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ABSTRACT This work presents the instrumentation, modeling, and parameterization of an electric vehicle
used for public transport. The aim is to characterize the mathematical model for its application in control
systems design. A system identification technique based on a gray box approach is used to estimate specific
parameters of the longitudinal model that cannot be measured directly. For this purpose, a data acquisition
systemwas designed using high-amperage current sensors and anOdroid XU4 embedded system that records
the vehicle’s input current, displacement, and velocity. Additionally, a semi-automatic acceleration system
was developed to introduce a pseudo-random binary-type acceleration signal to excite all possible vehicle
frequencies to perform the parameter identification.

INDEX TERMS Electric vehicle, instrumentation, dynamic modeling, parameter identification, data
acquisition system.

I. INTRODUCTION
In recent years, eco-taxis (also known as motorcycle taxis)
have become popular in Taiwan, China, India, and Mexico.
It emerges as a solution to public transport problems, mainly
in small cities. The fact that it is a light vehicle, of small
dimensions, and easy to park favors that they can travel
relatively long distances in a short time at reduced costs. Their
impact is such that, in small towns in the southeast of Mexico
(40 000 inhabitants approx.), it is estimated that around a
thousand vehicles of this type circulate. This scenario is
repeated in other countries, where most of these vehicles use
internal combustion motors and, to a lesser extent, are electric
vehicles (EV).

The associate editor coordinating the review of this manuscript and
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The INVEMEX company designs EVs with a charging
system for the 120 [V] domestic electrical grid. A complete
charge cycle ranges from 8 to 10 hours, producing a
throughput of around 80 [km]. These EVs’ advantages are
clear since they do not consume gasoline, nor do they
emit polluting and greenhouse gases into the atmosphere.
However, despite government incentives to promote EVs,
their limited autonomy has not allowed its preference among
consumers.

EVs have attracted high interest in the scientific com-
munity, especially due to the popularity that vehicles such
as Tesla or Prius have gained. Studies have been carried
out on different types of EVs concerning their relationship
between motor velocity and torque, as well as their traction
effort [1], [2]. Most of the work focuses on its different
components, such as batteries [3], [4] and new energy sources
[5], [6], as well as different types of electric motors and their
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hybridization with internal combustion motors [7] including
alternative fuels [8], DC-DC inverters and converters [9],
fuel cells [10], among others. An important topic in
these studies is the development of technological systems
that improve EVs’ autonomy. For this, it is necessary to
have mathematical or behavioral models that represent the
dynamic characteristics of the EV, terrain, and load, to design
control and energy management systems [11], [12] that
improve their performance.

In the literature, different works report advances in the
modeling and optimization of electric vehicle propulsion
systems, e.g. [13], [14]. And a detailed study on different
propulsion systems can be consulted in [15]. EV control
systems are designed for different dynamics, and therefore
it is necessary to develop mathematical models that describe
each of them. The most important dynamics are lateral (for
autonomous navigation) and longitudinal (for energy-saving
and cruise control). This work is focused on the longitudinal
model. The problem is not trivial and has generated an
important field of research. For example, in [16], a model-
based predictive control is proposed considering only the
longitudinal dynamics at different operating conditions.
In [17], a nonlinear predictive control technique is considered
to control a four-by-four vehicle’s lateral dynamics. However,
asmentioned in [18], one problemwhen designing controllers
based on the longitudinal model is its parameterization since
some parameters cannot be measured directly. To obtain
the model parameters, specialized instrumentation, dedicated
equipment, or the use of system identification techniques are
required.

To solve this problem in [19] a dynamic test method
of electrical machines is proposed as an alternative to the
traditional test bench where a torque sensor is required. It is
shown that, with the measurement of velocity, current, and
voltage, while accelerating and decelerating an electricmotor,
it is possible to dynamically estimate the torque and the
characteristics of the flux linkage. The method proved to be
quick, convenient, and accurate. The authors in [20] took
up the model used by [21] and used system identification
techniques to approximate the unknown parameters of the
mathematical model of an EV and implemented a predictive
controller for tracking a predefined trajectory. In [22],
techniques for identifying EV Prius parameters are proposed
considering a new data acquisition system and vehicle
instrumentation with high-precision sensors such as high-
resolution GPS, velocity, and inclination sensors, among
others,

In general, there is a wide range of literature on modeling,
controlling, and improving EV efficiency; nevertheless,
the works focus on traditional vehicles. However, rural
transport EVs are built with unconventional designs and lack
information on their electrical, mechanical, and aerodynamic
characteristics that limit their efficiency. Therefore, this
work’s main contribution is selecting and characterizing the
mathematical model of a commercial EV of rural transport.
For this, the EV is instrumented for data acquisition.
Gray-box identification techniques are used to estimate the

FIGURE 1. Electric vehicle: a) Eco-taxi INVEMEX and b) its free-body
diagram considering the longitudinal dynamics.

unknown model parameters that cannot be measured directly,
such as the drag coefficient, the dynamic motor constant,
the rolling coefficient, and the power converter’s efficiency.
Finally, different tests are carried out in real environments to
validate the results.

The rest of the paper is divided as follows: Section II
presents the EV model; Section III presents the EV instru-
mentation and the tests’ experimental design; Section IV
shows the results obtained; finally, in Section V, the conclu-
sions are given. To complement the paper, the nomenclature
used is summarized in the Appendix.

II. MATHEMATICAL MODELING OF THE ELECTRIC
VEHICLE
The considered EV and its free-body diagram are shown in
Figure 1. Taking into account Newton’s second law of motion
and the principle of translational equilibrium, the longitudinal
dynamics can be represented by

mv
dv(t)
dt

= Ft (t) − Fa(t) − Fr (t) − Fg(t), (1)

where mv [kg] is the mass of the vehicle; v [m/s] is
the velocity; Ft [N] is the traction force; Fa [N] is the
aerodynamic force; Fr [N] is the rolling resistance force; and
Fg [N] is the resistance due to the slope and weight of the EV.
The traction force can be calculated by

Ft (t) =
ηktgr Ibat (t)

rw
, (2)

where η = Im/Ibat is the efficiency of the power converter,
kt = Tm/Im [N·m/A] is the motor constant, Im [A] is
the motor current, Tm [N·m] is the motor torque, gr is the
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transmission gear ratio, Ibat [A] is the battery current, and rw
[m] is the radius of the wheels.

The aerodynamic force is [21]:

Fa(t) =
1
2
ρaCdAf v2(t), (3)

where ρa [kg/m3] is the density of the air, Cd is the
aerodynamic drag coefficient, and Af [m2] is the frontal area
of the EV.

The rolling resistance force is modeled as

Fr (t) = Crmvg cos(α), (4)

where Cr is the rolling resistance coefficient, g [m/s2] is the
acceleration due to gravity, and α [rads] is the inclination
angle of the road. Cr depends on many variables, the most
important are the vehicle’s velocity, the wheel’s pressure,
and the road conditions; this parameter can be considered
constant [21].

The force exerted by gravity is calculated by [21]:

Fg(t) = mvg sin(α). (5)

Substituting the forces expressions (2)-(5) in (1), the
following model is obtained

mv
dv(t)
dt

=
ηktgr Ibat (t)

rw
−

1
2
ρaCdAf v2(t)

−Crmvg cos(α) − mvg sin(α). (6)

In this model, internal frictions, the rotational inertia of the
powertrain, and the electric motor’s inertia are neglected as
they are small compared to the EV’s total mass. Finally,
setting x1(t) equal to the EV position and x2(t) = ẋ1(t) =

v(t), we obtain its space-state representation [23]:

ẋ1(t) = x2(t); (7)

ẋ2(t) =
ηktgr Ibat (t)

rwmv
−

1
2mv

ρaCdAf x22 (t)

− Crg cos(α)−g sin(α). (8)

It is important to mention that, despite having the longitudinal
model, parameterizing the equations is not a trivial task
due to the difficulty of measuring parameters that require
specialized equipment. For this reason, in this work, system
identification techniques are considered, which require
experimental data of the vehicle’s current, velocity, and
displacement, to identify the model parameters that are not
possible to measure directly.

III. INSTRUMENTATION AND EXPERIMENTAL DESIGN
This section presents the description of the EV instrumenta-
tion, the development of the data acquisition system, and the
tests’ experimental design.

A. EV INSTRUMENTATION
The EV has a mass of 275 [kg]. According to the man-
ufacturer’s specifications, the vehicle reaches a maximum
velocity of 12 [m/s]. The center of gravity is located over the
symmetric axis of the vehicle, close to the rear wheels.

FIGURE 2. Schematic diagram of the electric vehicle.

FIGURE 3. Main elements of the electric vehicle.

The schematic diagram of the EV is shown in Figure 2,
which consists of the following: (i) an electronic speed
controller (ESC) that regulates the EV’s velocity through the
vehicle’s motor. Its inputs are signals from the motor’s Hall
Effect (HE) sensors, the accelerator, and the rotation direction
selector. The ESC (Figure 3a) sends a three-phase signal to
the motor. (ii) A 60 − 12 [V] converter (Figure 3b) that
provides power for general vehicle services such as lights
and sounds. (iii) A three-position selector (Figure 3c) that
sends a signal to the ESC and determines the direction of
the motor rotation, resulting in the vehicle going forward,
backward, or remaining stationary. (iv) A T201DCH100
transducer (Figure 3d) that measures the current input to the
ESC in a range of 0 − 100 [A] and delivers an analog signal
from 0 − 10 [V]. (v) An electronic accelerator (Figure 3e)
that sends the position signal of a pedal to the ESC; which
determines the control signal to regulate the motor’s velocity.
(vi) Five 12 [V], 150 [Ah], deep cycle batteries (Figure 3f) in
series, making a total of 60 [V] for the entire EV. A switch
controls the voltage going through to the ESC using a coil.
(vii) A 2000 [W] brushless motor (Figure 3g) that has three
built-in HE sensors to indicate its angular position.
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FIGURE 4. Electronic diagram of the data acquisition system.

B. MONITORING AND DATA ACQUISITION SYSTEM
A data acquisition systemwas designed to monitor and keep a
record of the current, displacement, and velocity information
every 100 [ms]. The system is based on anOdroid XU4 board,
its electronic diagram is shown in Figure 4.
The data acquisition system’s power supply is provided

by a 12 to 5 [V] regulator. And, because it reaches peaks
of current up to 4 [A], an MJ2955 power transistor is
used. As it can be seen in Figure 4, the T201DCH100
transducer measures the current input to the ESC in a range of
0 − 100 [A], and the output it provides is an analog signal
of 0 − 10 [V], proportional to the measured current. This
transducer is powered by the 60 − 12 [V] regulator. The
transducer’s output signal is sent to a voltage divider to match
the 0 − 1.8 [V] signal range, which is the analog read range
of the Odroid XU4 development board.

The motor angular displacement is measured through three
HE sensors that generate pulses that are sent to the ESC,
which determines the magnitude of the current supplied to the
motor. For practical purposes, only the signal from sensor 3
is considered for the data acquisition. Because the electric
motor is 5-pole, the HE sensor sends 5 pulses for each
revolution. To eliminate noise and undesired bounces from
the signal, the pulses are filtered twice by a 74LS14 logic
gate that has the function of negating the signal so that the
filtering is of the Schmitt Trigger type. The pulses are sent to
the Odroid XU4 board to be counted through the GPX2.5 pin.

To determine the displacement and velocity of the EV in
time steps with sampling period Ts = 100 [ms], a counter
c1 (reinitialized at each time step) and an accumulator dc are

used. The accumulator acts as an integrator to approximate
the displacement of the vehicle by odometry from its velocity.
The velocity (vc) and linear displacement (dc) of the vehicle
are computed as:

vc(t) = ((c1/5) × 10)/10 × 1.624; (9)

dc(t + 1) = (c1/(5 × 10)) × 1.624 + dc(t); (10)

where t is the discrete-time index, c1 counts the pulses
generated by the HE sensor 3. To obtain the displacement dc,
the counter c1 is divided by 5, obtaining the number of motor
revolutions. Then, it is divided by 10 because the gear ratio
is 10:1, obtaining the number of wheel revolutions. Finally,
this result is multiplied by the linear displacement per wheel
revolution (1.624 [m]), and the result is stored in dc that
contains the accumulated displacement. For the velocity, c1 is
divided by 5 to obtain the number of motor revolutions and,
with it, its average angular velocity per 100 [ms]. For practical
purposes, this velocity is considered as the instantaneous
velocity of the EV. Then, it is multiplied by 10 to have it
for every second and is divided by 10 due to the gear ratio,
obtaining the wheel’s angular velocity. Finally, this result is
multiplied by the linear displacement per wheel revolution to
obtain the EV linear velocity vc.

C. TIME CONSTANT OF THE ELECTRIC VEHICLE
To determine the EV time constant, a unit step input was
applied to the system by accelerating to the maximum,
and the output response was studied. Six experimental tests
were carried out, and the results were averaged. The tests
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FIGURE 5. Step response of the electric vehicle.

were carried out on a straight, flat street with an inclination
angle less than 3◦ and without irregularities (no potholes,
bumps, among others). The data acquisition system saves the
measurements from the tests. The data is plotted and analyzed
to determine its steady-state velocity and the time in which
reaches the 63.2% of this velocity. Figure 5 shows the raw
data of one of the test results. The raw data has to be prepared
with a filter that averages the last five samples to reduce
the noise in the measurements. The average steady-state
velocity reached is vss = 9.5 [m/s], and the EV time constant
is τ = 4.4 [s]. From these values, the sampling time of
ts = 2.2 [s] can be established. With the sampling time set,
the signals that will be injected into the EV for the application
of identification techniques can be configured.

D. CONTROL SIGNAL GENERATION FOR IDENTIFICATION
In order to apply identification techniques, it is necessary to
apply to the EV an input signal that meets the characteristics
of persistent excitation, i.e., an input signal that has enough
frequencies to excite all the response modes of the system
to be identified. In this work, a pseudo-random binary signal
(PRBS) dependent on the EV time constant was selected,
this signal has the additional characteristics of being periodic,
deterministic, and pseudorandom.

The designed input signal is generated a priori in
Matlab® and a posteriori a PRBS-dependent control signal
is generated through the Odroid XU4 computer as illustrated
in Figure 6. The PRBS signal is saved in a file containing
information of the generated pulses as a string of 1’s and 0’s
that is sent by the Odroid XU4 as an electronic digital signal
of 0 − 5 [V] through the GPX1.3 pin to the ESC. To do this,
the signal passes through a power stage consisting of a 4N30
optocoupler with Darlington output. The signal entering the
optocoupler collector comes from the EV’s accelerator driven
by the PRBS digital signal. The system sends the PRBS signal
pulses one by one according to the programmed sampling
time. As a result, the EVmoves accelerating and decelerating
according to the PRBS signal.

FIGURE 6. Illustration of the PRBS signal generation and application to
the electric vehicle.

E. PARAMETER ESTIMATION
As mentioned before, the mathematical model (7-8) is
commonly used to represent the nonlinear dynamics of
the vehicle. However, despite that the equations are well-
known, parametrization is a difficult task due to the fact
that some parameters are not directly measurable with stan-
dard equipment, for example, the aerodynamics coefficient
and the rolling resistance. Therefore, system identification
techniques, considering a gray-box approach, were used for
the mathematical model characterization. The procedure is
provided with (i) the mathematical model of the system;
(ii) the experimental data of the system’s input and outputs;
(iii) the initial conditions; and (iv) the parameters to be
identified.

The main idea followed in parametric identification using
a grey box model is to find a relationship between input
and output measurements based on a given function (grey
box model) by adjusting its parameters using an optimization
criterion [24]. An appropriate selection of the parameters
will make the model predict the future outputs ŷ(t) of
the system using past measurements of inputs u(t) and
outputs y(t) of the system conveniently summarized on the
set

Z = {y(1), u(1), y(2), u(2), . . . , y(N ), u(N )};

where N is the number of samples and for simplicity,
it assumes a unitary sampling instant.

Also, consider a parametrized model of the form

x(t + 1) = f (θ, x(t), u(t), e(t));

ŷ(t) = h(θ, x(t), u(t)); (11)

where f (·) and h(·) are smooth functions, θ is the parameter
vector, and e(t) = y(t) − ŷ(t) is the prediction error. The
method to estimate θ is to minimize the prediction error e(t),
i.e.

θ̂ = arg min
θ

J (θ ) = arg min
θ

{
1
N

N∑
t=1

e2(θ, t)

}
. (12)
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In order to obtain the solution of the minimization (12), the
derivative of the criterion J (θ ) is

dJ (θ )
dθ

= −
2
N

N∑
t=1

e(θ, t)
dŷ(t)
dθ

; (13)

with
dŷ(t)
dθ

=
dh(θ, x(t), u(t))

dθ
;

=
∂h(θ, x(t), u(t))

∂θ
+

∂h(θ, x(t), u(t))
∂x(t)

·
dx(t)
dθ

; (14)

and dx(t)/dθ is defined by

dx(t + 1)
dθ

=
∂f (θ, x(t), u(t), e(t))

∂x(t)
·
dx(t)
dθ

+
∂f (θ, x(t), u(t), e(t))

∂θ
. (15)

Equation (15) is a filter whose input is its last term which
in turn depends on x(t) that must be obtained by the model
itself (11). Then, to compute dŷ(t)/dt , both filters, (11) and
(15), have to be applied. The parameter initialization θ0 plays
an important role in the final estimation θ̂ as this value
determines the local minimum J (θ ) will converge.

The minimization (12) can be successfully solved by
efficient routines of optimization software, e.g. in Matlab®.

In the case of the EV, the parametrized model is the EV
model (7-8) where the outputs are y(t) = [x1(t), x2(t)]T ;
the parameters to be estimated are θ = [CdAf , Cr , η, kt ]T

with an initial guess θ0 = [1, 0.01, 0.7, 0.2]T ; and initial
condition of the system states x(0) = [0, 0]T .
Finally, the optimization software is supplied with the

values of 1 × 10−5 for the relative tolerance and 1 × 10−6

for the absolute tolerance.

IV. RESULTS
This section presents the results obtained from the data acqui-
sition system, the parameter estimation, and themathematical
model validation with the estimated parameters.

A. DATA ACQUISITION SYSTEM VALIDATION
In order to carry out the parameter identification, it is
necessary to measure the data of the outputs and know the
input that generates them. The input to the EV is the current to
the ESC, while the outputs are its displacement and velocity.

The output values of the EV are calculated through the
pulses generated by the HE sensor 3 using (10) for the
traveled distance and (9) for the velocity. For the validation
of the developed data acquisition system, its measurements
were compared with those of the GPS Speedview application
that measures the distance traveled and velocity providing
the route traveled and saving the data in a file; this is
done through a general-purpose high-precision GPS, with
a maximum error of 3 [m] and 0.2 [m/s] of distance and
velocity error, respectively. The results for the displacement
are shown in Figure 7, while for the velocity are in Figure 8.
For the displacement, the data acquisition system has a root
mean square error (RMS) of 4.18 [m] and a mean absolute

FIGURE 7. Displacement data comparison.

FIGURE 8. Velocity data comparison.

percentage error (MAPE) of 2.48%. For the velocity, the
RMS error is 0.85 [m/s] and the MAPE is 12.90%. Thus,
the measurements of the data acquisition system for both
variables are validated. The distance traveled per revolution
of the wheel that provided these results is 1.624 [m/rev].

B. PARAMETER IDENTIFICATION USING A GRAY-BOX
APPROACH
The driving tests were in a straight line on a flat, unobstructed
street. Several experimental tests were carried out, from
which four data sets were obtained. One of the data sets is
displayed in Figure 9, where the changes in electric current,
velocity, and displacement resulting from applying the PRBS
signal to the ESC are observed. Then, each data set is prepared
using an averaging filter set to five previous data. The filtered
data is fed into the identification process, which estimates the
model parameters using a gray-box approach.

The identification process estimates the model parameters
using the numerical method ode45; for this, it performs
the necessary iterations until an acceptable fit between the
estimated model and the experimental data is achieved.
Finally, the results of the unknown parameters are obtained
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FIGURE 9. Data set from an experimental test: a) displacement,
b) velocity, c) input current.

TABLE 1. Parameter values found and mean average percentage of error
(MAPE) using a gray-box approach.

as well as the MAPE of the data obtained with the model
formed with the estimated parameters with respect to the
experimental data.

The identification process is carried out on each data set,
so the parameter values of the aerodynamic drag coefficient
by the frontal area of the VE (CdAf ), the rolling coefficient
(Cr ), the power converter efficiency (η) and the motor
constant (kt ), are found for each experiment. The results for
each of the data sets are shown in Table 1.
The best results are obtained with the parameters found

for the fourth set of data. The parameter values found
using the fourth data set are CdAf = 16.53 [m2], Cr =

0.00609 [-], η = 0.72259 [-] and kt = 0.26522 [-]. With
these parameters, RMS errors of 3.42 [m] and 0.64 [m/s]
are obtained respectively, as well as a MAPE of 0.93%
with respect to the displacement data and 10.08% with
respect to the velocity data. The comparison of the model
characterized by these values and the experimental data is
shown graphically in Figure 10.

C. VALIDATION OF THE PARAMETER VALUES FOUND
To validate the parameters found in the identification process,
the mathematical model using these parameters is simulated
and compared with two new experimental data sets.

In the first test, the experimental data set is obtained with
a different drive path and the same input signal as in the
identification tests. Figure 11 shows the comparison of the
simulation results with the experimental data. The RMS error
for the displacement is 9.97 [m] and 0.699 [m/s] for the
velocity, i.e. 4.81% and 11.03% of MAPE, respectively.

In the second test, the mathematical model system
characterized by the parameters found is again comparedwith

FIGURE 10. Fourth experimental data set and numerical simulation of the
mathematical model with the parameters found: a) displacement,
b) velocity.

FIGURE 11. Characterized model against a different data set from that of
the identification (same PRBS input): a) displacement, b) velocity.

FIGURE 12. Characterized model against a different data set from that of
the identification (different input): a) displacement, b) velocity.

a different data set than the one used for identification. But
now, obtained with a different input than the one used in the
identification process. The results are shown in Figure 12,
where the displacement RMS error is 24.99 [m] in a route
of 278 [m], corresponding to a MAPE of 12.27%; and a
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TABLE 2. Mathematical model variables.

velocity RMS error of 0.84 [m/s] where velocities of up
to 7.67 [m/s] were reached, in a 70 [s] test, i.e. a MAPE
of 15.45%. Unsurprisingly, the error is higher because the
route and the input are entirely different from those used in
identification tests. However, the model represents the EV
dynamics with acceptable precision. This second validation
test is of particular interest because both the route and the
input are entirely different from those used in identification
tests, so this type of test tends to present more significant
errors.

V. CONCLUSION
In this work, the instrumentation, modeling, and characteri-
zation of an EV for public transport of the eco-taxi type from
the company INVEMEXwas presented. The instrumentation
consists of the implementation of a data acquisition system
based on an Odroid XU4 board to measure the vehicle’s
displacement and velocity through pulses generated by a hall
effect sensor installed in the vehicle motor. In addition, the
instrumentation incorporates a transducer that measures the
current with which the battery bank feeds the electronic speed
control. Furthermore, the system can generate PRBS signals
that are necessary for the use of identification algorithms.
These algorithms were used to estimate the motor’s dynamic
constant, the rolling resistance coefficient, and the efficiency
of the power converter. The validation was carried out in a
real environment, so the discrepancies that exist between the
numerical mathematical model results and the experimental
data sets are due to certain wind conditions and terrain
irregularities that are not possible to control. However, the
model validation results demonstrate that the characterized
EV model obtained is useful, with acceptable precision,
to serve as the basis for the development of model-based
control systems. It is important to mention that these EVs

TABLE 3. Parameter estimation variables.

are quite popular in different countries, and due to their
design and construction, they present areas of opportunity to
improve them in different engineering aspects. Future work
will include improving the battery charging system, fault
detection in sensors, and redesigning the chassis materials to
increase the vehicle’s safety.

APPENDIX. NOMENCLATURE
Tables 2 and 3 show the variables used for the mathematical
model and parameter estimation.
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