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ABSTRACT The goal of this paper is to studymodel-free data-driven control evaluation and design strategies
for discrete-time linear time-invariant systems, where the system model is unknown. In particular, our main
contribution is twofold: 1) new state-input exploration and data collection schemes from experiences; 2) new
data-driven linear matrix inequalities and dynamic programming methods for stabilization and optimal
control problems. The proposed exploration and data collection schemes theoretically guarantee to acquire
sufficient information from the system’s state-input trajectories that can solve the underlying control design
problems. We prove that under mild assumptions, as more and more data is accumulated, the collected data
can solve the problems with higher probability along with the proposed algorithms.

INDEX TERMS Data-driven design, reinforcement learning, optimal control, linearmatrix inequality (LMI),
dynamic programming, linear time-invariant (LTI) system.

I. INTRODUCTION
Recently, reinforcement learning (RL) [1] and data-driven
control design have captured significant attentions due to its
successful demonstrations that outperform humans in sev-
eral challenging tasks [2], [3]. The goal of this paper is to
study 1) data-driven control design methods for discrete-time
linear-time invariant (LTI) systems and 2) state-input explo-
ration and data collection strategies that theoretically guaran-
tee solvability of the underlying data-driven problems with
high probability. For the data-driven control design methods,
two different lines are addressed: linear matrix inequalities
(LMIs) [4] and dynamic programming (DP) [5], [6]. Both
data-driven approaches can solve stabilization and linear
quadratic regulator (LQR) problems without the knowledge
of models. The exploration and data collection algorithms
are tailored to the proposed data-driven designs, and once
collected, then no more data is required to solve the problems
completely.

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhiguang Feng .

A. RELATED WORKS
The previous works can be roughly categorized into two
parts: RL (or data-driven dynamic programming) and data-
based LMIs. As for RL, the early work [7] proposed a
Q-learning algorithm [8] for discrete-time LTI systems,
where the approximate Bellman equation is solved using
the least-square method and state-input trajectories. More
comprehensive least-square RL approaches were reported
in [9]. A model-based RL has been studied in [10] recently
for discrete-time LTI systems with sample complexity anal-
ysis. A policy gradient algorithm for LTI systems and its
global convergence were studied in [11]. An efficient online
RL with guaranteed finite-time regret bounds has been pro-
posed in [12] based on a novel semidefinite programming
relaxation. The paper [13] proposed several model-based and
model-free RLs. Reference [14] proposed a policy iteration
RL based on the Lagrangian duality perspectives of the Bell-
man equation.

As for the data-based LMIs [15], [16], [17], [18], [19],
[20], [21], [22], [23], [24], [25], several advances have been
made recently in deriving numerically tractable data-based
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LMIs that enable direct data-driven control designs.
Data-dependent LMIswere developed in [15] for stabilization
of switched systems. The paper [16] introduced a
data-dependent controller parameterization, and proposed
data-based LMIs for stabilization and optimal control prob-
lems. The concept of informative data was introduced in [17],
from which necessary and sufficient data-based conditions
have been developed for various control problems. The
paper [18] proposed LMI conditions for control with guar-
anteed stability and performance by introducing a notion of
noise bounds. Recently, [19] and [20] introduced data-driven
LMI conditions for stabilization problems based on a matrix
version of the classical Finsler’s lemma [26].

Most of the previous works usually focus on 1) developing
data-dependent LMI formulations, and 2) conditions on the
data structures that guarantee the solvability of the underlying
data-based control design problems. However, most of the
previous works did not fully address how to generate data
structures to meet the solvability conditions. Compared to the
previous works, in this paper, we mainly focus on stochastic
explorations schemes that theoretically guarantee solvability
of the underlying data-driven problems with high probability,
which are lacking in the literature to the authors’ knowledge.
Moreover, we also study the development of new data-driven
control design methods in the forms of the dynamic
programming and LMIs. The proposed new data-based
LMI method can be computationally efficient alternatives
in some cases as discussed in the main parts of this
paper.

In particular, unique features of the proposed data-driven
methods are summarized in more details as follows:

1) One of the main contributions is the proposition
of exploration and data collection schemes, which
theoretically guarantee solvability of the underlying
data-driven problems with high probability. We prove
that the new data collection approaches is guaranteed
to solve the problem with probability one as more
and more experiences are accumulated. In particular,
the exploration and data collection methods that best
match with the proposed methods are those in [10]
and [11], which studied probabilistic finite-sample
analysis. Compared to the existing methods, the pro-
posed approach has unique aspects that are summarized
in the main results.

2) Based on the data matrices collected from the proposed
methods, we investigate new forms of data-driven DPs
and LMIs that are tailored to the proposed methods.
The proposed data-driven LMIs are more memory effi-
cient than existing methods in the sense that the size
of LMIs is independent of the length of the collected
trajectory. Moreover, depending on the LMI solver
used and the structure of the underlying problem, the
proposed LMIs may be computationally more efficient
in some cases. In this respect, we regard the proposed
methods as complements rather than replacement of
existing methods.

B. NOTATION
The adopted notation is as follows: R: set of real numbers;
Rn: n-dimensional Euclidean space; Rn×m: set of all n × m
real matrices; AT : transpose of matrix A; A−T : transpose of
matrix A−1; A ≻ 0 (A ≺ 0, A ⪰ 0, and A ⪯ 0, respectively):
symmetric positive definite (negative definite, positive semi-
definite, and negative semi-definite, respectively) matrixA; I :
identity matrix with appropriate dimensions; Sn: symmetric
n × n matrices; Sn+: cone of symmetric n × n positive semi-
definite matrices; Sn++: symmetric n × n positive definite
matrices; Tr(A): trace of matrix A; ρ(·): spectral radius;
diag(A1, . . . ,An): block diagonal matrix with diagonal ele-
ments A1, . . . ,An..

II. PROBLEM FORMULATIONS AND PRELIMINARIES
Throughout the paper, we consider the discrete-time linear
time-invariant (LTI) system

x(k + 1) = Ax(k)+ Bu(k), x(0) = z ∈ Rn, (1)

where k ∈ N is the time, x(k) ∈ Rn is the state vector, u(k) ∈
Rm is the input vector, and z ∈ Rn is the initial state.
Remark 1: Data-driven control design methods for such

linear systems have been actively studied until recently [16],
[17]. Although the system in (1) is simple, it covers a wide
range of industrial applications, such as circuits andmechan-
ical systems [27]. For instance, in many industrial appli-
cations, practical nonlinear systems are often approximated
by linear systems, and simple PID controllers are the most
widely used control strategy today for such complex industrial
applications [28]. Moreover, rigorous study of such simple
linear systems gives more insights on fundamental mecha-
nisms and help us develop more advanced methodologies for
complex and general systems.

Assuming the control u(k) is given by a state-feedback
control policy u(k) = Fx(k), we denote by x(k;F, z) the
solution of (1) starting from x(0) = z. Under the state-
feedback control policy, the cost function for the classical
LQR problem is denoted by

J (F, z) :=
∞∑
k=0

[
x(k;F, z)
Fx(k;F, z)

]T
3

[
x(k;F, z)
Fx(k;F, z)

]
, (2)

where 3 :=

[
Q 0
0 R

]
⪰ 0 is the weight matrix.

By introducing the augmented state vector v(k) :=
[
x(k)
u(k)

]
,

we will consider the augmented system

v(k + 1) = AFv(k), v(0) = v0 ∈ Rn+m, (3)

where AF :=
[
A B
FA FB

]
∈ R(n+m)×(n+m), which plays an

important role throughout the paper. A useful property of AF
is that its spectral radius ρ(AF ) is identical to that of A+BF .
Lemma 1 [14]: ρ(A+ BF) = ρ(AF ) holds.
In this paper, we study both LQR and stabilization

problems. The stabilization problem is to find a stabiliz-
ing feedback gain F such that ρ(A + BF) < 1. The
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LQR problem is to solve F∗ = argminF∈Rm×n J (F, z)
if the optimal value of infF∈Rm×n J (F, z) exists and is
attained. From the standard LQR theory, although J∗(F, z)
has different values for different z ∈ Rn, the min-
imizer F∗ = argminF∈Rm×n J (F, z) is not dependent
on z. Therefore, it follows that argminF∈Rm×n J (F, z) =

argminF∈Rm×n

r∑
i=1

J (F, zi) for any z, zi ∈ Rn, i ∈

{1, 2, . . . , r}. For technical reasons that will become clear
later, we solve

F∗ := argminF∈Rm×n

n∑
i=1

J (F, ei)

instead of argminF∈Rm×n J (F, z), where ei ∈ Rn is the ith
standard basis vector. Therefore, it will be useful to define a
standard measure of the cost. In this paper, we will use the
following cost index:

J (F) :=
n∑
i=1

J (F, ei)

For a given z ∈ Rn, if the optimal value of
infF∈Rm×n J (F, z) exists and is attained, then the optimal cost
is denoted by J∗(z) = J (F∗). Assumptions that will be used
throughout the paper are summarized below.
Assumption 1: Throughout the paper, we assume that
• Q ⪰ 0,R ≻ 0;
• (A,B) is stabilizable, andQ can be written as Q = CTC,
where (A,C) is detectable.

Under Assumption 1, the optimal value of infF∈Rm×n J (F)
exists, is attained, and J∗(z) is a quadratic function, i.e.,
J∗(z) = zTX∗z, where X∗ is the unique solution of the
algebraic Riccati equation (ARE) [5, Proposition 4.4.1] for
X ⪰ 0:

X = ATXA− ATXB(R+ BTXB)−1BTXA+ Q.

In this case, J∗(z) as a function of z ∈ Rn is called the
optimal value function. The reader can refer to [5] and [29] for
more details of the classical LQR results. The corresponding
optimal control policy is u∗(z) = F∗z, where

F∗ := −(R+ BTX∗B)−1BTX∗A ∈ F (4)

is the unique optimal gain. Alternatively, the Q-function [5]
is defined as

Q∗(z, u) := zTQz+ uTRu+ J∗(Az+ Bu) =
[
z
u

]T
P∗
[
z
u

]
,

(5)

where

P∗ :=
[
Q+ ATX∗A ATX∗B
BTX∗A R+ BTX∗B

]
. (6)

The optimal policy in terms of the Q-function is then given
by

u∗(z) = F∗z = argminu∈Rm Q∗(z, u).

FIGURE 1. Overall diagram of the data-driven analysis and design
schemes.

Before closing this section, some useful lemma is
summarized.
Lemma 2: Given matrices U ,V of appropriate dimen-

sions, the following holds for any ε > 0:

−ε−1UTU − εV TV ⪯ UTV + V TU ⪯ ε−1UTU + εV TV .

Proof: The first inequality comes from (ε−1/2U +
ε1/2V )T (ε−1/2U + ε1/2V ) = ε−1UTU + UTV + V TU +
εV TV ⪰ 0 and the reversed inequality is obtained from
(ε−1/2U − ε1/2V )T (ε−1/2U − ε1/2V ) = ε−1UTU −UTV −
V TU + εV TV ⪰ 0. This completes the proof. □
The overall diagram of the data-driven analysis and design

schemes considered in this paper is given in Figure 1. In gen-
eral, the data-driven methods consist of the following steps:
1) Data collection: From the environment (system),

we (designer or analyzer) receive the state x(k + 1),
and then generates the input u(k). Using the time delay
unit, the complete transition set (x(k), x(k + 1), u(k))
can be collected. Over a certain period of time, we can
collect a series of the transition set, which is called the
data collection process.

2) Analysis or design: From the data collection part,
we can obtain a data set, which is then transmit-
ted to the analysis or design part, where we can
solve data-dependent LMIs or perform data-dependent
dynamic programming methods based on the collected
data to analyze the system or design a controller for the
unknown system.

In this paper, we will address both the data collection
and analysis or design parts with more emphasis on the
data collection schemes. In Section IV, the data collec-
tion methods are introduced, the data-driven LMIs are dis-
cussed in Section IV, Section V, and the data-driven dynamic
programming is addressed in Section VI. Finally, more

VOLUME 11, 2023 14311



D. Lee, D. W. Kim: Data-Driven Control Design With LMIs and Dynamic Programming

sophisticated data collection methods are discussed in
Section VII with theoretical proofs of their effectiveness.

III. DATA COLLECTION
In this section, we introduce two data acquisition schemes.
We note that these two data collection algorithms are con-
ceptual, and introduced as an intermediate step. New explo-
ration and data collection schemes, which are more practical,
will be proposed in Section VII. In particular, Algorithm 1
will be called an on-policy data collection algorithm with
exploring starts, (S(F),H (F)) = On− Collect(F), where
on-policy means that the generated data depends on a par-
ticular state-feedback gain F . Note that Si in Algorithm 1 is
nothing but a sample covariance matrix

Si =
1
N

N−1∑
k=1

[
x(k;F, ei)
u(k)

] [
x(k;F, ei)
u(k)

]T
.

The data generated by Algorithm 1 can be useful when we
want to evaluate a state-feedback gain F , i.e., its stabilizabil-
ity or the LQR performance. The exploring starts [1] imply
that for sufficient exploration of the state-space, Algorithm 1
needs trajectories starting from different initial states x(0) =
ei, i = 1, 2, . . . , n, where (e1, e2, . . . , en) is the standard basis
that spans the state-space, Rn.

The following lemma offers a useful property of the data
matrices.
Lemma 3 (Data Matrix Transformation): S(F)ATF =H (F)

holds.
Proof: We have

S(F)ATF =
1
nN

n∑
i=1

N−1∑
k=0

[
x(k;F, ei)
u(k)

] [
x(k;F, ei)
u(k)

]T
ATF

=
1
nN

n∑
i=1

N−1∑
k=0

[
x(k;F, ei)
u(k)

] [
x(k + 1;F, ei)
u(k + 1)

]T
= H (F)

□
Another method, Algorithm 2, is an off-policy data collec-

tion algorithmwith exploration. Here, the off-policy indicates
that the data generated by Algorithm 2 does not depend on a
specific state-feedback gain, and it is particularly useful for
design algorithms. Roughly speaking, the exploration means
that it uses some exploration signals in control inputs to
sufficiently explore the state-space so as to collect sufficient
information on the model. Note that the data matrices, (S,H ),
in Algorithm 2 can be expressed as

S :=
1
N

N−1∑
k=0

[
x(k)
u(k)

] [
x(k)
u(k)

]T

H :=
1
N

N−1∑
k=0

[
x(k)
u(k)

]
x(k + 1)T

Throughout the paper, we call the data generated by the
data collection algorithms is valid if the S-matrix (S(F) or S)

Algorithm 1 On-Policy Data Collection (S(F),H (F)) =
On− Collect(F) With Exploring Starts
1: for i ∈ {1, 2, . . . , n} do
2: Initialize Si = 0,Hi = 0.
3: Initialize x(0) = ei.
4: for k ∈ {0, 1, . . . ,N − 1} do
5: Apply control input u(k) = Fx(k)
6: Observe x(k + 1)
7: Update

Si←
k

k + 1
Si +

1
k + 1

[
x(k)
u(k)

] [
x(k)
u(k)

]T
Hi←

k
k + 1

Hi +
1

k + 1

[
x(k)
u(k)

] [
x(k + 1)
u(k + 1)

]T
8: end for
9: end for
10: Return (S(F),H (F)) =

(
1
n

n∑
i=1

Si, 1
n

n∑
i=1

Hi

)

Algorithm 2 Off-Policy Data Collection (S,H ) =

Off− Collect(z) With Exploration
1: Initialize S0 = 0,H0 = 0.
2: Initialize x(0) = z.
3: Initialize ε > 0.
4: for k ∈ {0, 1, . . .} do
5: Apply control input u(k) with some excitation input
6: Observe x(k + 1)
7: Update

Sk+1←
k

k + 1
Sk +

1
k + 1

[
x(k)
u(k)

] [
x(k)
u(k)

]T
Hk+1←

k
k + 1

Hk +
1

k + 1

[
x(k)
u(k)

]
x(k + 1)T

8: if λmin(Sk+1) > ε then
9: Stop and return (S,H ) = (Sk+1,Hk+1)
10: end if
11: end for

is strictly positive definite. For completeness, the definition
is formally stated below.
Definition 1 (Data Validity): The data (S,H ) and

(S(F),H (F)) generated by Algorithm 1 and Algorithm 2,
respectively, is said to be valid if S ≻ 0 and S(F) ≻ 0,
respectively.

The validity of the data ensures that all the proposed meth-
ods perform well, and completely solve the desired problems.
Due to the exploring starts in Algorithm 1, we can prove that
the data from Algorithm 1 is always valid for any N > 0.
Lemma 4: [Data validity of Algorithm 1] With a positive

integer N > 0, S(F) ≻ 0 holds.
Proof: We have

S(F) =
1
nN

n∑
i=1

N−1∑
k=0

[
x(k;F, ei)
u(k)

] [
x(k;F, ei)
u(k)

]T
14312 VOLUME 11, 2023



D. Lee, D. W. Kim: Data-Driven Control Design With LMIs and Dynamic Programming

=
1
nN

n∑
i=1

N−1∑
k=0

(AF )keieTi (A
T
F )
k

=
1
nN

N−1∑
k=0

(AF )k (ATF )
k

⪰
1
nN

I

≻ 0,

which completes the proof. □
On the other hand, Algorithm 2 cannot theoretically guar-

antee the validity. Therefore, we adopt the so-called persistent
excitation assumption for Algorithm 2, given below.
Assumption 2 (Persistent Excitation (PE)): There exists a

positive integer N > 0 such that S ≻ 0 from Algorithm 2.
We notice that it is typical to apply Assumption 2 in adap-

tive control and RL community [7], [9], [30].Moreover, in the
last section, more sophisticated exploration data collection
algorithms will be developed, which theoretically guarantee
the data validity with different scenarios.
Remark 2: Some remarks are in order.
1) Suppose that one input-state trajectory of (1) is stacked

into the matrices

X =
[
x(0) · · · x(N − 1)

]
,

U =
[
u(0) · · · u(N − 1)

]
.

Then, a standard condition for the PE in the litera-

ture [16], [31] corresponds to the condition that
[
X
U

]
has full row rank. The PE condition is equivalent

to
[
X
U

] [
X
U

]T
≻ 0, which is the data validity in

Definition 1.
2) There are hyper-parameters N and ε to be tuned

in Algorithm 1 and Algorithm 2, respectively. In Algo-
rithm 1, any N > 0 can generate valid (S(F),H (G)).
Therefore, we can simply set N = 1. In Algo-
rithm 2, any sufficiently small ε > 0 is a good
choice. To avoid ill-conditioning problems, we recom-
mend 0.001 or 0.01.

Finally, the following lemma will be useful throughout the
paper.
Lemma 5 (Data Matrix Transformation): The following

identity holds:

S
[
AT

BT

]
= H

Proof:

S
[
AT

BT

]
=

1
N

N−1∑
k=0

[
x(k)
u(k)

]
(Ax(k)+ Bu(k))T

=
1
N

N−1∑
k=0

[
x(k)
u(k)

]
x(k + 1)T

= H

□

FIGURE 2. Example 1: Diagram of the quarter-vehicle suspension model.

Example 1: As a running example, we will consider the
generalized quarter-vehicle suspension model [32] whose
continuous-time linear model is given by ẋ(t) = Acx(t) +
Bcu(t), t ≥ 0 with

Ac =


0 0 1 −1
0 0 0 1

−
ks
ms

0 −
cs
ms

cs
ms

ks
mu

−
kt
mu

cs
mu

−
cs + ct
mu

 ,

Bc =


0
0
1
ms
−

1
mu

 ,

where ms is the sprung mass, which represents the vehicle
chassis; mu is the unsprung mass, which represents mass of
the wheel assembly; cs and ks are damping and stiffness of
the suspension system, respectively; kt and ct stand for com-
pressibility and damping of the pneumatic tyre, respectively.
The overall diagram of the system is given in Figure 2.
The model parameters are ms = 973kg,mu = 114kg, ks =

42720N/m, kt = 101115N/m, cs = 1095Ns/m, and ct =
14.6Ns/m. Using the Euler discretization with the sampling
time T = 0.01 s, we can obtain the discrete-time LTI sys-
tem (1) with

A =


1 0 0.01 −0.0100
0 1 0 0.0100

−0.4391 0 0.9887 0.0113
3.7474 −8.8697 0.0961 0.9027


and

B = 10−4
[
0 0 0.1028 −0.8772

]T
.

We run Algorithm 1 with N = 100 and ε = 0.1, resulting
in

S=


1.0960 0.2110 −3.6529 − 1.5332 − 0.0585
0.2110 0.2833 −0.6616 − 1.7359 − 0.1209
−3.6529 − 0.6616 18.8238 − 24.0709 0.5410
−1.5332 − 1.7359 − 24.0709 186.8419 − 1.5513
−0.0585 − 0.1209 0.5410 − 1.5513 1.0506


VOLUME 11, 2023 14313
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FIGURE 3. Example 1: Evolution of λmin(S) for different iterations.

and

H =


1.0748 0.1957 −4.1103 0.5009
0.2217 0.2659 −0.7663 −3.3523
−3.2240 −0.9023 19.9449 −27.7407
−3.6423 0.1325 −21.0241 175.9953
−0.0376 −0.1364 0.5432 −0.4956

 .

Note that the data (S,H ) is valid because S ≻ 0 (i.e.,
λmin(S) > 0). The evolution of λmin(S) for different iterations
is shown in Figure 3.

IV. DATA-DRIVEN LMIs FOR STABILIZATION
In this section, the main focus is on data-driven LMIs for
stabilization, where the model (A,B) is unknown. The main
breakthrough in this approach lies in augmenting the state and
input into a single augmented state as in (3). Then, the model
data (A,B) can be eliminated using the datamatrices (S,H ) or
(S(F),H (F)) together with Lemma 3 and Lemma 5. We first
consider a policy evaluation problem. In this setting, given a
potentially unknown state-feedback gain F , we only have an
access to the state-input trajectories. Under this situation, the
problem is to determinewhether or not the unknown feedback
gain F stabilizes the system.
Proposition 1 (Stability evaluation): The system (1) under

u(k) = Fx(k) is stable if and only if there exist P ∈ S(n+m)

such that the following LMI holds:

H (F)TPH (F) ≺ S(F)PS(F), P ≻ 0
Proof: Lemma 1 tells us that the original system (1)

is stabble if and only if the augmented system (3) is stable,
or equivalently AF is Schur. From the Lyapunov theory, ATF
is stable if and only if there exist P ∈ S(n+m)

++ such that
AFPATF ≺ P. Replacing P with S(F)PS(F) leads to the
equivalent condition AFS(F)PS(F)ATF ≺ S(F)PS(F). Using
the relation in Lemma 3 yields the conclusion. □

Proposition 1 will be useful when we want to check if the
unknown system with a given and fixed gain F is (asymptot-
ically) stable. Its main feature is that it requires the on-policy
data from Algorithm 1. Note however that it does not require
the knowledge of F as well as (A,B). Next, a stabilizing state-
feedback control design algorithm is proposed using LMIs
and data from Algorithm 2.

Proposition 2 (Stabilization): The system (1) is stabiliz-
able if there exist G ∈ Rn×n, P ∈ Sn+m, and X ∈ Rn×m,
such that the following LMI holds:[

−SPS ∗[
G X

]
HTPH−G− GT

]
≺ 0 (7)

If a solution, (P̄, Ḡ, X̄ ), exists, then a stabilizing state-
feedback gain is given by F = X̄T (ḠT )−1, and V (x) =
xT SP̄Sx is the corresponding Lyapunov function of AF .

Proof: Suppose that (7) holds. We use the identity
in Lemma 5, and replace SPS with P̂ and to obtain −P̂ ∗

G
[
I G−1X

] [
AT

BT

]T
P̂
[
AT

BT

]
−G− GT

 ≺ 0

(8)

The first block diagonal matrix of (8) ensures P̂ ≻ 0, and
the second block diagonal matrix implies G + GT ≻ 0.
This guarantees that G is nonsingular. With the change of
variables, G−1X = FT , the last matrix inequality becomes −P̂ ∗

G
[
I FT

] [
AT

BT

]T
P̂
[
AT

BT

]
−G− GT

 ≺ 0 (9)

Clearly, (9) holds if and only if (8) holds from the bijective

mapping FT = G−1X . Now, multiplying
[

I[
I FT

] ] from

the right, and its transpose from the left, and after simple
algebraic manipulations, we have AF P̂ATF ≺ P̂, P̂ ≻ 0. From

the Lyapunov theory, the dual system ATF is Schur. Moreover,
from a standard result of the linear system theory, we know
that AF is Schur if and only if the corresponding dual system
ATF is Schur. Lemma 1 tells us that the original system (1)
is stable if and only if the augmented system (3) is stable,
or equivalently AF is Schur. This completes the proof. □
Using the LMI condition in Proposition 2, a stabilizing

state-feedback controller can be found only using the trajec-
tories. Note that the data used in Proposition 2 is generated
from the off-policy method Algorithm 1.
Example 2: Let us consider Example 1 again. Since (S,H )

is valid, we can apply the LMI condition in Proposition 2 to
obtain the stabilizing state-feedback control gain

F = 104
[
3.6991 2.6712 −0.8137 1.0457

]
.

One can check ρ(A+BF) = 0.9932 < 1 so that the obtained
gain stabilizes the system.
Remark 3: The proposed data-based LMI can be effi-

cient alternatives in some cases. Consider the LMI condition
in Proposition 2, where the number of variables is n2+nm+
(n+m)(n+m− 1)/2, and the size of LMIs is 2n+m. On the
other hand, for [16, Thm. 3], the number of variables is n2T ,
and the size of LMIs is n, where T is the length of the collected
trajectory. If an LMI solver based on interior point methods is
used, as for instance the LMI Control Toolbox [33], the com-
plexity of the LMI optimization problem can be estimated as
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being proportional to O(N 3
dNs), where Nd is the total number

of scalar decision variables and Ns the total row size of the
LMIs. For SeDuMi [34] on the other hand, the complexity
of the LMI optimization problem can be estimated as being
proportional to O(N 2

dN
2.5
s + N

3.5
s ). SeDuMi is more efficient

for problems with a large number of variables. Therefore,
when T is large, the proposed method can be more efficient
than [16, Thm. 3]. On the other hand, for [20, Thm. 14], the
number of variables is nm + n(n − 1)/2 + 2, and the size of
LMIs is 3n+m. However, the memory size to store the data is
O((2n+m)T ), while the memory size is fixed to O((n+m)(n+
m− 1)/2) for the proposed method. Moreover, the condition
in [20, Thm. 14] requires additional structural information
on the noise signals. A disadvantage is that Proposition 2 is
only a sufficient condition, and hence, can introduce some
conservatism.
Example 3: For a comparative analysis, we randomly

generate 1000 systems, characterized by (A,B), with size
(n,m) = (10, 2) and elements uniformly distributed
within [−1, 1]. Using Proposition 2, 799 systems are
identified as stabilizable, while 990 systems are identi-
fied as stabilizable using [16, Thm. 3]. The results show
the conservatism of Proposition 2. Still, the main benefit
of Proposition 2 is its efficiency in terms of memory and
computation.

V. DATA-DRIVEN LMIs FOR LQR DESIGN
Beyond the stabilization problem, the idea in the previous
section can be also applied to LQR design problems. We first
consider a policy evaluation problem again. Given a poten-
tially unknown state-feedback gain F , suppose that we only
have an access to the state-input trajectories. Under this sit-
uation, the problem is to determine the LQR performance of
the unknown F .
Proposition 3 (Performance Evaluation): Consider the

optimization problem

min
P∈Sn+m

Tr (3S(F)PS(F))

subject to H (F)TPH (F)+ I ⪯ S(F)PS(F) (10)

and P̄ ∈ Sn+m is the corresponding optimal point. Then, the
optimal objective function value (10) is the cost correspond-
ing to F, i.e., Tr

(
3S(F)P̄S(F)

)
= J (F).

Proof: The optimal solution P̄ satisfiesH (F)T P̄H (F)+
I ⪯ S(F)P̄S(F), P̄ ≻ 0. Using Lemma 3 and letting P̃ =
S(F)P̄S(F), it follows that

AF P̃ATF + I ⪯ P̃, P̃ ≻ 0. (11)

Here, note that P̃ ≻ 0 holds because the LMI con-
straint in (10) implies S(F)P̃S(F) ≻ 0. Since the above
inequality is a Lyapunov inequality, AF is Schur. There-
fore, there exists P̂ ∈ S++ such that AF P̂ATF + I = P̂,
where P̂ :=

∑
∞

k=0 A
k
F (A

T
F )
k . Replacing P̂ with S(F)MS(F),

where M = S(F)−1P̂S(F)−1, we can see that M satisfies
H (F)TMH (F) + I = S(F)MS(F). This implies that M is

a feasible point for (10). Therefore, Tr
(
3S(F)P̄S(F)

)
≤

Tr(3S(F)MS(F)) = Tr(3P̂). On the other hand, repeat-
edly applying the inequality (11) yields

∑
∞

k=0 A
k
k (A

T
F )
k
⪯

P̃ = S(F)P̄S(F), by which we have Tr(3S(F)P̄S(F)) ≥
Tr(3P̂), implying Tr(3S(F)P̄S(F)) = Tr(3P̂). Then,
we can conclude Tr

(
3S(F)P̄S(F)

)
= Tr(3P̂) =

Tr
(∑
∞

k=0 (A
T
F )
k3AkF

)
=

∑n
i=1

∑
∞

k=0 e
T
i (A

T
F )
k3AkFei =

J (F). This completes the proof. □
Next, the LQR design problem is addressed using a data-

driven LMI. The following LMI condition allows us to design
an LQR control of unknown system.
Proposition 4 (LQR Design): Consider the optimization

problem

min
P∈Sn+m,G∈Rn×n,X∈Rn×m

Tr (3SPS)

subject to
[
−SPS + I ∗[
G X

]
HTPH−G− GT

]
≺0

(12)

and Ḡ ∈ Rn×n, P̄ ∈ Sn+m, and,Ȳ ∈ Rn×m are the corre-
sponding optimal points. Then, the optimal objective function
value upper bounds the optimal cost, J (F∗), and the corre-
sponding state-feedback gain is given by F̄ = X̄T (ḠT )−1,

Proof: The LMI constraint is identical to the stabiliza-
tion case except for I in the first block diagonal position.
Therefore, we can follow the same procedure to arrive that
the conclusion that the optimal value of (12) upper bounds
that of the following optimization:

min
P∈Sn+m,F∈Rm×n

Tr (3P)

subject to AFPATF + I ⪯ P. (13)

This is because the inequality in (12) is sufficient for the
inequality in (13). Define (Ŝ, F̂) is an optimal solution of (13).
Then, Tr(3SP̄S) ≥ Tr(3P̂). Next, applying the inequality
in (13) recursively leads to

∑
∞

k=0 A
k
F̂
(AT

F̂
)k ⪯ P̂. Multiplying

with 3 and taking the trace on the last inequality, one gets

Tr(3P̂) ≥ Tr

(
3

∞∑
k=0

Ak
F̂
(AT

F̂
)k
)

=

n∑
i=1

∞∑
k=0

x(k; F̂, ei)T3x(k; F̂, ei)

= J (F̂). (14)

Therefore, the optimization in (12) finds an optimal solu-
tion (Ŝ, F̂). Finally, combining (14) with Tr(3SP̄S) ≥
Tr(3P̂) leads to the desired conclusion. □
Theorem 4 allows us to design a controller with a guaran-

teed upper bound on the LQR performance.
Example 4: Let us consider Example 1 again, and con-

sider the LQR problemwith3 = I . Solving the LMI condition
in Theorem 4 leads to the state-feedback gain

F∗ = 103
[
0.9934 −1.9672 −0.1342 0.4862

]
with the bound J (F∗) ≤ 18.8316.
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VI. DATA-DRIVEN DYNAMIC PROGRAMMING
Although the data-driven LMIs in the previous sections are
efficient, it is still meaningful to briefly discuss and sum-
marize DP methods [6], which does not depend on LMI
solvers. In particular, DP approaches can be alternatives to
LMImethods when the LMI solvers are not available or when
one wants to find a solution without additional steps. More-
over, LMI problems are more universal, and finding solutions
of LMIs is a more complicated problem compared to DP
problems. In general, DPs are in general more efficient than
LMIs when dealing with large-scale problems. Finally, the
LMI conditions for the design problems are only sufficient,
and hence, are conservative compared to the DP approaches.
Now, the data-driven DPs are summarized in Algorithm 3
and Algorithm 4.

Algorithm 3 Data-Driven Policy Iteration
1: Initialize F0 = 0.
2: for k ∈ {0, 1, . . .} do
3: Collect data (S(Fk ),H (Fk )) = On− Collect(Fk )
4: Solve for Pk+1 the linear equation

H (Fk )TPk+1H (Fk )+ S(Fk )3S(Fk ) = S(Fk )Pk+1S(Fk )

5: Update Fk+1 = −P
−1
k+1,22P

T
k+1,12

6: if ∥Pk − Pk+1∥ ≤ ε then
7: Stop and return Pk+1 and Fk+1 =

−P−1k+1,22P
T
k+1,12

8: end if
9: end for

Algorithm 3 summarizes a policy iteration algorithm pro-
posed in [14] for completeness. Its convergence was also
proved in [14].
Proposition 5: [Convergence of Algorithm 3, [14]] The

iteration Pk in Algorithm 3 converges to P∗ defined in (6).
The main feature of Algorithm 3 is that it uses on-policy

data generated by Algorithm 1. Therefore, it needs to collect
new data at every iterations, and each data collection should
apply the exploring starts scheme. The newly proposed value
iteration algorithm presented in Algorithm 4 suggests an
off-policy algorithm in the sense that the policy used to
generate the data is independent of the policy we want to
learn or the intermediate policies while learning. Therefore,
it collects data once at the beginning. Moreover, it does not
need to stick to the exploring starts scheme because the
exploratory inputs can be used during the data collection.
In this sense, the new Algorithm 4 is more sample efficient
than Algorithm 3. Multiplying both sides of the linear matrix
equation in Algorithm 4 by S, it is reduced to

Pk+1 = 3+ S−1H (Pk,11 − Pk,12P
−1
k,22P

T
k,12)H

T S−1

which can be interpreted as a model-based value iteration
because HT S−1 =

[
A B

]
from Lemma 5. In both algo-

rithms, the hyper-parameter ε can be any sufficient small
positive numbers to obtain a suboptimal solution whose error

Algorithm 4 Data-Driven Value Iteration
1: Initialize P0 = 0.
2: Given fixed initial state x(0) = z, collect data (S,H ) =
Off− Collect(z)

3: for k ∈ {0, 1, . . .} do
4: Solve for Pk+1 the linear matrix equation

SPk+1S = S3S + H (Pk,11 − Pk,12P
−1
k,22P

T
k,12)H

T

5: if ∥Pk − Pk+1∥ ≤ ε then
6: Stop and return Pk+1 and Fk+1 =

−P−1k+1,22P
T
k+1,12

7: end if
8: end for

is tolerable. Usually tolerable error levels depend on under-
lying applications, and from our experiences, ε = 10−6 is
enough in general. Lastly, we establish the convergence of
Algorithm 4.
Proposition 6: [Convergence of Algorithm 4] The itera-

tion Pk in Algorithm 4 converges to P∗.
Proof: We only need to prove that Algorithm 4 is equiv-

alent to the Q-value iteration, which is known to converge
to the optimal P∗ [6]. Applying Lemma 5 and multiplying
both sides of the P-update equation in Algorithm 4 by S−1,
we obtain

Pk+1 = 3+

[
A B

−P−1k,22Pk,12A −P−1k,22Pk,12B

]T
×Pk

[
A B

−P−1k,22Pk,12A −P−1k,22Pk,12B

]
Multiplying both sides by

[
x
u

]
from the right and its trans-

pose from the left, we have Qk+1(x, u) =
[
x
u

]T
3

[
x
u

]
+

minv∈Rm Qk (x, v) withQk (x, u) =
[
x
u

]T
Pk

[
x
u

]
. It is equiv-

alent to the Q-value iteration [5], which is known to converge

to P∗, where Q∗(x, u) =
[
x
u

]T
P∗
[
x
u

]
. This completes the

proof. □

VII. NEW EXPLORATION SCHEMES
For the on-policy data collection, Algorithm 1, the explor-
ing starts always guarantee S(F) ≻ 0. However, collecting
the trajectories with different initial points which span Rn

may not be tractable in practice. The off-policy data col-
lection, Algorithm 2, is relevantly more promising in this
respect, because it can use the exploratory inputs while gen-
erating the trajectories, and can be used in the case that
the initial state is given and fixed. However, it needs PE
assumption. We can apply an arbitrary input, u(k), and expect
that S ≻ 0 eventually under PE assumption. A standard
exploration strategy is to inject the i.i.d. Gaussian noises,
u(k) ∼ N (0,U ), where U ∈ Sm++ is the covariance matrix.
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If trajectories starting from the arbitrary but fixed x(0) = z
can be collected as many as possible, then we can develop
a new version of the off-policy exploration strategy given
in Algorithm 5, which offers theoretical guarantees of the
data validity under a mild assumption, i.e., the controllability.
Note that the fixed initial condition, x(0) = z, is not restrictive
in practical applicabilities because only a small portion of
state-space is accessible for initial states in practice.

Algorithm 5 Off-Policy Data Collection (S,H ) =

Off− Collect2(z) With Restarting
1: Initialize S0 = 0,H0 = 0, and arbitrary z ∈ Rn.
2: for i ∈ {1, 2, . . . ,N } do
3: Initialize x(0; i) = z.
4: Initialize S̃0;i = 0, H̃0;i = 0.
5: for k ∈ {0, 1, . . . , n− 1} do
6: Apply control input u(k; i) = ζ (k; i), ζ (k; i) ∼
N (0,U )

7: Observe x(k + 1; i)
8: Update

S̃k+1;i← S̃k;i +
[
x(k; i)
u(k; i)

] [
x(k; i)
u(k; i)

]T
H̃k+1;i← H̃k;i +

[
x(k; i)
u(k; i)

]
x(k + 1; i)T

9: end for
10: Update

Si+1←
i

i+ 1
Si +

1
i+ 1

S̃n;i

Hi+1←
i

i+ 1
Hi +

1
i+ 1

H̃n;i

11: end for
12: Return (S,H ) = (SN ,HN )

In Algorithm 5, N trajectories are collected and then aver-
aged, i.e., SN = 1

N

∑N
i=1 S̃n;i,HN =

1
N

∑N
i=1 H̃n;i. Each

trajectory starts from x(0) = zwhich is fixed. We can readily
prove that the data matrices from Algorithm 5 also satisfies
the data transformation property in Lemma 5. We can also
prove that if (A,B) is controllable, then the data collection
strategy guarantees that SN converges to a strictly positive
definite matrix with probability one as N →∞.
Theorem 1: Suppose that (A,B) is controllable, and con-

sider Algorithm 5, whose output is

SN =
1
N

N∑
i=1

(
n∑

k=0

[
x(k; i)
u(k; i)

] [
x(k; i)
u(k; i)

]T)
where x(k; i) and u(k; i) stand for the state and input at time
k at the ith outer iteration. Then, we have

P
[
lim
N→∞

SN ≻ 0
]
= 1

Proof: Define

Ok :=
[
B AB · · · Ak−1B

]

Uk := diag(U , . . . ,U︸ ︷︷ ︸
k−times

) (15)

and

uk;i :=


ζ (k − 1; i)

...

ζ (1; i)
ζ (0; i)

 (16)

Then, x(k; i) is expressed as x(k; i) = Akz+Okuk;i, and thus

x(k; i)x(k; i)T = AkzT z(AT )k + 2AkzuTk;iO
T
k +Okuk;iuTk;iO

T
k .

Taking the expectation leads to

E[x(k; i)x(k; i)T ] = AkzzT (AT )k +OkUkOT
k

At k = n, On is the controllability matrix, and it is full row
rank due to the controllability in Assumption 1. SinceUk ≻ 0,
one concludesE[x(n)x(n)T ] ≻ 0. Since u(k; i) is i.i.d. and the
initial state is reset periodically after n steps, SN is written as

SN =
1
N

N∑
i=1

n∑
k=0

[
x(k; i)
u(k; i)

] [
x(k; i)
u(k; i)

]T
=

1
N

N∑
i=1

Mi

where

Mi =

n∑
k=0

[
x(k; i)
u(k; i)

] [
x(k; i)
u(k; i)

]T
is an i.i.d. random variables with mean

E[Mi] = M :=
n∑

k=0

[
AkzzT (AT )k +OkUkOT

k 0
0 U

]
≻ 0

By the strong law of large numbers, we get

P
[
lim
N→∞

SN = M
]
= 1,

which leads to the desired conclusion. □
Algorithm 5 provides a data collection scheme with

theoretical guarantees of the validity of the data. It is use-
ful especially when the exploring starts scheme (starting
with arbitrary initial states) is not available. However, it still
requires the ability to generate N trajectories from the given
initial state z. In practice, if only a single trajectory starting
from afixed z is available, we can develop another data acqui-
sition method given in Algorithm 6. The benefit comes from
some cost to pay. In particular, it initially needs a stabilizing
state-feedback gain K or at least, the system matrix, A, itself
needs to be stable. In such case, we can approximately mimic
the restarting strategy in Algorithm 5 using the stability of
the closed-loop system matrix, A+ BK . Algorithm 6 will be
called the off-policy data collection with periodic excitation.
The main feature of Algorithm 6 lies in that the process can
be interpreted as an alternation of the two phases: the first
phase is a settling down period, where the state tends to vanish
without the excitation signals in the input u(k). This phase
stops when the current state x(k) is sufficiently small in the
sense that ∥x(k)∥ ≤ ε for a sufficiently small ε > 0. The
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Algorithm 6 Off-Policy Data Collection (S,H ) =

Off− Collect2(z) With Periodic Excitation
1: Initialize S0 = 0,H0 = 0.
2: Initialize state x(0) = z.
3: Initialize ε > 0
4: for i ∈ {1, 2, . . . ,N } do
5: Initialize time k = 0
6: while ∥x(k)∥ > ε do
7: Apply control input ũ(k) = Kx(k)
8: k ← k + 1
9: end while

10: Initialize S̃0 = 0, H̃0 = 0.
11: Initialize time k = 0 and x(0; i) := x(0)
12: for k ∈ {0, 1, . . . , n− 1} do
13: Apply control input u(k; i) = Kx(k; i) +

ζ (k; i), ζ (k; i) ∼ N (0,U )
14: Observe x(k + 1; i) := x(k + 1)
15: Update

S̃k+1← S̃k +
[
x(k; i)
u(k; i)

] [
x(k; i)
u(k; i)

]T
H̃k+1← H̃k +

[
x(k; i)
u(k; i)

]
x(k + 1; i)T

16: end for
17: Update

Si+1←
i

i+ 1
Si +

1
i+ 1

S̃n

Hi+1←
i

i+ 1
Hi +

1
i+ 1

H̃n

18: end for
19: Return (S,H ) = (SN ,HN )

second phase is an excitation or exploration period, where
the state is excited by injecting Gaussian noises in the input.
As in Theorem 1, we can prove that Algorithm 6 theoretically
ensures the validity of the data output provided that (A,B) is
controllable.
Theorem 2: Suppose that (A,B) is controllable, and con-

sider Algorithm 5, whose output is

SN =
1
N

N∑
i=1

(
n∑

k=0

[
x(k; i)
u(k; i)

] [
x(k; i)
u(k; i)

]T)

where x(k; i) and u(k; i) stand for the state and input, respec-
tively, at time k at the ith outer iteration. Then, there exists a
sufficient small ε > 0 such that

P
[
lim
N→∞

SN ≻ 0
]
= 1

Proof: Define

Ok :=
[
B (A+ BK )B · · · (A+ BK )k−1B

]
.

Then, the state at time k is x(k; i) = (A+BK )kzi+Okuk;i,
where zi is the initial state, x(0; i) = zi at the ith period such

that ∥zi∥ ≤ ε, and uk;i is defined in (16). Then, one gets

x(k; i)x(k; i)T = (A+ BK )kzizTi ((A+ BK )T )k

+2(A+ BK )kziuTk;iO
T
k (17)

+Okuk;iuTk;iO
T
k

which is lower bounded by

x(k; i)x(k; i)T ⪰ (A+ BK )kzizTi ((A+ BK )T )k

−(A+ BK )kzizTi ((A+ BK )T )k
1
ε

−εOkuk;iuTk;iO
T
k +Okuk;iuTk;iO

T
k

where Lemma 2 was applied to (17). Again, the last bound is
further bounded from below as

x(k; i)x(k; i)T

⪰ (A+ BK )kzizTi ((A+ BK )T )k

−(A+ BK )kzizTi ((A+ BK )T )k
1
ε

−εOnuk;iuTk;iO
T
k +Okuk;iuTk;iO

T
k

⪰ (A+ BK )kzizTi ((A+ BK )T )k

−Iλmax((A+ BK )kzizTi ((A+ BK )T )k )
1
ε

+(1− ε)Okuk;iuTk;iO
T
k

⪰ (A+ BK )kzizTi ((A+ BK )T )k

−I∥(A+ BK )k∥2∥zi∥2
1
ε

+(1− ε)Okuk;iuTk;iO
T
k

⪰ (A+ BK )kzizTi ((A+ BK )T )k

−εI∥(A+ BK )k∥2 + (1− ε)Okuk;iuTk;iO
T
k

where λmax(·) denotes the maximum eigenvalue of a symmet-
ric matrix, and the last inequality uses the fact that ∥zi∥ ≤ ε.
On the other hand, noting x(k; i)u(k; i)T = (A + BK )k

ziu(k)T +Okuku(k)T , we have[
0 x(k; i)u(k; i)T

u(k; i)x(k; i)T 0

]
=

[
0 (A+ BK )kziu(k; i)T

u(k; i)zTi ((A+ BK )T )k 0

]
+

[
0 Okuku(k; i)T

u(k; i)uTk O
T
k 0

]
where the first term on the right-hand side is bounded as[

0 (A+ BK )kziu(k; i)T

u(k; i)zTi ((A+ BK )T )k 0

]
=

[
(A+ BK )kzi

0

] [
0

u(k; i)

]T
+

[
0

u(k; i)

] [
(A+ BK )kzi

0

]T
⪰ −ε

[
0

u(k; i)

] [
0

u(k; i)

]T
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−
1
ε

[
(A+ BK )kzi

0

] [
(A+ BK )kzi

0

]T
(18)

⪰ −

[
ε−1λmax((A+ BK )kzizTi ((A+ BK )T )k )

0

0
εu(k; i)u(k; i)T

]

= −

 ε−1∥(A+ BK )kzi∥2I 0

0 εu(k; i)u(k; i)T


⪰ −

 ε∥(A+ BK )k∥2I 0

0 εu(k; i)u(k; i)T


where (18) is due to Lemma 2 and the last inequality is due
to ∥zi∥ ≤ ε. Combining the two lower bounds, we have x(k; i)x(k; i)T x(k; i)u(k; i)T

u(k; i)x(k; i)T u(k; i)u(k; i)T



⪰


(A+ BK )kzizTi ((A+ BK )T )n

−2εI∥(A+ BK )k∥2
0

0 0



+

 (1− ε)Okuk;iuTk;iO
T
k Okuk;iu(k; i)T

u(k; i)uTk;iO
T
k (1− ε)u(k; i)u(k; i)T


︸ ︷︷ ︸

=:Mi

Therefore,

SN =
1
N

N∑
i=1

 n∑
k=0

 x(k; i)
u(k; i)

 x(k; i)
u(k; i)

T


⪰
1
N

N∑
i=1

 x(n; i)
u(n; i)

 x(n; i)
u(n; i)

T

⪰

−2εI∥(A+ BK )k∥2 0

0 0

+ 1
N

N∑
i=1

Mi

Since (M1,M2, . . . ,MN ) are i.i.d. random variables with
mean

E[Mi] =
[
(1− ε)OnUnOT

n 0
0 (1− ε)U

]
where Uk is defined in (15). From the strong law of large
numbers, with ε ∈ (0, 1), we have

P

[
lim
N→∞

1
N

N∑
i=1

Mi > 0

]
= 1.

Therefore, for a sufficiently small ε ∈ (0, 1), SN converges to
a positive definite matrix with probability one. □

FIGURE 4. Example 5: Evolution of λmin(S) for different iterations and
for Algorithm 2.

We close this section by briefly comparing [10], [11]
with the proposed exploration methods. Compared to [10]
and [11], the exploration schemes in this paper have unique
aspects summarized as follows: [10], [11] consider the
stochastic system

x(k + 1) = Ax(k)+ Bu(k)+ w(k), x(0) = z ∈ Rn

with an additional stochastic noise w(k) ∼ N (0, σ 2I ), where
σ > 0 is a standard deviation. Although the above stochastic
system is more general than (1), w(k) plays the role of effec-
tive state explorations, and hence, facilitate the learning pro-
cess. In particular, if we do not have w(k), then acquiring full
information on the system via the input exploration is more
challenging, and successful state explorations depend on the
controllability of (A,B). To the authors’ knowledge, Algo-
rithm 6 provides the first successful exploration schemes that
can learn the system information without the noise w(k).
Example 5: To demonstrate the proposed excitation meth-

ods, we randomly generate an LTI system with n = 30 and
m = 5 such that its elements are uniformly distributed
in [−1, 1] and (A,B) is controllable. Applying Algorithm 2
without the termination condition, the evolution of λmin(S)
for different iterations is shown in Figure 4. As can be seen,
λmin(S) increases, and S eventually becomes a positive def-
inite matrix. As for Algorithm 5, the evolution of λmin(S) is
shown in Figure 5, where one can also observe that λmin(S)
increases as well, and S eventually becomes a positive def-
inite matrix. The graph in Figure 5 is stair case because S
is periodically updated with period n in Algorithm 5, while
within each period, the iteration number increases n times.
Similar results can be obtained for Algorithm 6 as shown

in Figure 6, whose graph is similar to that in Figure 5. The
main difference between Algorithm 6 and Algorithm 5 lies
in the fact that Algorithm 5 assumes restarting of the system
trajectory, which is not practical, while Algorithm 6 does not
assume such restarting of the system trajectory. Therefore,
this example demonstrates the effectiveness of the proposed
data collection schemes in Algorithm 5 and Algorithm 6. For
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FIGURE 5. Example 5: Evolution of λmin(S) for different iterations and
for Algorithm 5.

FIGURE 6. Example 5: Evolution of λmin(S) for different iterations and
for Algorithm 6.

the native data collection scheme Algorithm 2, the corre-
sponding effectiveness has not been established in this paper
(or elsewhere in the literature to the authors’ knowledge),
while for Algorithm 5 and Algorithm 6, their probabilistic
effectiveness has been proved in Theorem 1 and Theorem 2.

VIII. CONCLUSION
In this paper, we have studied data-driven control design
strategies based on LMIs and DP. Moreover, exploration and
data collection schemes were investigated. The exploration
schemes have been proved to asymptotically guarantee solv-
ability of the data-drive design problems from the trajectories.
New contributions of the proposed methods compared to
existing works have been discussed. In particular, the pro-
posed methods have unique features that can complement
existing approaches under different scenarios. In this respect,
we regard the proposed methods as useful complements
rather than replacement of existing methods.
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