IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 16 January 2023, accepted 31 January 2023, date of publication 3 February 2023, date of current version 8 February 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3242045

== RESEARCH ARTICLE

Empirical Study: How Issue Classification
Influences Software Defect Prediction

PETAR AFRIC™, DAVOR VUKADIN, MARIN SILIC", (Miember, IEEE),
AND GORAN DELAC", (Member, IEEE)

Faculty of Electrical Engineering and Computing, University of Zagreb, 10000 Zagreb, Croatia

Corresponding author: Marin Silic (marin.silic @fer.hr)

This work was supported by the European Regional Development Fund through the System for Detection of Malicious Transactions in
Electronic Payment Operations Based on Machine Learning Research under Project IRI-II KK.01.2.1.02.0192, in part by the

VODIME—The Waters of Imotski Region Research under Project KK.05.1.1.02.0024, and in part by the Croatian Science Foundation
through the Reliable Composite Applications Based on Web Services Research Project under HRZZ-1P-01-2018-6423.

ABSTRACT Software defect prediction aims to identify potentially defective software modules to better
allocate limited quality assurance resources. Practitioners often do this by utilizing supervised models trained
using historical data. This data is gathered by mining version control and issue tracking systems. Version
control commits are linked to issues they address. If the linked issue is classified as a bug report, the change
is considered as bug fixing. The problem arises from the fact that issues are often incorrectly classified
within issue tracking systems. This introduces noise into the gathered datasets. In this paper, we investigate
the influence issue classification has on software defect prediction dataset quality and resulting model
performance. To do this, we mine data from 7 popular open-source repositories, create issue classification and
software defect prediction datasets for each of them. We investigate issue classification using four different
methods; a simple keyword heuristic, an improved keyword heuristic, the FastText model and the RoOBERTa
model. Our results show that using the ROBERTa model for issue classification produces the best software
defect prediction datasets, containing on average 14.3641% of mislabeled instances. SDP models trained
on such datasets achieve superior performance, to those trained on SDP datasets created using other issue
classification methods, in 65 out of 84 experiments, with 55 of them being statistically relevant. Furthermore,
in 17 out of 28 experiments we could not show a statistically relevant performance difference between SDP
models trained on RoBERTa derived software defect prediction datasets and those created using manually
labeled issues.

INDEX TERMS Issue tracking, version control systems, natural language processing, issue classification,
software defect prediction, ROBERTa.

I. INTRODUCTION

Software defect prediction (SDP) is a popular topic in soft-
ware engineering research. The aim of SDP is to identify
potentially defective software modules. This information can
be used by quality assurance (QA) teams to better allocate
their limited resources and thus further improve the quality of
developed software products [2]. This is an important activity
since researchers estimate that software defects and poor QA
have cost the US industry $2.08 trillion in 2020 alone [1].

The associate editor coordinating the review of this manuscript and

approving it for publication was Porfirio Tramontana

11732 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

SDP is a highly active research field. However, some of the
obtained results could be misleading due to datasets used to
conduct studies. Researchers have pointed out that datasets
created by mining software repositories might contain a sub-
stantial amount of noise. When creating an SDP dataset,
researchers inspect commit messages in an effort to identify
links to issues defined in the issue tracking system. Classes
assigned to issues are then used to derive the labels of the
created SDP datasets. Issue classes specify the type of issue,
for example, a modification request, a feature request, or a
bug report.

In this process, there are two situations where noise
can arise. First, it can arise when commits are not

VOLUME 11, 2023

https://orcid.org/0000-0001-9270-5988
https://orcid.org/0000-0002-4896-7689
https://orcid.org/0000-0001-5315-8387
https://orcid.org/0000-0003-3264-185X

P. Afric et al.: Empirical Study: How Issue Classification Influences Software Defect Prediction

IEEE Access

successfully linked to issues. Second, it can arise when
issues in the issue tracking system are incorrectly clas-
sified. The introduced noise can result in biased and
unreliable results. Researchers rely on issue classification.
For example, Zimmermann et al. [33] constructed the Eclipse
Bug Data Repository identifying defective code by search-
ing for bug report references and keywords such as “‘fixed”
and “bug”. A similar approach was used by Cubranic and
Murphy [88], Fischer et al. [89], Sliwerski et al. [8] and
Bachmann et al. [90].

Herzig et al. [9] examined a substantial number of issues
and found 33.8% of all bug reports were incorrectly classi-
fied. They concluded that users are the ones performing issue
classification and are the source of incorrect classifications.
If the software does not meet user expectations, they tend
to raise an issue, and classify it as a bug report. However,
users often lack technical knowledge, and insight into project
details, which results in incorrect classifications. Developers
could correct the issue classification, but there is no incentive
for them to do so.

Kim et al. [10], Seiffert et al. [15], Pandey and
Tripathi [16], Tantithamthavorn et al. [17] have all pointed
out that noise in the resulting dataset can lead to severe
degradation of model performance. While Khan et al. [18]
showed that noise filters struggle to mitigate the problem,
once noise is present in the dataset.

Antoniol et al. [19] also found that issues marked as bugs
might not actually refer to bugs. They proposed using issue
descriptions to classify issues and thus reduce the amount of
noise in derived defect prediction datasets. In their investi-
gation they used traditional models such as Decision Trees,
Naive Bayes, and Logistic Regression on issues coming
from three Java based repositories. They showed that such
models can achieve an F1 score of 0.70. Please note that
this metric is not directly given in their paper, instead we
calculated it from the evaluation data they provided in the
paper.

Since their paper was published, advanced Natural Lan-
guage Processing (NLP) models, such as BERT [83], have
been developed. Researchers [11], [12], [13], [14] have
investigated using NLP models for issue classification and
obtained promising results. However, none of this research is
focused on issue classification in the context of SDP. To the
best of our knowledge, no research has been done investigat-
ing the impact of issue classification on SDP dataset quality
and resulting model performance. In this paper, we investi-
gate the benefits of using such models during SDP dataset
creation. The effect issue classification quality has on the
noise present in the resulting SDP dataset, as well as influence
on the final SDP model performance.

More specifically, we created new datasets by mining pop-
ular open-source repositories. We mined data from 7 reposi-
tories, collecting all commit data and all issue tracking data.
For each dataset in each commit, we identify issue references.
Issues referenced by at least one commit are considered

VOLUME 11, 2023

issues-of-interest (I101). Commits containing at least one issue
reference are considered commits-of-interest (COI). For every
file mentioned in version control, we identify all commits it
has been modified by. If all commits modifying a file are
COI, meaning all of them reference an IOI, then the file is
considered a file-of-interest (FOI). Each version of a file,
meaning its state after a commit it has been modified by,
is decoded, stripped of all comments, and encoded using
GraphCodeBERT. These encodings are used to construct
semantic features, which in addition to other process and
code complexity features are used to construct a software
defect prediction instance. The instance is considered defect
prone if at least one commit in its history references a bug
related issue. For each repository, at least 1000 IOI are
manually labeled and used to create a golden SDP dataset.
We then investigate the amount of noise induced into the
SDP dataset if the issues are not manually labeled, but instead
automatically determined using a keyword matching heuristic
(KWM), an improved keyword matching heuristic IKWM),
a FastText model and finally a RoBERTa model. For each
resulting SDP dataset we train Logistic Regression, Decision
Trees, Naive Bayes and K-Nearest Neighbours models and
investigate the impact of noise in the SDP dataset on their
performance.

In simpler terms, we constructed file level SDP datasets.
The labels of these datasets are determined based on issue
classification. If a source code file is edited by a commit,
linking to a bug related issue then that file is considered defect
prone, otherwise it is considered not defect prone. Depending
on the quality of the issue classification, we investigate the
amount of noise induced in the resulting SDP datasets and
the effect this has on SDP model performance. We tested out
four different issue classification methods. A KWM model,
an IKWM model, a FastText model and a RoBERTa model.
As SDP models, we trained Logistic Regression, Decision
Trees, Naive Bayes and K-Nearest Neighbours models. These
models predict if a source code file is defect prone or not,
meaning we investigate how their performance is impacted
by the amount of noise in the SDP dataset, and the amount
of noise is a direct consequence of the issue classification
quality.

Our results show that using the RoOBERTa model for issue
classification produced the fewest mislabeled instances in
SDP datasets compared to other approaches. These datasets
contain an average of 14.3641% mislabeled instances.
We compared, and statistically validated, the performance
of models trained on such SDP datasets and on those cre-
ated using other methods. In 65 out of 84 experiments
models trained on SDP datasets created using RoBERTa
had superior performance and they had statistically relevant
superior performance in 55 out of 84 experiments which
is equal to 65.4761% of the time. Further, we compared
the performance of models trained on RoBERTa derived
SDP datasets to those trained on SDP datasets derived from
manual issue classification. In 17 out of 28 experiments

11733

IEEE Access

P. Afric et al.: Empirical Study: How Issue Classification Influences Software Defect Prediction

we could not show a statistically relevant performance
difference.
In summary, this work makes the following contributions:

o Fully mined commit and issue data for 7 popular open-
source repositories. Manually labeled issue classifica-
tion datasets consisting of at least 1000 issues for
each repository and derived software defect prediction
datasets.

« Experiments which investigates the performance of sim-
ple keywords matching heuristics (KWM), improved
keyword matching heuristics IKWM), FastText model,
and RoBERTa model on issue classification and the
resulting impact on SDP datasets noise levels and model
performance.

The rest of this paper is organized as follows. Sect. II
gives a more detailed introduction to SDP and an overview
of related work. Sect. III describes how data is collected
and how data of interest is identified. Sect. IV describes
how issue classification datasets are created and how issue
classification models are developed. Sect. V describes how
SDP datasets are created and which models are used for final
SDP classification. Sect. VI presents the obtained results.
Sect. VII outlines threats to the validity of this study. At the
end, Sect. VIII concludes this research with the author’s final
remarks.

Il. BACKGROUND AND RELATED WORK

In this section we provide a general overview of software
defect prediction (SDP) and an introduction to related work
important for the topic of this research paper. The first sub-
section presents the basics of SDP. The second subsection
presents often used SDP metrics, talks about prediction gran-
ularity, common datasets, and common approaches to tack-
ling the SDP problem. The third subsection introduces related
work focusing on noise in SDP datasets. The fourth subsec-
tion presents Natural language processing (NLP) related work
and previous work done around issue classification. Finally,
the last subsection ties in this manuscript within the existing
body of work.

A. SOFTWARE DEFECT PREDICTION

The field of software defect prediction (SDP) was started in
1971 by Akiyama when he published a paper investigating the
relation between code complexity and the number of software
defects [28]. He used Lines of code (LOC) as a measure
of code complexity and showed that there exists a positive
correlation between the two.

Through the years the field has developed and branched
out. Today, SDP can be divided into within-project predic-
tion and cross-project prediction. Utilizing project data to
predict defects in that same project is called within-project
prediction [91]. This can be further divided into within-
version-within-project prediction and cross-version-within-
project prediction, depending on whether the train and test
data come from the same version or different versions of

11734

that project [91]. The first studies in the field were based
on within-project prediction. However, researchers pointed
to potential benefits of training a model on data derived
from one project and using it to detect defects in another
project [50]. This would allow completely new projects to
use defect-prediction models and thus improve their QA.
This approach is called cross-project prediction [72].
Zimmermann et al. [50] showed that cross-project prediction
is a challenging task. They showed that it is not easy to
identify on which project a model should be trained in order
to perform well on another project. The basic premise of
machine learning states that the training and test data are
sampled from the same distribution. The fact that models
trained on one project data do not perform well on another
project implies that data distributions between projects dif-
fer to an extent that the basic premise of machine learning
is no longer satisfied. Notable approaches for improving
cross-project prediction performance are: Metric compensa-
tion [58], [59], Nearest neighbor filtering [60], Meta learn-
ing [57] and Transfer component analysis [53], [54], [55],
[56]. Recently, researchers have proposed methods which
would allow using projects described with different metrics
to achieve cross-project defect prediction, thus increasing the
amount of available train data. This is called heterogeneous
defect prediction [51], [52].

B. METRICS, PREDICTION GRANULARITY AND
APPROACHES TO SDP

Initially, most SDP studies were focused on defining useful
metrics. McCabe [38] proposed a set of code complexity met-
rics based on cyclomatic complexity, McCabe complexity,
and structural complexity. Halstead [39] proposed a set of
complexity metrics based on operator and operand counts.
Hitz and Montazeri [40] proposed code complexity metrics
for object-oriented programming (OOP). Over time many
different metrics have been proposed. Process metrics [41],
[42], [43], [44], [45], change metrics [46], [47], [48], [49],
semantic metrics [24], [25], [26], [27] and others.

GraphCodeBERT [27] is of special interest to us. Graph-
CodeBERT is a BERT base model for generating code rep-
resentations based on code structure and data flow. It is a
multi-lingual model supporting the following programming
languages: Python, Java, JavaScript, PHP, Ruby and Go.
In this paper we use this model to generate semantic features
for created SDP instances.

Having many metrics has motivated studies concerning
feature selection [61], [62] and normalization [55].

Some of these metrics can be applied at various lev-
els of granularity and some are specific to a certain level.
Researchers have performed SDP on many distinct levels:
component [71], file [68], class [70], method [68] and change
level [69]. Change level prediction is also called Just-In-Time
(JIT) defect prediction. More granular prediction facilitates
faster defect localization while less granular approaches are
better suited for QA resource allocation [2].

VOLUME 11, 2023

P. Afric et al.: Empirical Study: How Issue Classification Influences Software Defect Prediction

IEEE Access

To make studies comparable researchers have made
their datasets available in public repositories. Famous
examples of such repositories include NASA [35], [36],
[37], PROMISE [34], Eclipse Bug Data Repository [33],
ReLink [29], A Unified Bug Dataset for Java [31], [32] and
many others.

Many kinds of models have been used to tackle SDP.
Researchers have proposed using supervised models [63],
[64], [65], semi-supervised models [66], [67], unsupervised
models [23], tasks specific models such as BugCache [22]
and even approaching the problem as an anomaly detection
problem [20], [21].

C. NOISE IN SDP DATASETS

SDP datasets are created by mining version control and issue
tracking systems. Each commit in the version control sys-
tem is examined and an attempt is made to link it to an
issue in the issue tracking system. If a link is found and
the issue is marked as a bug report the state of the code
prior to the changes can be considered as defective while the
code after the changes can be considered as non-defective.
Alternatively, this code in all its states can be considered
defect prone. Another approach is to search for an earlier
commit which caused the defective code and label it as a
defect inducing commit. This approach is used for creating
JIT defect prediction datasets. A link is considered found if a
number matching an issue number is contained in the commit
message, and certainty about the link is increased if it is
near important keywords such as “bug” or “fix” [8], [33],
[88], [89].

This process has two critical points at which noise can be
introduced into the resulting dataset. First, it can be intro-
duced if the links between a commit and an issue cannot be
established. The second point where noise can be induced into
the created dataset is the incorrect classification of issues in
the issue tracking system [17].

Bird et al. [5] found that the number of fixed bugs does
not match the number of bug issues leading to a high false
negative rate. This is a consequence of mining being based
on keyword matching [6], [7], [8], [33], [88], [89], [90], while
developers often do not write specific keywords.

Wu et al. [29] proposed an approach called ReLink in order
to alleviate the problem of missing issue links. They manually
inspected links with explicit bug IDs in change logs and
observed that the links exhibit certain commonalities. Based
on these, they proposed an automatic link recovery algorithm
which would automatically learn criteria of features from
explicit links to recover missing links.

This motivated other studies such as MLink from
Nguyen et al. [30] where the authors propose a multi-layered
approach that considers both textual and source code features
of modified code. The approach is capable of learning rela-
tions between terms in bug reports and the entity names in
source code which allows it to established bug-to-fix links

VOLUME 11, 2023

even when there is not much textual similarity between the
two.

Herzig et al. [9] manually examined more than 7,000 issue
reports from the bug databases of five open-source reposi-
tories and found 33.8% of all bug reports were incorrectly
classified and an average of 39% of files marked as defective
never had a bug.

Kim et al. [10] found that prediction performance
decreases significantly when the dataset holds 20% - 35% of
both false positive (FP) and false negative (FN) and proposed
anoise detection and elimination algorithm. Seiffert etal. [15]
did an extensive study of class imbalance and dataset
noise effects. Their results correspond to those presented by
Kim et al. [10].

Pandey and Tripathi [16] performed an empirical study
focused on dealing with noise and class imbalance issues
in software defect prediction. They show that if a dataset
contains 10% - 40% of incorrectly labeled instances the true
positive rate (TPR) and true negative rate (TNR) are reduced
by 20% - 30% and receiver operating characteristic (ROC)
values are reduced by 40% - 50%.

Tantithamthavorn et al. [17] investigate the effects of noise
caused by incorrect issue classification on the performance
of SDP models. In their study they used 3931 manually
labeled issues derived from Apache Jackrabbit and Lucene
systems. Based on the obtained results they point out that
incorrect issue classification does not occur completely ran-
domly. They show that non-random noise does not degrade
the model precision but can degrade recall by 32% - 44%.

Khan et al. [18] investigate the effects of 9 different noise
filters for dealing with incorrect instance labels. Instead of
randomly generated noise, they use a dataset with clean labels
annotated by experts and noisy labels obtained by heuristics.
They observe that noise filters mostly struggle to improve the
performance over noisy data.

Antoniol et al. [19] found that bug reports might refer
to perfective and adaptive maintenance, refactoring, discus-
sions, or requests for help. They carried out their exper-
iment on three repositories; Mozilla, Eclipse, and JBoss
and showed that decision trees, naive Bayes classifiers, and
logistic regression models can classify issues based on their
descriptions achieving an F1 score of 0.70.

D. NATURAL LANGUAGE PROCESSING AND ISSUE
CLASSIFICATION

Earlier work in the area of Natuaral language processing
(NLP) focused on word2vec models [74], convolutional mod-
els [75], [76], [77] recurrent models [78], [79] and, more
recently, attention-based models [80], [81]. Substantial ear-
lier work has shown that pre-trained models on large corpora
are beneficial for text classification and other NLP tasks [82].
Using pre-trained models offers the benefit of avoiding model
training from scratch, thus, speeding up the fine-tuning pro-
cess and producing higher performance models than those
trained only on one specific task.

11735

IEEE Access

P. Afric et al.: Empirical Study: How Issue Classification Influences Software Defect Prediction

FastText [73] is a word embedding method which is an
extension of the word2vec model. It is considered a bag
of words model. Instead of learning each word directly it
represents each word as a set on n-grams. In its original
publication it was shown to be much faster than the deep
models of that time, with comparative performance.

The current widely adopted language models are
BERT [83] and RoBERTa [84]. Both models offer the
same architectural design, using the encoder part of the
multi-layer bidirectional Transformer architecture [85] which
was pre-trained on large text corpora - the BooksCorpus
(800M words) [86] and English Wikipedia (2,500M words).
The Cloze task [87] inspired the masked language model
(MLM) objective used to train BERT and RoBERTa in
conjunction with the next sentence prediction task. The
method of using a large pre-trained model and fine-tuning in
downstream tasks has made a breakthrough in several natural
language understanding tasks [83], [84].

Researchers [11], [12], [13], [14] have looked into issue
classification with various motivations.

Wang et al. [11] used BERT to recommend GitHub labels
based on issue descriptions. Since issue creators often do not
label issues, it is left to repository maintainers to label them
which can become very time consuming, thus accurate auto-
matic labeling would help reduce the amount of necessary
manual labor.

Herbold et al. [12] stress that reported issue types often
do not match the description of the issue. They attempt to
improve upon existing issue classification by incorporating
manually specified knowledge about issues.

Siddiq and Santos [13] propose TICKET TAGGER which
can be used to automatically assign labels to GitHub issues.
Again, the main goal is to reduce the amount of necessary
manual issue labeling.

Siddiq et al. [14] apply BERT to GitHub issue classifica-
tion and compare its performance to FastText. They point out
that developers can find it difficult to manually label issues
and thus would benefit from automatic issue labeling.

To the best of our knowledge the approach of using
RoBERTa for issue classification in SDP dataset creation
remains unexplored. Although, it has shown promising
results in issue classification it is unknown if its performance
reduces the noise levels of resulting SDP datasets to accept-
able levels.

Ill. DATA COLLECTION
To acquire representative data of open-source repositories we
have decided to extract information from GitHub. GitHub
provides Internet hosting for software development and ver-
sion control. At the time of writing (November 2022) it hosts
83 mil. developers and 28 mil. public repositories.

For mining repository data, we wrote a script using
the PyGithub' Python package. The package is a wrapper,
enabling simple usage of the GitHub API.

1 https://pypi.org/project/PyGithub/

11736

We queried 10 most popular repositories which have at
least 5 good first issues. Maintainers of open-source reposi-
tories mark certain issues as good first issues, thus indicating
that they are simple enough to be addressed by someone
without previous knowledge about the project. Such issues
are considered a good first step to start contributing to a
repository. The presence of such issues implies an active
project with a lively community, so we included it as a
constraint. We filtered out repositories which are written in a
programming language not supported by GraphCodeBERT,
have less than 50 stars or less than 100 issues. Again, these
constraints are included hoping to obtain only active and
relevant repositories.

Information gathered for each repository is shown in
Table 1. From each repository, which satisfies the previously
listed criteria, we pulled issue data shown in Table 2 and
commit data shown in 3. For each file changed by a commit
we pulled file data shown in Table 4. All mined data is stored
in JSON format.

TABLE 1. Mined repository data.

Data attribute Description
Name Name of the repository
Star Number of stars awarded to the repository
Language Programming language used in the repository
Issues List of issues associated with the repository
Commits List of commits associated with the repository

TABLE 2. Mined issue data.

Data attribute Description
Id Unique identifier
Number In repository identifier
Title Issue .tltle prov1dmg
a short issue description
Body Full issue description
URL URL to issue
Repository labels
Labels associated with the issue
Comment count | Number of comments on the issue
Was a pull request
Has Pull Request raised based on this issue

TABLE 3. Mined commit data.

Data attribute Description
SHA Unique identifier
Message Commit message
Date Time it was submitted
Files List of files modified by the commit

Using the described procedure, we ended up with 7 repos-
itories totaling 299773 issues and 153664 commits. Table 5
presents an alphabetically sorted list of all mined repositories,

VOLUME 11, 2023

P. Afric et al.: Empirical Study: How Issue Classification Influences Software Defect Prediction

IEEE Access

TABLE 4. Mined file data.

Data attribute Description
Unique identifier of the file
SHA . . .
and its specific version
Name Fully qualified name
Number of lines
Change Count changed in the commit
Add Count Number of lines

added in the commit
Number of lines
removed by the commit
Content of the file
after the commit (Encoded)
Encoding used for file content

Delete Count

Content

Content encoding

TABLE 5. Alphabetically sorted mined repositories.

Name Short name | Language | Issue count | Commit count
facebook/ react-native | JavaScript 34402 25473
react-native
huggingface/ transformers Python 19163 10789
transformers
kubernetes/ |y ernetes Go 112661 28557
kubernetes
m‘?‘/ . material-ui JavaScript 33815 20518
material-ui
nodejs/ node JavaScript 43374 37195
node
vercel/ nextjs | JavaScript | 26399 12521
next.js
ytdl-org/ :
youtube-dl youtube-dl Python 29959 18611

JavaScript Python

FIGURE 1. Languages used by mined repositories.

their main programming language, and the number of issues
and commits from each repository. Figure 1 shows the distri-
bution of programming languages of mined repositories.

We then analyzed each commit in each repository by
applying the regular expression shown in Equation 1 to the
commit message. In this way, we identify issue references.
The regular expression searches for either a direct issue ref-
erence e.g., #/2345 or a link to the issue e.g., /issue/12345
or /pull/12345. The reason we search both issue and pull is
that we observed that GitHub uses both links for issues, with
the only difference being that issue were started by someone
raising an issue and pull were started by someone raising a

VOLUME 11, 2023

pull request.

(? : #|/issues/|/pull / (d+) (D

Issues referenced by at least one commit are considered
issues-of-interest (I0I). Commits having at least one issue
reference in their commit message are considered commits-
of-interest (COI). Some issues referenced in commit mes-
sages were not mined because they no longer existed on
GitHub. We removed such issues from the IOl and commits
mentioning them from the COI. We then inspected all com-
mits and made a list of all files, differing them by name. For
every file, we identify all commits modifying that file. If all
commits modifying a file are COI, meaning all of them ref-
erence an issue, the file is considered a file-of-interest (FOI).
We reduce the identified set of FOI by keeping only those
with the following file extensions .py, .php, .js, .java, .go and
.rb as those are languages supported by GraphCodeBERT.
Note that this is a wider set of programming languages than
those associated with the mined repositories. The repository
language is the main language used in the repository, but
there may still be files written in other languages. This is
why we consider a wider range of languages than just the
main repository language. GitHub provides the source of each
version (state after commit modifying the file) of each FOI in
abase64 encoded format. We decoded the remaining versions
of the files and removed all comments using the pyparsing
library. Sometimes, consecutive versions of a single file are
identical, which means that the changes made between differ-
ent versions were not made to the source code. Since we only
want to consider changes made to the source code, we remove
duplicates by keeping only the earlier versions of the file.
After performing these steps, the set of IOl is reduced to only
those issues that are referenced by COI of the final FOI.

Table 6 shows the final number of IOI, COI and FOI
per each repository. From the data presented in Table 5 and
Table 6 we can observe how some projects, such as nodejs,
systematically reference issues in commit messages allowing
many IOI, COI and FOI to be identified, while others, such
as kubernetes, can hardly be connected.

TABLE 6. Alphabetically sorted data of interest per each repository.

Repository | Issues OI | Commits OI | Files OI
react-native 363 4443 549
transformers 3039 5567 2338
kubernetes 94 10381 195
material-ui 5408 7716 10872
node 13875 15397 15189
next.js 5501 5676 8464
youtube-dl 148 6075 72

IV. ISSUE CLASSIFICATION

In this section we describe how datasets for issue classifi-
cation are created, and how issue classification models are
trained based on the collected data of interest.

11737

IEEE Access

P. Afric et al.: Empirical Study: How Issue Classification Influences Software Defect Prediction

Figure 2 shows the simplified general overview for issue
classification. In the upper part of the figure, we see issues,
each consisting of a title and a description. Using these titles
and descriptions, in addition to manually determined issue
labels, we can train an issue classification model. In this study
we consider several issue classification models. A KWM
model, an IKWM model, a FastText model or a RoBERTa
model. Using a trained issue classifier, we can classify new
issues. This is depicted with the arrows coming out of
the classifier and pointing to specific issues. The classifier
assigns either a non-defective class, depicted using a small
green rectangle, or a defective class, depicted using a small
red rectangle. Of course, in practice different issues are used
to train the model than those to which the model is applied.
In the lower part of the image, we see the classified issues
linking to commits which modify a yellow, blue, and red
file. This part is not relevant for issue classification itself but
helps understand how issues are connected to commits and
consequently to source code files from which the final SDP
datasets are constructed. It is important to understand this
connection as the labels of SDP instances are derived from
issue classification.

@@

®

FIGURE 2. Issue classification overview.

The first subsection describes issue classification dataset
creation, and the second subsection describes issue classifi-
cation model development.

A. DATASET
After identifying the IOI, we manually labeled at least 1000
IOI per repository. If a repository has less than 1000 IOI,
we labeled all of them. If it has more than 1000 IOI,
we selected the first 1000 IOI sorted by issue number, and
then added any additional IOI that were needed for FOI
influenced by the first 1000 IOI.

To manually inspect and label I0I, we developed a cus-
tom web application. The application accepts JSON data

11738

ce G o bt

open-mmlab/mmdetection

[Feature]: add selfsup performance config
s

FIGURE 3. Application main view.

generated by the mining script and displays the repository
name, issue title, issue description, labels associated with
the issue, and whether the issue has a pull request. The
application allows users to navigate through repositories and
issues, label issues, delete issues, and download data in the
same JSON format as the uploaded data. Figure 3 shows the
application main view.

We allow issues to be labeled with one of four classes: Fea-
ture, Modification, Bug and Other. Feature denotes requests
for new functionality. Modification denotes requests for
change of existing functionality. Bug denotes reports of
defective behavior of the software system. Other denotes
questions, discussions, and other requests we could not place
in any of the previous categories. However, in this study
we are only interested in differing between bug related
issues and non-bug related issues, thus we treat Feature,
Modification and Other as a single label meaning Non-
Bug. The labeling tool was made more general as we
imagine other researchers might want to further distinguish
issues.

To improve the labeling quality, three people labeled the
IOI and the majority vote classification was taken for each
issue. The content of resulting datasets per each repository
are shown in Table 7. Labeled issues of interest are referred
to as LIOL.

TABLE 7. Issue dataset per each repository.

Repository | Issue Count | Bug Count | Non-Bug Count Clasg:ilr;l:tlir:l?lgount
react-native 363 93 270 351
transformers 1013 278 735 992

kubernetes 94 36 58 94

material-ui 1102 296 806 1086
node 1012 301 711 997
next.js 1062 328 734 1013
youtube-dl 148 55 93 148

It might be tempting to use the labels on GitHub issues
as a way to classify the issues, but this approach has some
problems. One issue is that the labels are not standardized or
required, so they can vary significantly from one project to
another, and some projects might not have any labels at all.
Additionally, the labels are often used to indicate which part
of the project is affected by the issue, rather than the type of
issue itself.

VOLUME 11, 2023

P. Afric et al.: Empirical Study: How Issue Classification Influences Software Defect Prediction

IEEE Access

B. MODELS

This subsection describes the development of models used
for issue classification. We first describe a simple key-
word matching heuristic (KWM), then an improved keyword
matching heuristic, then an application of the FastText model
and finally an application of the RoOBERTa model.

1) SIMPLE KEYWORD MATCHING

The base model for issue classification is a simple keyword
matching heuristic. It is based on a case insensitive search
for bug or fix keywords. The search for these keywords was
applied to the issue title and description.

2) IMPROVED KEYWORD MATCHING

The first step towards improving the KWM heuristics is to
determine which keywords imply that the issue is defect
related. All text is transformed into lower case, all punctu-
ation symbols are removed and a snowball stemmer [92] is
applied to each word. Issue title and description are inspected
word by word, considering only words exclusively consisting
of alphabetic characters and longer than 2 letters. For each
word, the number of times it appears is counted (¢c). Further-
more, the number of descriptions it appears in is counted (dc).
For every word which occurred in a bug report, we calculate
the bug importance score as log(tc/dc)*(dc/bCnt). Similarly,
for every word which occurred in a non-bug report, we cal-
culate the other importance score as log(tc/dc) = (dc/oCnt).
Finally, for each word we subtract the other importance score
from the bug importance score and sort all the words by the
resulting score. By doing this we get defect implying words
at one end of the list and non-bug implying words at the other
end of the list. Figure 4 shows a word cloud visualization of
top bug implying words and Figure 5 shows a word cloud
visualization of top non-bug implying words. The described
algorithm is shown in Algorithm 1.

FiX - o5 QL

version l n e
sUSE

"Link LYPE™,-R0€ read

next G import

return

FIGURE 4. Visualization of words indicating it is a bug.

Expert knowledge was used to select a subset of keywords
from the obtained list which is then used for defect related
issue discovery. We inspected the list top to bottom and chose
8 meaningful words. This list of words includes: “bug”,
“error”, “fix”, “issue”, “line”, “out”, “not” and “test.

We narrowed down the list of words we used to a small
number because using too many words would have resulted
in an excessively large number of possible combinations to

check. For each repository, we identified the best combination

VOLUME 11, 2023

Algorithm 1 Procedure of Discovering Important Words

Input data

Issue data: issues

Output data

Sorted list of important words: scores
Procedure

bCnt =0

oCnt =0

bugWC = map()

otherWC = map()

words = set()

for issue in issues do
description = cleanText(issue[“‘description’’])
description = description.lower ()
description = removePunctuations(description)
description = applySBStemmer (description)
for unique word in description do
if len(word) >= 3 and word.isalpha() then

words.add(word)
cnt = description.count(word)
if issue[“type’] == “Bug” then

bugWClword].tc+ = cnt
bugWClword].dc + +

else if issue[“type”’] == “Feature” then
otherWC|word].tc+ = cnt
otherWC|word].dc + +

end if
end if
end for
if issue[“type”’] == “Bug” then
bCnt = bCnt + 1
else
oCnt = oCnt + 1
end if
end for

for word in bugWC do

tc = bugWClword].tc

dc = bugWClword].dc

bugWClword].sc = log(tc/dc) x (dc/bCnt)
end for
for word in otherWC do

tc = otherWClword].tc

dc = otherWC|word].dc

otherWClword].sc = log(tc/dc) x (dc/oCnt)
end for

scores = list()

for word in words do
sc = bugWClword].sc — otherWC|[word].sc
scores.add([sc, word])

end for

return sort(scores)

11739

IEEE Access

P. Afric et al.: Empirical Study: How Issue Classification Influences Software Defect Prediction

add ~tionSCr lpt
current
v | l prop
way 2 file se
class
wmake
model 2N o

FIGURE 5. Visualization of words indicating it is not a bug.

of words to use when matching the issue title and the best
combination to use when matching the issue description by
testing (2%)2 = 65536 different combinations of keywords.
We then used these identified keyword combinations and
the previously described text pre-processing to improve our
keyword matching method.

3) FastText

We use the FastText model implementation provided by the
python fasttext library. All text is transformed into lower case,
it is cleaned up by removing HTML tags, removing multiple
consecutive spaces, newline spaces, tab spaces, replacing all
hyperlinks with the keyword [link] and finally removing all
non-alphanumeric characters. For each repository we train a
separate FastText model treating the LIOI of that repository as
the test set, and all LIOI from all other repositories as the train
set. One could say that we are performing cross-project issue
classification. On the train set we perform a 80/20 split taking
80% of the set as the final train set and 20% as a validation
set. The model is then given 15 minutes to perform hyper-
parameter optimization, on an Intel(R) Core(TM) i7-7700
@ 3.60GHz CPU, and then trained with the best identified
parameters.

4) RoBERTa
Furthermore, for issue classification we use the RoBERTa
model [84]. The name RoBERTa stems from Robustly Opti-
mized BERT Pretraining Approach and BERT stands for
Bidirectional Encoder Representations from Transformers.
The architecture of this model is a stack of 12 transformer
encoders. Each encoder consists of a multi-head attention
layer and a feed forward layer with summation and nor-
malization in between and at the encoder output. On top
of this a task specific feed forward neural network and a
SoftMax layer are added. Where BERT performs masking
once during data pre-processing, resulting in a single static
mask, RoBERTa duplicates the training data 10 times so that
each sequence is masked in 10 different ways. By doing
this RoOBERTa avoids using the same mask for each train-
ing instance in every epoch. The resulting model is then
fine-tuned for the desired task.

To prepare the issue title and description as input for
the model, they are joined, all hyperlinks are replaced with
the keyword [link], all HTML tags are removed, as are

11740

multiple consecutive spaces, newline spaces and tab spaces.
The pre-processed texts are subsequently tokenized using the
model’s respective tokenizer. For each repository we train a
separate ROBERTa model treating the LIOI of that repository
as the test set and use LIOI from all other repositories to
create a train and validation set. On LIOI from other repos-
itories, we perform an 80/20 split taking 80% of the set as
the final train set and 20% as a validation set. The model
receives an input length of 512 tokens, where the text that
consists of fewer tokens are padded to the desired length and
longer sequences are truncated to 512 tokens. Mini-batches
of 4 examples are used through a 6 epoch training period.
For optimization, the AdamW optimizer is applied to all
model parameters with a learning rate set to 2 - 107>. The
weight decay factor used in the AdamW optimizer is set to
0.001 for all model parameters except for biases, where it
is set to 0. Additionally, 4 gradient accumulation steps and
gradient checkpointing are used to reduce the memory foot-
print required for model training. Also, half precision training
(FP16) is used to facilitate faster training and further reduce
the required GPU memory. After each epoch, the model is
evaluated on the validation set and at the end of training the
best performing version of the model, based on results on
the validation set, is selected as the definitive version of the
model.

V. SOFTWARE DEFECT PREDICTION DATASETS

In this section we describe how software defect prediction
dataset are derived based on the collected data of interest and
determined issue classification.

Issues labeled during manual inspection are considered
labeled issues of interest (LIOI). For all LIOI we identify files
of interest (FOI) influenced by LIOI through the commit links
using commits of interest (COI). Files influenced by LIOI are
referred to as labeled files of interest (LFOI). We then proceed
to create an SDP dataset for each repository.

Each LFOI results in one instance in the SDP dataset, and
the label for that instance is based on the issues associated
with the commits that modify the LFOI. If any of the issues
is labeled as a bug related issue, we consider the instance to
be bug prone, if none of the issues are bug related the instance
is considered to be clean. The issue label can be determined
using the manually assigned labels or those determined by the
issue classification model. The features of the instance consist
of three types; code complexity features, process features and
semantic features. The code complexity features, or better
said feature is the simplest one. For each version of a LFOI
we inspect the number of lines of code and the feature is
calculated as the average number of lines of code for this file
through its history. The process features used are the number
of commits which modify this file, the absolute number of
issues referenced by these commits and the average number
of issues referenced per commit modifying this file. Finally,
the semantic features are the most complex. Each version of
the LFOI is embedded using GraphCodeBERT. Given that the
model input is limited to 512 tokens at a time, we encode

VOLUME 11, 2023

P. Afric et al.: Empirical Study: How Issue Classification Influences Software Defect Prediction

IEEE Access

the source code in chunks of 512 tokens with a 256 token
overlap between consecutive chunks. For each embedded
chunk we take the embedding of the CLS token which should
encapsulate the overall semantics of the processed chunk.
We then calculate the mean CLS token over all chunks of a
single version. The final semantic features for the file are the
mean CLS token of each of the file versions and the sum of
differences of consecutive version CLS tokens. The mean over
all versions of the file should encapsulate the general pro-
pose of the source code while the sum of differences should
encapsulate the file’s change over time. The described code
complexity, process and semantic features are concatenated
to create the final features of the SDP instance. Figure 6
depicts the described process and Table 8 shows the resulting
SDP datasets per each repository.

uuuuuuu
nnnnnnnn

yyyyyyyyy ELE2

FIGURE 6. SDP overview.

TABLE 8. SDP dataset per each repository.

Repository | SDP Count | Bug Count | Non-Bug Count
react-native 549 114 435
transformers 851 312 539
kubernetes 195 91 104
material-ui 2097 1190 907
node 2188 454 1734
next.js 1484 517 967
youtube-dl 72 24 48

We trained Logistic Regression (LR), Decision Trees
(DTC), Naive Bayes (NB), and K-Nearest Neighbours
(KNN) models on the SDP datasets we created. We did not
pursue more advanced SDP model development because the
goal of the study was to investigate the impact of the quality
of issue classification on the quality of the SDP dataset and
the subsequent performance of the model, not to develop the
most advanced SDP model. We chose to use these models
because they are commonly used in SDP studies.

VI. EVALUATION

This section describes the results we obtained. For each
approach and for each repository,we first present the Preci-
sion, Recall and F1 score that was achieved in the task of issue

VOLUME 11, 2023

classification. Then we show the impact of issue classifica-
tion on the resulting SDP dataset by presenting the confusion
matrix of the automatically assigned labels compared to the
“golden” labels of the SDP dataset. The confusion matrix
includes four values. True Positive (TP) is the number of
defective instances that were correctly identified as defective.
True Negative (TN) is the number of non-defective instances
that were correctly identified as non-defective. False Posi-
tive (FP) is the number of non-defective instances that were
incorrectly identified as defective. False Negative (FN) is the
number of defective instances that were incorrectly identified
as non-defective. Finally, we train Logistic Regression, Deci-
sion Tree, Naive Bayes, and K-Nearest Neighbor models and
investigate the impact of noise in the SDP dataset on their
performance. Training of these models is repeated 30 times
to mitigate the stochastic nature of the procedure and its
influence on the obtained results. For each repository and
each issue classification method the created SDP dataset is
80/20 split, with 80% of the dataset being used for train-
ing and 20% for testing. This is done separately for each
repetition. The training set uses the labels derived from the
issue classification approach in focus, while the test set uses
labels derived from manual issue labeling. For each model
and each SDP dataset we present the obtained Precision,
Recall and MCC score. Matthews’s correlation coefficient
(MCC) is a metric describing the correlation between real and
predicted values. It ranges from —1 to 1 with —1 representing
a completely faulty prediction, O representing a completely
random prediction and 1 representing a perfect prediction.
The MCC score is used to validate the performance of the
models and make sure that they are performing better than
random guessing baselines. To summarize, F1 scores refer
to issue classification results and MCC scores refer to SDP
results.

For each method, we mention the minimum, average and
maximum false positive and false negative share. For each
method and for each repository, the percentage of false posi-
tives is calculated by dividing the false positive count with the
total instance count. Similarly, the false negative percentage
is calculated by dividing the false negative count with the total
instance count. The minimum false positive percentage for a
method is the minimal value obtained across different repos-
itories. The maximum false positive percentage for a method
is the maximum value obtained across different repositories.
The average is the sum of all obtained values divided by the
number of repositories. Analogously, things are calculated for
false negatives.

We trained Logistic Regression (LR), Decision Trees
(DTC), Naive Bayes (NB) and K-Nearest Neighbours (KNN)
models on the SDP datasets derived from manually labeled
issues. Please note that the instances of these datasets are
created from source code files so in this instance we are
performing file level SDP.

The results of issue classification for each classification
method are summarized in Table 9. The table displays the
Precision, Recall and F1 score of each issue classification

11741

IEEE Access

P. Afric et al.: Empirical Study: How Issue Classification Influences Software Defect Prediction

model on each repository. Further, the impact this has on
the resulting SDP dataset is shown in Table 10 by listing
the number of True Positives, True Negatives, False Positives
and False Negatives induced in the resulting SDP dataset.
The ground truth from which TP, TN, FP and FN are calcu-
lated comes from the manually labeled issue classes. Finally,
the performances of the models trained on the derived SDP
dataset are shown in Table 11. For each SDP model, on each
dataset created from a specific repository using a specific
issue classification method to derive the SDP instance labels
the table displays the Precision, Recall and MCC score of the
that model.

For the sake of readability, the rest of this section is divided
into five subsections. The first subsection presents the results
obtained using KWM. The second subsection presents the
results obtained using the IKWM approach. The third subsec-
tion presents the results obtained using the FastText model.
The fourth subsection presents the results obtained using the
RoBERTa model. Finally, the last subsection summarizes the
obtained results.

A. SIMPLE KEYWORD MATCHING

Since this is an unsupervised machine learning approach, the
whole issue classification dataset can be used for evaluation.
We search for keywords in the issue description and in the
issue title. By analyzing the results reported in Table 10 we
can observe that the SDP dataset created using the KWM
method consists of 13.2093% up to 58.3333% of false posi-
tives and 0.0000% up to 3.4335% of false negatives. On aver-
age there are 38.4181% of false positives and 1.7780% of
false negatives. From this we see that the KWM method is
prone to false positives.

B. IMPROVED KEYWORD MATCHING

For each repository we perform issue classification with
the IKWM method. By analyzing the results reported in
Table 10 we can observe that the SDP dataset created using
the IKWM method consists of 14.9261% up to 46.0838% of
false positives and 0.0000% up to 5.1979% of false nega-
tives. On average there are 30.7992% of false positives and
1.9316% of false negatives. When comparing these results to
those obtained using the KWM approach, on average, we see
a drop of false positives from 38.4181% to 30.7992% and a
slight increase of false negatives from 1.7780% to 1.9316%
of the resulting SDP dataset.

C. FastText

For each repository we perform issue classification with the
FastText model. By analyzing the results reported in Table 10
we can observe that the SDP dataset created using the Fast-
Text model consists of 0.0000% up to 19.4444% of false
positives and 6.0109% up to 18.4615% of false negatives.
On average there are 7.4104% of false positives and 9.7246%
of false negatives. When comparing these results to those of
previous methods we see a significant drop in the number of
false positives at the expanse of false negatives. However, the

11742

overall amount of noise in the dataset is reduced. With the
IKWM method, on average 32.7308% of the SDP dataset was
mislabeled while using this approach that number has been
reduced to 17.1350%.

D. RoBERTa

For each repository we perform issue classification with
the RoBERTa model. By analyzing the results reported in
Table 10 we can observe that the SDP dataset created using
the RoBERTa model consists of 0.5464% up to 23.6111%
of false positives and 0.5875% up to 11.8598% of false
negatives. On average there are 9.3369% of false positives
and 5.0272% of false negatives.

When comparing these results to the performance of KWM
and IKWM we see a significant drop in the number of false
positives and an increase in the number of false negatives.
When comparing them to the performance of FastText there
is a slight increase in the number of false positives, but a
noticeable drop in the number of false negatives. Overall,
on average, the number of mislabeled instances has been
reduced to 14.3641%.

If we analyze the model performances reported in Table 11
we see that in most cases models achieve superior perfor-
mance on SDP datasets created using RoOBERTa when com-
pared to other methods. Also, from the positive MCC values
we can easily determine that the model is not performing
random guessing.

To statistically validate the achieved results, we com-
pare MCC score distributions achieved by models trained
on RoBERTa SDP datasets and models trained on datasets
created using other methods. When comparing two sam-
ples we first test if both come from normal distributions
(with p = 0.05). The null hypothesis of the normality test is
that the sample comes from the normal distribution. If we fail
to reject the null hypothesis for both distributions, we assume
that they come from normal distributions and compare them
using a Student’s T Test [93] (with p = 0.05). If the normality
test null hypothesis is rejected for at least one distribution,
we apply a Mann-Whitney U Test [94] (with p = 0.05). Stu-
dent’s T Test determines if two samples drawn from normal
distributions have the same expected value. The null hypoth-
esis states that the distributions from which the samples are
drawn have the same expected value. If it is rejected, the
sample distributions are different with statistical significance.
Mann-Whitney U Test is a non-parametric statistical signif-
icance test which determines if the two samples come from
different distributions. By using a non-parametric test, we are
not assuming any specific distributions. The null hypothesis
states that there is no difference between the distributions
from which the samples are drawn. If it is rejected, the sample
distributions are different with statistical significance.

For each repository, there are 3 additional issue classifi-
cation methods and 4 SDP models are trained, meaning that
for each repository there are 12 configurations we are com-
paring to. Given that we have 7 repositories, that results in
84 configuration where we are comparing the performance of

VOLUME 11, 2023

P. Afric et al.: Empirical Study: How Issue Classification Influences Software Defect Prediction

IEEE Access

SDP models trained on SDP datasets created using RoOBERTa
to other methods.

Models trained on SDP datasets created using RoBERTa
had superior performance compared to other methods 65 out
of 84 times, and statistically significant superior performance
55 out of 84 times, which is equal to 65.4761% of the time.

We analyzed the model performances reported in Table 11
to see how models trained on datasets created using RoOBERTa
compare to those trained on golden datasets.

Again, we used the same statistical procedure with the
same p values to see if there is a difference in distribution
performance. Out of 28 configurations, in 17 cases the test
failed to reject the null hypothesis meaning it could not
differ between the performance distributions with a statistical
significance.

We used t-SNE to visualize the classification of issues
by the best-performing model for each repository. The red
dots represent defect related issues and the blue dots repre-
sent non-defect related issues. The visualization demonstrates
how the models have learned to differentiate between defec-
tive and non-defective issues. The visualizations are shown in
Figure 7.

E. RESULT SUMMARY

All obtained results are presented in Table 9, Table 10 and
Table 11. Table 9 presents the issue classification results.
Table 10 presents the influence of issue classification on
SDP dataset quality. Finally, Table 11 presents the SDP per-
formance of models trained on derived SDP datasets.

To briefly summarize, when applying a KWM to issue
classification the resulting SDP datasets had, on average,
38.4181% of false positives and 1.7780% of false nega-
tives, meaning a total of 40.1961% of the dataset was mis-
labeled. The situation improved when IKWM was applied.
With IKWM the resulting datasets, on average contained
30.7992% of false positives and 1.9316% of false negatives,
meaning a total of 32.7308% of the dataset was mislabeled.
SDP datasets created using the FastText model, on average
have 7.4104% of false positives and 9.7246% of false neg-
atives, meaning a total of 17.1350% of the dataset is misla-
beled. Finally, datasets created using the RoOBERTa model,
on average have 9.3369% of false positives and 5.0272% of
false negatives, meaning a total of 14.3641% of the dataset is
mislabeled.

Kim et al. [10] put an acceptable limit on 20% of FP and
20% of FN. They state that beyond that level there is severe
degradation in model performance. Pandey and Tripathi [16]
were stricter and put an acceptable limit on 10% of the dataset
consisting of incorrectly labeled instances. They state that
after that point there is severe performance degradation.

We see that the KWM approach results in datasets which
have a high number of false positives and are beyond the
limits specified by previous researchers. IKWM improves
the dataset quality, but not enough to specify the laid-out

VOLUME 11, 2023

TABLE 9. Issue classification results.

Repository Model Precision | Recall F1
react-native KWM 0.5600 0.7527 | 0.6422
react-native IKWM 0.5600 0.7527 | 0.6422
react-native FastText 0.5200 0.8387 | 0.6420
react-native RoBERTa 0.8795 0.7850 | 0.8296
transformers KWM 0.4080 0.9173 | 0.5648
transformers IKWM 0.4188 0.9460 | 0.5806
transformers FastText 0.5288 0.9245 | 0.6728
transformers | RoBERTa 0.7278 0.9425 | 0.8213
kubernetes KWM 0.4853 0.9167 | 0.6346
kubernetes IKWM 0.7143 0.8333 | 0.7692
kubernetes FastText 0.6482 0.9722 | 0.7778
kubernetes RoBERTa 0.8696 0.5556 | 0.6780
material-ui KWM 0.4965 0.7095 | 0.5842
material-ui IKWM 0.4942 0.7162 | 0.5848
material-ui FastText 0.6201 0.6892 | 0.6528
material-ui RoBERTa 0.7467 0.7669 | 0.7567
node KWM 0.4517 0.5748 | 0.5059
node IKWM 0.4695 0.8439 | 0.6033
node FastText 0.4745 0.8638 | 0.6125
node RoBERTa 0.6434 0.8870 | 0.7458
next.js KWM 0.6559 0.8018 | 0.7215
next.js IKWM 0.6559 0.8018 | 0.7215
next.js FastText 0.5351 0.8842 | 0.6667
next.js RoBERTa 0.8577 0.6250 | 0.7231
youtube-dl KWM 0.3939 0.9455 | 0.5562
youtube-dl IKWM 0.5177 0.8000 | 0.6286
youtube-dl FastText 0.5313 0.9273 | 0.6755
youtube-dl RoBERTa 0.6076 0.8727 | 0.7164
TABLE 10. Issue classification influence on SDP.
Repository Model TP TN FP FN
react-native KWM 100 238 197 14
react-native IKWM 100 238 197 14
react-native FastText 112 182 253 2
react-native RoBERTa 100 432 3 14
transformers KWM 308 110 429 4
transformers IKWM 310 107 432 2
transformers FastText 309 389 150 3
transformers | RoBERTa 307 470 69 5
kubernetes KWM 91 29 75 0
kubernetes IKWM 48 69 35 43
kubernetes FastText 91 58 46 0
kubernetes RoBERTa 73 94 10 18
material-ui KWM 1118 630 277 72
material-ui IKWM 1118 626 281 72
material-ui FastText 1081 594 313 109
material-ui RoBERTa 1082 829 78 108
node KWM 427 571 1163 27
node IKWM 435 516 1218 19
node FastText 397 774 960 57
node RoBERTa 418 1320 414 36
next.js KWM 467 678 289 50
next.js IKWM 467 678 289 50
next.js FastText 484 451 516 33
next.js RoBERTa 341 888 79 176
youtube-dl KWM 23 6 42 1
youtube-dl IKWM 21 24 24 3
youtube-dl FastText 22 23 25 2
youtube-dl RoBERTa 21 31 17 3
11743

IEEE Access

P. Afric et al.: Empirical Study: How Issue Classification Influences Software Defect Prediction

(a) facebook/react-native

(b) huggingface/transformers

(¢) kubernetes/kubernetes

(d) mui/material-ui

(e) nodejs/node

() vercel/next.js

(g) ytdl-org/youtube-dl

FIGURE 7. tSNE of RoBERTa embeddings.

criteria. The FastText model reduces the number of false
positives and false negatives to a quantity acceptable by the
criteria proposed by Kim, but not the one proposed by Pandey.
RoBERTa further reduces the amount of noise, but still fails
to meet the criteria proposed by Pandey.

We investigated the impact on model performance and
found that ROBERTa produces superior, statistically relevant
performance in 55 out of 84 times and failed to show a statisti-
cally relevant performance difference between models trained
on RoBERTa derived SDP datasets and golden datasts 17 out
of 28 times.

VII. THREATS TO VALIDITY
This is an empirical study and as such has its own threats to
validity. We have identified four possible threats:

Manual issue classification was performed as part of
this study. To reduce the impact of this threat multiple peo-
ple labeled the issues and a majority vote was then taken.
However, since the authors do not possess in-depth knowl-
edge of all the selected repositories, incorrect classification
might have still occurred and influenced the results. This
is one of the reasons we have made the created dataset

11744

publicly available where it can be subject to independent
assessment.

Open-source software repositories were used as a data
source for this study. However, they might not be repre-
sentative of all software repositories and thus they might
introduce a bias into the reported results. One of the ways we
have tried to alleviate this problem is by sampling multiple
repositories.

English issues were the only ones used in this study. This
might introduce a language-based bias. Further studies could
be conducted to investigate this issue.

SDP dataset construction methodology used in this study
is not the only possible option. For instance, if JIT-SDP
was considered then the dataset construction process would
be different as it looks into the commit being bug induc-
ing or not. Even if different features were used the effect
might be different. One way we have tried to minimize this
impact is by using a mixture of code complexity, process, and
semantic features. However, the fact remains that a different
process might obtain different results. Further studies could
be conducted to investigate this effect on different dataset
construction methodologies.

VOLUME 11, 2023

P. Afric et al.: Empirical Study: How Issue Classification Influences Software Defect Prediction

IEEE Access

TABLE 11. SDP results.

Repository | Model | Dataset Source | Precision | Recall MCC Repository | Model | Dataset Source | Precision | Recall MCC
react-native DTC Manual 0.5763 0.6020 | 0.4723 material-ui KNN Manual 0.8524 0.8329 | 0.6405
react-native DTC KWM 0.2601 0.6729 | 0.1271 material-ui KNN KWM 0.7446 0.8674 | 0.5037
react-native DTC IKWM 0.2337 0.6455 | 0.1076 material-ui KNN IKWM 0.7318 0.8390 | 0.4506
react-native DTC FastText 0.2627 0.8026 | 0.1589 material-ui KNN FastText 0.7145 0.8508 | 0.4379
react-native DTC RoBERTa 0.6089 0.5028 | 0.4460 material-ui KNN RoBERTa 0.8496 0.7920 | 0.6091
react-native NB Manual 0.3499 02622 | 0.1427 material-ui LR Manual 0.8337 0.8160 | 0.5985
react-native NB KWM 0.2741 0.3686 | 0.0400 material-ui LR KWM 0.7279 0.8890 | 0.4913
react-native NB IKWM 0.2395 0.3547 | 0.0020 material-ui LR IKWM 0.7278 0.8878 | 0.4836
react-native NB FastText 0.4385 0.4022 | 0.2603 material-ui LR FastText 0.7041 0.8682 | 0.4310
react-native NB RoBERTa 0.4439 0.2275 | 0.1973 material-ui LR RoBERTa 0.8341 0.8080 | 0.6010
react-native KNN Manual 0.5103 0.2395 | 0.2378 node DTC Manual 0.6252 0.6288 | 0.5281
react-native KNN KWM 0.2430 0.5987 | 0.0791 node DTC KWM 0.2569 0.8887 | 0.1886
react-native KNN IKWM 0.2097 0.5802 | 0.0444 node DTC IKWM 0.2502 0.9066 | 0.1838
react-native KNN FastText 0.2602 0.8045 | 0.1534 node DTC FastText 0.2830 0.8312 | 0.2302
react-native KNN RoBERTa 0.6071 0.2038 | 0.2614 node DTC RoBERTa 0.4212 0.7515 | 0.3985
react-native LR Manual 0.7321 0.4586 | 0.4947 node NB Manual 0.4350 0.3214 | 0.2381
react-native LR KWM 0.2810 0.7119 | 0.1794 node NB KWM 0.3177 0.3287 | 0.1403
react-native LR IKWM 0.2584 0.7079 | 0.1732 node NB IKWM 0.3170 0.3272 | 0.1340
react-native LR FastText 0.2838 0.8582 | 0.2256 node NB FastText 0.2979 0.2493 | 0.1012
react-native LR RoBERTa 0.7464 0.3750 | 0.4489 node NB RoBERTa 0.3595 0.2528 | 0.1508
transformers DTC Manual 0.5914 0.5918 | 0.3548 node KNN Manual 0.6198 0.2572 | 0.3103
transformers DTC KWM 0.4006 09185 | 0.1517 node KNN KWM 0.2275 0.8750 | 0.0894
transformers DTC IKWM 0.3989 0.9095 | 0.1410 node KNN IKWM 0.2356 0.8378 | 0.1166
transformers DTC FastText 0.5520 0.7879 | 0.3914 node KNN FastText 0.2585 0.7597 | 0.1547
transformers DTC RoBERTa 0.5630 0.6790 | 0.3655 node KNN RoBERTa 0.3732 0.6294 | 0.2940
transformers NB Manual 0.4367 0.8260 | 0.2193 node LR Manual 0.7836 0.6124 | 0.6239
transformers NB KWM 0.5306 0.4047 | 0.2110 node LR KWM 0.2491 0.9577 | 0.1957
transformers NB IKWM 0.5154 0.4223 | 0.1994 node LR IKWM 0.2372 09774 | 0.1771
transformers NB FastText 0.4953 0.8196 | 0.3119 node LR FastText 0.2822 0.9315 | 0.2692
transformers NB RoBERTa 0.4189 0.8375 | 0.1841 node LR RoBERTa 0.5044 0.8051 | 0.5113
transformers | KNN Manual 0.6478 0.4600 | 0.3454 next.js DTC Manual 0.5088 0.5184 | 0.2493
transformers | KNN KWM 0.3864 0.9868 | 0.1470 next.js DTC KWM 0.4540 0.6394 | 0.2128
transformers | KNN IKWM 0.3960 0.9343 | 0.1459 next.js DTC IKWM 0.4406 0.6523 | 0.2250
transformers | KNN FastText 0.5039 0.6977 | 0.2763 next.js DTC FastText 0.3965 0.7487 | 0.1434
transformers | KNN RoBERTa 0.5608 0.6121 | 0.3298 next.js DTC RoBERTa 0.5312 0.4608 | 0.2548
transformers LR Manual 0.7203 0.5551 | 0.4594 next.js NB Manual 0.5466 0.2492 | 0.1799
transformers LR KWM 0.3776 0.9786 | 0.0848 next.js NB KWM 0.5335 0.2471 | 0.1681
transformers LR IKWM 0.3779 0.9831 | 0.0888 next.js NB IKWM 0.5044 0.2417 | 0.1581
transformers LR FastText 0.5718 0.7802 | 0.4138 next.js NB FastText 0.5051 0.2760 | 0.1601
transformers LR RoBERTa 0.6328 0.6723 | 0.4422 next.js NB RoBERTa 0.4725 0.2496 | 0.1241
kubernetes DTC Manual 0.6642 0.6596 | 0.3924 next.js KNN Manual 0.5662 0.3825 | 0.2537
kubernetes DTC KWM 0.4780 0.8868 | 0.1110 next.js KNN KWM 0.4692 0.5970 | 0.2222
kubernetes DTC IKWM 0.4576 0.4343 | -0.0168 next.js KNN IKWM 0.4263 0.6143 | 0.1901
kubernetes DTC FastText 0.5404 0.7725 | 0.1919 next.js KNN FastText 0.3885 0.7173 | 0.1159
kubernetes DTC RoBERTa 0.5912 0.5702 | 0.2692 next.js KNN RoBERTa 0.5237 0.3870 | 0.2172
kubernetes NB Manual 0.6274 0.0910 | 0.1445 next.js LR Manual 0.6838 0.4059 | 0.3588
kubernetes NB KWM 0.3975 0.5053 | -0.1280 next.js LR KWM 0.4995 0.6074 | 0.2675
kubernetes NB IKWM 0.4378 0.1175 | 0.0317 next.js LR IKWM 0.4947 0.6313 | 0.2947
kubernetes NB FastText 0.6615 0.1571 | 0.1156 next.js LR FastText 0.3880 0.8951 | 0.1710
kubernetes NB RoBERTa 0.4937 0.0640 | 0.1035 next.js LR RoBERTa 0.7242 0.3040 | 0.3259
kubernetes KNN Manual 0.5490 0.5585 | 0.1901 youtube-dl DTC Manual 0.5965 0.5634 | 0.3843
kubernetes KNN KWM 0.4566 0.9554 | 0.0392 youtube-dl DTC KWM 0.3191 0.8577 | -0.0544
kubernetes KNN IKWM 0.4578 0.3423 | -0.0121 youtube-dl DTC IKWM 0.3911 0.6868 | 0.0938
kubernetes KNN FastText 0.5416 0.7626 | 0.1913 youtube-dl DTC FastText 0.3047 0.6308 | -0.0118
kubernetes KNN RoBERTa 0.5384 0.4889 | 0.1631 youtube-dl DTC RoBERTa 0.4089 0.6491 | 0.1668
kubernetes LR Manual 0.7220 0.7640 | 0.5288 youtube-dl NB Manual 0.7002 0.6763 | 0.5471
kubernetes LR KWM 0.4764 0.9927 | 0.1851 youtube-dl NB KWM 0.6457 0.8594 | 0.5890
kubernetes LR IKWM 0.4368 0.3088 | -0.0453 youtube-dl NB IKWM 0.7746 0.7180 | 0.6254
kubernetes LR FastText 0.5578 0.9057 | 0.3059 youtube-dl NB FastText 0.6760 0.7227 | 0.5438
kubernetes LR RoBERTa 0.7354 0.6480 | 0.4755 youtube-dl NB RoBERTa 0.6718 0.6416 | 0.4774
material-ui DTC Manual 0.8198 0.8288 | 0.5889 youtube-dl KNN Manual 0.4589 0.2176 | 0.1651
material-ui DTC KWM 0.7215 0.8460 | 0.4426 youtube-dl KNN KWM 0.3283 0.9889 | -0.0218
material-ui DTC IKWM 0.7264 0.8539 | 0.4521 youtube-dl KNN IKWM 0.3750 0.6847 | 0.0695
material-ui DTC FastText 0.7041 0.8145 | 0.3910 youtube-dl KNN FastText 0.3095 0.6487 | -0.0106
material-ui DTC RoBERTa 0.8089 0.7906 | 0.5512 youtube-dl KNN RoBERTa 0.4520 0.6784 | 0.2366
material-ui NB Manual 0.7649 0.3652 | 0.2460 youtube-dl LR Manual 0.9200 0.8024 | 0.7923
material-ui NB KWM 0.7154 0.2831 | 0.1631 youtube-dl LR KWM 0.3194 0.9514 | -0.0924
material-ui NB IKWM 0.7135 0.2838 | 0.1572 youtube-dl LR IKWM 0.4951 0.9739 | 0.4390
material-ui NB FastText 0.7074 0.2679 | 0.1526 youtube-dl LR FastText 0.4151 0.9627 | 0.3420
material-ui NB RoBERTa 0.7465 03224 | 0.2135 youtube-dl LR RoBERTa 0.6104 0.8648 | 0.5410
VOLUME 11, 2023 11745

IEEE Access

P. Afric et al.: Empirical Study: How Issue Classification Influences Software Defect Prediction

VIil. CONCLUSION

As part of this study, we investigate the impact of issue
classification on SDP dataset quality and resulting model
performance. In order to do this, we created new datasets
by mining 7 popular open-source repositories. For every
repository, we collected all commit data and all issue data.
By analyzing commit messages, we identified issues-of-
interest. These are issues referenced by at least one commit.
Commits containing at least one issue reference are consid-
ered commits-of-interest. We then identified source code files
edited exclusively by commits-of-interest and call them file-
of-interest. For each repository, we sampled at least 1000
IOI, manually inspected and labeled them. We determined
which FOI are related to the labeled issues. From them, using
code complexity analysis, process analysis and GraphCode-
BERT we created SDP dataset instances. The golden labels of
these instances are derived from the manually labeled issues.
We then investigated how using different methods for issue
classification would influence the created SDP datasets and
performance of standard models trained on these datasets.
Issue classification was done using a keyword matching
heuristic, an improved keyword matching heuristic, a Fast-
Text model and a RoBERTa model. For each resulting SDP
dataset we trained Logistic Regression, Decision Trees, Naive
Bayes and K-Nearest Neighbours models.

From the achieved results we see that applying KWM to
issue classification produces SDP datasets with an average
38.4181% of false positives and 1.7780% of false negatives,
so a total of 40.1961% of mislabeled instances. IKWM pro-
duces datasets with an average 30.7992% of false positives
and 1.9316% of false negatives, so a total of 32.7308%
of mislabeled instances. FastText produced datasets have
7.4104% of false positives and 9.7246% of false nega-
tives, so a total of 17.1350% of the dataset is mislabeled.
Finally, datasets created using the RoOBERTa model contain
an average 9.3369% of false positives and 5.0272% of false
negatives, totaling 14.3641% of mislabeled instances. The
obtained results clearly show that of the inspected issue clas-
sification approaches ROBERTa produces the highest quality
SDP datasets.

We then investigated the impact this has on model perfor-
mance and found that models trained on RoBERTa derived
SDP datasets outperformed counterparts trained on differ-
ently derived SDP datasets 65 out of 84 times, 55 of which
were statistically relevant. When comparing their perfor-
mance to those trained on golden datasets we could not
show a statistically relevant performance difference 17 out
of 28 times.

Based on the presented results we advocate that the
research community use advanced NLP models such as
RoBERTa when creating datasets for software defect pre-
diction if issue classes cannot be determined with certainty.
In our public repository we provide pre-trained models for
issue classification.

To support further scientific inquiry in this research area,
and put our own work under scrutiny, we have made all

11746

our source code, labeling application, created datasets and
models publicly available. They can be found on GitHub.?

REFERENCES

[1] H.Krasner, “The cost of poor software quality in the U.S.: A 2020 report,”
in Proc. Consortium Inf. Softw. QualityTM (CISQTM), 2021, pp. 1-46.

[2] M. K. Thota, F. H. Shajin, and P. Rajesh, “Survey on software defect

prediction techniques,” Int. J. Appl. Sci. Eng., vol. 17, no. 4, pp. 331-344,

2020.

A. Hasanpour, P. Farzi, A. Tehrani, and R. Akbari, “Software defect

prediction based on deep learning models: Performance study,” 2020,

arXiv:2004.02589.

Z.Li, X.-Y. Jing, and X. Zhu, ‘““Progress on approaches to software defect

prediction,” IET Softw., vol. 12, no. 3, pp. 161-175, Jun. 2018.

[5] C. Bird, A. Bachmann, E. Aune, J. Duffy, A. Bernstein, V. Filkov, and
P. Devanbu, “Fair and balanced? Bias in bug-fix datasets,” in Proc. 7th
Joint Meeting Eur. Softw. Eng. Conf. ACM SIGSOFT Symp. Found. Softw.
Eng., Aug. 2009, pp. 121-130.

[6] F. Rahman, D. Posnett, I. Herraiz, and P. Devanbu, “Sample size vs.
bias in defect prediction,” in Proc. 9th Joint Meeting Found. Softw. Eng.,
Aug. 2013, pp. 147-157.

[7] A. Mockus and L. G. Votta, “Identifying reasons for software changes

using historic databases,” in Proc. Int. Conf. Softw. Maintenance, 2000,

pp. 120-130.

J. Sliwerski, T. Zimmermann, and A. Zeller, “When do changes induce

fixes?”” ACM SIGSOFT Softw. Eng. Notes, vol. 30, no. 4, pp. 1-5, 2005.

K. Herzig, S. Just, and A. Zeller, “It’s not a bug, it’s a feature: How

misclassification impacts bug prediction,” in Proc. 35th Int. Conf. Softw.

Eng. (ICSE), May 2013, pp. 392-401.

[10] S. Kim, H. Zhang, R. Wu, and L. Gong, “Dealing with noise in defect
prediction,” in Proc. 33rd Int. Conf. Softw. Eng., May 2011, pp. 481-490.

[11] J. Wang, X. Zhang, and L. Chen, “How well do pre-trained contextual
language representations recommend labels for GitHub issues?”
Knowl.-Based Syst., vol. 232, Nov. 2021, Art.no. 107476, doi:
10.1016/j.knosys.2021.107476.

[12] S.Herbold, A. Trautsch, and F. Trautsch, “On the feasibility of automated
issue type prediction,” 2020, arXiv:2003.05357.

[13] R. Kallis, A. Di Sorbo, G. Canfora, and S. Panichella, “Predicting
issue types on GitHub,” Sci. Comput. Program., vol. 205, May 2021,
Art. no. 102598, doi: 10.1016/j.scic0.2020.102598.

[14] M. Siddiq and J. S. Santos, “BERT-based GitHub issue report classifica-
tion,” in Proc. SPIEIEEE/ACM st Int. Workshop Natural Lang.-Based
Softw. Eng. (NLBSE), May 2022, pp. 33-36.

[15] C. Seiffert, T. M. Khoshgoftaar, J. Van Hulse, and A. Folleco, “An empir-
ical study of the classification performance of learners on imbalanced and
noisy software quality data,” Inf. Sci., vol. 259, pp. 571-595, Feb. 2014,
doi: 10.1016/j.ins.2010.12.016.

[16] S.K. Pandey and A. K. Tripathi, “An empirical study toward dealing with
noise and class imbalance issues in software defect prediction,” Soft Com-
put., vol. 25, no. 21, pp. 13465-13492, Nov. 2021, doi: 10.1007/s00500-
021-06096-3.

[17] C. Tantithamthavorn, S. MclIntosh, A. E. Hassan, A. Ihara, and
K. Matsumoto, “The impact of mislabelling on the performance and inter-
pretation of defect prediction models,” in Proc. IEEE/ACM 37th IEEE Int.
Conf. Softw. Eng., May 2015, pp. 812-823, doi: 10.1109/ICSE.2015.93.

[18] M. A. Azmain, S. S. Khan, N. T. Niloy, and A. Kabir, “Impact of
label noise and efficacy of noise filters in software defect prediction,” in
Proc. 32nd Int. Conf. Softw. Eng. Knowl. Eng., 2020, pp. 347-352, doi:
10.6084/m9.figshare.14191400.v1.

[19] G. Antoniol, K. Ayari, M. Di Penta, F. Khomh, and Y.-G. Guéhéneuc,
“Is it a bug or an enhancement? A text-based approach to classify change
requests,” in Proc. Conf. Center Adv. Stud. Collaborative Res., Meeting
Minds, 2008, pp. 304-318.

[20] S. Zhang, S. Jiang, and Y. Yan, “A software defect prediction approach
based on BiGAN anomaly detection,” Sci. Program., vol. 2022, pp. 1-13,
Apr. 2022.

[21] P. Afric, L. Sikic, A. S. Kurdija, and M. Silic, “REPD: Source code defect
prediction as anomaly detection,” J. Syst. Softw., vol. 168, Oct. 2020,
Art. no. 110641.

3

—

[4

[8

—

[9

—

2https ://github.com/pal511/Empirical-Study-How-Issue-Classification-
Influences-Software-Defect-Prediction

VOLUME 11, 2023

http://dx.doi.org/10.1016/j.knosys.2021.107476
http://dx.doi.org/10.1016/j.scico.2020.102598
http://dx.doi.org/10.1016/j.ins.2010.12.016
http://dx.doi.org/10.1007/s00500-021-06096-3
http://dx.doi.org/10.1007/s00500-021-06096-3
http://dx.doi.org/10.1109/ICSE.2015.93
http://dx.doi.org/10.6084/m9.figshare.14191400.v1

P. Afric et al.: Empirical Study: How Issue Classification Influences Software Defect Prediction

IEEE Access

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

S. Kim, T. Zimmermann, E. J. Whitehead, and A. Zeller, “‘Predicting faults
from cached history,” in Proc. Ist India Softw. Eng. Conf., Feb. 2008,
pp. 489-498.

N. Li, M. Shepperd, and Y. Guo, “A systematic review of unsu-
pervised learning techniques for software defect prediction,” 2019,
arXiv:1907.12027.

S. Wang, T. Liu, and L. Tan, “Automatically learning semantic features
for defect prediction,” in Proc. 38th Int. Conf. Softw. Eng., May 2016,
pp. 297-308, doi: 10.1145/2884781.2884804.

X. Huo, Y. Yang, M. Li, and D.-C. Zhan, “Learning semantic features
for software defect prediction by code comments embedding,” in Proc.
IEEE Int. Conf. Data Mining (ICDM), Nov. 2018, pp. 1049-1054, doi:
10.1109/ICDM.2018.00133.

S. Wang, T. Liu, J. Nam, and L. Tan, “Deep semantic feature learning
for software defect prediction,” IEEE Trans. Softw. Eng., vol. 46, no. 12,
pp. 1267-1293, Dec. 2020, doi: 10.1109/TSE.2018.2877612.

D. Guo, S. Ren, S. Lu, Z. Feng, D. Tang, S. Liu, L. Zhou, N. Duan,
A. Svyatkovskiy, S. Fu, M. Tufano, S. K. Deng, C. Clement, D. Drain,
N. Sundaresan, J. Yin, D. Jiang, and M. Zhou, “GraphCodeBERT: Pre-
training code representations with data flow,” 2020, arXiv:2009.08366.

F. Akiyama, “An example of software system debugging,” in Proc. IFIP
Congr., vol. 1, C. V. Freiman, J. E. Griffith, and J. L. Rosenfeld, Eds.
North-Holland, 1971, pp. 353-359. [Online]. Available: http://dblp.uni-
trier.de/db/conf/ifip/ifip71-1.html#Akiyama71 and https://www
.bibsonomy.org/bibtex/263b966654{26898e4d67b93d0ed640b9/dblp

R. Wu, H. Zhang, S. Kim, and S.-C. Cheung, “ReLink: Recovering links
between bugs and changes,” in Proc. 19th ACM SIGSOFT Symp. 13th Eur.
Conf. Found. Softw. Eng., Sep. 2011, pp. 15-25.

A. T. Nguyen, T. T. Nguyen, H. A. Nguyen, and T. N. Nguyen, ‘“Multi-
layered approach for recovering links between bug reports and fixes,” in
Proc. ACM SIGSOFT 20th Int. Symp. Found. Softw. Eng., Nov. 2012, doi:
10.1145/2393596.2393671.

R. Ferenc, Z. T6th, G. Laddnyi, I. Siket, and T. Gyiméthy, “A public unified
bug dataset for Java,” in Proc. 14th Int. Conf. Predictive Models Data Anal.
Softw. Eng., Oct. 2018, pp. 12-21.

R. Ferenc, Z. Téth, G. Ladanyi, I. Siket, and T. Gyiméthy, “A public
unified bug dataset for Java and its assessment regarding metrics and bug
prediction,” Softw. Quality J., vol. 28, no. 4, pp. 1447-1506, Dec. 2020.
T. Zimmermann, R. Premraj, and A. Zeller, “Predicting defects for
eclipse,” in Proc. 3rd Int. Workshop Predictor Models Softw. Eng.,
May 2007, pp. 1-9.

S. J. Sayyad and T. J. Menzies, “The PROMISE repository of
software engineering databases,” School Inf. Technol. Eng., Univ.
Ottawa, Ottawa, ON, Canada, 2005, [Online]. Available: http://promise.
site.uottawa.ca/SERepository

T. Menzies, J. Greenwald, and A. Frank, “Data mining static code
attributes to learn defect predictors,” IEEE Trans. Softw. Eng., vol. 33,
no. 1, pp. 2-13, Jan. 2007, doi: 10.1109/TSE.2007.256941.

M. Shepperd, Q. Song, Z. Sun, and C. Mair, “Data quality: Some com-
ments on the NASA software defect datasets,” IEEE Trans. Softw. Eng.,
vol. 39, no. 9, pp. 1208-1215, Sep. 2013, doi: 10.1109/TSE.2013.11.

D. Gray, D. Bowes, N. Davey, Y. Sun, and B. Christianson, ‘“The misuse
of the NASA metrics data program data sets for automated software defect
prediction,” in Proc. 15th Annu. Conf. Eval. Assessment Softw. Eng., 2011,
pp. 96-103, doi: 10.1049/ic.2011.0012.

T. J. McCabe, “A complexity measure,” [EEE Trans. Softw. Eng.,
vol. SE-2, no. 4, pp. 308-320, Dec. 1976, doi: 10.1109/TSE.1976.233837.
M. H. Halstead, Elements of Software Science (Operating and Program-
ming Systems Series). Amsterdam, The Netherlands: Elsevier, 1977.

M. Hitz and B. Montazeri, “Chidamber and Kemerer’s metrics suite:
A measurement theory perspective,” IEEE Trans. Softw. Eng., vol. 22,
no. 4, pp. 267-271, Apr. 1996, doi: 10.1109/32.491650.

S. Matsumoto, Y. Kamei, A. Monden, K.-I. Matsumoto, and M. Nakamura,
“An analysis of developer metrics for fault prediction,” in Proc. 6th
Int. Conf. Predictive Models Softw. Eng., Sep. 2010, pp.1-9, doi:
10.1145/1868328.1868356.

J. Byun, S. Rhew, M. Hwang, V. Sugumara, S. Park, and S. Park, “Met-
rics for measuring the consistencies of requirements with objectives and
constraints,” Requirements Eng., vol. 19, no. 1, pp. 89-104, Mar. 2014.
E. Mnkandla and B. Mpofu, “Software defect prediction using pro-
cess metrics elasticsearch engine case study,” in Proc. Int. Conf.
Adv. Comput. Commun. Eng. (ICACCE), Nov. 2016, pp. 254-260, doi:
10.1109/ICACCE.2016.8073757.

VOLUME 11, 2023

(44]

(45]

(46]

(47]

(48]

[49]

[50]

(51]

[52]

(53]

[54]

[55]

[56]
[57]

(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

M. Jureczko and L. Madeyski, “A review of process metrics in defect
prediction studies,” Metody Informatyki Stosowanej, vol. 5, pp. 133-145,
May 2011.

S. Ramadhina, R. B. Bahawares, I. Hermadi, A. 1. Suroso, A. Rodoni,
and Y. Arkeman, “Software defect prediction using process metrics sys-
tematic literature review: Dataset and granularity level,” in Proc. 9th
Int. Conf. Cyber IT Service Manage. (CITSM), Sep. 2021, pp. 1-7, doi:
10.1109/CITSM52892.2021.9587932.

N. Nagappan, A. Zeller, T. Zimmermann, K. Herzig, and B. Murphy,
“Change bursts as defect predictors,” in Proc. IEEE 21st Int. Symp. Softw.
Rel. Eng., Nov. 2010, pp. 309-318, doi: 10.1109/ISSRE.2010.25.

G. R. Choudhary, S. Kumar, K. Kumar, A. Mishra, and C. Catal, “Empir-
ical analysis of change metrics for software fault prediction,” Comput.
Electr. Eng., vol. 67, pp. 15-24, Apr. 2018.

'W. Rhmann, B. Pandey, G. Ansari, and D. K. Pandey, *“Software fault
prediction based on change metrics using hybrid algorithms: An empirical
study,” J. King Saud Univ.-Comput. Inf. Sci., vol. 32, no. 4, pp. 419-424,
May 2020, doi: 10.1016/j.jksuci.2019.03.006.

L. Sikic, P. Afric, A. S. Kurdija, and M. Silic, “Improving software
defect prediction by aggregated change metrics,” IEEE Access, vol. 9,
pp. 19391-19411, 2021, doi: 10.1109/ACCESS.2021.3054948.

T. Zimmermann, N. Nagappan, H. Gall, E. Giger, and B. Murphy, “Cross-
project defect prediction: A large scale experiment on data vs. domain vs.
process,” in Proc. 7th Joint Meeting Eur. Softw. Eng. Conf. ACM SIGSOFT
Symp. Found. Softw. Eng., Aug. 2009, pp. 91-100.

J.Nam, W. Fu, S. Kim, T. Menzies, and L. Tan, ““Heterogeneous defect pre-
diction,” IEEE Trans. Softw. Eng., vol. 44, no. 9, pp. 874-896, Sep. 2018.
X. Chen, Y. Mu, K. Liu, Z. Cui, and C. Ni, “Revisiting heterogeneous
defect prediction methods: How far are we?”” Inf. Softw. Technol., vol. 130,
Feb. 2021, Art. no. 106441.

S. J. Pan and Q. Yang, “A survey on transfer learning,” [EEE Trans.
Knowl. Data Eng., vol. 22, no. 10, pp. 1345-1359, Oct. 2010, doi:
10.1109/TKDE.2009.191.

S.J. Pan, I. W. Tsang, J. T. Kwok, and Q. Yang, “Domain adaptation via
transfer component analysis,” IEEE Trans. Neural Netw., vol. 22, no. 2,
pp. 199-210, Feb. 2011, doi: 10.1109/TNN.2010.2091281.

J. Nam, S. J. Pan, and S. Kim, “Transfer defect learning,” in Proc.
35th Int. Conf. Softw. Eng. (ICSE), May 2013, pp.382-391, doi:
10.1109/ICSE.2013.6606584.

S. Pal, “Generative adversarial network-based cross-project fault predic-
tion,” 2021, arXiv:2105.07207.

F. Porto, L. Minku, E. Mendes, and A. Simao, ‘A systematic study of cross-
project defect prediction with meta-learning,” 2018, arXiv:1802.06025.
S. Watanabe, H. Kaiya, and K. Kaijiri, “‘Adapting a fault prediction model
to allow inter languagereuse,” in Proc. 4th Int. Workshop Predictor Models
Softw. Eng., May 2008, pp. 19-24, doi: 10.1145/1370788.1370794.

J. Chen, X. Wang, S. Cai, J. Xu, J. Chen, and H. Chen, “A software defect
prediction method with metric compensation based on feature selection
and transfer learning,” Frontiers Inf. Technol. Electron. Eng., vol. 23, no. 5,
pp. 715731, May 2022, doi: 10.1631/FITEE.2100468.

B. Turhan, T. Menzies, A. B. Bener, and J. Di Stefano, “On the rela-
tive value of cross-company and within-company data for defect predic-
tion,” Empirical Softw. Eng., vol. 14, no. 5, pp. 540-578, Oct. 2009, doi:
10.1007/510664-008-9103-7.

S. Shivaji, E. J. Whitehead, R. Akella, and S. Kim, “Reducing features to
improve bug prediction,” in Proc. IEEE/ACM Int. Conf. Automated Softw.
Eng., Nov. 2009, pp. 600-604, doi: 10.1109/ASE.2009.76.

M. Kakkar and S. Jain, “Feature selection in software defect prediction:
A comparative study,” in Proc. 6th Int. Conf.-Cloud Syst. Big Data Eng.,
Jan. 2016, pp. 658-663, doi: 10.1109/CONFLUENCE.2016.7508200.

A. Alsaeedi and M. Z. Khan, “Software defect prediction using
supervised machine learning and ensemble techniques: A comparative
study,” J. Softw. Eng. Appl., vol. 12, no. 5, pp. 85-100, 2019, doi:
10.4236/jsea.2019.125007.

F. Matloob, S. Aftab, M. Ahmad, M. A. Khan, A. Fatima, M. Igbal,
W. M. Alruwaili, and N. S. Elmitwally, “Software defect prediction
using supervised machine learning techniques: A systematic literature
review,” Intell. Automat. Soft Comput., vol. 29, no. 2, p. 403, 2021, doi:
10.32604/iasc.2021.017562.

L. Sikic, A. S. Kurdija, K. Vladimir, and M. Silic, “Graph neural
network for source code defect prediction,” [EEE Access, vol. 10,
pp. 10402-10415, 2022, doi: 10.1109/ACCESS.2022.3144598.

H. Lu, B. Cukic, and M. Culp, “A semi-supervised approach to software
defect prediction,” in Proc. IEEE 38th Annu. Comput. Softw. Appl. Conf.,
Jul. 2014, pp. 416-425, doi: 10.1109/COMPSAC.2014.65.

11747

http://dx.doi.org/10.1145/2884781.2884804
http://dx.doi.org/10.1109/ICDM.2018.00133
http://dx.doi.org/10.1109/TSE.2018.2877612
http://dx.doi.org/10.1145/2393596.2393671
http://dx.doi.org/10.1109/TSE.2007.256941
http://dx.doi.org/10.1109/TSE.2013.11
http://dx.doi.org/10.1049/ic.2011.0012
http://dx.doi.org/10.1109/TSE.1976.233837
http://dx.doi.org/10.1109/32.491650
http://dx.doi.org/10.1145/1868328.1868356
http://dx.doi.org/10.1109/ICACCE.2016.8073757
http://dx.doi.org/10.1109/CITSM52892.2021.9587932
http://dx.doi.org/10.1109/ISSRE.2010.25
http://dx.doi.org/10.1016/j.jksuci.2019.03.006
http://dx.doi.org/10.1109/ACCESS.2021.3054948
http://dx.doi.org/10.1109/TKDE.2009.191
http://dx.doi.org/10.1109/TNN.2010.2091281
http://dx.doi.org/10.1109/ICSE.2013.6606584
http://dx.doi.org/10.1145/1370788.1370794
http://dx.doi.org/10.1631/FITEE.2100468
http://dx.doi.org/10.1007/s10664-008-9103-7
http://dx.doi.org/10.1109/ASE.2009.76
http://dx.doi.org/10.1109/CONFLUENCE.2016.7508200
http://dx.doi.org/10.4236/jsea.2019.125007
http://dx.doi.org/10.32604/iasc.2021.017562
http://dx.doi.org/10.1109/ACCESS.2022.3144598
http://dx.doi.org/10.1109/COMPSAC.2014.65

IEEE Access

P. Afric et al.: Empirical Study: How Issue Classification Influences Software Defect Prediction

[67]

[68]

[69]

[70]

[71]

[72]

[73]
[74]
[75]

[76]

[77]

[78]
[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

F. Wu, X.-Y. Jing, X. Dong, J. Cao, M. Xu, H. Zhang, S. Ying, and
B. Xu, “Cross-project and within-project semi-supervised software defect
prediction problems study using a unified solution,” in Proc. IEEE/ACM
39th Int. Conf. Softw. Eng. Companion (ICSE-C), May 2017, pp. 195-197,
doi: 10.1109/ICSE-C.2017.72.

G. Calikli, A. Tosun, A. Bener, and M. Celik, “The effect of granularity
level on software defect prediction,” in Proc. 24th Int. Symp. Comput. Inf.
Sci., Sep. 2009, pp. 531-536, doi: 10.1109/ISCIS.2009.5291866.

H. D. Tessema and S. L. Abebe, “Enhancing just-in-time defect
prediction using change request-based metrics,” in Proc. IEEE
Int. Conf. Softw. Anal., Evol. Reeng., Mar. 2021, pp.511-515, doi:
10.1109/SANER50967.2021.00056.

G. Scanniello, C. Gravino, A. Marcus, and T. Menzies, “Class level
fault prediction using software clustering,” in Proc. 28th IEEE/ACM
Int. Conf. Automated Softw. Eng. (ASE), Nov. 2013, pp. 640-645, doi:
10.1109/ASE.2013.6693126.

N. Nagappan, T. Ball, and A. Zeller, ““Mining metrics to predict component
failures,” in Proc. 28th Int. Conf. Softw. Eng., May 2006, pp. 452-461, doi:
10.1145/1134285.1134349.

Y. Khatri and S. K. Singh, “Cross project defect prediction: A compre-
hensive survey with its SWOT analysis,” Innov. Syst. Softw. Eng., vol. 18,
no. 2, pp. 263-281, Jun. 2022, doi: 10.1007/s11334-020-00380-5.

A. Joulin, E. Grave, P. Bojanowski, and T. Mikolov, “Bag of tricks for
efficient text classification,” 2016, arXiv:1607.01759.

T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” 2013, arXiv:1301.3781.

N. Kalchbrenner, E. Grefenstette, and P. Blunsom, ““A convolutional neural
network for modelling sentences,” 2014, arXiv:1404.2188.

X.Zhang, J. Zhao, and Y. LeCun, “Character-level convolutional networks
for text classification,” in Proc. Adv. Neural Inf. Process. Syst., vol. 28,
2015, pp. 1-15.

D. Shen, Y. Zhang, R. Henao, Q. Su, and L. Carin, “‘Deconvolutional latent-
variable model for text sequence matching,” in Proc. AAAI Conf. Artif.
Intell., 2018, vol. 32, no. 1, pp. 1-8.

P. Liu, X. Qiu, and X. Huang, “Recurrent neural network for text classifi-
cation with multi-task learning,” 2016, arXiv:1605.05101.

M. Seo, S. Min, A. Farhadi, and H. Hajishirzi, “Neural speed reading via
skim-RNN,” 2017, arXiv:1711.02085.

Z. Yang, D. Yang, C. Dyer, X. He, A. J. Smola, and E. H. Hovy, “Hier-
archical attention networks for document classification,” in Proc. NAACL,
2016, pp. 1480-1489, doi: 10.18653/v1/N16-1174.

Z. Lin, M. Feng, C. Nogueira dos Santos, M. Yu, B. Xiang, B. Zhou,
and Y. Bengio, “A structured self-attentive sentence embedding,” 2017,
arXiv:1703.03130.

C. Sun, X. Qiu, Y. Xu, and X. Huang, “How to fine-tune BERT for text
classification?” 2019, arXiv:1905.05583.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training
of deep bidirectional transformers for language understanding,” 2018,
arXiv:1810.04805.

Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov, “RoBERTa: A robustly optimized BERT
pretraining approach,” 2019, arXiv:1907.11692.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, ‘“Attention is all you need,” 2017,
arXiv:1706.03762.

Y. Zhu, R. Kiros, R. Zemel, R. Salakhutdinov, R. Urtasun, A. Torralba, and
S. Fidler, “Aligning books and movies: Towards story-like visual explana-
tions by watching movies and reading books,” in Proc. IEEE Int. Conf.
Comput. Vis. (ICCV), Dec. 2015, pp. 19-27, doi: 10.1109/ICCV.2015.11.
W. L. Taylor, ““Cloze Procedure’: A new tool for measuring readabil-
ity,” Journalism Quart., vol. 30, no. 4, pp. 415-433, Sep. 1953, doi:
10.1177/107769905303000401.

D. Cubranic and G. C. Murphy, “Hipikat: Recommending pertinent
software development artifacts,” in Proc. 25th Int. Conf. Softw. Eng.,
May 2003, pp. 408-418, doi: 10.1109/ICSE.2003.1201219.

M. Fischer, M. Pinzger, and H. Gall, “Populating a release history
database from version control and bug tracking systems,” in Proc. Int.
Conf. Softw. Maintenance, 2003, pp. 23-32, doi: 10.1109/ICSM.2003.
1235403.

A. Bachmann and A. Bernstein, ‘“Software process data quality and char-
acteristics: A historical view on open and closed source projects,” in Proc.
Joint Int. Annu. ERCIM Workshops Princ. Softw. Evol. (IWPSE) Softw.
Evol., Aug. 2009, pp. 119-128, doi: 10.1145/1595808.1595830.

11748

[91] H. Qing, L. Biwen, S. Beijun, and Y. Xia, “Cross-project soft-
ware defect prediction using feature-based transfer learning,” in Proc.
7th Asia—Pacific Symp. Internetware, Nov. 2015, pp.74-82, doi:
10.1145/2875913.2875944.

[92] M. F. Porter, “An algorithm for suffix stripping,” Program, vol. 14, no. 3,
pp. 130-137, 1980, doi: 10.1108/eb046814.

[93] D. Kalpic, N. Hlupié, and M. Lovrié, “Student’s ¢-tests,” in International
Encyclopedia of Statistical Science, M. Lovric, Ed. Berlin, Germany:
Springer, 2011, pp. 1559-1563, doi: 10.1007/978-3-642-04898-2_641.

[94] M. Neuhiuser, “Wilcoxon-Mann-Whitney test,” in International Ency-
clopedia of Statistical Science, M. Lovric, Ed. Berlin, Germany: Springer,
2011, pp. 1656-1658, doi: 10.1007/978-3-642-04898-2_615.

PETAR AFRIC was born in Split, Croatia, in 1993.

He received the master’s degree in computer sci-

ence from the Faculty of Electrical Engineering

and Computing, University of Zagreb, Zagreb,

Croatia, in 2018, where he is currently pursuing

the Ph.D. degree. He is currently the Chief Tech-

3 nical Officer with the DataBlast, Zagreb. He has

"~ previously published in the Journal of Systems and

r » Software and presented at the IEEE International

Conference on Software Quality, Reliability and

Security. His research interests include software defect prediction, software
quality assurance, and optimization algorithms.

DAVOR VUKADIN was born in Samobor,
Croatia, in 1996. He received the master’s degree
in computer science from the Faculty of Elec-
trical Engineering and Computing, University of
Zagreb, Zagreb, Croatia, in 2020, where he is cur-
rently pursuing the Ph.D. degree. He is currently
a Researcher with the Faculty of Electrical Engi-
neering and Computing, University of Zagreb.
He was published in IEEE Acckss. His research
interests include software defect prediction, natu-
ral language processing, and Al (artificial intelligence) explainability.

MARIN SILIC (Member, IEEE) received the Ph.D.
degree in computer science from the Faculty of
Electrical Engineering and Computing, University
of Zagreb, in 2013. He is currently an Associate
Professor with the Faculty of Electrical Engineer-
ing and Computing, University of Zagreb. He has
published several papers in IEEE TRANSACTIONS
oN SErVICES CoMPUTING, IEEE TRANSACTIONS ON
DEPENDABLE AND SECURE COMPUTING, Journal of
Systems and Software, and Knowledge-Based Sys-
tems. Also, he has published his research results at the ACM Joint European
Software Engineering Conference and Symposium on the Foundations of
Software Engineering and at the IEEE International Conference on Software
Quality, Reliability and Security. His research interests include machine
learning, data mining, service-oriented computing, and software engineering.

GORAN DELAC (Member, IEEE) received the
Ph.D. degree in computer science from the
Faculty of Electrical Engineering and Comput-
ing, University of Zagreb, in 2014. He is cur-
rently an Associate Professor with the Faculty of
Electrical Engineering and Computing, Univer-
sity of Zagreb. He has published several papers
in IEEE TRANSACTIONS ON SERVICES COMPUTING,
IEEE TRANSACTIONS ON DEPENDABLE AND SECURE
CoMPUTING, and Knowledge-Based Systems. Also,
he has published his research results at the ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering and at the IEEE International Conference on Software Quality,
Reliability and Security. His research interests include distributed systems,
fault tolerant systems, service-oriented computing, data mining, and machine
learning.

VOLUME 11, 2023

http://dx.doi.org/10.1109/ICSE-C.2017.72
http://dx.doi.org/10.1109/ISCIS.2009.5291866
http://dx.doi.org/10.1109/SANER50967.2021.00056
http://dx.doi.org/10.1109/ASE.2013.6693126
http://dx.doi.org/10.1145/1134285.1134349
http://dx.doi.org/10.1007/s11334-020-00380-5
http://dx.doi.org/10.18653/v1/N16-1174
http://dx.doi.org/10.1109/ICCV.2015.11
http://dx.doi.org/10.1177/107769905303000401
http://dx.doi.org/10.1109/ICSE.2003.1201219
http://dx.doi.org/10.1109/ICSM.2003.1235403
http://dx.doi.org/10.1109/ICSM.2003.1235403
http://dx.doi.org/10.1145/1595808.1595830
http://dx.doi.org/10.1145/2875913.2875944
http://dx.doi.org/10.1108/eb046814
http://dx.doi.org/10.1007/978-3-642-04898-2_641
http://dx.doi.org/10.1007/978-3-642-04898-2_615

