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ABSTRACT Automated Vehicles aim to increase road safety as automated driving systems (ADS) take
over the human driving task in the operational design domain (ODD), introducing severe challenges for
safety validation. Pure driving over many kilometers to gather enough evidence for a safety argument is not
feasible. Scenario-based testing is an approach to overcome this, but challenges like parameter discretization
still prevail, hindering safety assurance. This work proposes contributions towards a traceable and efficient
safety argumentation for ADS built upon ODD coverage. First, ODD coverage is thoroughly quantified
across all scenario levels, assuming distribution functions’ availability for the scenario parameters. Secondly,
a sampling method for n-dimensional scenario parameter distributions is proposed. The provided algorithms
adapt an initial k-means clustering using pre-defined boundary conditions requiring significantly fewer
scenarios. Furthermore, a risk metric for urban intersections is presented for scenario evaluation. The risk
metric consists of two parts, scene prediction of traffic participants (TPs) and risk assessment. The scene
prediction uses a manoeuvre-based motion model with a data-driven approach towards trajectory prediction,
increasing the validity. For the risk assessment, a probabilistic risk prediction for the TPs is performed
for each scenario scene. The risk metric shows a reasonable tradeoff between sensitivity and specificity,
outperforming time-to-collision. These contributions are exemplarily applied at an intersection using a
simplified setup for generating TPs and ego vehicle trajectories. The results indicate that an increased safety
argumentation is enabled using the proposed methods alongside a coverage process, facilitating further
research.

INDEX TERMS Automated vehicles, autonomous vehicles, automated driving, validation, coverage,
operational design domain, automotive safety, vehicle safety, safety argumentation.

I. INTRODUCTION
In 2016, more than 1.3 million traffic deaths happened world-
wide. Compared to the growing global population, the death
rate has, however, at least stagnated. Taking the increasing
motorisation in large parts of the world into account suggests
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that the rising safety measures in modern vehicles positively
contribute to safety. [1].

Automated vehicles (AVs) are cyber-physical systems
operating in open context [2]. AVs are equipped with auto-
mated driving systems (ADS) which are expected to increase
the aforementioned safety benefits of vehicle automation
further while enabling new mobility methods, e.g., robotaxis,
in complex urban areas. ADS are SAE Level 3 to 5 [3]
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as they take over the complete driving task without human
supervision. The boundaries of operation for such systems
are specified by the target operational design domain (ODD).
The description of an ODD contains a set of parameters and
their respective ranges. A respective taxonomy for such an
ODD description is given in [4]. The open context brings
various difficulties for the safety validation of these systems.
In general, the definition of safety for ADS is a difficult
concept which still needs to be clarified. However, certain
initiatives exist (e.g. [5]). For example, in [6], specific inter-
pretations of safety are defined, including the definition of
safety as a process, which influences the possible validation
strategies. Overviews of the different validation strategies are
given in [7] and [8], respectively.

A. CHALLENGES OF SAFETY VALIDATION FOR ADS
Most of these strategies use the concept of scenarios, intro-
duced in [9] and [10]. In there, different types of scenarios
are defined. The logical scenario (LS) is a model of time
sequences of consecutive scenes with parameters represented
as ranges. The concrete scenario (CS) is an instance of a LS,
with concrete values for each LS parameter. The continuous
parameter (CP) is part of the LS and can take on every value
between specific pre-defined ranges. In contrast, the discrete
parameter can assume only specific values (e.g. binary val-
ues). However, it must be noted that the discrete parameters
can also be used to split up existing LS into individual LS.
These individual LS then contain only CP.

This leads to various validation strategies using scenario-
based testing (SBT) as the basis. An overview is given in [11],
[12], and [13]. The general issues regarding those strategies
include:

• Defining the correct scenarios. These can come from
certain databases (with data from traffic analysis, includ-
ing accident data) and expert-based approaches.

• Providing suitable test methods. Even if the SBT
approach offers ways to tackle the open context problem
of ADS, there is still a tremendous amount of scenarios
to be executed, which calls for suitable test methods,
mostly virtual testing.

• Evaluating the executed scenarios and deciding on the
correct metric to evaluate criticality.

• Provide a suitable safety argumentation which includes
evidence of the achieved ODD coverage.

Potential solutions are formulated in various research ini-
tiatives, e.g. [14] and standardisation activities [15]. The
question of how safe ADS-equipped vehicles need to be for
operating in real traffic also concerns regulatory bodies on
all levels. Recently, the United Nations Economic Commis-
sion for Europe (UNECE) proposed a regulatory framework
for the safety assessment of ADS ( [16], [17], and [18]).
The framework consists of multiple pillars, including a sce-
nario catalogue for conducting SBT, various test methods for
scenario execution and assessment procedures. This frame-
work aims to be repeatable, objective and evidence-based in
assessing ADS safety. While the overall safety assessment

framework is clearly defined, specific details for an actual
execution still need to be clarified, including methods for
choosing CS’ andmetrics for scenario evaluation. This article
aims to contribute to the resolution of these current issues.

There are also certain approaches in the industry towards
the safety validation of ADS. General views on safety valida-
tion and certification are provided in [19] and [20]. A safety
argumentation for assessing an automated lane-keeping sys-
tem (ALKS) focused on virtual test methods is provided
in [21]. However, the respective ADS has a narrow target
ODD and severely bounded behaviour competencies, which
makes the proposed methods only conditionally applicable
for more complex use cases.

II. STRUCTURE OF THE ARTICLE
The remainder of the article is structured as follows: First,
Sec. III will introduce the proposed methods and key results
of this article, which all contribute towards an increased
safety argumentation. Secondly, in Sec. IV, the methods are
applied exemplarily. The generated results and their implica-
tions are discussed in Sec. V. The article concludes with a
summary and an outlook in Sec. VI.

III. COVERAGE EVALUATION METHOD
As stated in [13], traditional distance-based statistical
approaches are insufficient to cover the resulting test space.
Various methods to explore the scenario space exist. In [22],
a method for criticality identification to provide coverage
estimates is proposed. It uses a criticality indicator for the
exploration of the scenario space using a guided search.
Another method is to estimate the probability of a random
scenario being critical. The actual probability is unknown for
a specific ADS, so estimation is necessary [13]. However,
deriving confidence statements for such methods can take
time and effort. They need to be derived for each ADS
separately and also repeated for every change in the ADS.
This introduces another source of potential error in the overall
safety argumentation process.

In general, the required safety argumentation for AVs
can be viewed as a combination of a microscopic and
macroscopic assessment [11]. The microscopic assessment,
as defined in [23], evaluates the individual scenarios using
respective metrics. A metric for the microscopic assessment
of scenarios at urban intersections is presented in Sec. III-D.
The macroscopic assessment, as defined [24], compiles the
individual microscopic assessments to statistical statements
about the overall impact of AVs. A proposal for the macro-
scopic assessment is given in Sec. III-B. The combination
of both assessments into an overall safety argumentation
leads to the safety validation process, which is presented
in Sec. III-A. Therefore, the goal of the safety validation
process lies not in the search for critical scenarios or certain
edge cases (e.g., [25], [26]). Such a search is essential during
the development and internal validation of such systems,
especially across different design iterations, as it can influ-
ence certain development decisions. Nevertheless, such edge
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FIGURE 1. The coverage of the relevant ODD depends on the executed
scenarios and if these are passed or failed.

cases inherently depend on the performance of the tested
ADS regarding the experienced criticality, based on the pre-
defined metrics.

The safety validation process essentially needs to be seen
as a function of the defined target ODD of the ADS, as this
defines the overall search space that needs to be covered.
Additionally, it provides the necessary safety argumentation
for the ADS and its respective target ODD. A proposal for
such an overall process is shown in [27]. To determine the
overall coverage, an exploration method independent of the
respective ADS performance is needed. Hence, a determin-
istic and transparent way to calculate the overall coverage
can only be achieved if it is based on the respective input
parameters, meaning the executed scenarios. In other words,
taking an open-loop approach towards coverage evaluation,
as closing the loop and using the feedback of the experienced
criticality in a guided search for the following scenario, would
once again incorporate a specific ADS. This is displayed
in Figure 1.

An overview of different methods for exploring the sce-
nario space is given in [28]. As mentioned earlier, the focus
is on sampling-based methods, as they provide the possibil-
ity to respect available parameter distributions, enabling the
previously mentioned advantages. the advantage of which
has also already been explained. Another advantage of sam-
pling methods is that, since the drawn samples are mutually
independent, the generated test cases can be executed in
parallel, reducing overall testing time. Sampling methods,
in general, tend to be inefficient if uniform distributions are
assumed. Furthermore, the applied discretisation processes
are not able to provide sufficient argumentations for the safety
validation [29].

There are, after all, a fewmethods to increase efficiency for
these assumptions (see [30] or [31]). In [31], different con-
cepts for the coverage calculation, based on the past scenario
in the overall scenario space, are presented.

However, this can be partly addressed using the respec-
tive parameter distributions of the CPs for each LS. These
parameter distributions can e.g. include the likelihood of
exposure to given scenarios. As opposed to using uniform
distributions, realistic parameter distributions enable a more
efficient design of the sampling process, e.g., by considering
that higher probabilities of exposure in the real world are of
high significance for the safety validation of ADS. A method
for drawing efficient test case samples, while independent of
ADS implementations, will be shown in Sec. III-C.

A. EXPLORING THE PROCESS OF COVERAGE EVALUATION
The aim of the coverage evaluation as part of the safety argu-
mentation for ADS is to systematically ensure safe operation
inside a pre-defined ODD. Therefore, a dedicated process
needs to be in place to enable an efficient and traceable way
to cover the target ODD of the ADS. Two crucial aspects of
such a process are:

• Extendable towards all necessary target ODDs.
• The concrete ADS implementation is irrelevant.

In general, such a process starts by gathering all require-
ments for the process itself, including the ADS’ target ODD,
manoeuvers and the overall use case. These requirements are
used for further execution of the process, presented in detail
in [27].

The overall process consists of six steps, depicted in the
left part of Figure 2. In step 1, the target ODD based on the
top-level taxonomy from [4] is defined. Next, step 2 defines
the occurring disturbances, a concept defined in [14], which
enhances the SBT approach with the underlying physical
principles for each ADS subtask (perception, judgement and
control in [14]). These disturbances also define the structure
of the relevant LS, which is, together with the target ODD
parameter of step 1, the input for step 3, the LS generation.
In step 3 and step 4, the CS’ are created, whereas in step 4+
they are executed using specific test methods (ranging from
real-world proving grounds to virtual testing). Next, the exe-
cuted test cases are evaluated using a pre-defined set of key
performance indicators (KPIs) to determine if the test was
passed or failed (step 5). This is then used as input for the
determination of the achieved coverage (step 6).

While the presented process (left part of Figure 2) intro-
duces an overall method together with a stepwise process
regarding the coverage evaluation of ADS, certain aspects
still need to be better defined. The aspects concerning the core
part of the process (Figure 2) include a consistent definition
of the coverage itself in the context of SBT, as introduced
in Sec. I, and a respective set of metrics usable for pass/fail
determination in an urban use case. Furthermore, the exact
type of scenarios to include in the overall process, either
gathered from scenario databases such as [32] or derived
otherwise (e.g., using expert knowledge), is an open ques-
tion. The first two aspects are being addressed in Sec. III-B
and Sec. III-D, respectively. However, scenario creation is
an equally important aspect that will be covered in future
publications.

B. DEFINING COVERAGE IN THE EVALUATION PROCESS
As already examined at the beginning of Sec. III, most defini-
tions of coverage in the domain of safety validation for ADS
are either simplified pass/fail ratios of executed test cases or
only cover the aspect of coverage partly (e.g., on parameter
level) and not in the context of an overall SBT approach
for safety argumentations. Therefore, the aim is to define
coverage in a way that fits SBT, especially considering that
for most LS descriptions, the associated CPs are defined as
probability density functions (PDFs) using a specific metric.
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FIGURE 2. On the left, the high-level process for the determination of the ODD coverage, based on [27], can be seen. On the
right, steps 3 to 6 of the high-level process are detailed. These four steps are the focus of this article, for which multiple
contributions are provided.

This directly leads to the fact that each CS contributes differ-
ently to the overall coverage based on the associated metric
in the CP PDF. This is in line with the basic idea of scenar-
ios, where it is acknowledged that not every situation while
driving is equally relevant. Furthermore, this means that some
information is available regarding the scenarios (based on the
utilised metric) which can be utilised for CS generation. For
the remainder of this article, it is assumed that the associated
metric for the CP PDF is the probability of occurrence. This
means that values of the CP with higher densities are more
likely to appear in the real world. However, other metric types
can also be defined on the continuous parameter level and for
CS and LS. Other possible metrics would be the associated
risk of a CS (based on some pre-assessment) or specific
metadata for a LS (e.g., amount of roads at a junction) or even
a combination of those.

1) DEFINING THE DIFFERENT LEVELS OF COVERAGE
The previous section already mentioned that the different ele-
ments of a scenario (LS, CS, CP) could all have their metrics
that influence the overall coverage. This fact is combined
into a general overview, respecting the hierarchy between
the different levels and includes statements regarding the
test case domain and the number of test cases. It can be

seen in Figure 3. Starting from the top, an ADS of SAE
Level 5 would have to cover the entire input parameter space
without any restrictions, leading to infinite test cases. The
ODD is limited in the case of an ADS of SAE Level 3 or 4
(one level below in Figure 3). As the amount of test cases is
still infinite, using the SBT approach, the ODD is split into a
finite amount of LS, denoted as SL = {SL,1, SL,2, . . . , SL,n}.
However, for a respective LS and the associated scenario
space, the test case domain is once again infinite. For each
SL,i, there is a number of CS defined, given as SL,i =

{SC,1, SC,2, . . . , SC,n}. Then again, for each SC,i, concrete
values are assigned, making it executable as a test case
given a chosen test method. This is denoted as SC,i =

{x1, x2, . . . , xn}. At the lowest level, CPs define the actual val-
ues of each SC,i. TheCPs for a given SL,i are denoted as SP,i =

{SCP,1, SCP,2, . . . , SCP,n}. The elements of SP,i are the chosen
test case values for each CP, e.g., SCP,i = {x1, x2, . . . , xn}.
Essentially, the generated CS for each LS can be seen as
the cartesian product of each SCP,i associated with SL,i,
as the values and the number of resulting pairs are equal to
the defined CS.
Having established the general relationship between the

different levels of scenario descriptions, a thorough definition
of coverage is possible. Starting with the overall coverage on
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FIGURE 3. Defining the ODD coverage on different levels, from the target
ODD towards the continuous parameters of the concrete scenarios.

target ODD level, cODD ∈ [0, 1] is given by

cODD =

|SL |∑
i=1

cLS,imLS,i,coverage, (1)

where cLS,i ∈ [0, 1] is the coverage of one specific LS and
mLS,i,coverage is the value of the specified metric to weigh
the different LS across each other (e.g., according to the
probability of occurrence). Over all LS, the sum of this metric
is defined as

|SL |∑
i=1

mLS,i,coverage := 1. (2)

The individual coverage of a specific LS is

cLS,j =

|SL,j|∑
i=1

cCS,i, (3)

where cCS,i ∈ [0, 1] is defined as the coverage for a specific
CS and is calculated using the following equation:

cCS,i =

∑|SP,j|

i=1 cCP,i(∑|SP,j|

i=1
1

|SCP,i|

)
|SL,j|

, (4)

where cCP,i ∈ [0, 1] is the coverage on CP level. To make
sure that for a given LS SL,j the calculated coverage in Eq. 3
does not exceed the defined limit, the individual CS coverage
calculated in Eq. 4 is corrected, using the amount of chosen
CP values for each defined CP in the LS description and the
total amount of CS for the specific LS. At last, cCP,i is given
as

Pr(xi,a ≤ X ≤ xi,b) =

∫ xi,b

xi,a
fX (x)dx = cCP,i, (5)

which equals Ai in Figure 4. This means that for a respective
CP a specific value range will be represented by one concrete
value, which becomes the test case value. This stems from the
fact that specific values (for given value ranges) are needed
to get executable scenarios and to cope with the infinite test

FIGURE 4. Example PDF of a continuous parameter x as part of a
concrete scenario. The area Ai equals the area under the curve between
xi , a and xi , b and defines the coverage for that parameter range.

case domain of each LS. However, the probability that a
value is occurring based on a given PDF is only defined for
parameter ranges. Therefore, an approach combining specific
value ranges with representative concrete values is needed.
This representative value can e.g. be the mean of the value
range, as this takes the shape of the associated PDF, for that
specific range, into account.

It can be observed from Eq. 4 that each generated CS
contributes differently to the overall coverage, depending on
the covered area of each CP associated with the CS. Note that
in Eq. 3 it is possible to include another metric (similar to
mLS,i,coverage on LS level) to adjust the individual weighing
of each CS. This would further influence how much it con-
tributes to the overall coverage based on a metric defined on
the CS level. This is omitted for now but will be explored in
greater detail in future publications.

C. PROPOSED SAMPLING METHOD FOR EFFICIENT TEST
CASE GENERATION
After defining a consistent way for ODD coverage calcula-
tion, the parameter discretisation process is examined further
in this section. This process chooses exact values for each CP
in a LS description to generate CS’. This technically belongs
to step 1, depicted in Figure 2.

There are two extreme cases to consider when looking at
sampling from a specific PDF for generating exact values of
CP. On the one hand, choosing only one value and assigning
the complete value range of a CP to this value, e.g. using the
mean, would be possible. How advisable this is, depends on
the shape of the PDF, as a narrow PDF is more suitable than
a wide one. Therefore, the overall PDF’s variance is essential
(which is a property influenced by the shape of the PDF).
For each area (e.g. Ai in Figure 4), the variance should be as
slim as possible since, otherwise, the chosen representative
value can differ a lot from actual values inside the respective
value range. On the other hand, using Monte Carlo sampling
with a high number of samples leads to minimal areas and
narrow value ranges for each representative value, reducing
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the respective variance and approaching zero in case of an
infinite number of Monte Carlo samples. Even if both cases
are unrealistic, they contribute towards displaying the neces-
sity of generating representative samples for given CP PDFs
in a traceable manner.

Exploiting the PDF of scenario parameters has already
been explored in the literature. For example, in [33], the
cumulative probability of a CP, based on synthetic data gen-
erated using traffic simulation, is split into equidistant areas,
which all encompass the same amount of coverage on the CP
level. In [34], existing parameter distributions are used for
conditional sampling based on risk measures. As a concrete
method for sampling, an expectation value-based kD-tree
is used for dividing the parametric space, which can be n-
dimensional [35]. The kD-tree performs a spatial subdivision
based on a pre-defined number of divisions. Each resulting
subspace has an equal amount of points sampled from the
original PDF. It is in principle similar to the method in [33],
however, extended towards higher dimensions, in case mul-
tiple CPs are dependent on each other and are defined over
a joint PDF, as both methods aim for test cases of equal
coverage on CP level.

If parameter distributions are used for the CPs of the
defined scenarios (either one-dimensional, meaning one CP,
or multi-dimensional, meaning multiple CPs together in a
joint PDF), two main aspects need to be considered:

• Overall, the chosen test case values need to be as
close as possible to the actual occurring values, given a
pre-defined amount of values. Otherwise, Monte Carlo
sampling would be the apparent default solution.

• The deviation must be limited for each test case value
and must not exceed a certain predefined limit. This is
necessary to ensure that a particular condition is met for
each test case value, as the first aspect focuses on an
overall condition across all test case values.

Therefore, in Sec. III-C2, specific metrics will be
introduced to quantify different sampling methods across
each other, including the proposed sampling method in
Sec. III-C1, which covers both mentioned aspects.

1) METHOD FOR GENERATING SAMPLES FROM PARAMETER
DISTRIBUTIONS OF CPs
Clustering is an unsupervised learning task already covered
by literature in many aspects [36]. A well-known algorithm
for clustering is called k-means [37], whose objective func-
tion is to minimise the total within-cluster distances (squared
euclidian distances) to the closest centroids. This objective
function directly addresses the first aspect stated at the end
of Sec. III-C if the centroids from k-means are chosen as test
case values. To apply clustering, samples must be drawn from
the available parameter distributions of the CP. However, the
second aspect (see the end of Sec. III-C) is still unaddressed.
Therefore, the following proposed method will use k-means
as the basis for the first clustering and further adapt this
initial solution to address the second aspect. The steps of the

sampling method are all depicted in Figure 5 and will be
explained stepwise in the following.
Step 1: It is assumed that the original data concerning some

CP (in Figure 5 denoted as xi and xj) is available in point
samples. Using kernel density estimation (KDE) on the data
would lead to a respective estimation of the PDF. It could also
be the case that parameter densities are already available, e.g.
from extracted LS’ from a scenario database.
Step 2: In any case, samples are drawn from the derived

PDF in step 1 and scaling is performed. Concretely, we denote
X = {x1, x2, . . . , xm} ⊆ [0, 1]d as the representation of the
dataset on which the clustering is performed upon.
Step 3: Performing clustering on X , we first define C =

{C1,C2, . . . ,Ck} as the respective partition of X into k clus-
ters, with Ci ∩ Cj = ∅, i ̸= j. Additionally, the centroids are
denoted as 2 = {θ1, θ2, . . . , θk}, whereas θ j ∈ [0, 1]d is
the centroid of Cj. It is expressed as θ j =

1
|Cj|

∑
x∈Cj x. Now,

we define the within cluster distances WCj between samples
x ∈ Ci as

W (Ci) =

∑
x∈Ci

∥x− θ i∥
2
2, (6)

with ∥.∥22 being the squared euclidian distance. This defines
also the variance within each cluster. k-means is then defined
as the minimisation of the objective function

J (C; 2) =

|C|∑
i=1

W (Ci). (7)

Themost common algorithm to tackle this problem is Lloyd’s
algorithm [38] which uses a greedy strategy to approximate
J (C; 2). As initialisation of the centroids for the first step, the
k-means++ initialisation is used [39]. For the concrete imple-
mentation, used for generating the benchmark in Sec. III-C2,
the Scikit-learn [40] package is utilised.
Step 4: After having completed the initial partition into

k clusters, the clusters are now adapted in the following steps.
First, the probability pCi that x ∈ Ci is calculated using,

pCi =
|Ci|∑|C|

i=1 |Ci|
. (8)

The two properties of each cluster, stated in Eq. 6 and 8,
can be seen in a qualitative representation in Figure 5 for
step 4. There, the x-axis, denoted as POccurence, represents
the individual occurrence probabilities pCi for each cluster,
whereas the y-axis, denoted as tr(6), is the trace of the covari-
ance matrix. This is used as a scalar-valued generalisation for
higher dimensions interpreting the deviation in the variance
definition as euclidian distance since in Eq. 6 the squared
euclidian distance was also interpreted as a variance. If X is
a column vector which elements are random variables Xi and
6 is the covariance matrix between each components of X ,
the scalar valued variance Vars is defined as

Vars(X) = E
[
∥X − E[X]∥22

]
. (9)
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FIGURE 5. The six steps of the developed method for efficient sampling from PDFs of continuous parameters are part of logical scenario descriptions.
The method applies to n-dimensional PDFs of n continuous parameters and is pictured for the two-dimensional case.

After some rewriting, which is omitted, this equals the sum
of the individual variances of each Xi, which in turn equals
tr(6). Therefore, in the following, the use of tr(6) is equal
toW (Ci). As the overall goal is to bound each within-cluster
variance W (Ci), based on some pre-defined condition to ful-
fil the second aspect presented in Sec. III-C, the following
inequality is defined:

W (Ci) ≤ g(pCi ) + ϵ ∀ Ci ∈ C, (10)

with ϵ being a threshold value and g being described as
follows:

g : pCi ∈ [0, 1] 7→ k pCi + d ∈ R+, (11)

where k and d are parameters to be defined. Eq. 10 determines
the condition each cluster needs to obey. For a start, the
condition itself, Eq. 11, is expressed as a boundary line and
reflects the following assumption: For a cluster Ci, where
its centroid θ i represents the actual test case value, with
higher occurrence probability, pCi , there should be a lower
within-cluster varianceWCi . This makes intuitive sense. For a
cluster representing more of the sampled points than a cluster
with lower occurrence probability, the imposed condition
(in this case, the variance) should be more strict. How exactly
this relationship (↑ pCi ⇒ ↓ WCi ) is characterised, needs
to be explored more in future publications. As stated in
Eq. 11, a simple boundary line with two parameters is chosen,
as it reflects the basic intuitive assumption. The parameters
are chosen using linear regression on the points defined by
the properties of each cluster, as can be seen in step 4 in
Figure 5. This gives a realistic boundary, as some clusters
will be above and beyond the line. For future publications,

assuming a predefined boundary condition will be explored
further. Adjusting the sampling method presented in this
article would enable the determination of the required amount
of test cases, considering that each of these cases needs to
obey the boundary condition.
Step 5: In this step, a respective adaption strategy needs to

be specified so that all clusters obey the respective boundary,
discussed in step 4. The general idea, as qualitatively depicted
in Figure 5, is to efficiently search for pairs of points in the
sample space that fulfil two criteria:

• They belong to different clusters and,
• the euclidian distance between them falls below a certain
threshold.

These point pairs are potential candidates for exchange
between their respective clusters. Because fundamentally,
clusters above the boundary need to drop some points to
reduce the occurrence probability. As the dropped points,
by definition, are rather far off from their respective cen-
troid, the within-cluster variance is also reduced. Eventually,
if enough points are dropped, the boundary condition will
be met. This already describes the basics of the developed
algorithms. Concretely, two algorithms for cluster reduction
were developed, Alg. 1 for the one-dimensional problem and
Alg. 2 as a generalisation for the n-dimensional problem.
In the following, both algorithms are explained.

The one-dimensional algorithm, shown in Alg. 1, deals
with the situation of having clustered samples (re-scaled
to [0,1]) from the parameter distribution of a CP, which is
independent of all other CPs defined in a LS. This means
that only the direction of the x-axis is left as the degree of
freedom for dropping or absorbing points in clusters, which
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is in maximum two other clusters (‘‘left’’ and or ‘‘right’’ of
the cluster in focus). Considering this fact enables an adapted
algorithm design for the one-dimensional problem. Taking
the overall point samples and the clusters and centroids from
the k-means clustering as input, and the adapted clusters
are returned. At first, the clusters are sorted based on the
individual centroids, from small to large, and the cluster prop-
erties, WCi and pCi , are calculated. Then, until each cluster
obeys the boundary condition, three options are available
for each cluster. Option 1 is that the cluster is inside the
ϵ-threshold, which means no further action is taken for this
cluster. Option 2 means the cluster is above the boundary
line g(pCi ). Therefore, points are dropped towards the next
cluster based on the sorting. The last option, a cluster being
below g(pCi ), means further points can be added. The euclid-
ian distance threshold between points of different clusters
determines how many points are dropped or added. If the
threshold is high, the algorithm needs fewer iterations asmore
points are exchanged in each iteration and vice versa.

Algorithm 1 One-Dimensional Algorithm for Cluster
Adaption
Require: X ⊆ [0, 1], C, 2, ϵ, threshold,
number of samples m, number of clusters k

Ensure: C
print sort(C) after 2,

ObtainW (Ci) & pCi by Eq. 6 & 8 ∀ Ci ∈ C
repeat
for i = 1, 2, . . . , k do

if W (Ci) ≤ g(pCi ) + ϵ then
continue

else
for j = 1, 2, . . .mi do
dj,l = ∥xj − xl∥2 ∀ xl ∈ Ci+1
if dj,l < threshold then

if W (Ci) > g(pCi ) then
Ci = {Ci \ xj}, Ci+1 = Ci+1 ∪ {xj}

else ifW (Ci) < g(pCi ) then
Ci+1 = {Ci+1 \ xl}, Ci = Ci ∪ {xl}

end if
else
continue

end if
end for

end if
end for
update:W (Ci) & pCi using Eq. 6 & 8 ∀ Ci ∈ C

until W (Ci) ≤ g(pCi ) + ϵ ∀ Ci ∈ C
return C

The generalisation of the one-dimensional algorithm
towards n-dimensions is based on the same principles of
exchanging points, which are part of the original dataset X
and assigned to different clusters, to obtain a final set C that
obeys Eq. 10. At first, the cluster properties WCi and pCi are
calculated for each cluster. Additionally, we denote S ⊆ C

which is constructed as:

S = {Ci ∈ C |W (Ci) > g(pCi ) + ϵ}. (12)

Now the algorithm repeats the following steps until S is
empty: Iterating through S, all possible other clusters (except
the current cluster itself) are checked for how much they
reduce the defined objective function

J (C) =

|S|∑
i=1

W (Si) − g(pSi ) − ϵ. (13)

Once again, points with less euclidian distance than a
pre-defined threshold are considered for the exchange. After
having iterated through every possible combination, the
option which minimises the objective function in Eq. 13 the
most, is chosen and a new iteration starts.

Algorithm 2N-Dimensional Algorithm for Cluster Adaption

Require: X ⊆ [0, 1]d , C, ϵ, threshold
Ensure: C

print Obtain W (Ci) & pCi by Eq. 6 & 8 ∀ Ci ∈

C; S from Eq. 12
repeat
for Si ∈ S do
for Cj ∈ {C \ Si} do
Di,j = ∥xi − yj∥2, x ∈ Ci, y ∈ Si
(di,j) ∈ R|Ci|×|Si|

for di,j < threshold do
C ′
i = Ci ∪ {yj}, S

′
i = {Si \ yj}

end for
C′
i,j = {C \ {Ci, Si}} ∪ {C ′

i , S
′
i }

L = L ∪ {C′
i,j}

end for
end for
C′

= argminC′∈L J (C′)
update: C = C′,S from Eq. 12

until S = ∅

return C

Step 6: In this last step, the proposed algorithms, either
Alg. 1 or Alg. 2, depending on the dimensionality of the
problem, are applied to the original clustering of X using
k-means, which leads, qualitatively, to the situation depicted
for step 6 in Figure 5, as all clusters, based on their properties,
obey to the defined boundary condition. Next, the proposed
sampling method (adapted k-means) will be benchmarked
against other methods.

2) BENCHMARKING THE PROPOSED METHOD FOR
CONTINUOUS PARAMETER SAMPLING
The proposed adapted k-means addresses both aspects
defined in Sec. III-C that sampling methods should have.
In order to compare this method to other ones and showcase
in which aspects the method outperforms others, a short
benchmarking is performed for the one-dimensional and two-
dimensional cases. In total, five methods are included in the
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benchmark. The first option is simply sampling from a given
PDF, basically a Monte Carlo approach. As this method was
mentioned in Sec. III-C as an extreme case, it was essential
to include it here. Then, equidistant steps across the value
range are used next for the one-dimensional case. For the two-
dimensional case, Latin hypercube sampling (LHS), a much
more efficient method based on [41], is used. Both methods
discourage the available parameter distribution and assume
an underlying uniform distribution. However, it should be
showcased that if a respective PDF is available, it is best to
utilise it. That is why thesemethods are included. The last two
methods are the k-means and the proposed adapted k-means
approach, respectively. Next, the two relevant metrics are
introduced, followed by the definition of the used parameter
distributions and the actual results of the benchmark.

The two metrics are:
• Distance-based metric (DBM): The idea of this metric
is that if a large number of samples m is drawn from the
parameter distribution, it should be measured how close
the closest test case value is to each of the sample points.
Concretely this is expressed as

DBM =
1
m

m∑
i=1

min
∀θ∈2

∥xi − θ∥2. (14)

The aim of a sampling method for parameter distribu-
tions of CP in a SBT approach is therefore to reduce
DBM as much as possible as it reduces the uncertainty
that is inevitably introduced since not every exact value
that is possible can also be tested.

• Standard deviation metric (STDM): This metric enables
measurement of the expected standard deviation for
a chosen cluster, scaled by the actual occurrence
probability of said cluster. This directly reflects the
already mentioned fact that clusters with higher occur-
rence probability should have stricter boundaries on the
within-cluster variance. It is defined as

STDM =

√
W (Ci) pCi . (15)

Both metrics operate only on clusters and their properties,
which means that they are independent of the dimensions of
the parameter distributions.

To benchmark the methods, two examples, one and two-
dimensional, have been constructed. For the one-dimensional
case, the probability density is defined using a mixture of two
Gaussian distributions,

f (x) =

n∑
i=1

wipi(x), (16)

with n = 2, w1 = 0.55, w2 = 0.45, p1 = N (−2, 1) and
p2 = N (2, 0.04). For the two-dimensional case, two one-
dimensional Gaussian distributions, p1(x) = N (0.5, 0.25)
and p2(x) = N (0.2, 1), are defined. The two-dimensional
samples are obtained by adding and subtracting p1(x) and
p2(x) for the x and y axis, respectively. Executing all themeth-
ods on this given examples for various amounts of test cases

TABLE 1. For test case amounts between 10 and 20 (rows), for each given
method (column) the test case reduction potential in per cent when using
the adapted k-means, based on the DBM, is given. Positive values refer to
reduction potential for the adapted k-means.

TABLE 2. For test case amounts between 5 and 20 (rows), for each given
method (column) the test case reduction potential in per cent compared
to the adapted k-means, based on the DBM, is given. Positive values
refer to reduction potential for the adapted k-means.

leads to the results shown in Tab. 1 for the one-dimensional
example, Tab. 2 shows the two-dimensional case. For both
Tables, the values shown for each column represent the frac-
tional of the necessary test cases for the adapted k-means over
the other respective method to achieve the same value for the
DBM. Both evaluations are also depicted for one and two
dimensions in Figure 6 and Figure 7, respectively.

For the one-dimensional case, the mean of the reduction
potential is approx. 6.5% over the k-means, 26.4% over the
equidistant steps, and 62.6% over sampling from the PDF.
For the two-dimensional case, these values are 2.4% over the
k-means, 67.3% over sampling from the PDF, and 73.8% over
using LHS.

The achieved results show various things: First, the
performance of the adapted k-means in comparison to the
k-means is not degraded by applying the cluster adaption
algorithms, neither in one nor in two dimensions. Secondly,
it can be observed that both clustering techniques outper-
form all other benchmarked methods severely. This indicates,
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FIGURE 6. The number of test cases over the DBM for the different types
of sampling methods for the one-dimensional case. The number of test
cases refers to the number of samples drawn from the PDF of the
continuous parameter.

FIGURE 7. The number of test cases over the DBM for the different types
of sampling methods for the two-dimensional case. The number of test
cases refers to the number of samples drawn from the joint PDF of the
continuous parameters.

based on the applied metrics, that utilising parameter dis-
tributions, when available, offers a large test case reduction
potential on CP level. This effect is further enhanced on LS
level since it is typically composed of many individual CP.

At last, for the one-dimensional case, the STDM is
observed. Calculating this metric for each cluster in the given
example is depicted in Figure 8. The upper boundary line is
created by inserting Eq. 10 into the STDM (Eq. 15). This
means, that for the adapted k-means the STDM is bounded
based on the given boundary condition. In Figure 8 it can be
observed that one specific cluster of the k-means approach is
violating this boundary. All clusters of the adapted k-means
are within the given boundary.

FIGURE 8. For the one-dimensional case, the probability of occurrence
for each cluster is pictured over the STDM. It can be seen that in the case
of the classical k-means approach, one cluster violates the chosen
boundary condition by being above the upper boundary, depicted in blue.

D. METRICS FOR THE EVALUATION OF SCENARIOS
This section deals with the evaluation of executed scenarios.
Following the main steps of the ODD coverage process, this
corresponds to step 3 (see Figure 2). Evaluating scenarios
means analysing if a certain amount of criticality did occur
during the execution, whereas criticality is defined as ’the
combined risk of the involved actors when the traffic situa-
tion is continued’ [42]. The most obvious way to determine
that is by checking if an actual collision between entities
of a scenario did occur. However, that would disregard cer-
tain near-misses and would provide no means of indicating
the criticality of those scenarios. Therefore, many different
criticality metrics exist, as they are not only relevant for
evaluating scenarios during the safety validation phase using
a SBT approach. There are applications for such metrics
along the entire V-model [43]. The most well-known metric
is the time to collision (TTC), which calculates the time
until a predicted collision between traffic participants [44].
It originates from traffic conflict research and is, therefore,
collision-focused. There exist many adapted and improved
versions of TTC. In [45], different accident configurations are
considered, taking the vehicles’ width and length into account
and providing a more accurate TTC. For a-posteriori traffic
data analysis, the post encroachment time (PET) calculates
the time gap between a traffic participant leaving and another
entering a pre-defined area [46]. A comprehensive overview
of criticality metrics is given in [47]. The authors of [47]
also define a set of properties relevant to such metrics. These
properties are (excerpt):

• Reliability: Describes how close repeated measurements
are to one another.

• Validity: This property is concerned with how close the
measurements are to the actual accident probability.
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• Sensitivity: This is the true positive rate (TPR), which is
defined as

TPR =
TP

TP + FN
, (17)

whereas TP are the true positives and FN are the false
negatives.

• Specificity: Similarily, specificity is the true negative
rate (TNR), which describes the rate of correctly identi-
fied uncritical situations, expressed as

TNR =
TN

TN + FP
, (18)

with TN and FP being the true negatives and the false
positives, respectively.

In this article, the focus is on the test evaluation of certain
scenarios, based on pre-defined pass/fail criteria to determine
the overall coverage of the target ODD for a specific ADS.
If the focus is on an urban use case, including complex
intersections, TTC is considered to not be an ideal choice,
since it suffers from reduced validity and sensitivity [47].

Various literature exists that aims to apply distinct risk
metrics towards urban-based use cases. In [48], a probabilistic
risk assessment algorithm considering occlusion, focusing on
integration into planning algorithms, is proposed. In [49],
a potential risk assessment for occluded areas in urban sit-
uations is proposed by threat modelling of the potential
risk, however, it is designed for real-time purposes. In [50],
a virtual risk assessment, determining the suitability of an
automated shuttle deployment in suburban areas, is presented,
taking into account the actual geo-location. Another risk
metric for urban use cases is presented in [51]. The authors
propose a threat metric in complex urban scenarios using
the inD dataset [52]. Moreover, they perform a reachability
analysis, a technique to compute reachable system states
based on parametrised motion models. Also, respective lane
association is considered. However, this association is static,
not considering the typical driver’s intention. This leads to a
threat metric which is prone to reduced sensitivity.

1) STRUCTURE OF THE DEVELOPED METRIC FOR URBAN
JUNCTIONS
A useful structure of such metric, which also applies towards
simple ones like TTC, can be seen in Figure 9, which is based
on [53]. It serves as an overview for the urban risk metric
which is proposed to be used to evaluate executed scenarios
during the ODD coverage process. The two main parts, the
scene prediction and the risk assessment, will be explained in
detail in Sec. III-D2 and Sec. III-D3, respectively.

2) SCENE PREDICTION
Many advanced metrics (including the proposed urban risk
metric) calculate the risk for every scenario scene and then
derive a final risk value for the whole scenario. On that basis,
the pass/fail criteria are evaluated. To do that, for every scene
in the scenario, a scene prediction needs to be carried out

FIGURE 9. The overall structure of the urban risk metric, based on [53].

to calculate criticality based on a predicted future evolve-
ment of the scenario. This prediction either, for a pre-defined
prediction horizon, calculates a single evolution or multiple
ones for each traffic participant in the scenario. For the single
evolution, the worst case is mostly chosen, which leads to
severely reduced specificity. Multiple evolvements can be
carried out using a probabilistic framework or calculating
reachable sets using reachability analysis.

In [54], motion models for prediction are categorized into
three levels, with increasing abstraction. Physics-based mod-
els consider the motion of vehicles based on the laws of
physics.Manoeuvre-basedmotionmodels consider the future
motion of the vehicle also based on the potential driver’s
intention. Interaction-aware models are additionally taking
into account the vehicles’ manoeuvres (e.g., [55], [56]).
Another option is to define potential functions for each object
type and aggregate these functions to obtain a manoeuvre
model [57].

If a manoeuvre-based motion model is used, the actual
trajectory of the vehicle needs to be predicted. In [58],
the authors perform trajectory prediction based on observa-
tions using image processing and map-matching techniques.
It is shown that these generated predictions outperform the
usual physics-based motion models in the observed intersec-
tions. Schreier et al. perform criticality assessment using a
manoeuvre-based trajectory prediction utilising a Bayesian
network where each manoeuvre is modelled separately [59].
Several other approaches towards trajectory prediction exist,
using data-driven machine learning techniques (e.g., [60],
[61], [62], [63]).

The scene prediction for the urban risk metric uses a
manoeuvre-basedmotionmodel predictionwith a data-driven
approach towards concrete trajectory prediction. Using a
data-driven approach increases the validity of the applied
risk metric, although it is restricted to the locations with
available data. However, if these locations represent complex
intersections (e.g. included in the inD dataset [52] or the
INTERACTION dataset [64]), these are vital aspects of the
defined target ODD, which may justify the additional effort
associated with gathering the necessary amount of traffic
observations. Concretely, a specific map of the INTERAC-
TION dataset is used to develop the scene prediction and
provide an exemplary application in Sec. IV-A. The dataset
provides naturalistic motions of different traffic participants
for various complex intersections. One of these intersections
is chosen to showcase the developed method and can be seen
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FIGURE 10. One specific map of the INTERACTION dataset [64], provided
in the format Lanelet2 [65].

in Figure 10. The junction is provided in the Lanelet2 for-
mat [65]. The chosenmap provides an unsignaled intersection
and approx. 260 minutes of birds-view video material with
more than 10 thousand vehicles. The dataset can be evaluated
extensively with the provided Lanelet2 map, which provides
good starting points for further analysis.

Based on the overall structure of the urban risk metric
(Figure 9), the scene prediction is divided into two sepa-
rate layers. The first layer performs a road network-based
manoeuvre prediction. In contrast, the second layer performs
an actual trajectory prediction, providing a respective scene
prediction for the second primary step, the risk assessment.

For the road network-based manoeuvre prediction, a clas-
sification problem is formulated, where the goal is to
store pre-trained classifiers for each relevant lanelet section.
A lanelet section is defined by four nodes (two nodes for each
side). Doing that enables better performance of each individ-
ual classifier. All lanelets at respective road forks, and for
which more than one option for future manoeuvres is possi-
ble, are considered. A respective ground truth (GT) is needed
for training the classifiers. The GT is created by analysing the
provided vehicle tracks in the dataset and matching it with a
pre-defined list of lanelet IDs that belong to a global route
(e.g. the route from the top left of Figure 10 going right (from
top-view), crossing the red lanelet and taking the immediate
right turn). Furthermore, certain manoeuvres are connected
with that global route. Additionally, for these manoeuvres,
it is defined at which respective lanelet the manoeuvre deci-
sion has to be made and which lanelets are the successors.
For example, for the red lanelet in Figure 10, a decision if
turn right or go straight needs to be made. The features for
the classifier include the lateral position (in regards to the
respective lane in the provided map), the vehicles’ velocity
and the global heading for each lanelet section. An overview
of manoeuvre intention estimation at road intersections and
its associated features is given in [54].

TABLE 3. Performance comparison of different classifiers used for
manoeuvre estimation for the manoeuvre decision depicted in Figure 10.

In our case, the required supervised learning algorithm acts
on a dataset D, drawn from an unknown distribution, which
is defined as

D = {(x1, y1), . . . , (xn, yn) ⊆ R3
× L} (19)

where n is the size of the dataset, R3 is the feature space and
L is the label space. Furthermore, yi is the label and xi is the
feature vector of the ith sample, which is expressed as

xi = [velocity, global heading, lateral position]T . (20)

The label space, for the example shown in Figure 10,
is designed to be:

L = [Turning,Straight] (21)

The goal of the algorithm is to find h : R3
→ L so that for

new samples (x1, y1) we get h(x) ≈ y.
Different classifiers were trained and evaluated for the sit-

uation depicted in Figure 10. The results of the test and train
scores (80/20 split) can be seen in Tab. 3. The random forest
classifier (RBF), which fits several decision tree classifiers
on various sub-samples of the dataset [66], performs best
for the test and the training dataset. In general, it can be
observed that the manoeuvre intention is predictable with
very high accuracy. Therefore, for future trajectories, for
example, considering the decision for a right turn or going
straight in Figure 10, it is not necessary to always chose the
worst case, which would unnecessarily reduce specificity.

Suppose the probability for a particular predicted manoeu-
vre is below 0.65. In that case, the prediction is disregarded,
all possible manoeuvres are considered future trajectories,
and a worst-case estimation is performed in the risk assess-
ment. Future advancements in the urban risk metric regard
the investigation of calibrated classifiers. If such classifiers
are being used, it would be possible to utilise the different
prediction probabilities for each manoeuvre as a weighting
factor for the predicted trajectories, which can be exploited
for the risk assessment. This requires a classifier with a low
log loss, which is necessary if the probability estimates of the
classifier are utilised directly.

As the first layer of the scene prediction provided the
manoeuvre estimation, the second layer predicts the actual
future trajectories of the traffic participants. The output is
thereby defined by the necessary input to the second major
part of the urban risk metric, which is based on the prob-
abilistic evolvement of object positions for the pre-defined
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FIGURE 11. The potential evolvement of each object position for a
specific time t in a scenario is modelled as bivariate Gaussian
distribution for each following timestep.

prediction horizon. As Figure 11 shows, a bivariate Gaus-
sian distribution is constructed for each object and each
timestep 1t . This distribution is described in the respective
local object coordinate system for each prediction timestep.
It distinguishes between a longitudinal prediction along the
axis in the driving direction and a lateral prediction perpen-
dicular to this. It is crucial to notice that there is no restriction
regarding the shape of the bivariate Gaussian distribution.

For the traffic participants’ lateral prediction along the
road, an Ornstein-Uhlenbeck process [67] is modelled based
on [59]. The process has an exponentially decaying autoco-
variance function and is discretised as

ylat,i+1=e−αT ylat,i + (1 − e−αT ) u+ wylat∀i ∈ {j : j+ TP},

(22)

with α being a constant defining the rate of decay, T is the
current time in the prediction horizon, and u is defined as
the long-term mean of the process. Furthermore, wylat is the
process noise scalar, with a variance stated as

Qi = σ 2
ylat (1 − e−2αT ), (23)

where σ 2
ylat equals the limiting value of Qi. The notation {j :

j+TP} equals the sequence {j, j+1, . . . , j+TP with TP} being
the amount of prediction timesteps, calculated as

TP =
tpred
1t

, (24)

with tpred being the prediction horizon and 1t the prediction
timestep. This leads to the following Gaussian distribution of
the lateral prediction:

N (e−αT ylat,i + (1 − e−αT ) u,Qi). (25)

The longidutinal prediction for the traffic participant at
each timestep in the prediction horizon is defined as

xlon,i+1 = xlon,i + vlon,i 1t +
1
2
alon,i 1t2 ∀i ∈ {j : j+ TP},

(26)
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FIGURE 12. The trajectory prediction of a traffic participant (Layer 2 of
the scene prediction in the urban risk metric) on the map depicted
in Figure 10.

which equals a constant acceleration model, with xlon,i being
the current position along the prediction horizon and vlon,i the
current velocity. Analysing the INTERACTION dataset at the
complex intersection shown in Figure 10 reveals that there is
a correlation between the current velocity and the acceleration
of traffic participants. This is utilised by conditionally sam-
pling from the joint PDF of velocity and acceleration, derived
for each section of relevant lanelets, to get point samples
for accelerations based on the current vlon,i. These samples
are approximated by a Gaussian distribution by calculating
the mean and variance of the acquired acceleration samples,
which leads to

alon,i = N (ameanlon,i , σ
2
lon,i). (27)

Now, for both directions, longitudinal and lateral, a dis-
tribution for predicting the future motion of the respective
traffic participant along the prediction horizon is in place. The
lateral prediction is parametrised by setting α = 0.66. This
was also used in [59] for the conducted parameter study and
lead to meaningful predictions. The long-term mean u is set
to equal the mean of all relevant trajectories in the dataset
for the specific global route. In Figure 12, this is equal to the
dashed red line. The original centre line would be the dashed
yellow line derived from the respective means of the lanelet
boundaries. It can be observed that directly using an already
adapted centre lane as the basis for defining the lateral pre-
diction process is much more realistic. The limiting variance
σ 2
ylat is defined so that the generated trajectories do not exceed

the respective lanelets. These parameters have been verified
to lead to feasible kinematic predictions using [68].

Observing Figure 12 shows that the lateral prediction con-
verges towards the adapted centre line with ongoing predic-
tion time. For each value, the respective point samples for this
specific prediction timestep are plotted in the time horizon
colour bar of Figure 12. As the prediction progresses, the vari-
ance of the longitudinal prediction grows more significant,
as the longitudinal position is primarily influenced by poten-
tial braking manoeuvres caused by other traffic participants.
While this is not accounted for in the motion model itself,
to a certain degree, this is considered by the growing variance
in the prediction, as these situations are part of the dataset
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TABLE 4. Overall accuracy of the scene prediction for the specific
example shown in Figure 10.

samples used for generating the longitudinal prediction. The
variance of the lateral prediction also grows more prominent,
as modelled with the Ornstein-Uhlenbeck process. However,
it is outgrown by the longitudinal prediction variance. This
makes sense, as the probability that the traffic participant
stays inside its respective lane (and deviates to the calculated
mean) is much more probable.

The generated probability distributions must reflect real-
istic traffic participant behaviour to serve as valuable scene
predictions. To rate the overall scene prediction, a scene
prediction for a prediction horizon of 3 seconds is performed
for each object trajectory which is part of the displayed
first section of the red lanelet in Figure 10. The generated
probability distributions are then compared to the positions
of all trajectories in the dataset following the same global
route. The 1σ , 2σ and 3σ intervals are constructed based on
the positions after 3 seconds. The resulting overall accuracy
of the scene prediction based on the specific example shown
in Figure 10 is displayed in Tab. 4. The accuracy for the 3σ
interval is already quite good, considering it already includes
both the manoeuvre prediction at the red lanelet and the
following route prediction. The accuracy could be improved
further if the trajectories in the dataset are filtered to exclude
traffic participants performing a brakingmanoeuvre since this
is not explicitly accounted for in the motion model as this
would require an interaction-aware model.

3) RISK CALCULATION
Calculating a criticality measure for every scene in a given
scenario, each for a pre-defined prediction horizon, requires a
metric that can be calculated for arbitrary time intervals, also
in the absence of evident object collisions. As the preceding
scene prediction outputs respective position probability dis-
tributions, using a probability-based risk calculation is con-
sistent. The probability distributions of objects in the scene
reflect the growing uncertainty moving along the prediction
horizon and can be accounted for directly in a probabilistic
risk prediction. Eggert [69] use an exponential transform
in combination with a survival function to estimate future
event probabilities. The focus is on collision risk, which is
accounted for by modelling a distance-dependent risk. Other
types of risks could be modelled, e.g. the risk of a vehicle
losing control in a curve. However, the focus is now on
modelling the risk of traffic collisions and potential close
calls.

The future collision event probability is derived by
combining a survival probability, designed as a survival
function that decays in proportion to the collision event

probabilities. Earlier events significantly influence the pre-
dictive risk calculations as potential risks that occur before
others are considered more important. The distance-
dependent risk directly influences the collision event prob-
ability. More detailed explanations are in [70] and [71],
respectively.

Next, the concrete implementation of the risk calculation
is explained. At first, the distance-dependent risk is defined
as

rindi(ti) =
1
2

(
erf

( threshold − dadapted√
2σ 2

i

)
+ 1

)
, (28)

with rindi ∈ [0, 1] and the threshold calculated as

threshold =

{
0.25 + 0.002 v2rel vrel > 0
0.25 vrel ≤ 0.

(29)

The relative velocity between traffic objects vrel is calculated
as a relative velocity vector in the direction of the distance
vector between both points of the forward edge of the objects
as described in [72]. The threshold is increased if vrel is
greater than zero. If dadapted falls beneath the threshold,
the indicated risk approaches 1. In cases where the thresh-
old is still higher than dadapted , the risk is increased by a
higher variance σ 2

i , which is used as a parameter to quan-
tify the uncertainty in the distance estimate dadapted . Higher
uncertainty leads to higher risk estimates in cases above
the threshold. A detailed explanation of how to analytically
compute dadapted and σ 2

i follows at the end of this section.
Next, rindi is used to calculate the event probability

pevent (ti) =

(1 − e−rindi(ti)

1 − e−1

)
, (30)

with pevent ∈ [0, 1]. Furthermore, the survival probability is
calculated as follows:

psurvival(ti) = e−
∫ ti
0 pevent (ti)dt , (31)

with psurvival ∈ [0, 1]. The actual collision probability for
timestep ti in the prediction horizon is calculated as

pcoll(ti) = psurvival(ti) pevent (ti), (32)

with pcoll ∈ [0, 1]. The overall collision probability for a
scenario is then determined using the maximum value over
the prediction horizon across all individual scenes.

Observing Figure 11 already indicates that using the
euclidian distance between the means of the probability dis-
tributions is not sufficient for dadapted , as choosing σ 2

i would
still be an open question. The probability distribution of the
distance between two bivariate Gaussian probability distri-
butions can be solved analytically. First, the problem needs
to be reformulated. This is achieved by transforming these
two distributions into a single one, by applying a coordinate
transform so that the mean of one distribution becomes the
coordinate origin. The final covariance matrix 6d is obtained
by applying uncertainty propagation as follows:

6d = J 61,2 JT , J =

( 1 0
0 1

−1 0
0 −1

)
, (33)
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with61,2 being the matrix of the combined individual covari-
ance matrices defined as

61,2 =

(
61 0
0 62

)
. (34)

Now the problem is reduced to finding the distribution of
the distance vector from the coordinate origin to the individ-
ual points sampled from the combined bivariate Gaussian dis-
tribution. This problem, however, has been addressed in other
domains before. In case the bivariate Gaussian is circularly-
symmetric, the actual distance distribution is described by the
Rice distribution [73]. However, since using a Rice distribu-
tion in our case would mean a restriction, as it was already
shown in Sec. III-D2 that a circularly-symmetric assumption
for the individual Gaussians would be unwanted simplifi-
cation. However, the Beckmann distribution describes the
distribution for the general case, with no assumptions [74].
From the Beckmann distribution, various others, including
the Rice distribution can be derived.

Next, a simple example is constructed to showcase the
different distributions and their effect on the distance esti-
mate, also concerning the needed values, mean and variance
of the distance distribution, for the distance-dependent risk
in Eq. 28. The position of the first traffic object, in a global
coordinate system, is described by a bivariate Gaussian dis-
tribution of a random vector X1 = (X ,Y )T ∈ R2 with

X1 ∼ N (µ1, 61), (35)

with µ1 and 61 being defined as

µ1 =

[
4
4

]
, 61 =

[
0.35 0.3
0.3 1

]
, (36)

and similar for the second object with the random vector
X2 = (X ,Y )T ∈ R2 with

X2 ∼ N (µ2, 62), (37)

with µ2 and 62 being expressed as

µ2 =

[
0
0

]
, 62 =

[
3 −3.5

−3.5 5

]
. (38)

Three different methods are investigated to construct the
resulting distance vector distribution. The already mentioned
Rice and Beckmann distributions together with the Monte
Carlo approach. Starting with the latter, samples from both
individual Gaussians are drawn and the euclidian distance
between these points is calculated and stored. Performing
this calculation for 10k samples each leads to the distribution
depicted in Figure 13 as a dashed blue line. Next, the Rice
and Beckmann distributions are calculated using R, a free
software environment for statistical computing [75] with an
additional package [76] for calculating the specific distribu-
tions. In the case of the Rice distribution it can be observed
that, while the mean deviates not too much from the Monte
Carlo approach, the variance is much greater. The Beckmann
distribution is solved by numerical integration, which leads
to small deviations compared to the Monte Carlo simulation

TABLE 5. Three different methods are compared for computing the
distance vector distribution for bivariate Gaussian distributions.

FIGURE 13. The PDFs of the euclidian distance between two traffic
participants (dE in Figure 11) assuming a Rice distribution (red line) and
a Beckmann distribution (orange line) compared to the Monte Carlo
evaluation (dashed blue line).

around the mean. However, overall, the computed Beckmann
distribution is very close to the actual solution (derived using
Monte Carlo simulation). The individual simulation time, the
mean and the standard deviation for all methods can be seen
in Tab.5.

To calculate the actual dadapted for Eq. 28, the shape of
the traffic participants and uncertainty regarding the orien-
tation of the object needs to be considered. Based on the
objects’ current orientation, ± 3◦ of angular deviation is
considered, for which an enveloping ellipse is constructed
taking the resulting object shapes into account. These ellipses
act as a safety envelope, similar to the concepts presented
in [77] and [78]. Next, the shortest distance between these two
resulting ellipses is determined by sampling, using uniform
distributed ellipse angles as shown in Figure 14. To account
for the already discussed fact that the distance vector between
those two objects, using bivariate Gaussians, actually follows
a parameter distribution, the mean of the chosen distribution
(e.g. the presented Beckmann distribution) dmean,dist is sub-
stracted from the simple euclidian distance deuclidian between
the objects to account for the shifted mean and added to the
shortest distance between the objects at each positional mean
dshort,ellipses, concretely

dadapted = dshort,ellipses + (dmean,dist − deuclidian). (39)

Doing that, the final distance value includes the probabilis-
tic approach regarding the objects’ position as well as the
object’s global heading and also the actual dimensions of
each respective object. The variance σ 2

i for Eq. 28 is directly
derived from the calculated distance vector distribution.
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FIGURE 14. Calculating the shortest distance between two ellipses by
sampling using uniformly distributed ellipse angles.

FIGURE 15. These six steps were taken in the execution of the
application example.

IV. RESULTS
This section is structured into three main parts. First, the steps
that have been taken to construct an application example of
the coverage process are explained. Secondly, the produced
results are presented in detail. Lastly, a detailed evaluation of
the urban risk metric is included.

A. APPLICATION OF THE COVERAGE PROCESS
Two methods that advance the main parts of the coverage
process (see Figure 2) have been presented. First, the creation
of CS’ by applying the proposed sampling method using an
adapted k-means is tackled. Additionally, a respective metric
for the evaluation of the created scenarios is presented. It is
based on metrics already existing in the literature and has
been further developed for use in specific urban areas and
called the urban risk metric. To apply these two contributions
to the coverage process, various steps have been taken, which
can be seen in Figure 15 and are discussed next.
Step 1: In the first step, the LS need to be designed. For

this application example, no LS from any scenario databases
are used, but self-constructed ones. The LS is located at the
exact complex intersection pictured in Figure 10. One traffic
participant is approaching from the top left (from a bird’s
view) and is either turning right or going straight at the road
fork and turning right one road fork later. This is equivalent to
the manoeuvre decision in Figure 10. The other traffic object
is meant to be representing the ego vehicle, which tries to turn

FIGURE 16. These are the generated parameter distributions for the
application example. They are extracted for each chosen vehicle feature
for the first lanelet section displayed in Figure 10.

TABLE 6. The parameters of the LS used in the application example.

right at the intersection. It is represented as the green vehicle
in Figure 10.
Step 2: The CPs for this LS define the vehicle configuration

of the traffic participant at the start of the scenario. Therefore
the CPs are defined to be the vehicle’s lateral position, the
global heading and the velocity. The longitudinal starting
position is set to be at the beginning of the lanelet section
depicted in Figure 10. Based on the available data in the
INTERACTION dataset, the values for these three CPs for
all available vehicle trajectories in the dataset in this specific
lanelet section are extracted. Using that, the respective PDFs,
for each CP individually, assuming that these parameters are
independent, are derived. They can be observed in Figure 16.
Step 3: With the individual PDFs for each CP of the LS

in place, the proposed sampling method from Sec. III-C1
is used to efficiently choose values from the CP PDFs to
generate the actual CS’. Concretely, the Alg.1 is applied
to the parameter distributions in Figure 16. In the case of
the vehicles’ global velocity distribution, the generated test
case values are shown in Figure 17 as individual black dots.
Furthermore, the boundaries of the resulting coverage areas
(value under the parameter distribution) for each test case
value, are displayed. All parameters that define the LS and
are used to construct the respective CS are shown in Tab. 6.
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FIGURE 17. The generated test case values using Alg. 1 for the extracted
parameter distribution of the global vehicle velocity in the first lanelet
section displayed in Figure 10.

FIGURE 18. The Alg. 1 is applied to the parameter distribution for the
global vehicle velocity (shown in the middle of Figure 16) to generate the
required test case values. These values are shown in Figure 17. The
iterative steps of the algorithm for each generated cluster using the
proposed adapted k-means are shown here.

Step 4: Now, the scene prediction presented in Sec. III-D2
is used to generate the actual trajectories of the traffic partici-
pant for each CS. Another option would have been to choose
the closest matching trajectory available in the dataset for the
traffic participant. However, since the scene prediction has
been shown to produce meaningful results, it was also applied
for trajectory generation in this application example.
Step 5: For the ego vehicle, one trajectory was generated

that resembles a typical turn manoeuver at the intersection.
Here, the underlying assumption is that the behaviour of the
ego vehicles ADS is always the same for each CS. Note
that steps 4 and 5 tackle the scenario execution (step 4+
of the high-level ODD coverage process, see Figure 2) in a
simplified manner. Since the aim of this application example
is to show the proposed methods from Sec. III in an over-
all example coverage process, this is sufficient but will be
expanded in future publications.

FIGURE 19. The generated TP trajectories can be seen in blue. All TP’s
start at the beginning of the red lanelet depicted in Figure 10 and either
turn right at the first or second possibility. The generated ego vehicle
trajectory can be seen in green. For a specific pair, consisting of a TP
trajectory and the trajectory of the ego vehicle, the time and object
positions of the collision are depicted.

Step 6: As the last step, the CS’ are evaluated. Since each
CS consists of a pair of one TP trajectory and the ego vehicle
trajectory, these two object trajectories are used as input to the
urban risk metric. Based on the output of the risk metric, each
CS is either categorised as passed or failed. This information
is then used to compute the overall coverage value cODD.

V. DISCUSSION
All of the generated TP trajectories can be observed
in Figure 19. For a specific pair, consisting of a TP trajectory
and the trajectory of the ego vehicle, the time and object
positions of the collision are depicted. Approx. 30% of the
generated trajectories lead to an actual collision, with many
near-misses.

For evaluating each CS, three different types of metrics are
applied. First, the urban risk metric with the Rice distribution
is used for the distance vector between the objects’ positional
distribution. Second, the urban riskmetric with the Beckmann
distribution and, as a third method, the well-known TTC cal-
culation, using the improved calculation method of [45]. For
each metric, the TPR and the TNR using Eq. 17 and Eq. 18
is calculated and shown in Tab. 7 for all metrics, whereas
the positive case is referred to an actual collision, and vice
versa. This can be done since this is an a-posteriori analysis
of trajectory pairs. It can be observed that the urban risk
metric (for both implemented cases) can observe nearly every
collision. The risk assessment part of the urban risk metric is
parametrised so that for every scenario where the calculated
risk pcoll exceeds a value of 0.7 for at least one future scene
evolvement, the scenario is flagged as failed. Based on how
the actual risk is calculated, using an event-based distance-
dependent risk, even in actual collision cases, the calculated
risk is slightly below 0.7. This, however, can further be tuned
based on the threshold parameter in Eq. 29. However, in any
case, each CS will be additionally collision-checked with the
actual trajectories.
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TABLE 7. Three types of risk metrics are used to evaluate the generated
CS’ in the application example.

It can be observed that the urban risk metric with the imple-
mented Beckmann distribution provides the best tradeoff of
sensitivity, with a high TPR, but also reasonable specificity
with flagging near-miss cases as being critical. In the case
of the urban risk metric with the Rice distribution, however,
the TNR is severely reduced. This is a direct consequence
of the greater variance that this distribution assumption has,
which overstates the distance-depending risk in Eq. 28. Note
that such a metric does not need to achieve a TNR of 1 since
this would mean that no other than actual collision scenarios
are flagged as critical. However, a simple collision check
of both trajectories is enough to achieve the same. In an
application with an actual ADS, it is much more essential to
unveil potentially critical evolvements of an already executed
scenario (since this is a-posteriori analysis) which can be
further evaluated. The urban risk metric provides precisely
that, as it generates realistic scene predictions, trained using
actual traffic data, next to the reliability for the specific geolo-
cation the metric is applied at. Using the urban risk metric
with the Beckmann distribution for the overall ODD coverage
evaluation leads to an achieved coverage value of 55.96%.

For the TTC calculation, the situation is different. As dis-
played in Tab. 7, the TTC metric categorised every scenario
as critical. For the TTC metric to flag a scenario as critical,
the TTC value needs to equal zero for at least one scene evo-
lution. Consequently, this means that using the TTC metric
for evaluating CS’ in complex urban intersections turns out
to be worthless, as no new information can be gathered by
applying this metric. A fact discussed as well in [47].

Next, the validity of the urban risk metric (with the Beck-
mann distribution) and the TTC calculation is evaluated. For
that, all executed CS’ with collisions are analysed. For these
scenarios, the actual time to collision is known in this a-
posteriori analysis. Then, for each metric, the time offset is
calculated from the actual time to collision in the first time
step of the scenario. The distribution of the offset (in seconds)
from the actual time to collision is shown in Figure 20.
The urban risk metric has a smaller offset and less variance
than the TTC calculation. This shows the urban risk metric’s
greater validity than the TTC calculation, as it already has
quite a low error in predicting the collision time, even at the
first scenario timestep, which has the largest prediction time
until the actual collision.

Now, a specificCSwith a collision is analysed in Figure 19,
with the TP trajectory in orange and the ego vehicle displayed
in blue. For this specific trajectory pair, the time (in seconds)
which is left until a predicted collision is shown for the urban
risk metric, the calculated TTC and the actual time until the
collision is added as well (see Figure 21). It shows that for the

FIGURE 20. The distribution of the offset (in seconds) from the actual
time to collision, for all generated scenarios with a collision, is shown for
the TTC calculation and the urban risk metric. The latter has a smaller
offset and also less variance.

FIGURE 21. For a specific pair, consisting of a TP trajectory and the
trajectory of the ego vehicle, also depicted as an example in Figure 19,
the time (in seconds) which is left until a predicted collision is shown.
The urban risk metric is more reliable in its predictions than the TTC
calculation across the whole time horizon.

first timestep, the prediction of the TTC is worse, and also,
until the actual collision, the urban risk metric proves to be
more reliable.

These results show that using a manoeuvre-based motion
model as part of the scene prediction used in the urban risk
metric is suitable since the traffic participant has the right of
way in this example. Otherwise, the motion model needs to
be enhanced towards interaction awareness to provide reason-
able estimates. Using the scene prediction from Sec. III-D2
for the generation of TP trajectories also, in turn, betters
the performance of the urban risk metric, as the identical
scene prediction is used to calculate potential future evolve-
ments for each scene. However, the TTC calculation also
partly benefits from this since if the generated TP trajectories
would include interaction-aware breaking or accelerating, the
performance of this metric would also be greatly deterred.
In addition, the application example enabled an analysis of an
urban risk metric based on the properties of validity, sensitiv-
ity and specificity. Additionally, analysing the derived PDFs
from the INTERACTION dataset for the specific lanelet
section (see Figure 10) shows a strong correlation between
the global heading angle of the vehicle and its lateral position.
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This can be utilised by applyingAlg. 2 to the two-dimensional
PDF of these two features to generate test cases.

VI. CONCLUSION AND OUTLOOK
This work proposes multiple extensions for a pre-existing
high-level coverage process for the safety validation of ADS.
The contributions are across a particular part of the coverage
process, detailed in the right part of Figure 2, and enable
more traceable and efficient safety argumentations for ADS’.
Concretely, these contributions are (the first number of each
contribution refers to the respective step of the right process
in Figure 2):

• Contribution 1.1: A n-dimensional sampling method
for the scenario discretisation process is presented,
based on k-means clustering. It enables the definition
of relevancy-dependent variance boundaries for the indi-
vidual test case values.

• Contribution 3.1: A risk metric for the use in complex
urban intersections is extended based on current liter-
ature. A significantly reduced specificity compared to
time-to-collision is shown by using an exact mathemati-
cal formulation for the distribution of the distance vector
between the positional distributions of traffic objects.
Additionally, using actual traffic data from the respective
geolocation increased the validity of the metric.

• Contribution 4.1: The coverage process is advanced by
the individual contributions and the application example
in Sec. IV.

• Contribution 4.2: Different levels of ODD coverage are
introduced corresponding to the scenario ontology (LS,
CS and CP).

• Contribution 4.3: The ODD coverage is thoroughly
quantified across all scenario levels, assuming distribu-
tion functions’ availability for the scenario parameters.

In summation, a transparent process to evaluate the
achieved coverage for the target ODD, independent of the
ADS implementation, is needed. Such a process is extended
in multiple ways in this article, which in turn enables further
extensions. Potential future work includes:

• The proposed coverage calculation can also be extended
to include a metric to individually weigh each executed
CS, e.g., taking into account the experienced criticality.
Also, other types of metrics on the scenario level are
possible, e.g., if the focus of the coverage evaluation
needs to be steered towards assessing the perception
layer.

• The coverage evaluation assigns every CS a certain value
that contributes to the overall coverage. That information
can be useful when deciding the specific test method
for the respective CS, as CS, which contributes strongly
to the overall coverage, need to be executed with a
test method of high validity. Considering that most test
methods have certain limitations (e.g., virtual testing
regarding weather and the respective effects), this can
be utilised when deciding the test method for the CS’.
Furthermore, as the impact on the overall achievable

coverage can be stated explicitly for each CS, test
method efforts can be guided more efficiently. This arti-
cle does not cover this topic, but the proposed coverage
calculation provides a good starting point for future
research.

• Since the proposed sampling method for concrete CS
generation is variance-bounded based on the individ-
ual coverage contribution, the number of necessary test
cases for each CP can be calculated inversely given the
respective boundary condition. That way, the bound-
aries can be adjusted for each CP individually, and the
required amount of test cases (and their concrete values)
can be automatically generated, enabling more automa-
tion in the coverage process.

• Currently, the proposed generation of CS using the
adapted k-mean sampling is deterministic, as, for each
generated cluster, the centroid is chosen as the actual test
case value. However, every other rule of determining the
actual values based on the generated clusters is possible.
Suppose the generated CS should not be deterministic,
e.g., because the whole process is repeated multiple
times during an ADS development cycle. The actual
test case value could again be a drawn sample from the
respective cluster.

• The urban risk metric can also be extended in mul-
tiple ways. This concerns primarily scene predictions
as this determines how valid the actual risk estimates
are. Currently, the proposed scene prediction depends
on the availability of enough traffic data to train the
individual manoeuvre prediction classifiers. Also, for
route prediction, this data is needed. However, the scene
prediction could also be carried out with more generally
applicable driver models which would lead to increased
scalability.

• For this article, no concrete ADSwas used in the applica-
tion example, as the coverage calculation, the proposed
sampling method and the urban risk metric can be exem-
plarily shown without a concrete ADS implementation.
However, using a concrete ADS offers specific other
usages. Concretely, the sensor setup requirements for
a specific ADS with a pre-defined target ODD can be
recursively determined using the urban risk metric in
combinationwith a value on the necessary coverage. The
urban risk metric can be applied to determine if the ADS
detected particular other traffic participants that could
lead to dangerous situations eventually.

• The proposed safety argumentation for AVs could also
be extended towards other means of transportation
where automated systems are deployed (for example,
automated drones or ships). Possible adaptions to apply
the safety argumentation proposed in this article in these
domains can be explored in future research.
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