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ABSTRACT In this work, we propose a new visual odometry (VO) system that exploits the dynamic parts of
an image. The key idea of our method is to identify the dynamic parts by combining semantic segmentation
and optical flow and to suppress the dynamic parts in the process of VO estimation. First, movable objects
are detected using the semantic segmentation. If an object contains many pixels of inconsistent optical flow,
the object is considered as dynamic and merged with other dynamic objects to create a dynamic mask.
Next, the ego-motion of the camera is estimated by using only the remaining static parts of the image and
suppressing its dynamic parts. Unlike the other popular deep learning-based VO approaches, our method
uses geometric approach based on optimization to achieve high performance. That is, the ego-motion of
the camera is obtained by optimizing the correspondences obtained using the dynamic mask and optical
flow consistency. Finally, the proposed method is applied to the KITTI Odometry benchmark dataset, and
its performance is compared with that of the previous VO methods. Our method achieves an average of
7.67(%) translation error and 2.186 rotation error(◦/100m), which imply the performance improvement by
21% and 11% from the state-of-the-art baseline, DF-VO, respectively. In addition, our method yields the RPE
(Relative Pose Error) of 0.186m, which is the performance improvement by 52% against ORB-SLAM2,
a popular geometry-based method. The experimental results show that the proposed VO method reliably
predicts excellent visual odometry in the presence of dynamic objects.

INDEX TERMS Visual odometry, dynamic environment, correspondences.

I. INTRODUCTION
Multi-view geometry-based methods have attracted consid-
erable worldwide attention in monocular visual odometry
over the past few decades because of their superior perfor-
mance. In the past, the ego-motion of the camera was esti-
mated through the correspondences made using hand-crafted
features and descriptors [1], [2], [3]. These methods per-
form relatively well, but they also have the disadvantages of
scale-drift issues and performance degradation when applied
to dynamic environments. The reason for it is that many
existing SLAM and visual odometry (VO) approaches have
been developed under the assumption of a static environment,
and their ability to extract reliable static visual features is
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significantly degraded. In other words, if dynamic objects are
observed and some features are extracted from the objects, the
features extracted from the dynamic objects will be used in
the VO estimation while ignoring its relative motion, result-
ing in a degraded estimation of the camera movement.

On the other hand, we have observed that deep learning has
advanced tremendously over the past decade, and it has been
applied to many robotics applications including VO. Most
of the deep learning-based VO methods use self-supervised
learning to predict scale and ego-motion of a monocular
camera. Specifically, the deep learning-based VO methods
combine a network that extracts depth and another network
that predicts pose [4], [5], [6]. End-to-end learning using
only image sequences without ground truth is performed
by predicting and fusing pose and depth estimations from
two consecutive frames. These methods have also obtained
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relatively good results, but it is admitted that the performance
of the deep learning-based methods is not as good as that of
the geometric-based methods.

That is, the disadvantage of the geometry-based method
is that the performance might be degraded in the presence
of a moving object. Whereas the disadvantage of the deep
learning-based method is that the camera movement pre-
dicted by the neural network is significantly less accurate
than the geometry-based method. Recently, some studies
combined both classic geometric methods and deep learning
methods to produce good performance by [7] and [8]. Moti-
vated by these works, we propose a novel visual odometry
method that combines geometric-based method and deep
learning-based method while being aware of dynamic objects
using semantic segmentation. The candidates for the dynamic
parts in the image are selected (1) by using the consistency
of optical flow and (2) by checking whether the parts belong
to the classes of ‘‘movable objects’’. The first condition is
realized by using the optical flow network [9], and the second
condition is checked by using the semantic segmentation
network [10]. Using the two conditions, we can prevent our
network from removing too much information by exclud-
ing all movable objects. Our network performs optimization
using only the static parts with stable optical flow excluding
the dynamic parts so that the ego-motion of the camera can
be obtained robustly even in the presence of dynamic objects.

In summary, the contribution of the proposed method is as
follows:

• A method of creating a dynamic mask by detecting a
moving object using semantic segmentation and optical
flow difference was proposed. The dynamic mask is
applied to the correspondence selection, and optimiza-
tion is performed using only static parts of the image.

• Three networks are combined to make use of the
advantages of the deep learning-based method and
the geometry-based method, and perform robust visual
odometry in the presence of dynamic objects.

The rest of the paper is organized as follows. Section II
reviews the relevant studies, and Section III describes the
algorithm proposed in this paper in detail. The evaluation
results and a comprehensive ablation study show the effec-
tiveness of the proposed method in Section IV. Finally,
Section V concludes the paper.

II. RELATED WORK
A. VISUAL ODOMETRY
Camera tracking, which is the pose estimation between two
images, has been a long-studied problem in the field of com-
puter vision. Most follow the Structure-from-Motion(SfM)
method [11], a multi-view geometry method that predicts
the 3D structure and poses of each image by optimizing two
or more 2D images. Among them, many methods find the
exact correspondences between two images using features
and descriptors and perform bundle adjustment(BA) to obtain
ego-motion between the images [1], [12], [13]. However,

these methods cannot be used in a low texture environment
where it is difficult to extract features. Not only that, it is
impossible to predict exact scale with a monocular cam-
era, and in a dynamic environment, it is difficult to predict
ego-motion because the extracted features might be on mov-
ing objects.

With the development of deep learning, studies have been
conducted to predict the pose between two images by train-
ing deep neural networks [14], [15], [16]. UnDeepVO [4]
proposed an unsupervised method using stereo images to
train the network so that the network can learn exact scale,
and the network is separated into rotation and translation so
that it can predict poses well without setting weights. Some
methods have attempted to obtain ego-motion between two
images using optical flow [17], [18]. DeepAVO [19] divides
the optical flow resulting image into quadrants and uses a
CNN network to get the features of each piece. The features
are then concatenated altogether and the pose between two
images is estimated. Hwang et al. [20] proposed loss func-
tions to reduce the local drift, increasing consistency under
dynamic driving scenes to estimate frame-to-frame visual
odometry. However, all of these deep learning-based methods
failed to accurately predict the odometry. This is because
estimation through a network cannot be more accurate than
the multi-view geometry method. DF-VO [7], [21] attempted
to solve the problem by combining the strengths of the deep
learning-based method and the geometry-based method. This
succeeded in ignoring many unnecessary parts by using the
difference in the optical flow of consecutive frames, but still
was not able to completely exclude the dynamic objects.
Therefore, we propose a novel visual odometry method that
recognizes dynamic objects of a scene and robustly esti-
mates the ego-motion of the camera in a dynamic environ-
ment by combining deep learning-based and geometry-based
methods.

B. VISUAL ODOMETRY IN DYNAMIC ENVIRONMENT
Moving objects in a dynamic environment have always been
a problem in the field of visual odometry. Before deep learn-
ing was developed, many studies attempted to use human
intervention to perform robust odometry estimation or SLAM
in dynamic environments [22], [23]. DM-SLAM [24] pro-
posed distribution and local-based RANSAC to extract static
features to make SLAM stable in a dynamic environment.
Xu et al. [25] proposed a method that combines the spatial
geometric information of the image and removes the moving
objects to perform robust visual odometry in dynamic envi-
ronment. These traditional methods performed quite well in a
dynamic environment. However, since they use hand-crafted
features, it is necessary to extract the features and compute the
descriptors. With the development of deep learning, a number
of deep learning-based monocular VO methods have been
proposed to solve the problem. DynaSLAM [26] proposed a
method to improve SLAM performance by applying seman-
tic segmentation to ORB-SLAM2 [1] to detect dynamic
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objects and perform background impainting. Its extension
DynaSLAM II [27] solves object pose estimation, object
tracking, and SLAM through joint optimization. Kuo et al.
citekuo2020dynamic proposed a system that predicts the pose
between two images by creating a mask that corrects weights
for each class. By training a network to predict the attention
of each class and reflecting the attention into the input image
and optical flow, the ego-motion of the camera can be esti-
mated by focusing more on static objects. However, these
methods have the disadvantage that the results are still not
accurate compared to the optimization methods because the
pose obtained through the network is quite unstable.

In this study, we propose a VO system that uses semantic
segmentation and optical flow to identify dynamic parts of
an image and uses classic geometry-based methods to obtain
precise ego-motion of a monocular camera in a dynamic
environment. A detailed explanation about proposed method
is given in the following sections.

III. METHOD
In this section, we will introduce the proposed method in
detail. First, the overview of the framework will be given
and how its components interact with each other will be
explained.

A. OVERVIEW
Fig. 1 illustrates an outline of the proposed method. The
proposed method consists of three networks: optical flow
estimation network, depth estimation network, and seman-
tic segmentation network. When two consecutive images at
times t − 1 and t are presented as an image pair, forward and
backward optical flows (t → t − 1, t − 1 → t), depth and
semantic segmentation images at time t are estimated. The
key feature of our method is to identify the dynamic parts
in the given image pair and to improve the VO estimation by
suppressing the dynamic parts. Here, we identify the dynamic
parts using the flow consistency computed with the optical
flows developed in [21]. Unfortunately, however, the flow
consistency alone cannot segment dynamic objects at the
pixel level and more needs to be done. In this paper, we also
apply a semantic segmentation network to predict the classes
in the image and segment dynamic objects at the pixel level.
Specifically, for all the objects that are segmented and classi-
fied as “movable” class by a semantic segmentation net-
work, we compute the average of flow consistency within
each movable object. The state (=whether it is dynamic or
static) of a movable object is predicted using the average
flow consistency value within the object. If the object is
considered as dynamic, the region of the object in the image
is selected as an object mask and it is merged to create a
single dynamic mask. The static parts of the image can be
obtained by excluding the regions covered by the dynamic
mask. Among the static parts in two consecutive images,
we select the only pixel correspondences with high flow con-
sistency because the correspondences with similar forward
and backward flows are reliable. The ego-motion between

the two images is calculated with the correspondences using
multi-view geometry and scale is restored using the estimated
depth map. In the following part, we first describe calculating
flow consistency and finding dynamic objects. Then, how to
select correspondences, estimate pose, and restore scale will
be explained.

B. DEEP NETWORKS
Our system consists of three deep networks, as shown in
Fig. 1. The three networks are all trained separately, and
they are combined together to build our system. The three
networks are not developed but used simply as components
in this paper. So, they will be covered briefly in this section.

1) OPTICAL FLOW NETWORK
Dense optical flow, simply optical flow, is a pattern of motion
between two images. Specifically, when a pair of images
(Ii, Ij) is presented, the optical flow gives the 2D to 2D
pixel association between a pixel in one image Ii and its
corresponding pixel in the other image Ij. Because it is not
easy to label the ground truth for actual image pairs, the
network is trained using a synthetic dataset image. For a
backbone network for optical flow, a fast, lightweight, and
accurate LiteFlowNet [9] trained on a synthetic dataset Scene
Flow [29] is employed in this paper. However, the optical
flow networks have the drawback that their performance
is significantly degraded when the given images have few
patterns, or they include some dynamic objects. To solve the
problem, we use consistency of the optical flow and semantic
segmentation in this paper.

2) DEPTH NETWORK
Monocular depth estimation network applies CNN to a single
image and estimates a depth map of the image. A depth
network allows us to estimate dense depth maps even in
non-textured environments and helps to solve the problem
of scale ambiguity. First, the depth network is trained with
a pose network simultaneously in an unsupervised way [15].
The unsupervised training is conducted without the ground
truth using the relationship between a dense depth map and
ego-motion. Then, only the depth network is taken from the
combined system consisting of depth and the pose networks,
and it is used as a monocular depth estimation network
in our system. In this paper, Monodepth2 [30] which is
high-performance and robust to occlusion is used as the depth
network.

3) SEMANTIC/INSTANCE SEGMENTATION NETWORK
The semantic/instance segmentation network (1) segments
movable objects in the given images at the pixel level and
(2) identifies every individual instance separately. The reason
why we use not a simple semantic segmentation network
but a semantic/instance segmentation network is that we
cannot specify which movable objects are actually moving
using only semantic information. For example, some cars
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FIGURE 1. Overview of the proposed method.

FIGURE 2. (a) Structure of Mask R-CNN. MASK R-CNN performs instance
segmentation by predicting the RoI for an object from an input image and
performing classification. (b) Structure of the mask branch.

are parked on the side of the road, not moving at all, while
other cars move fast. Thus, we combine the output of the
semantic/instance segmentation with the output of the flow
network to determine which instance is moving.

In this paper, we use a Mask R-CNN [10] trained on MS
COCO dataset [31] as the semantic/instance segmentation
network. R-CNN is a network that performs object detection
for a single image, and it consists of 2 stages. In the first
stage, R-CNN generates a proposal as object candidates.

In the second stage, R-CNN classifies the proposal and finds
an object in the proposal. Mask R-CNN [10] is one of the
R-CNN variations, and it detects all objects in an image and
segments each instance at the pixel level. The architecture of
Mask R-CNN is given in Fig. 2.
In Mask R-CNN, we used ResNet 50 FPN as a backbone,

and fine-tune the network on the MS COCO dataset. Thus,
the mask branches in the network outputs 91 object classes.
The architecture of our mask R-CNN is the same as the
original mask R-CNN with only one exception in the mask
branch. In our implementation, the mask branch is modified
to take the features of size 14 × 14 × 256 from RoI (Region
of Interest) and outputs binary mask of size 28 × 28 × 91.
Our mask consists of 4 blocks of 2D convolutional layer and
ReLU, followed by one more block of conv2D layer that
outputs binary masks. In the implementation, only 10 classes
are considered for movable objects because they usually
appear on roads. The 10 classes are described in detail in
Section III-D.

C. FLOW CONSISTENCY
Classic visual odometry methods predict the correspondence
between two images using hand-crafted feature points or
gradient values of the images [32], [33]. Different from
the classical VO methods which use hand-crafted features,
we use optical flow for correspondence to analyze and use
images in various environments in this paper. The classi-
cal feature-based methods perform well in relatively good
environments, but their performance is greatly degraded with
adversarial environments such as severe illumination change
or insufficient texture. Meanwhile, deep learning-based
methods extract robust features from the images and work
better than the classical methods in diverse environments.
Specifically, we use the optical flow from LiteFlowNet [9]
to estimate the correspondence between two images. Using
optical flow for correspondence is taken from [21].

Here, the optical flow estimation is better than the classical
hand-crafted feature-based correspondence methods but it
should also be admitted that the optical flow estimation might
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FIGURE 3. An example of the optical flow relationship between two
frames. F j

i is the optical flow of frame Ii to frame Ij , F i
j is the optical flow

of frame Ij to frame Ii .

not be enough: Using pixels from every flow will result in
incorrect pixel correspondence selection and the subsequent
performance can be degraded in the pose estimation. To solve
the problem, flow consistency is used to evaluate the ‘‘confi-
dence’’ of each optical flow. The concept of flow consistency
is shown in Fig. 3. If the flow in one pixel p is consistent
with the corresponding pixel p + F ji (p) in the other image,
or equivalently if the flow difference defined by

Di(p) =

∣∣∣F ji (p) + F ij (p+ F ji (p))
∣∣∣ (1)

is quite low, the confidence of the correspondence can be
regarded as high and we can use them in the pose estimation,
where F ji is flow from frame Ii to frame Ij and vice versa.
Meanwhile, if the flow in one pixel p is not consistent with
the corresponding pixel p+F ji (p) and it has the high difference
Di(p), the pixels are likely to belong to dynamic object and
they should not be used in the pose estimation. To realize our
idea that we use only the pixels with high confidence based
on the flow consistency, we can now create dynamic masks
and pixel correspondences.

D. DYNAMIC MASK
Flow consistency in Section III-B alone can identify some
pixels which are very likely to belong to dynamic objects as
in [21]. Understandably, however, it is almost impossible to
remove the dynamic objects at the pixel level, or equivalently
to identify all the pixels which belong to the dynamic objects.
Thus, when we identify dynamic pixels using only flow
consistency, some of the dynamic pixels will not be identified
and the remaining will be used in the pose estimation, result-
ing in incorrect correspondence selection and degradation
of the pose estimation. To solve the problem, we apply a
semantic segmentation network to our system to find dynamic
parts that cannot be identified by the flow consistency alone.
In this paper, we use the well-known Mask R-CNN [10] as
a semantic segmentation network. Furthermore, we define
movable objects such as pedestrians and vehicles
among the classes of the semantic segmentation network’s
output. In this paper, a total of 10 classes {‘person’,
‘bike’, ‘car’, ‘motorcycle’, ‘airplane’,
‘bus’, ‘train’, ‘truck’, ‘boat’, ‘cat’,
‘dog’} are defined asmovable objects. Themovable
objects can either move or stay at the same location in the
image. When the objects are moving, they are dynamic; but
when the objects are notmoving, they are static. To predict the
state of each object, we combine the output of the semantic

FIGURE 4. Dynamic mask obtained using flow consistency. (a) Current
input frame. (b) Binary mask for all movable objects obtained by
semantic segmentation network. (c) Flow consistency of the current
frame with the previous frame. (d) Dynamic mask for the objects that are
currently moving based on flow consistency.

segmentation and flow consistency. Fig. 4 shows the dynamic
mask for dynamic objects obtained using semantic segmen-
tation and flow consistency. When an input image is given as
in Fig. 4-(a), several binary object masks Ml are generated
by Mask R-CNN as shown in Fig. 4-(b), where Ml denotes
the l-th binary object mask. Then, the average of the flow
difference within the object maskMl is computed by

Dl =
1
Nl

∑
p∈Ml

D(p), (2)

where Nl denotes the number of pixels which belong to the
l-th object mask Ml . In Fig. 4-(c), the flow difference is
depicted. In the figure, high values are colored in red, whereas
low values are colored in blue. The masks with low average
consistency (=highDl) can be considered as currentlymoving
objects. That is, only the object masksMl which hasDl value
higher than a threshold θflowdiff are included in a dynamic
mask Md . In other words, the binary dynamic mask Md is
made by

Md =

⋃
l

Ml where
1
Nl

∑
p∈Ml

D(p) > θflowdiff . (3)

As can be seen in the figure, the dynamic mask (d) is cre-
ated by removing non-moving objects by applying the flow
consistency (c) to the movable objects detected by semantic
segmentation (b). With our dynamic mask Md , which shows
the dynamic objects that are currently moving in the frame,
dynamic objects-aware visual odometry estimation can be
performed.

E. CORRESPONDENCE SELECTION
In this section, pixel correspondences are created using the
flow consistency and the dynamic mask to estimate the
pose between two consecutive frames. To accurately calcu-
late the ego-motion of the camera, correspondences must
be spread uniformly across the image domain, rather than
focused in one place. So we divide the image into grids, and
for each grid, a pair of points with high flow consistency
(=low flow difference) is selected so the correspondences
are evenly distributed across the image. To prevent numerous
correspondences from being made in areas that shouldn’t be
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TABLE 1. Quantitative result on KITTI Odometry Seq. 00-10. The best result is in bold and second best is underlined.

FIGURE 5. Pixel correspondences between two consecutive frames,
corresponding flow consistency, and dynamic mask. (a) Magnitude of the
flow consistency. (b) Dynamic mask of the current frame. (c) 2D-2D
correspondences.

(vehicles, etc.), the dynamic mask created earlier is applied.
With the dynamic mask Md , we can consider only the static
part of the frame when selecting pixel correspondences. That
is, the ego-motion between the two frames can be obtained
robustly using only the stable part by excluding the part where
the flow consistency is low and the part with dynamic objects.
The example of the pixel correspondences is shown in Fig. 5.
Each pixel correspondence in correspondences (c) is repre-
sented by a small circle and connected with a line with the
same color. As can be seen in the figure, the correspondence
does not exist in the dynamic mask part. That is, dynamic
objects, which are in a moving state, are excluded due to the
dynamic mask, so more correspondences are selected in the
static part with high flow consistency.

F. POSE ESTIMATION
Finally, the pose between the two consecutive frames is
predicted based on the 2D-2D correspondences obtained in
Section III-E. In the prediction, we use epipolar geometry
[34], [35]. First, we define the geometric relationship between
two consecutive images viewed by an epipolar constraint
given in terms of the essential matrix E.

pTj K
−TEK−1pi = 0, (4)

where (pi, pj) is a pair of pixel correspondences of the two
frames. The camera motion [R, t] can be solved by decom-
posing the essential matrix E. That is,

E = [t]×R, (5)

where [t]× means the matrix representation of the cross prod-
uct with t.
However, the essential matrix alone cannot recover the

scale of the pose, which is a chronic problem of monocu-
lar visual odometry. To recover the scale, a scale recovery
process is required. The method of restoring the scale is the
same as [21], which restores the scale using the depth map
estimated from the depth network. If there is a sufficient
number of correspondences, the scale is restored according to
the ratio with the depth map, and if there is a limited number
of correspondences, ego-motion is calculated through 2D-3D
geometry calculation. That is, when the size of the optical
flow is small due to small camera movement, the perspective-
n-point (PnP) method for the predicted depth map is used.

IV. EXPERIMENT
In this section, the experimental results of the proposed
method are shown qualitatively and quantitatively.

A. IMPLEMENTATION DETAIL
The proposed framework is implemented using Pytorch [36]
framework and is trained on an Intel Core i5-7600 desk-
top computer with 32 GB RAM and NVIDIA GeForce
1070 Ti GPU. The depth network is trained with the famous
KITTI Odometry benchmark dataset [37], which contains
11 driving sequences (00-10) with ground truth camera poses.
The sequences consist of images with size 640 × 192. Fol-
lowing the protocol of [21], we train our depth network on
sequences 00-08.

Each network is trained separately and used in the proposed
method. For optimization, the Adam optimizer [38] is used,
and the optical flow network used the weights of [21]. That
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TABLE 2. Network performance with different hyper-parameters.

FIGURE 6. Examples of input images and augmented images.

is, the flow network is trained with a learning rate of 10−4

for the first 15 epochs and 10−5 for the rest. The depth
network is fine-tuned based on the weights of [21] using the
stereo images of the KITTI dataset, and the semantic/instance
segmentation network is fine-tuned based on the weights of
the pre-trained network with the COCO dataset [31]. For
both networks, we conducted a training experiment while
changing the initial learning rate η from 10−3 to 10−5 by
increasing one order of magnitude. Also, we conducted the
same experiment while varying weight decay λ used in L2
regularization. The results are given in Table 2.
In Table 2, the best value for each network is shown in

bold. Since each network is trained and used separately,
the weight of the bolded results are used as the weight of
each network. That is, the learning rate of 10−5 and weight
decay of 10−5 are used to train the depth network learning
and while the learning rate of 10−4 and weight decay of
10−4 are used to train the semantic/instance segmentation
network.

During the training process, augmentation methods are
applied to prevent the underfitting/overfitting. Figure 6 is an
example of data augmentation methods used when training
the depth network. As can be seen in the figure, the color jit-
tering is applied to the input imagewhile changing brightness,
hue, etc. Also, horizontal flip operation is applied randomly
to improve the performance of the neural network.

B. COMPARISON ON THE KITTI DATASET
We evaluated the proposed method and other methods and
compared the trajectory accuracy for all 11 sequences in
the KITTI Odometry dataset, as in [21]. In the experiments,
our VO method is compared with three kinds of VO meth-
ods. The first kind is deep learning-based method such
as SfMLearner [15], Depth-VO-Feat [39], SC-SFMLearner
[16], the second kind is classical geometry-based method,
which is ORB-SLAM2 [1]; and the third one is hybrid
method which includes DF-VO [21]. Understandably, our

method also belongs to the hybrid method. The quantitative
results are shown in Table 1. In the table, it should be
noted that two different results are listed for ORB-SLAM2
because its performance highly depends on whether the loop
is closed or not. All competing methods are compared in
terms of rotation error rerr (◦/100m) and translation error
terr (%), which are averaged over 100m to 800m intervals. The
best result among all methods is indicated in bold, and the
second-best result is underlined. Fig. 7 shows the qualitative
results of eight sequences in the KITTI Odometry dataset.
As shown in the table and figure, our method demonstrates
good performance compared to other methods by using the
dynamic mask. Specifically, most of our results are much
better than those of the learning-based methods. Compared
to geometry-based method (=ORB-SLAM2), our method is
generally superior in terms of translation error, but might be
inferior in terms of some rotational errors. This is because
the geometry-based method also performs well using the
optimization over multiple frames. To measure the accuracy
of visual odometry between two images, we compared the
RPE (Relative Pose Error) of ORB-SLAM2 and the RPE
of the proposed method, which is shown in Table 3. RPE
is a frame-to-frame error that indicates how accurately the
odometry is predicted between consecutive frames. As shown
in Table 3, the proposed method shows lower (=better) or
similar RPE results than ORB-SLAM2 in most sequences
except one sequence. Therefore, our method outperforms the
geometry-based method for predicting ego-motion between
two consecutive frames. By applying semantic segmentation
and optical flow to effectively remove dynamic objects of
the image, our method can obtain better and more reliable
performance. This shows that the proposed method has the
potential to outperform the geometry-based method even for
rotational error.

In most sequences that contain dynamic objects, defined
in Section III-D, our method achieves good performance
by suppressing the region of dynamic objects in the image.
Among the hybrid methods that use deep learning-based
method and geometry-based method together, our method
works best in sequences with many dynamic objects. That
is, in most sequences, the proposed method performs better
than [21]. Further, it is interesting to see that using a full
mask also works well for some sequences. In sequence 04,
it is better to use the full mask rather than the dynamic mask.
This is because when the ego-motion of the camera (vehicle)
is too large and most objects are moving, it is not easy to
judge the movement by only the optical flow. In this case, it is
better to just suppressing the influence of all movable objects
by applying the full mask. However, when static objects are
dominant in the image, the performance of the full mask
might be inferior to even not using any mask because too
much information is lost with the mask. In this case, using
a dynamic mask rather than a full mask is better in perfor-
mance. This demonstrates the dangers of blindly removing
all movable objects and the necessity of dynamic detection
like our method. In general, the proposed method using a
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FIGURE 7. Qualitative VO results on KITTI benchmark dataset.

TABLE 3. Comparison between the proposed method and the state-of-the-art geometry-based method ORB-SLAM2 in Relative pose error. The best result
is in bold. The proposed method performed better or equal in most of the sequences.

FIGURE 8. Runtime vs. the number of moving objects.

dynamic mask demonstrates excellent VO results in dynamic
environments.

C. RUNTIME ANALYSIS
In this section, we conduct some additional experiments to
investigate the relation between the runtime of our algo-
rithm and the number of moving objects. In the experiment,

we measure the runtime for various numbers of moving
objects. Here, we used the 00 sequence of KITTI dataset as a
test set because it includes a variety of situations. The results
are shown in Fig. 8. Figure 8 is the runtime vs. the number of
moving objects. As can be seen in the figure, the runtime
of the proposed method increases roughly in proportion to
the number of moving objects. That is, the more moving
objects appear, the longer computation is required, thereby
decreasing the processing speed.

V. CONCLUSION
This paper has proposed a novel visual odometry method
that works well in dynamic environments by detecting parts
with dynamic objects. Our VO is based on the idea of
detecting dynamic objects from movable objects by com-
bining optical flow and semantic segmentation. By creat-
ing a dynamic mask using dynamic objects, it was able to
remove the unnecessary information in the image. Based on
the dynamic mask and difference in optical flow between
the two images, pixel correspondences are selected in the
static part. The selected correspondences are applied to a
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geometry-based method to obtain the ego-motion of the
camera through optimization. Combining the learning-based
method and the geometry-based method allowed us to per-
form dynamic object-aware visual odometry using the advan-
tages of both methods. We evaluate the proposed method on
the well-known KITTI Odometry benchmark dataset. Exper-
imental results show that our method predicts the ego-motion
of the camerawell in a dynamic environment by excluding the
information of the dynamic objects. Regarding the applicabil-
ity of the proposed method, we believe that our algorithm can
be applied to various situations in which a number of nearly
moving objects prevent the accurate estimation of VO. For
example, when a robot navigates in a crowded museum or
department store, we believe that our VO will outperform the
classical VO’s because our method estimates the odometry
while removing the effects of moving objects.

We think that our method has two limitations. First, our
method consists of three networks, but the three are trained
separately without considering the other two networks. Sec-
ond, only frame-to-frame odometry (=odometry based on two
consecutive frames) is calculated; and the odometry based on
more than two consecutive frames is not considered at all,
reducing the accuracy of VO. Thus, we believe that we can
improve our VO method by resolving the limitations of the
current method in the future work. Specifically, first, we can
develop a way that the three networks are trained simultane-
ously, or our system is trained end-to-end. Second, we have
to construct a graph to estimate the VO based on more than
two consecutive frames. The two items are recommended as
our future work.
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