purposes. Some of them are
incremental in nature whereas some work has been done on
the basis of complete learning.

According to the best of our knowledge, in literature the
existing complete learning algorithms other than DLIQ are
L∗ [4], ID [3] and RPNI [16].

The learning algorithm L∗ is complete. Two different types
of queries; membership and equivalence queries are used to
infer a regular language. It asks questions about membership
and stores the answers in a table known as a observationtable
(OT). Before making a hypothesis and requesting equiva-
lence questions, the OTmust satisfy two fundamental criteria.
According to [4], these characteristics include closure and
consistency. A hypothesis can be created when the OT is
closed and consistent. Up until OT becomes consistent and
closed, the L∗ continues to learn.

According to [3], the ID algorithm is a complete learning
algorithm. To learn the regular set, it poses membership
questions from the teacher (MAT). This algorithm was the
one that initially introduced the idea of MAT. The terms live
states, live complete set, distinguishing strings and dead state
d0 are used in this algorithm. The ID algorithm creates a
table and searches it for the blocks of accepting and non-
accepting states. When the first iteration is finished, the ID
algorithm selects two strings from the live complete set that
behave similarly, but when some σ ∈ 6 is concatenated with
one of the strings, the other behaves differently, moving to
the rejecting block. This provides a possible distinguishing
string. The hypothesis DFA, H, which is isomorphic to the
target DFA is constructed by the ID algorithm if it fails to
find such a pair of strings.

According to Oncina Garcia in 1992, the RPNI algorithm
is a passive learning algorithm. The information regarding
the hypothesis is stored in a tree data structure rather than a
table, and consistency is not maintained. It doesn’t employ
membership queries for learning purposes. It requires two
input sets, S+ and S−, which stand for positive and negative
examples, respectively. It creates the prefix tree PT (S+) from
the set of positive examples and their prefixes after first
writing the items of S+ and its prefixes in lexical order.
Then, it divides the tree’s branches into blocks in a recursive
manner. Each element of PT (S+) is initially a part of the
block that it self-contains. These blocks are subjected to joint
operation in a recursive manner by the RPNI algorithm in
order to be combined into two final blocks. The accepting
state block is the first, while the non-accepting state block is
the second.

If we examine the complexity of these complete learning
algorithms, we can find that, when a adequate teacher is
present, the complexity of these learning algorithms is poly-
nomial as shown in table 1. The John Hopcroft established
the idea of state minimization, and in his algorithm he had
employed the tactic of creating blocks of final and non-
final states. He found the similar states to create the minimal
target automaton using the δ−1 transition approach. He stated
that his technique generates a minimal target automaton with
nlogn complexity.

In this paper, we present BDLIQ, a new effective DFA
learning algorithm based on the concepts of the ID algorithm

VOLUME 11, 2023 12527

F. Haneef, M. A. Sindhu: Reinforcement Learning Based Grammatical Inference Algorithm

along with inverse transition strategy of John Hopcroft algo-
rithm for state minimization of DFAs, which is based on the
existing literature for automaton learning and state minimiza-
tion of an automaton. The current study aims to decrease
bounds for complete DFA learning by reducing the complex-
ity of DFA learning from polynomial(cubic) to logarithmic
form. The comparison of our proposed approachwith existing
DFA (Complete) learning algorithms is provided in table 1.

TABLE 1. Summary of existing DFA complete learning algorithms.

IV. THE PROPOSED BDLIQ ALGORITHM
The proposed BDLIQ algorithm is presented in Algorithms 1
and 2.

Algorithm 1 BDLIQ Algorithm

1: Input: A set of positive labeled examples S+ and a DFA
A to act as a teacher to answer queries.

2: Output: A DFAM equivalent to the target DFA A.
3: Step 1:

Initiate BlockSet = ∅, BlockQueue = empty, Learning-
Block = ∅

4: Identify the final states block B(1) with the help of S+ by
asking MQ for all si ∈ S+ as for all δ(si, λ) = qi where
qi ∈ F

5: B(1) = F //Final states block
6: Step 2:

Make table δ−1 by using final state set F and all their
predecessor states, for all input elements σ along with
empty string λ, where σ ∈ 6

7: To identify the non-final states block, create B(temp)
which consists of all the predecessor states of final state
block B(1), (given in δ−1 Table)

8: B(2) = (Q− F) where Q = B(1) ∪ B(temp) // B(2) is
non-final states block

9: Update BlockSet
10: Step 3:

k = 3
11: Step 4:
12: enQueue (BlockQueue(B(1))
13: Update LearningBlock //put B(1) in LearningBlock
14: while BlockQueue != empty do

deQueue(Bnew)
15: for all σi ∈ 6 ask inverse query forBnew whereBnew ∈

BlockQueue do
16: // finding predecessor state(s) of setBnew via reading

element σ .

there are three possibilities against the response of
inverse query; no predecessor state, one predecessor
state or multiple predecessor states.

17: if δ−1∗(Bnew, σi) = ∅ then
18: goto Line 15;
19: else if δ−1∗(Bnew, σi) = {qj} then
20: BQuery(qj,BlockSet) = num // Block Member-

ship call using Algorithm 2
21: B(k ′) = {qj}
22: if |B(k ′)| < |B(num)| then
23: B(k) = B(k ′)
24: B(num) = B(num) − B(k)
25: enQueue (BlockQueue(B(k))
26: Update BlockSet
27: UpdateLearningBlock // put B(k) in Learning-

Block
28: end if
29: if |B(k ′)| == |B(num)| then
30: if B(num) /∈ LearningBlock then
31: enQueue (BlockQueue(B(num))
32: Update LearningBlock // put B(num) in

LearningBlock
33: end if
34: end if
35: else if δ−1∗(Bnew, σi) = {q1, . . . , qm} then
36: for j = 1 to j = m do
37: BQuery(qj,BlockSet) = num // Block Mem-

bership call using Algorithm2.
//All predecessor states those belong to the
same block are placed in a single block named
as B(num′′) such as:
B(num′′)=B(num′′) ∪ {qj} where B(num′′)
belongs to the list Bnum

38: end for
39: B(k ′) = B(num′′)
40: if |B(k ′)| < |B(num)| then
41: B(k) = B(k ′)
42: B(num) = B(num) − B(k)
43: enQueue (BlockQueue(B(k))
44: Update BlockSet
45: Update LearningBlock // put B(k) in Learning-

Block
46: end if
47: if |B(k ′)| == |B(num)| then
48: if B(num) /∈ LearningBlock then
49: enQueue (BlockQueue(B(num))
50: Update LearningBlock // put B(num) in

LearningBlock
51: end if
52: end if
53: end if
54: Step 5
55: if(B(k) ̸= ∅) then k++
56: if(Bnum ̸= ∅) then goto Line 39
57: end for
58: end while

12528 VOLUME 11, 2023

F. Haneef, M. A. Sindhu: Reinforcement Learning Based Grammatical Inference Algorithm

59: Generate hypothesis automaton M by reading inverse
transitions from δ−1 table.

Algorithm 2 Block Membership Algorithm
1: Input: A state qj where qj ∈ Q and a set of existing blocks
BlockSet .

2: Output: Block number named as num, from where qj
belongs to.

3: Function BQuery(qj,BlockSet)
4: {
5: return num
6: }

V. COMPLEXITY ANALYSIS
The minimum adequate teacher (MAT) has polynomial time
complexity, but for the query complexity analysis, [4] its
complexity is taken as constant. For a membership and δ−1

query, the MAT has O(1) time complexity, however for an
equivalence query, it has polynomial time complexity.

Table construction takes O(|6|N + 1) time complexity.
In each iteration of inner for loop, the learner asks δ−1 query
against an element of set 6 (used as distinguishing string
in the proposed algorithm) therefore, its time complexity is
O(|6|) whereas, (as for a newly created block) the number
of states visited at each step are maximum of logN whereas
outer while loop executes maximum N times (N is number
of states) therefore, the nested loop takes O(|6|.NlogN) time
complexity.
The block splitting process takes O(1) time complexity.
Automaton reconstruction is done by reading the δ−1 table
therefore, it also takes O(|6|N) time complexity. In view of
above asymptotic analysis, the worst case time complexity of
the proposed algorithm is O(|6|NlogN).

VI. CORRECTNESS AND TERMINATION
The algorithm’s accuracy is proven by the fact that it success-
fully creates a learned DFA that is consistent with the desired
DFA A.
Definition 2: The splitting of a blockB(num) intoB(1) and

B(2) is done on the basis of the B(1) ∩ B(2) = ∅ and B(1) ∪

B(2) = B(num) properties, which are mutually exclusive and
totally exhaustive, respectively.
Theorem 1 (Termination Theorem): Let LearningBlock

be a set consisting of all the blocks (possessing by Block-
Queue) which have already been used for learning new
blocks. The execution of BDLIQ on BlockQueue terminates
when the |LearningBlock| = N and N is number of distinct
blocks at the end of the execution.

Proof: As the LearningBlock consists of all blocks
those are enqueued in the BlockQueue. So it is obvi-
ous that the while loop of Algorithm 2 terminates when
the BlockQueue is empty (completely exhausted) and all
the distinct blocks reside in the LearningBlock such as
|LearningBlock| = N . □

Theorem 2 (Correctness Theorem): The BDLIQ algo-
rithm terminates on BlockQueue and the hypothesis automa-
ton M is a canonical representation of A.

Proof: In order to learn more about the grammar of the
target DFA A, the BDLIQ algorithm poses inverse and equiv-
alence queries. The fact that BDLIQ explicitly learns through
inverse queries must be noted. To establish this theorem,
we rely on the following two premises: (a) The Termination
Theorem 1 establishes that learning terminates when all ele-
ments of the set LearningBlock those are enqueued in Block-
Queue are exhausted. (b) The BDLIQ algorithm combines all
the states of target automaton A that have behavior-equivalent
values into a single state block, and the hypothesis automaton
M is then built utilising all the blocks formed as states of the
learnt hypothesis. As a result, the hypothesis automaton M
is a unique minimal representation of A. Combining (a) and
(b) prove the theorem. □

VII. AN EXAMPLE
We now provide an example to demonstrate how the BDLIQ
algorithm functions. For this, we consider an example
automaton taken from [41] given in Fig. 1.
The inputs of the algorithm consist of the Target Automa-

ton (A) (given in Figure 1 and a set of positive labeled
examples S+ = {01}.
Initially, BlockSet = ∅, BlockQueue = empty and Learning-
Block = ∅

According to the Line 4 of Algorithm 2, B(1)= {C}. Accord-
ing to the Step 2 the delta inverse table is created as described
in table 2.

TABLE 2. δ−1 Table.

According to the Line 7 of Algorithm 2, the predecessor
states of final state set; B(1) are A, B, D, E, F, G, H are used
to find the non-final states block as B(2) = {A, B, D, E, F, G,
H}. According to the Line 9, now BlockSet = {B(1), B(2)}.
According to the step 3 of Algorithm 2, now k= 3. According
to the Line 12, enqueue the final state block B(1) in Block-
Queue so now BlockQueue = [B(1)].
According to the Line 13, LearningBlock = {B(1)}. Now
according to the Line 14, as BlockQueue is not empty there-
fore dequeue B(1) fromBlockQueue asBnew =B(1). Accord-
ing to the Line 15, σi = 0 therefore with the help of IQ,
find predecessor state(s) of block B(1) for input 0. According
to the Line 35, predecessor state of B(1) via reading 0 is
F and D where F and D both belong to the block B(2) so
B(2’’)={F, D}. According to the Line 39, B(3’) = B(2’’) so
B(3’) = {F, D}. According to the Line 40 as |B(3′)| < |B(2)|

VOLUME 11, 2023 12529

F. Haneef, M. A. Sindhu: Reinforcement Learning Based Grammatical Inference Algorithm

FIGURE 1. Target automaton A (SUL).

so B(3) = {F, D} and B(2) = {A, B, E, G, H}. According to
the Line 43, enqueue B(3) in BlockQueue therefore according
to the Line 44 and 45, BlockSet = {B(1), B(2), B(3)} and
LearningBlock = {B(1), B(3)}. According to the Line 47,
as if condition is wrong so goto the Line 55. As B(3) ̸= ∅

so k = 4. According to the Line 56 as Bnum = ∅ therefore go
to the next iteration of for loop.

According to the Line 15 of Algorithm 2, σi = 1. Predeces-
sor states of B(1) via reading 1 is B, C andH. According to the
Line 35, B and H belong to the B(2) and C belongs to the B(1)
therefore, B(2’’)= {B, H}, B(1’’)= {C} and Bnum = {B(2’’),
B(1’’)}. According to the Line 39, B(4’) = B(2’’) = {B,
H}. According to the Line 40, as |B(4′)| ≤ |B(2)| therefore,
B(4) = {B, H} and B(2) = { A, G, E}. According to the
Line 43, enqueue B(4) in BlockQueue so BlockSet = {B(1),
B(2), B(3), B(4)} and LearningBlock = {B(1), B(3), B(4)}.
As on Line 47, if condition false so goto Line 55. As B(4) ̸=

∅ therefore, k = 5. According to the Line 56, as Bnum ̸= ∅ so
goto the Line 39. Now B(5’) = B(1’’) = {C}. According to
the Line 40, as |B(5′)| is not less than |B(1)| therefore, goto
the Line 48. According to the Line 48 as B(1) belongs to the
LearningBlock set so if condition does not execute. Again
goto the Line 55. B(5) = ∅ so k remains same as k = 5.
According to the Line 56 now Bnum = ∅ so inner for loop
ends. Now goto the Line 13 as BlockQueue is not empty so
Bnew = B(3) and σi = 0.
According to the Line 16, predecessor states of B(3) via
reading 0 is ∅ so according to the Line 18, goto the Line 15.
Now σi = 1. According to the Line 16, predecessor states of
B(3) via reading 1 are A, E. According to the Line 35, A and
E both belong to the B(2) so B(2’’) = {A, E}. According
to the Line 39, B(5’) = {A, E} as |B(5′)| < |B(2)| therefore
B(5) = {A, E} and B(2) = {G}. According to the Lines
43, 4, 45 BlockQueue = {B(4), B(5)}, BlockSet = {B(1),
B(2), B(3), B(4), B(5)} and LearningBlock = {B(1), B(3),
B(4), B(5)}. As Line 47, condition is false therefore goto
the Line 55. As B(5) ̸= ∅ so k = 6. As Bnum = ∅ so inner
for loop ends. Now goto the outer while loop at Line 14.
As BlockQueue is not empty so enqueue next element as
Bnew = B(4) and σi = 0.

Predecessor states of B(4) via reading 0 is A and E. A, E both
belong to the B(5). So according to the Line 37, B(5’’) = {A,
E} andBnum = {B(5’’)}. According to the Line 40 if condition
is false therefore goto the Line 47. As |B(6′)| = |B(5)| there-
fore goto the Line 48. As B(5) belongs to the LearningBlock
set so if condition does not execute and control goto the Line
55. As B(6)= ∅ so k remains same as k= 6. According to the
Line 56 as Bnum = ∅ therefore goto the Line 15. Now σi = 1.
Predecessor states of B(4) via reading 1 is ∅ so inner loop
ends. Now goto the Line 14 as BlockQueue is not empty so
dequeue next element as Bnew = B(5) and now σi = 0.
Predecessor states of B(5) via reading 0 is C. According to the
Line 20, as C belongs to B(1) so B(6’)= {C}. As if condition
false at Line 22 so goto the Line 29. As |B(6′)| = |B(1)| and
according to the Line 30, B(1) belongs to the set Learning-
Block so any condition of step 5 also does not meet. Now
again goto the Line 15. Now σi = 1. Predecessor state of B(5)
via reading 1 is G. G belongs to B(2). According to the Line
21, B(6’)= {G}. As according to the Line 29, |B(6′)| = |B(2)|
and according to the Line 30, B(2) does not belong to the set
of LearningBlock therefore, enqueue B(2) in BlockQueue so,
nowBlockQueue= [B(2)] and LearningBlock= {B(1), B(3),
B(4), B(5), B(2)}. Now goto the Line 55 as B(6) = ∅ so k
remains the same as k= 6 and Bnum = emptyset therefore, for
loop ends. Again goto the out while loop at the Line 14. Now
Bnew = B(2). Execute the nested loop. We can see that now
no new block is created and ultimately BlockQueue remains
empty therefore algorithm terminates. After termination, the
final blocks will be: {{C}, {B, H}, {A, E}, {D, F} and {G}}.
Automaton Construction: The final number of blocks in
BlockSet shows the number of states of hypothesis DFA.
Each block represents a single state. By reading the δ−1

table input transitions, algorithmwill construct the hypothesis
automatonM (described in Fig. 2).

VIII. COMPARISON OF BDLIQ AND ID ALGORITHM
To compare the performance of BDLIQ with other relevant
algorithms, we looked at the algorithms listed in Table 1,
which lists all the complete learning algorithms that are
currently available in the literature. Only three other learning

12530 VOLUME 11, 2023

F. Haneef, M. A. Sindhu: Reinforcement Learning Based Grammatical Inference Algorithm

FIGURE 2. Hypothesis automaton M.

algorithms, the L*, ID, and RPNI, are complete learning
algorithms, similar to the BDLIQ algorithm proposed in this
study. The RPNI cannot be compared to BDLIQ since it
is based on passive learning while the L*, ID, and BDLIQ
are based on active learning. Therefore, only the L* and/or
the ID can be utilised for BDLIQ comparison. However,
the L∗’s obligation to utilise a counterexample whenever
the hypothesis it builds is not equal to the target automaton
is a key distinction from other. This characteristic is lack-
ing in both the ID and the BDLIQ algorithms and makes
learning more directed when compared to them. Therefore,
We were left with only the ID algorithm to perform com-
parison with the BDLIQ algorithm as both share almost all
comparison parameters with the exception of the inverse
query.

For the comparison of BDLIQ and ID algorithms we have
setup an evaluation framework (given in Fig. 3) consisting of
following modules:

1) A target DFA (A)
2) A random DFA generator
3) BDLIQ and ID algorithms
4) A DFA equivalence checker

A. EXPERIMENTAL SETUP
We have used Java language to implement the BDLIQ and
ID algorithms. We used a computer with Windows 8.1 pro,
16GB of RAM, and an Intel Core i5-3470 processor to carry
out the research. We have run numerous tests on both of these
algorithms. Due to two key parameters of the target DFA A,
the tests varied. These parameters include:

1) The state size |Q|

2) The input alphabet size |6|

We set up the tests to be run with state size |Q| rang-
ing between 10, 20, 30, . . . , 100 and alphabet size varied
between 2, 4, . . . , 10 in order to analyse the performance of
both of these algorithms. Randomly generated target DFAs
included every possible pairing of the two parameters such
as for (|Q|=10, |6|=2), (|Q|=10, |6|=4), (|Q|=10, |6|=6),
(|Q|=10, |6|=8), (|Q|=10, |6|=10). Additionally, we

FIGURE 3. Evaluation framework.

conducted the studies ten times for a given parameter con-
figuration before compiling the data to determine the mean
of the ten trials.

B. EMPIRICAL EVALUATION
For comparison of both these algorithms (BDLIQ and ID),
we have considered the following two parameters:

1) Number of queries (posed by the learner to the MAT
for learning purpose)

2) The learning time(ms) (time taken by equivalence
checker not included)

C. RESULTS AND ANALYSIS
The calculated results are provided in tables 3, 4, 5 and 6.
Results given in table 4 show that due to learning through
inverse queries instead of membership queries the overall
number of queries posed by the BDLIQ algorithm for learn-
ing purpose is very small than the ID algorithm (given in
table 3). Even the calculated values of the BDLIQ algorithm
against the parameter set |6| = 10 and number of states
|Q| = 100 is around 40 times less than the calculated values of
ID algorithm against same parameter set. Even these values

VOLUME 11, 2023 12531

F. Haneef, M. A. Sindhu: Reinforcement Learning Based Grammatical Inference Algorithm

FIGURE 4. Comparison of BDLIQ and ID algorithm with respect to queries.

are less than the parameter set |6| = 2 and number of states
|Q| = 100 of ID algorithm. Similarly, we can see that results
given in table 5 and table 6 describe the same picture regard-
ing learning times. Using delta inverse strategy in BDLIQ
algorithm, the learning time of BDLIQ algorithm is very less
than the ID algorithm which uses conventional delta strategy
for learning purpose. We can see that the maximum value
against the parameter set |6| = 10 and number of states
|Q| = 100 is more than 20 times less than the value computed

against the learning time of ID algorithmwhich clearly shows
the efficiency of BDLIQ algorithm over ID algorithm with
respect to learning time.

According to the comparative analysis presented in Fig.4
and Fig.5, we can see that due to the large number of queries
posed by the ID algorithm for learning purpose, it experiences
a significant increase in the number of queries and learning
time as the number of states or input alphabet size increases,
whereas due to the delta inverse strategy and inverse queries

12532 VOLUME 11, 2023

F. Haneef, M. A. Sindhu: Reinforcement Learning Based Grammatical Inference Algorithm

FIGURE 5. Comparison of BDLIQ and ID algorithm with respect to learning time(ms).

used in BDLIQ algorithm, the graphs of the BDLIQ algorithm
grow relatively slowly and show logarithmic behavior with
increase in number of states or input alphabet size. It follows
that in terms of time and the number of queries pose to the
MAT, the BDLIQ algorithm is more efficient than the ID
algorithm.

1) DISCUSSION
All the existing complete learning algorithms described in
Table 1 learn target DFA using δ strategy and possess
polynomial time complexity. Our proposed BDLIQ algorithm

uses δ−1 strategy due to which it learns model from final
to start state unlike other learning algorithms. The L∗ and
ID algorithms are active in nature and uses membership
queries for learning purposes whereas RPNI algorithm is
passive in nature and does not pose any kind of query.
In other hand, the BDLIQ algorithm uses IQs and success-
fully infer model by posing smaller number of queries than
other complete learning algorithms. Therefore, the learn-
ing time of the BDLIQ algorithm becomes small and ulti-
mately it possesses worst case time complexity in nlogn
form.

VOLUME 11, 2023 12533

F. Haneef, M. A. Sindhu: Reinforcement Learning Based Grammatical Inference Algorithm

TABLE 3. Number of queries posed by ID algorithm.

TABLE 4. Number of queries posed by BDLIQ algorithm.

TABLE 5. Learning time(ms) of ID algorithm.

TABLE 6. Learning time(ms) of BDLIQ algorithm.

IX. CONCLUSION
The existing grammatical inference algorithms have at-least
polynomial time complexity due to which these algorithms
take a lot of time to infer the required model. In some situa-
tions, these algorithms even become fail to learn extremely
complicated systems. In this paper, we have developed a

revolutionary complete learning algorithm called BDLIQ for
learning deterministic finite automata (DFAs), which reduces
the complexity of DFA learning from polynomial to nlogn
form such as O(|6|N .logN). For this, we have used the
delta inverse strategy along with inverse queries. Addition-
ally, we have performed empirical analysis of our proposed
algorithm with existing complete learning algorithms pos-
sessing similar characteristics like BDLIQ algorithm such
as; ID algorithm. We have used two parameters; number of
queries posed by the learning algorithm and learning time
(ms). Results demonstrated that the BDLIQ outperforms the
ID algorithm in terms of number of queries and learning
time. By utilising inverse queries, this technique enhances
the entire learning process of DFAs. In future, we intend to
apply this learning approach to design incremental learning
algorithm as well.

REFERENCES
[1] B. K. Aichernig and M. Tappler, ‘‘Efficient active automata learning

via mutation testing,’’ J. Automated Reasoning, vol. 63, pp. 1103–1134,
Oct. 2018.

[2] B. K. Aichernig and M. Tappler, ‘‘Learning from faults: Mutation testing
in active automata learning,’’ in Proc. NASA Formal Methods Symp., 2017,
pp. 19–34.

[3] D. Angluin, ‘‘A note on the number of queries needed to identify regular
languages,’’ Inf. Control, vol. 51, no. 1, pp. 76–87, Oct. 1981.

[4] D. Angluin, ‘‘Learning regular sets from queries and counterexamples,’’
Inf. Comput., vol. 75, no. 2, pp. 87–106, Aug. 1987.

[5] D. Angluin, ‘‘Negative results for equivalence queries,’’ Mach. Learn.,
vol. 5, no. 2, pp. 121–150, Jun. 1990.

[6] D. Angluin, ‘‘Queries revisited,’’ Theor. Comput. Sci., vol. 313, Feb. 2004,
Art. no. 175194.

[7] D. Angluin and D. Chen, ‘‘Learning a random DFA from uniform strings
and state information,’’ in Proc. Int. Conf. Algorithmic Learn. Theory,
2015, pp. 119–133.

[8] D. Angulin, ‘‘Queries and concept learning,’’ Mach. Learn., vol. 2,
pp. 319–342, Apr. 1988.

[9] J. L. Balcázar, J. Díaz, R. Gavaldà, and O.Watanabe, ‘‘The query complex-
ity of learning DFA,’’ New Gener. Comput., vol. 12, no. 4, pp. 337–358,
Sep. 1994.

[10] L. Becerra-Bonache, A. H. Dediu, and C. Tîrnăucă, ‘‘Learning DFA from
correction and equivalence queries,’’ in Proc. Int. Colloq. Grammatical
Inference, 2006, pp. 281–292.

[11] F. Bergadano and S. Varricchio, ‘‘Learning behaviors of automata from
multiplicity and equivalence queries,’’ SIAM J. Comput., vol. 25, no. 6,
pp. 1268–1280, Dec. 1996.

[12] J. Chandlee, J. Fu, K. Karydis, C. Koirala, J. Heinz, and H. Tanner,
‘‘Integrating grammatical inference into robotic planning,’’ in Proc. 7th
Int. Conf. Grammatical Inference, vol. 21, 2012, pp. 69–83.

[13] R. Cleaveland, J. Parrow, and B. Steffen, ‘‘A semantics based verification
tool for finite state systems,’’ in Proc. 9th IFIP Symp. Protocol Specifi-
cation, Test. Verification. Amsterdam, The Netherlands: North Holland,
1989, pp. 1–26.

[14] R. Cleaveland, J. Parrow, and B. Steffen, ‘‘The concurrency workbench,’’
in Proc. Workshop Autom. Verification Methods Finite State Syst. (Lecture
Notes in Computer Science), 1989, pp. 24–37.

[15] J. P. R. Cleaveland and B. Steffen, ‘‘The concurrency workbench: Operat-
ing instructions,’’ Lab. Found. Comput. Sci., Univ. Edinburgh, Edinburgh,
U.K., Tech. Note 10, Sep. 1988.

[16] J. N. Departarnento and P. Garcia, ‘‘Identifying regular languages in
polynomial,’’ in Advances in Structural and Syntactic Pattern Recognition
(Series in Machine Perception and Artificial Intelligence), vol. 5. Singa-
pore: World Scientific, 1992, pp. 99–108.

[17] P. Dupont, ‘‘Incremental regular inference,’’ in Proc. 3rd Int. Colloq.
Grammatical Interference Learn. Syntax Sentences (ICGI), Montpellier,
France. Berlin, Germany: Springer, Sep. 1996 pp. 222–237.

[18] L. Feng, S. Lundmark, K. Meinke, F. Niu, M. A. Sindhu, and P. Y. Wong,
‘‘Case studies in learning-based testing,’’ in Proc. 25th IFIP WG 6.1
Int. Conf. Test. Softw. Syst. (ICTSS), Istanbul, Turkey. Berlin, Germany:
Springer, Nov. 2013, pp. 164–179.

12534 VOLUME 11, 2023

F. Haneef, M. A. Sindhu: Reinforcement Learning Based Grammatical Inference Algorithm

[19] E. M. Gold ‘‘Language identification in the limit,’’ Inf. Control, vol. 10,
no. 5, pp. 447–474, May 1967. [Online]. Available: http://groups.lis.
illinois.edu/amag/langev/paper/gold67limit.html

[20] A. Hagerer, H. Hungar, O. Niese, and B. Steffen, ‘‘Model genera-
tion by moderated regular extrapolation,’’ in Proc. 5th Int. Conf. Fun-
dam. Approaches Softw. Eng., Joint Eur. Conf. Theor Pract. Softw.
(FASE/ETAPS), Grenoble, France. Berlin, Germany: Springer, Apr. 2002,
pp. 80–95.

[21] F. Haneef and M. A. Sindhu, ‘‘DLIQ: A deterministic finite automaton
learning algorithm through inverse queries,’’ Inf. Technol. Control, vol. 51,
no. 4, pp. 611–624, Dec. 2022.

[22] C. de la Higuera, ‘‘Learning grammars and automata with queries,’’ in
Topics in Grammatical Inference, J. Heinz and J. Sempere, Eds. Berlin,
Germany: Springer, 2016, doi: 10.1007/978-3-662-48395-4_3.

[23] M. J. Kearns, U. V. Vazirani, and U. Vazirani, An Introduction to Compu-
tational Learning Theory. Cambridge, MA, USA: MIT Press, 1994.

[24] A. Khalili, M. Narizzano, L. Natale, and A. Tacchella, ‘‘Learning mid-
dleware models for verification of distributed control programs,’’ Robot.
Auton. Syst., vol. 92, pp. 139–151, Jun. 2017.

[25] H. Khosrowjerdi and K. Meinke, ‘‘Learning-based testing for autonomous
systems using spatial and temporal requirements,’’ in Proc. 1st Int. Work-
shop Mach. Learn. Softw. Eng. Symbiosis, 2018, pp. 6–15.

[26] E. Kinber, ‘‘On learning regular expressions and patterns via membership
and correction queries,’’ inProc. Int. Colloq. Grammatical Inference, 2008,
pp. 125–138.

[27] M. Krichen, ‘‘Improving formal verification and testing techniques for
Internet of Things and smart cities,’’ Mobile Netw. Appl., 2019, doi:
10.1007/s11036-019-01369-6.

[28] Y. Li, Y.-F. Chen, L. Zhang, and D. Liu, ‘‘A novel learning algorithm for
Büchi automata based on family of DFAs and classification trees,’’ in Int.
Conf. Tools Algorithms Construct. Anal. Syst., 2017, pp. 208–226.

[29] R. Mazhar and M. A. Sindhu, ‘‘DKL: An efficient algorithm for learning
deterministic Kripke structures,’’ Acta Inform., vol. 58, no. 6, pp. 611–651,
Dec. 2021.

[30] K. Meinke and M. A. Sindhu, ‘‘Incremental learning-based testing for
reactive systems,’’ in Proc. 5th Int. Conf. Tests Proofs (TAP), Zurich,
Switzerland. Berlin, Germany: Springer, Jun. 2011, pp. 134–151.

[31] K. Meinke, ‘‘Learning-based testing of cyber-physical systems-of-
systems: A platooning study,’’ in Computer Performance Engineer-
ing (EPEW) (Lecture Notes in Computer Science), vol. 10497. Cham,
Switzerland: Springer, 2017, pp. 135–151.

[32] J. Michaliszyn and J. Otop, ‘‘Learning infinite-word automata with loop-
index queries,’’ Artif. Intell., vol. 307, Jun. 2022, Art. no. 103710.

[33] R. Parekh, C. Nichitiu, and V. Honavar, ‘‘A polynomial time incremental
algorithm for regular grammar inference,’’ in Proc. 4th Int. Colloq. Gram-
matical Inference (ICGI) (LNAI). Springer, 1998, pp. 1–15.

[34] J. Parrow, ‘‘Verifying a CSMA/CD-protocol with CCS,’’ in Proc. 7th IFIP
Symp. Protocol Specification, Test. Verification, 1987, pp. 1–12.

[35] A. Petrenko, F. Avellaneda, R. Groz, and C. Oriat, ‘‘FSM inference and
checking sequence construction are two sides of the same coin,’’ Softw.
Quality J., vol. 27, pp. 651–674, Dec. 2018.

[36] P. Lamela Seijas, S. Thompson, and M. Á. Francisco, ‘‘Model extraction
and test generation from JUnit test suites,’’ Softw. Quality J., vol. 26, no. 4,
pp. 1519–1552, Dec. 2018.

[37] M. Shahbaz and R. Groz, ‘‘Analysis and testing of black-box component-
based systems by inferring partial models,’’ Softw. Test., Verification Rel.,
vol. 24, no. 4, pp. 253–288, Jun. 2014.

[38] M. A. Sindhu and K. Meinke, ‘‘IDS: An incremental learning algorithm
for finite automata,’’ 2012, arXiv:1206.2691.

[39] R. Smetsers, M. Volpato, F. Vaandrager, and S. Verwer, ‘‘Bigger is not
always better: On the quality of hypotheses in active automata learning,’’
in Proc. 12th Int. Conf. Grammatical Inference, 2014, pp. 167–181.

[40] T. Berg, B. Jonsson, M. Leucker, and M. Saksena, ‘‘Insights to Angluin’s
learning,’’ Electron. Notes Theor. Comput. Sci., vol. 118, pp. 3–18,
Feb. 2005.

[41] J. E. Hopcroft and J. D. Ullman, Introduction to Automata Theory, Lan-
guages and Computation. Reading, MA, USA: Addison-Wesley, 1979.

[42] F. Vaandrager, ‘‘Model learning,’’ Commun. ACM, vol. 60, no. 2,
pp. 86–95, Jan. 2017.

[43] M. Volpato and J. Tretmans, ‘‘Active learning of nondeterministic systems
from an ioco perspective,’’ in Proc. Int. Symp. Leveraging Appl. Formal
Methods, Verification Validation, 2014, pp. 220–235.

[44] D. Walker, ‘‘Analysing mutual exclusion algorithms using CCS,’’ Univ.
Edinburgh, Edinburgh, U.K., Tech. Rep. ECS-LFCS-88-45, 1988.

[45] S. Windmüller, J. Neubauer, B. Steffen, F. Howar, and O. Bauer, ‘‘Active
continuous quality control,’’ in Proc. 16th Int. ACM Sigsoft Symp.
Component-Based Softw. Eng., Jun. 2013, pp. 111–120.

FARAH HANEEF received the B.S. degree in com-
puter science from Arid Agriculture University,
Rawalpindi, Pakistan, in 2014, and the M.Phil.
degree in computer science from Quaid-i-Azam
University, Islamabad, Pakistan, in 2016, where
she is currently pursuing the Ph.D. degree in com-
puter science. She has worked as a Research Assis-
tant, from 2020 to 2022. Her research interests
include the design and development of algorithms,
machine learning, and social network analysis.

Up until now, she has authored five research articles in well reputed interna-
tional journals. She has been awarded Gold Medal from the Arid Agriculture
University, Pakistan, in 2014.

MUDDASSAR AZAM SINDHU received the
M.Sc. degree in computer science from theUniver-
sity of the Punjab, Lahore, Pakistan, in 2004, and
the Licentiate of Engineering (Lic.Eng.) and Ph.D.
degrees in computer science from the Royal Insti-
tute of Technology (KTH), Stockholm, Sweden,
in 2011 and 2013, respectively. He is currently
an Associate Professor in computer science with
Quaid-i-Azam University, Islamabad, Pakistan.
He has also designed algorithms for learning deter-

ministic finite automata and Kripke structures. He is also the author of
LBTest tool which tests reactive systems in a fully automated manner on
the basis of formal linear temporal logic requirements. He has authored
around 35 research papers in reputed international journals and conferences.
His research interests include automating software testing using formal and
informal requirements. He has been a Professional Member of the ACM,
since 2015.

VOLUME 11, 2023 12535

http://dx.doi.org/10.1007/978-3-662-48395-4_3
http://dx.doi.org/10.1007/s11036-019-01369-6

