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ABSTRACT With the development of network technology, security in path planning problems has attracted
widespread attention. We consider a path planning problem in which a planner computes a finite path that
satisfies a specification.We assume that the specification includes mandatory safety/co-safety specifications.
Moreover, we consider a security policy for this path. However, we assume that the information leaked to
an intruder is not known beforehand. Then, we propose an enforcement mechanism referred to as a finite-
horizon shield. This mechanism modifies the path computed by the planner as small as possible to satisfy
the safety/co-safety specifications and security policy under the leaked information. We assume that the
safety/co-safety specifications are described by LTLf formulas and the security policy by a hyperLTLf
formula. Subsequently, we convert the formulas into quantified formulas and compute the modified path
using a satisfiability modulo theories solver. As an example, we consider an opacity problem where
there is another path whose leaked information is the same as that of the modified path. By simulations,
it confirms that the output of shield depends on the leaked information and the modified path may have
additional movements to ensure opacity. We also compare the computation time of the shield with that of a
security-aware planning by simulation.

INDEX TERMS HyperLTL, opacity, path planning, safety/co-safety specification, security policy, shield
synthesis.

I. INTRODUCTION
Safety-critical automated systems have numerous practical
applications. The specifications of these systems are com-
plex, and they consist of mandatory and optional specifica-
tions. For example, it is mandatory for a synthesized system to
satisfy safety properties, which ensure that system behaviors
remain in a safe state set. Safety properties are characterized
by the bad prefixes of infinite state sequences [1]. It is impor-
tant to ensure that system behaviors always satisfy safety
specifications under different environments. In recent years,
shield synthesis [2], [3] has attracted widespread attention
for the design of complex engineering systems because it
is an efficient method for enforcing safety specifications at
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FIGURE 1. Shield that modifies system output to enforce safety
properties.

runtime when the environment changes. A shield is attached
to a system, as illustrated in FIGURE 1. It monitors the inputs
and outputs of the system and modifies incorrect outputs to
correct outputs. An advantage of shield synthesis is that the
modification is minimized. If the system output satisfies a
given safety specification, the shield does not make a mod-
ification, and its output is the same as the system output.
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Otherwise, the shield modifies its output to satisfy the safety
specification such that the modified output is as close to the
system output as possible. Thus, the effect of themodification
on optional specifications is minimized. Shield synthesis has
been applied to several engineering problems. In [4], a shield
was attached to a multiagent system to prevent congestion
and collisions. In [5] and [6], shields were used to ensure the
safety of human-interactive robotics. A shield that adapted to
a changing environment was proposed and applied to traffic
light controllers to maintain the correct traffic flow [7]. Safe
reinforcement learning using shields was proposed in [8]
and [9].

Specifications have become complex owing to recent
advances in automated systems, and temporal logics are use-
ful tools for their detailed descriptions [10], [11]. Linear
temporal logic (LTL) formulas are typically used for log-
ical specifications in synthesis problems [12], and numer-
ous reactive synthesis problems for LTL specifications have
been studied [13], [14], [15], [16], [17], [18], [19]. Signal
temporal logic (STL) formulas can describe the dynamic
properties of real-valued continuous signals [20], [21], and
they have been applied to controller synthesis problems
[22], [23], [24]. Furthermore, LTL and STL formulas are
used to describe the safety specifications for shield synthe-
sis [2], [25]. Shield synthesis with specifications described by
quantified discrete-duration calculus logic formulas has been
recently proposed [26]. In reactive synthesis, temporal logic
formulas are evaluated over infinite sequences of states or
transitions. In the path planning problem of a mobile robot to
find a finite sequence of states (referred to as a path) from the
initial state to a goal state while meeting specifications, the
LTL formulas that describe specifications are evaluated over
finite sequences. This logic is referred to as LTLf [27], [28],
[29], [30], [31]. Moreover, safety and co-safety properties are
important [32], [33]. A typical example of co-safety proper-
ties is that a robot reaches a goal state in a finite horizon.
Co-safety properties are characterized by good prefixes.
Thus, shield synthesis that satisfies safety and co-safety spec-
ifications is important in path planning problems.

Security in path planning problems has attracted
considerable attention with the development of network
technology [34], [35]. Malicious intruders observe partial
information about a robot, which is referred to as leaked
information, and estimate the secret about the robot. The
secret about the robot is its location, action and so on. This
is because it can lead to the identification of the entire path,
which may reveal tasks or attributes of the robot. As example,
for a mobile robot that transports a very valuable item, its
current location is a secret to avoid being robbed of it by
the intruder. Secure path planning, where an intruder cannot
identify the secret, is an important issue that depends on
leaked information. A security property is not a property of
individual state sequences but a hyperproperty that is a set
of the subsets of sequences. For example, opacity is a useful
notion in the analysis of cryptographic protocols [36], and it

is applied tomultiple classes of systems such as discrete event
systems [37], [38], [39] and cyber-physical systems [40],
[41], [42]. Intuitively, opacity is defined such that, for each
state sequence with a secret, there exists a different sequence
without a secret whose leaked information is the same as that
of the secret sequence. HyperLTL, which is an extension of
LTL with trace variables, was proposed in [43], [44], and [45]
to formally describe hyperproperties. It has been shown
that several specifications of the path planning problems of
mobile robots are described by hyperLTL formulas [46].
A unified framework that uses hyperLTL for specifying
observational properties, including opacity, diagnosability,
predictability, and detectability, has been proposed [47].

There is increasing demand for ensuring path security in
robot path planning problems [34], [48], and this depends on
the leaked information observed by an intruder. For example,
when sensors send some (partial) information to an oper-
ator using a network and the vulnerability of the network
is discovered, the operator modifies a path to guarantee a
security policy under the assumption that the information
may be leaked to a potential intruder. As another example,
in the case where eavesdropping devices are set up and are
detected while the robot works, it may be a good strategy
against the intruder that, if the current plan is unsecure, the
operator modifies the plan to be secure under the existence of
the devices because the intruder does not notice the detection
of the devices by the operator. To achieve the modification,
the concept of shielding is applicable. Thus, in our scenario,
a planner may generally not know about leaked informa-
tion beforehand. Hence, it must compute a path that satis-
fies given specifications, including a safety and/or co-safety
property, without considering a given security policy. When
eavesdropping devices are detected, the corresponding leaked
information is identified and the path is modified as small as
possible such that the modified path satisfies safety/co-safety
properties and the security policy. Therefore, it is important
to provide a method for the modification.

In this study, we assume that a planner that computes the
finite path of a robot is pre-designed. We will call the path
a pre-planned path. We apply shield synthesis to an enforce-
ment mechanism for the planner, whose objective is to satisfy
safety and/or co-safety specifications and a security policy
under the working environment of the robot. A conventional
shield considers infinite sequences of inputs and outputs
and modifies the outputs that satisfy safety specifications if
necessary. However, in the path planning problem, the path is
finite and satisfies safety and co-safety specifications and the
security policy. Thus, we propose a shield-like enforcement
mechanism, which is referred to as a finite-horizon shield,
to modify the pre-planned path as small as possible while
satisfying the safety/co-safety specifications and security pol-
icy under the working environment where the intruder exists.
FIGURE 2 illustrates the proposed enforcement mechanism.
While the robot moves along the pre-planned path, if leaked
information is identified, it is sent to the finite-horizon shield.
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FIGURE 2. Enforcement mechanism with leaked information and a
finite-horizon shield that modifies a finite path to satisfy safety and
co-safety specifications and a security policy.

FIGURE 3. Example of a workspace modeled by 6 × 6 grid plane, where
obstacles exist in black grids. The initial and goal grids are colored red
and green, respectively, and the blue arrows indicate a pre-planned path.

The shield checks whether the pre-planned path satisfies
the security policy under the leaked information. If not,
it modifies the path to satisfy the safety/co-safety specifica-
tions and security policy. Therefore, the path output by the
finite-horizon shield is guaranteed to satisfy safety/co-safety
specifications and the security policy.

The following example illustrates the problem we con-
sider. The planner determines a path based on safety and/or
co-safety specifications without taking into account the secu-
rity policy because it does not know what information may
be leaked. Suppose the planner determines the path that sat-
isfies the specification of avoiding obstacles and eventually
reaching the goal in the workstation represented by the grid
shown in FIGURE 3. The red, green, and black locations in
this figure indicate starts, goals, and obstacles, respectively.
The blue arrows are the pre-planned path determined by the
planner. Assume that at time 3, that is, when the mobile robot
is on the grid with the gray circle, the leaked information is
identified and the horizontal position of the robot is leaked.
We consider the case where a secret is the initial state of
the robot, that is, the initial state cannot be determined only
from the leaked information. Such a policy is called initial-
state opacity. See Section V for details. The pre-planned path
does not satisfy the security policy. Then, we modify it after
time 3 to satisfy the security policy. Shown in FIGURE 4 is an
example of the modified path, where the red arrows indicate
the modified path and the yellow arrows indicate a path that

FIGURE 4. Example of a modified path that satisfies initial-state opacity.

the intruder cannot distinguish from the modified path. Note
that the initial states of the paths are different and themodified
path satisfies the security policy.

We assume that the specification for which the planner
computes a pre-planned path is described by an LTLf formula
and that the safety/co-safety specifications are described as its
subformulas.Moreover, the leaked information is represented
by atomic propositions, and the security policy is represented
by a hyperLTLf formula over the set of the atomic proposi-
tions. Then, we construct the finite-horizon shield using SAT-
based bounded model-checking approaches [49], [50], [51],
[52]. As any hyperLTLf formula is converted into a quantified
formula (QF) [53], the safety/co-safety specifications and
security policy are encoded as QFs. Then, a modified path
is computed using a satisfiability modulo theories (SMT)
solver. While, in a security-aware planning problem, a path
that satisfies a specification including a security policy is
computed [42], [46], [48], we address a problem ofmodifying
an unsecure path to be secure under the leaked information
that is detected while the robot works, i.e., we extend a
shield approach to secure path re-planning and the proposed
shield modified a finite path if it does not satisfy the secu-
rity policy under the identified leaked information. Such an
approach is also different from supervisory control based
approaches proposed in [38], [47], and [54], where the super-
visor determines a set of events that satisfy the security policy
under the assumption that the leaked information is known.
The proposed approach is also different from the enforce-
ment mechanism proposed in [55] because the finite-horizon
shield receives a single sequence and modifies it to a single
sequence, whereas the mechanism in [55] receives a set of
sequences and modifies them.

In this study, as a comparative approach, we also consider a
security-aware planning problem to compute a path satisfying
a specification including a security policy (see Section VI
for details). Since the security policy is encoded as a QF, the
planning problem is converted into a quantified satisfiability
(QSAT) problem, which is PSPACE-complete [56]. In other
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words, the comparative approach is a one-step approach.
On the other hand, the proposed method can be regarded as
a two-step approach to a security-aware planning problem
with known leaked information, that is, the planner computes
a pre-planned path by solving a SAT problem, which is
NP-complete [57], since the security policy is not included
in the specification for the planner and the finite-horizon
shield computes a secure path by the modification of the pre-
planned path, which is a QSAT problem. Then, in the planner,
we do not use Boolean variables that describe the security pol-
icy while, in the finite-horizon shield, we do not use those that
describe the specification except the security policy. Thus, the
numbers of the Boolean variables used in the planner and the
finite-horizon shield are less than that in the security-aware
planning problem. In other words, the proposed method com-
putes a secure path by solving a SAT problem and a QSAT
problem with fewer numbers of Boolean variables than that
used in the QSAT problem of the one-step approach. By sim-
ulation, we show that the computation time of the proposed
approach is less than that of the one-step approach when the
number of the variables used in the encoding of the planning
problems is large. Thus, the proposed method is practically
useful for a security-aware planning problem under known
leaked information.

The remainder of this paper is organized as follows: In
Section II, we review hyperLTL, which is an extension of
LTL. In Section III, we formulate a path planning problem in
which a specification and security policy for a desired finite
path are described by hyperLTL formulas. In Section IV,
we propose a finite-horizon shield synthesis algorithm for
the modification of a path planned by a planner to satisfy the
hyperLTLf formulas that represent the safety/co-safety spec-
ifications and security policy.We demonstrate the application
of the finite-horizon shield to the enforcement of opacity
for mobile robot path planning in Section V. We compare
a security-aware planner and the finite-horizon shield in
Section VI. Section VII concludes the paper.

II. HyperLTL OVER FINITE TRACES
Let AP be a set of atomic propositions and 2AP be the power
set of AP. A finite trace over 2AP is a finite sequence of the
subsets of AP. Let t = t0t1 . . . tH−1 be a finite trace with
length H . For j ∈ {0, 1, . . . ,H − 1}, we denote t[j] = tj and
t[j,H − 1] = tjtj+1 . . . tH−1. (2AP)H is the set of all traces
with length H over 2AP. For T ⊆ (2AP)H , let T [j,H − 1] =
{t[j,H − 1] | t ∈ T } ⊆ (2AP)H−j.
HyperLTL is an extension of LTL with trace quantifiers

(∃,∀) and trace variables. Numerous hyperproperties related
to security policies are described by hyperLTL formulas.

Let 5 be a set of trace variables. The hyperLTL formulas
are recursively generated as follows:

ψ ::= ∀π. ψ | ∃π. ψ | ϕ, (1)

ϕ ::= apπ | ¬ϕ | ϕ1 ∧ ϕ2 | ⃝ ϕ | ϕ1 U ϕ2, (2)

where ap ∈ AP is an atomic proposition and π ∈ 5 is a trace
variable. Subscriptπ indicates that ap should be checked over

trace variable π . Some trace variables in the objectives are
quantified by ∃ or ∀. The other Boolean operators (∨, →,
and ≡) are defined as ϕ1 ∨ ϕ2 := ¬(¬ϕ1 ∧ ¬ϕ2), ϕ1 →
ϕ2 := ¬ϕ1 ∨ ϕ2, and ϕ1 ≡ ϕ2 := (ϕ1 → ϕ2) ∧ (ϕ2 → ϕ1).
In addition, two temporal operators, i.e., eventually (♢) and
always (□), are defined as follows:

♢ϕ := ⊤ U ϕ,
□ϕ := ¬♢¬ϕ.

The hyperLTL formulas are interpreted over infinite and
finite traces. The hyperLTL formulas interpreted over finite
traces with length H are referred to as hyperLTLHf formulas.
The syntax of hyperLTLHf formulas is the same as that of
the hyperLTL formulas defined by (1) and (2), and their
semantics is given by the satisfaction relation, |HT , over a set
of finite traces T ⊆ (2AP)H . Let V : 5 → (2AP)H be an
assignment function. The semantics is recursively defined as
follows:

V |HT apπ ⇔ ap ∈ V (π )[0],

V |HT ¬ϕ ⇔ V ̸|HT ϕ,

V |HT ϕ1 ∧ ϕ2 ⇔ V |HT ϕ1 ∧ V |HT ϕ2,

V |HT ⃝ϕ ⇔ H ≥ 2 ∧ V [1,H − 1] |HT ϕ,

V |HT ϕ1 U ϕ2 ⇔ 0 ≤ ∃j ≤ H − 1. V [j,H − 1] |HT ϕ2
∧ 0 ≤ ∀j′ < j. V [j′,H − 1] |HT ϕ1,

V |HT ∃π. ψ ⇔ ∃t ∈ T . V [π → t] |HT ψ,

V |HT ∀π. ψ ⇔ ∀t ∈ T . V [π → t] |HT ψ,

where V [j,H − 1] : 5 → T [j,H − 1] is an assignment
function such that for each π ∈ 5, V [j,H − 1](π ) =
V (π )[j,H − 1]. V [π → t] is an assignment function such
that V [π → t](π ) = t and V [π → t](π ′) = V (π ′) for each
π ′ ∈ 5 with π ′ ̸= π . Intuitively, ∃π.ψ holds if and only if
there exists a trace in T such that ψ satisfies. ∀π.ψ holds if
and only if all traces in T satisfy ψ .

III. PROBLEM FORMULATION
We consider a path planning problem of a mobile robot
in a workspace that is partitioned into a finite number of
regions. We assume that the transitions between the regions
are given. Additionally, a specification for the path, which is
referred to as a path specification, is given by an LTL formula.
We assume that the path specification includes safety and/or
co-safety subspecifications as mandatory requirements. Let
APp be the finite set of atomic propositions that are used to
describe the path specification. We assume the existence of
a planner that computes a path that satisfies the path speci-
fication described by an LTLf formula. Then, we consider a
case where there is a security policy that specifies a secret
of the path and an intruder who observes information about
the behavior of the robot and attempts to reveal the secret.
We assume that the leaked information is unknown when the
planner computes the path. Let APob be a finite set of the
atomic propositions that are used to describe the observation
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of the leaked information. Let AP := APp ∪ APob. Then,
the behavior of the mobile robot is modeled by a transition
system P = (P,P0, I , δ,Lp,Lob), where
• P is the set of states that represent regions in the
workspace,

• P0 ⊆ P is the set of initial states,
• I is the set of inputs,
• δ : P × I → P is a partial transition function, where
p′ = δ(p, i) indicates that the robot moves from the state
p to the state p′ by the input i,

• Lp : 1 → 2AP
p
is the labeling function with respect to

set APp, where 1 := {(p, i, q) | q = δ(p, i)} ⊆ P ×
I × P is a set of transitions, that is, Lp((p, i, q)) is the
set of atomic propositions in APp that hold at transition
(p, i, q),

• Lob : 1→ 2AP
ob
is the labeling function with respect to

setAPob. Intuitively, Lob(ℓ) ⊆ APob represents the infor-
mation leaked by the occurrence of transition ℓ ∈ 1.

We introduce the following labeling function,
L : 1→ 2AP. For each ℓ ∈ 1,

L(ℓ) := Lp(ℓ) ∪ Lob(ℓ).

Let P′ := {p′ | p ∈ P}. Then, we assume that P ∪ P′ ⊆ AP,
that is, each state and its primed symbol are atomic proposi-
tions, and for transition (p, i, q) ∈ 1, L((p, i, q))∩ (P∪P′) =
{p, q′}. Intuitively, for transition ℓ ∈ 1, {p, q′} ⊆ L(ℓ)
implies that it is a transition from state p to state q. For
transition system P, a finite sequence of transitions ρ defined
by (3) is referred to as a path.

ρ := (p[0], i[0], p[1])(p[1], i[1], p[2]) . . .

. . . (p[H − 1], i[H − 1], p[H ]) ∈ 1H , (3)

where H is the length of the path, p[0] ∈ P0, and
δ(p[h], i[h]) = p[h+1] for h = 0, . . . ,H−1. Let L(H ,P) ⊆
1H be a set of paths with lengthH for P. Note thatL(1,P) =
{(p, i, q) | p ∈ P0 ∧ (p, i, q) ∈ 1}. We extend the two
labeling functions, Lp and L, to L(H ,P) for any positive
integer H ≥ 2 as follows: For path ρℓ ∈ L(H ,P) with
ρ ∈ L(H − 1,P) and ℓ ∈ 1,

Lp(ρℓ) = Lp(ρ)Lp(ℓ), (4)

L(ρℓ) = L(ρ)L(ℓ). (5)

Let T p(H ,P) ⊆ (2AP
p
)H (resp. T (H ,P) ⊆ (2AP)H ) be a

set of traces with length H for P and Lp (resp. L), that is,

T p(H ,P) := {Lp(ρ) | ρ ∈ L(H ,P)}, (6)

T (H ,P) := {L(ρ) | ρ ∈ L(H ,P)}. (7)

5p and 5 denote the sets of trace variables used for
the path specification and the security policy, respectively.
Without loss of generality, we set 5p

= {π} because the
path specification is described by an LTL formula that is
equivalent to a quantifier-free hyperLTL formula with the
trace variable π . Let V p

: 5p
→ T p(H ,P) and V : 5 →

T (H ,P) be assignment functions.

The path specification is described by an LTL formula that
is a quantifier-free hyperLTLHf formula ϕp over APp with
trace variable π . The planner computes path ρp ∈ L(Hp,P),
which is referred to as a pre-planned path, such that

V p
|HT p(Hp,P) ϕ

p, (8)

whereHp is the length of ρp and V p(π ) = Lp(ρp). We assume
that path specification ϕp is partitioned into a mandatory and
an optional specification, that is, ϕp := ϕs∧ϕo, where ϕs and
ϕo represent the mandatory and the optional specification,
respectively: a similar partition of the specification was pro-
posed in [58] and [19]. The mandatory specification is related
to safety or co-safety properties and it should be satisfied
even after modification. In other words, it is considered to
be the specification that does not want to be effected by
the modification. For example, a safety property is that the
mobile robot never enters a dangerous region such as a river,
and a co-safety property is that the mobile robot reaches a
target region in a finite horizon. The optional specification
aims to increase the quality of service for the path such as
passing a specified location if possible.
We consider the case where an intruder attempts to reveal

the secret of the pre-planned path using the leaked informa-
tion that is partially observed by the intruder’s sensors. Then,
the leaked information is identified, which is represented
by a set of atomic propositions APob. A security policy is
described by a hyperLTL formula ψ sp over AP as follows:

ψ sp
= Q2π2 . . .Qnπn. ϕ

sp, (9)

where Qi ∈ {∃,∀}(i = 2, . . . , n) is a trace quantifier and ϕsp

is a quantifier-free hyperLTL formula with trace variables π1,
π2, . . . , πn. Path ρ ∈ L(H ,P) satisfies security policy ψ sp if
assignment function V with V (π1) = L(ρ) satisfies

V |HT (H ,P) ψ sp. (10)

Opacity is an example of a security policy of the mobile
robot; this will be discussed in Section V.

If the pre-planned path does not satisfy the security policy,
we modify the path such that it satisfies ϕs and ϕsp. The next
section describes the method proposed for the modification.

IV. FINITE-HORIZON SHIELD
We consider a mobile robot whose workspace is modeled
by transition system P = (P,P0, I , δ,Lp,Lob). For a given
path specification ϕp = ϕs ∧ ϕo, a planner computes a
pre-planned path ρp ∈ L(Hp,P) such that (8) holds for
V p(π ) = Lp(ρp). Note that the planner does not consider
the security policy. Moreover, labeling function Lob is not
determined beforehand because it depends on the leaked
information (e.g., partial observation of the position of the
mobile robot). While the mobile robot operates, if the leaked
information is identified at time h ∈ [0,Hp], it is represented
by set APob and labeling function Lob : 1 → 2AP

ob
. The

leaked information at each transition ℓ ∈ 1 is described by
subset Lob(ℓ) ⊆ APob, and the security policy is described
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by a hyperLTL formula ϕsp over AP = APp ∪ APob. Then,
we modify the pre-planned path as small as possible while
satisfyingmandatory specification ϕs and security policy ϕsp.

On the basis of shield synthesis [2], [3], we propose an
enforcement mechanism referred to as a finite-horizon shield
to achieve the modification. The finite-horizon shield is illus-
trated in FIGURE 2. Security policy ψ sp is given by (9).
When the leaked information is identified, it informs the
finite-horizon shield about labeling function Lob : 1 →
2AP

ob
. We require the following constraints:

• The finite-horizon shield does nothing until the leaked
information is detected,

• When the leaked information is identified at time h ∈
[0, Hp − 1], the remaining path in time interval [h +
1,Hp] is modified in such a way that the overall path in
time interval [0, Hp] satisfies the security policy.

The first constraint is based on the design policy of the shield.
The second one is necessary to satisfy the security policy
even if the leaked information is identified while the robot
is moving. Then, the finite-horizon shield checks whether
the pre-planned path ρp satisfies ψ sp. If ρp satisfies ψ sp, its
output is ρp; that is, it does not modify the pre-planned path.
Otherwise, it computes a path with the minimum modifica-
tion while satisfying mandatory specification ϕs and security
policy ψ sp. The overall procedure for the computation of
output ρs ∈ L(Hs,P) of the finite-horizon shield is illustrated
in FIGURE 5, whereHs ≥ Hp is the length of ρs. The method
is described bellow.

A. FIRST STEP
The finite-horizon shield receives pre-planned path ρp as its
input (Process1 in FIGURE 5). Let V : 5→ T (Hp,P) be an
assignment function such thatV (π1) = L(ρp). Then, it checks
whether ρp satisfies ψ sp (Process2), that is,

CheckV |HT (Hp,P) Q2π2Q3π3 . . .Qnπn.ϕ
sp

subject to V (π1) = L(ρp). (11)

If (11) is satisfied, the finite-horizon shield does not modify
the path and outputs ρp, that is, ρs = ρp (Process3). However,
when (11) does not hold, we proceed to the next step.

B. SECOND STEP
The finite-horizon shield modifies ρp such that the modified
path is closest to ρp among the paths that satisfy ϕs and ψ sp.

It should be noted that, in general, if ρp does not satisfy
the security policy, there may not exist a secure path with
length Hp that satisfies the mandatory specification. Then,
the finite-horizon shield outputs secure path ρs with length
Hs larger than Hp. In this case, we evaluate the closeness
of ρs to ρp by extending ρp to path ρ̂p = ρ̂p[0]ρ̂p[1] . . . ρ̂p
[Hs − 1] ∈ L(Hs,P) such that ρ̂p[h] = ρp[h] for each
h ∈ {0, 1, . . . ,Hp − 1}. The extension is an important issue
that depends on the path planning problem. Therefore, it is
beyond the scope of this study. An example of the extension
is provided in the next section.

Let cls : L(Hs,P)×L(Hs,P)→ N be a function that eval-
uates the effect of the modification. For extended pre-planned
path ρ̂p and its modified path ρs, the effect of the modification
decreases with cls(ρ̂p, ρs). Note that cls(ρ, ρ) = 0 for any
ρ ∈ L(Hs,P). Examples of cls can be similarity between
input strings (described in Section V for detail) and similarity
between states.

Let V p
: 5p

→ T p(Hs,P) and V : 5 → T (Hs,P)
be assignment functions. For k ∈ N and h ∈ [0, . . . ,Hp],
modified path ρs starting from the same state as ρp under the
constraint that the effect of the modification is less than or
equal to k is computed as follows:

Determine ρs
subject to ρs ∈ L(Hs,P),

(h > 0)→
h−1∧
τ=0

(ρs[τ ] = ρ̂p[τ ]),

V p(π )=Lp(ρs),

V p
|HT p(Hs,P) p

0
π ∧ ϕ

s,

V (π1)=L(ρs),

V |HT (Hs,P) Q2π2Q3π3 . . .Qnπn.

ϕsp ∧
(
cls(ρ̂p, ρs) ≤ k)

)
, (12)

where p0 ∈ P0 is the initial state of ρp. The second condition
in (12) indicates that the past path from the initial state to the
current state cannot be modified. Intuitively, k represents the
tolerance of themodification, and it should be as small as pos-
sible. However, the existence of the modified path depends
on k . First, k is set to be sufficiently small to practically
minimize the effect of the modification. If a modified path
does not exist, then k is increased and the modified path is
recomputed. This procedure is repeated until a modified path
is obtained. For simplicity, in FIGURE 5, we initially set
k = 1 (Process4). For each k , (12) is solved to find path
ρs (Process7). If it exists, the finite-horizon shield outputs
ρs as the modified path (Process8). Otherwise, k is increased
(Process9). If k > Kmax , the finite-horizon shield outputs an
error (Process6), whereKmax is a hyperparameter that ensures
the termination of the computation.

In this study, to solve (11) and (12), we convert the con-
straints described by hyperLTLf formulas into QFs and solve
the satisfiability problem of the QFs. The conversion is done
in such a way that the hyperLTLf formulas are satisfiable
if and only if the corresponding QFs are satisfiable. See
Appendix A for the conversion of the hyperLTLf formulas
into the QFs. Thus, (11) is satisfied if and only if the QF
corresponding to (11) is satisfiable. For (12), the path ρs
exists if and only if the QF corresponding to the constraints
of (12) is satisfiable. Then, the path is obtained by an instance
satisfying the QF. The next section describes an example
of this conversion. Algorithm 1 shows the entire procedure
for the modification of ρp. We encode (11) (Algorithm 1
line 1) and check whether (11) is true or false (line 2). If it
is true, then ρp satisfies ψ sp. Therefore, the finite-horizon
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FIGURE 5. Flowchart of the proposed finite-horizon shield.

shield outputs ρs = ρp and cls(ρ̂p, ρs) = 0 (line 5). If (11)
is false (line 6), the for loop (line 7) iterates over parameter
k ∈ {1, . . . ,Kmax}. For each k , we encode (12) (line 8) and
check the satisfiability of (12) (line 9). If it is satisfiable, the
finite-horizon shield outputs ρs and cls(ρ̂p, ρs) = k . If (12)
has no solution until k = Kmax , then the finite-horizon shield
outputs an error (line 15). Then, a possible counterplan is
to complete the pre-planed path with giving up the security
policy or to return to the initial state. However, it is beyond
the scope of this paper because it depends on the system or
the priority of specifications.

Algorithm 1Modify ρp to ρs via Finite-Horizon Shield
Input: ρp, Kmax
Output: ρs, cls
1: Encode (11)
2: if (11) is true then
3: ρs← ρp
4: cls← 0
5: return ρs, cls
6: else
7: for k = 1 to Kmax do
8: Encode (12)
9: if (12) is satisfied then
10: cls← k
11: return ρs, cls
12: end if
13: end for
14: end if
15: return -1

The computational complexity of Algorithm 1 is PSPACE
complete since it uses the satisfiability of quantified formulas
[56]. We consider the number of variables used in Algo-
rithm 1, which depends mainly on the number of subformulas
in ϕsp and the number of variables that encode paths. Let
Nf ,i be the number of different subformulas related to trace
variable πi in formula f . For Hs transitions and all subfor-
mulas in ϕsp,

∑n
i=1 Nϕsp,iHs variables are needed, where n is

the number of trace variables in 5. Variables that represent
paths are also needed. For each transition, (|P| + |I | + |O|)
variables are needed to store the states, inputs, outputs, where
O is the set of partial observations. ForHs transitions, we have
Hs times as many variables. Algorithm 1 requires n paths.
In addition, we prepare variables that encode cls and let Ncls
be the number of them. Therefore, the total number NAlg1 of
variables required for Algorithm 1 is as follows:

NAlg1 =
n∑
i=1

Nϕsp,iHs + n(|P|+ |I |+|O|)Hs + Ncls. (13)

In practice, we also have to consider the number of vari-
ablesNpre needed for the SAT problem to find the pre-planned
path and Npre is expressed as follows:

Npre = NϕpHs + (|P| + |I |)Hs, (14)

where Nϕp is the number of different subformulas in
formula ϕp.

V. APPLICATION TO OPAQUE PATH PLANNING
PROBLEMS
In this section, we described the application of the
finite-horizon shield to opaque path planning problems for
a mobile robot.

A. PROBLEM SETTINGS
Opacity is an information flow security property, and several
definitions of opacity have been proposed. We consider the
case where an intruder can partially observe the behaviors of
a mobile robot, and there is a secret for the path planning of
the robot. Intuitively, a path is opaque if the intruder cannot
expose the secret under the partial observation. We consider
that the mobile robot moves in a 2-dimensional workspace,
which is partitioned into Nx ×Ny grid regions. Subsequently,
the behavior of the robot is represented by a finite-state
transition system, P = (P,P0, I , δ,Lp,Lob), where
• P = {(0, 0), . . . , (Nx−1,Ny−1)} is the set of states that
indicates the current locations of the robot,

• P0 is the set of initial states,
• I = {up, down, right, left, stay} is the set of inputs,
• δ is the partial transition function, and for each (x, y) ∈
P,

δ((x, y), up) :=

{
(x, y+ 1) if (x, y+ 1) ∈ P,
undefined otherwise,

δ((x, y), down) :=

{
(x, y− 1) if (x, y− 1) ∈ P,
undefined otherwise,
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δ((x, y), right) :=

{
(x + 1, y) if (x + 1, y) ∈ P,
undefined otherwise,

δ((x, y), left) :=

{
(x − 1, y) if (x − 1, y) ∈ P,
undefined otherwise,

δ((x, y), stay) := (x, y),

• Lp : 1 → 2AP
p
is the labeling function for the safety

and co-safety specifications and Lob : 1 → 2AP
ob

is
that for opacity, where the set 1 of transitions is given
by

1 = {((x, y), i, (x̂, ŷ)) ∈ P× I × P |

(x̂, ŷ) = δ((x, y), i)}. (15)

Let G ⊂ P be a set of goal locations. We assume that
there are obstacles in the workspace. Let D ⊂ P be a
set of locations with obstacles. For simplicity, We assume
that D ∩ P0 = G ∩ P0 = D ∩ G = ∅. Let ρp =
ρp[0]ρp[1] . . . ρp[Hp − 1] ∈ L(Hp,P) be a pre-planned path
computed by the planner, where Hp is its length and ρp[h] =
((xh0 , y

h
0), i

h
0, (x

h+1
0 , yh+10 )) ∈ 1 for each h ∈ {0, 1, . . . ,Hp −

1}. Then, the path satisfies a mandatory specification such as
safety/co-safety specifications.

Let APp = (X × Y ) ∪ I ∪ (X ′ × Y ′) be the set of
atomic propositions, where X = {0, 1, . . . ,Nx − 1} and
Y = {0, 1, . . . ,Ny − 1} are the sets of atomic propositions
related to the horizontal and vertical positions of the mobile
robot, respectively; X ′ = {x ′ | x ∈ X} and Y ′ = {y′ | y ∈ Y }.
Labeling function Lp is defined as follows:

Lp(((x, y), i, (x̂, ŷ))) = {(x, y), i, (x̂ ′, ŷ′)}. (16)

Let 5p
= {π} be the set of trace variable π and let V p

be an assignment function that assigns π to a trace over
APp. We consider a mandatory specification that describes
a safety/co-safety property such that the mobile robot never
enters locations where obstacles exist and eventually reaches
a goal. This is described by ϕsπ over APp, as follow:

ϕsπ := □
∨

(x,y)∈P\D

(x ′, y′)π ∧ ♢
∨

(x,y)∈G

(x ′, y′)π . (17)

Then, for pre-planned path ρp, we have

V p
|HT p(Hp,P) ϕ

s
π , (18)

where V p(π ) = Lp(ρp).
FIGURE 3 shows an example of the workspace with Nx =

Ny = 6 and a pre-planned path, where

P0 = {(0, 0), (1, 0), (2, 0)}, (19)

G = {(3, 5), (4, 5), (5, 5)}, (20)

D = {(1, 3), (1, 4), (2, 3), (2, 4), (3, 3), (3, 4)}. (21)

If there is no opaque path with length Hp that satisfies
the mandatory specification, then the finite-horizon shield
outputs an opaque path whose length is larger thanHp. LetHs
be the length of modified path ρs. The determination of Hs is
an important issue in practice. There are several decision rules

for obtainingHs. For example, there is a brute force approach
in which the initial value of Hs is set to be equal to Hp and
increased by one until an opaque path is obtained. However,
this is out of the scope of this work, and we assume that Hs is
given. We extend ρp to path ρ̂p = ρ̂p[0]ρ̂p[1] . . . ρ̂p[Hs − 1]
with length Hs as follows.
• ρ̂p[h] = ρp[h] for each h ∈ {0, 1, . . . ,Hp − 1}.
• ρ̂p[h] = ((xHp , yHp ), stay, (xHp , yHp )) for each h ∈
{Hp,Hp + 1, . . . ,Hs − 1}.

Intuitively, ρ̂p is constructed by making the robot stay at the
last reached location.

For ρ̂p, the finite-horizon shield computes modified path
ρs denoted by

ρs = ρs[0]ρs[1] . . . ρs[Hs − 1]. (22)

Recall that set APob represents the leaked information
identified by the intruder detector. For labeling function Lob :
1 → 2AP

ob
, Lob(ℓ) denotes the set of atomic propositions

observed by the intruder when transition ℓ occurs.
As an example, we consider a case in which the leaked

information is the horizontal position of the robot. Then,
we have APob = X ∪ X ′, and Lob : 1 → 2X∪X

′

is given
as follows: for each transition ℓ = ((x, y), i, (x̂, ŷ)) ∈ 1,

Lob(ℓ) = {x, x̂ ′}. (23)

According to (16), labeling function L : 1 → 2AP, where
AP = APp ∪ APob is given as follows: for each transition
ℓ = ((x, y), i, (x̂, ŷ)) ∈ 1,

L(ℓ) = Lp(ℓ) ∪ Lob(ℓ) = {(x, y), i, (x̂ ′, ŷ′), x, x̂ ′}.

We consider two types of opacity: initial-state opacity and
current-state opacity. Intuitively, a path is initial-state (resp.
current-state) opaque if there is another path with a different
initial state (resp. current state) and the same leaked informa-
tion. Opacity can be described by a hyperLTLHf formula. For
simplicity, we introduce the following notation (Sπ1 ≡ Sπ2 )
for set S of atomic propositions and trace variables π1 and π2:

Sπ1 ≡ Sπ2 :=
∧
s∈S

sπ1 ≡ sπ2 . (24)

Let 5 = {π1, π2} be the set of trace variables and V :
5→ T (H ,P) be an assignment function. Path ρ ∈ L(H ,P)
with ρ[0] = (p[0], i[0], p[1]) is initial-state opaque if, for
assignment function V with V (π1) = L(ρ),

V |HT (H ,P) ∃π2. opacinitπ1,π2
(p[0]), (25)

where

opacinitπ1,π2
(p) := ¬pπ2 ∧□(Iπ1 ≡ Iπ2 )

∧□(APobπ1 ≡ APobπ2 ). (26)

In contrast, path ρ is current-state opaque if, for assignment
function V with V (π1) = L(ρ),

V |HT (H ,P) ∃π2. opaccurrπ1,π2
(p[0]), (27)

VOLUME 11, 2023 11773



K. Kanashima, T. Ushio: Finite-Horizon Shield for Path Planning Ensuring Safety/Co-Safety Specifications and Security Policies

where

opaccurrπ1,π2
(p) := pπ2 ∧ ¬□(Iπ1 ≡ Iπ2 )

∧□(APobπ1 ≡ APobπ2 ). (28)

We define function cls : L(H ,P) × L(H ,P) → N
as follows: For each ρ = ρ[0]ρ[1] . . . ρ[H − 1] and
ρ′ = ρ′[0]ρ′[1] . . . ρ′[H − 1] ∈ L(H ,P), where ρ[h] =
(p[h], i[h], p[h + 1]) and ρ′[h] = (p′[h], i′[h], p′[h + 1]) for
each h ∈ {0, 1, . . .H − 1},

cls(ρ, ρ′)=Ham(i[0] . . . i[H − 1], i′[0] . . . i′[H − 1]), (29)

where Ham(a, b) is the Hamming distance between
sequences a and b.

Recall that the finite-horizon shield modifies the
pre-planned path such that the modified path satisfies the
mandatory specification and security policy. Note that trace
variable π2 represents a path that is different from the modi-
fied path but also satisfies the mandatory specification. Thus,
the formula for the security policy is obtained as given bellow.
For state p ∈ P that represents the initial state of the pre-
planned path, let

ϕspπ1,π2 (p)

:=

{
opacinitπ1,π2

(p) ∧ ϕsπ2 for the initial-state opacity,
opaccurrπ1,π2

(p) ∧ ϕsπ2 for the current-state opacity.

(30)

Then, for pre-planned path ρp with ρp[0] = (p0[0], i0[0],
p0[1]), (11) can be rewritten as follows:

Check V |HT (Hp,P) ∃π2. ϕ
sp
π1,π2

(p0[0])

subject to V (π1) = L(ρp). (31)

(12) can be rewritten as follows:

Determine ρs
subject to ρs ∈ L(Hs,P)

(h > 0)→
h−1∧
τ=0

(ρs[τ ] = ρ̂p[τ ]),

V p(π ) = Lp(ρs)

V p
|HT p(Hs,P) p0[0]π ∧ ϕ

s
π

V (π1) = L(ρs)

V |HT (Hs,P) ∃π2. ϕ
sp
π1,π2

(p0[0])

∧ (cls(ρ̂p, ρs) ≤ k). (32)

Thus, the finite-horizon shield checks (31) to determine
whether ρp satisfies opacity. If this is true, then the
finite-horizon shield outputs ρp. Otherwise, k = 1 and (32)
is repeatedly solved for k ∈ {1, . . . ,Kmax} until there is
a solution that provides modified path ρs that has length
Hs ≥ Hp, satisfies the mandatory specification and opac-
ity, and is the closest to extended pre-planned path ρp in
terms of the Hamming distance. If there is no solution for
k ∈ {1, . . . ,Kmax}, the finite-horizon shield concludes that
there is no opaque path whose Hamming distance from the
extended pre-planned path is less than or equal to Kmax .

B. SMT-BASED APPROACH
We encode hyperLTLHf formulas using QFs and solve (31)
and (32) as the satisfiable problems of the QFs using an SMT
solver [53], [59].

We consider the initial-state opacity as a security policy.
Let ρp= (pp[0], ip[0], pp[1])(pp[1], ip[1], pp[2]) . . . (pp[Hp −
1], ip[Hp − 1], pp[Hp]) be a pre-planned path. To check (31),
let pHk = {pk [0], pk [1], . . . , pk [H ], ik [0], ik [1], . . . , ik [H −
1]}, where k ∈ {1, 2} is a set of variables that represents a
path with length H , pk [j] ∈ P, and ik [j] ∈ I . We define the
following (quantifier-free) SMT formulas:

zpath(pH1 ) :=
H−1∧
h=0

(p1[h+ 1] = δ(p1[h], i1[h]))

∧

( ∨
p0∈P0

(p1[0] = p0)
)
, (33)

zs(pH1 ) :=

 H∧
h=1

∨
p∈P\D

(p1[h] = p)


∧

 H∨
h=1

∨
p∈G

(p1[h] = p)

 , (34)

zsp(pH1 , p
H
2 ) := ¬(p1[0] = p2[0])

∧

H−1∧
h=0

(i1[h] = i2[h])

∧

H∧
h=0

(
Lob((p1[h], i1[h], p1[h+ 1]))

= Lob((p2[h], i2[h], p2[h+ 1]))
)

∧zs(pH2 ) ∧ z
path(pH2 ). (35)

(33) indicates that pH1 is the path of transition system P.
(34) and (35) correspond to the mandatory specification and
security policy, respectively.
Then, recall that h ∈ [0, . . . ,Hp] denotes the time when

the leaked information observed by the intruder is identified
and we have

zpast (pH1 , p
H
2 , h) :=

h∧
τ=0

(p1[τ ] = p2[τ ]). (36)

(36) indicates that the past motion of the robot up to the cur-
rent state cannot be modified. Moreover, we express function
cls as follows:

cls(pH1 , p
H
2 ) :=

H−1∑
h=0

d(i1[h], i2[h]), (37)

where

d(i1, i2) =

{
0 if i1 = i2,
1 if i1 ̸= i2.
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For simplicity, we define p
Hp
1 ← ρp as follows.

p
Hp
1 ← ρp :=

Hp∧
h=0

(p1[h] = pp[h]) ∧
Hp−1∧
h=0

(i1[h] = ip[h]).

Then, (31) is converted into a satisfiability problem of the
SMT formula given by zcheck as follows:

zcheck := ∃p
Hp
2 . (p

Hp
1 ← ρp) ∧ zsp(p

Hp
1 , p

Hp
2 ). (38)

If (38) is satisfiable, ρp satisfies the security policy and the
finite-horizon shield outputs ρp. Otherwise, the finite-horizon
shield computes a modified path. Let Hs be the length
of the modified path. The extended pre-planned path is
given by ρ̂p = ρp(pp[Hp], stay, pp[Hp + 1]) . . . (pp[Hs −
1], stay, pp[Hs]), where pp[h] = pp[Hp] for each h ∈ {Hp +
1, . . . ,Hs}. Then, (32) is converted into a satisfiability prob-
lem of the SMT formula given by zmod as follows:

zmod := ∃pHs1 ∃p
Hs
2 . z

path(pHs1 ) ∧ (p1[0] = pp[0])

∧zpast (ρ̂p, p
Hs
1 , h) ∧ z

s(pHs1 )

∧zsp(pHs1 , p
Hs
2 ) ∧ (cls(ρ̂p, p

Hs
1 ) ≤ k). (39)

If (39) is satisfiable, we have examples ρHs1 and ρHs2 ∈

L(Hs,P) of variables pHs1 and pHs2 , respectively, and the
finite-horizon shield outputs ρHs1 as the modified path of ρp.
We consider the current-state opacity as a security policy.

Then, formula zsp(pH1 , p
H
2 ) is expressed as follows:

zsp(pH1 , p
H
2 )

:= (p1[0] = p2[0])

∧¬

H−1∧
h=0

(i1[h] = i2[h])

∧

H∧
h=0

(
Lob((p1[h], i1[h], p1[h+ 1]))

= Lob((p2[h], i2[h], p2[h+ 1]))
)

∧zs(pH2 ) ∧ z
path(pH2 ). (40)

The finite-horizon shield checks the satisfiability of (38)
and (39) to determine output ρs.

C. SIMULATIONS
Algorithm 1 is implemented in Python. We consider the
following two cases of the leaked information: The intruder
can observe the (i) horizontal and the (ii) vertical coordinate
of the states. For each case, set APob is given by

APob :=

{
X ∪ X ′ for case (i),
Y ∪ Y ′ for case (ii).

(41)

Labeling function Lob : 1→ 2AP
ob
is expressed as follows:

For each ((x, y), i, (x̂, ŷ)) ∈ 1,

Lob(((x, y), i, (x̂, ŷ))) :=

{
{x, x̂ ′} for case (i),
{y, ŷ′} for case (ii).

(42)

FIGURE 6. Pre-planned path.

Weuse Z3 [60] as the SMT solver. The results shown in this
section are obtained on a system with a 1.8 GHz quad-core
processor with 16 GB RAM. Nx = Ny = 15, H = 25, and
Kmax = 3.

1) SIMULATIONS FOR THE INITIAL-STATE OPACITY
The blue arrows in FIGURE 6 indicate the pre-planned path
computed by the planner. We simulate the case where leaked
information is turned out at time 3. The pre-planned path is
the input of the finite-horizon shield. The output ρs of the
shield that ensures the initial-state opacity for the horizontal
(resp. vertical) coordinates of the states is indicated by the
red arrows in FIGURE 7 (resp. FIGURE 8). ρs satisfies
cls(ρ̂p, ρs) = 1 (resp. cls(ρ̂p, ρs) = 0). The yellow arrows in
FIGURES 7 and 8 indicate that the path represented by the red
arrows satisfies the initial-state opacity. Gray circles indicate
the robot’s position at time 3. The light red colored arrows
indicate the past movements of the robot, which cannot be
modified from the pre-planned path. The pre-planned path
shown in FIGURE 6 does not satisfy the initial-state opacity
if the intruder can observe the horizontal coordinates of the
states. Therefore, the shield modifies the path. However, the
initial-state opacity is satisfied if the intruder can observe the
vertical coordinates of the states, and the shield does not mod-
ify the path. We confirm that the output of the finite-horizon
shield depends on the information observed the intruder.

2) SIMULATIONS FOR THE CURRENT-STATE OPACITY
We consider the current-state opacity in case (ii) and the case
where the leaked information is identified at time 6. A pre-
planned path is shown by the blue arrows in FIGURE 9. The
output of the finite-horizon shield is shown in FIGURE 10.
As the pre-planned path does not satisfy the current-state
opacity, the output is modified by adding the input that the
robot moves to the right at the end of path ρp. Output ρs
satisfies cls(ρ̂p, ρs) = 1. In this case, we can not obtain a
path that satisfies the current-state opacity for Hs = Hp.

VOLUME 11, 2023 11775



K. Kanashima, T. Ushio: Finite-Horizon Shield for Path Planning Ensuring Safety/Co-Safety Specifications and Security Policies

FIGURE 7. Output for the horizontal coordinates of the states (modified).

FIGURE 8. Output for the vertical coordinates of the states (not modified).

FIGURE 9. Pre-planned path.

We confirm that the finite-horizon shield outputs a modified
path that has additional movement to ensure opacity.

VI. COMPARISON WITH SECURITY-AWARE PLANNING
If the leaked information is known when a pre-planned path
is computed, the finite-horizon shield is applied with h =
0. But, in this case, we can compute a security-aware path

FIGURE 10. Output (modified).

directly without using the finite-horizon shield. Thus, in this
section, we consider the case where the leaked information is
identified beforehand and compare the finite-horizon shield
with secure-aware planning.

A. SECURITY-AWARE PLANNING
We consider a security-aware planner that computes path ρs
that satisfy optional specification ϕo as much as possible
while satisfying safety/co-safety specification ϕs and security
policy ψ sp under the known leaked information. A security-
aware planning problem has been considered in [34], but no
optional specifications have been considered, which is dif-
ferent from our problem setting. The security-aware planner
has the role of both the (non-secure) pre-planner to determine
the pre-planed path and finite-horizon shield to guarantee
the security policy. In other words, it finds path ρp that
satisfies path specification ϕp = ϕs∧ϕo, and simultaneously
determine path ρs that is as close to ρp as possible among
paths that satisfy ϕs and ψ sp. For k ∈ {0, . . . ,Kmax − 1},
the security-aware planner determine if there exists path ρs
whose closeness to ρp is less than or equal to k . If not,
it recomputes for k + 1. Let 5p

= {π, π ′} and 5 = {π1}
be sets of trace variables. Let V p

: 5p
→ T p(Hs,P) and

V : 5 → T (Hs,P) be assignment functions. Then the
security-aware planner computes the following problem.

Determine ρs

subject to ρp, ρs ∈ L(Hs,P),
V p(π )=Lp(ρs),

V p(π ′)=Lp(ρp)

V p
|HT p(Hs,P) ϕ

s
π ∧ ϕ

s
π ′ ∧ ϕ

o
π ′ ,

V (π1)=L(ρs),

V |HT (Hs,P) Q2π2Q3π3 . . .Qnπn.

ϕsp ∧
(
cls(ρp, ρs) ≤ k)

)
, (43)

where ϕπ indicates that the subscript of all atomic proposi-
tions in ϕ is π . Algorithm 2 shows the procedure of comput-
ing path ρs in the security-aware planner.
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Algorithm 2 Compute ρs via the Security-Aware Planner
Input: Kmax
Output: ρs, cls
1: for k = 0 to Kmax do
2: Encode (43)
3: if (43) is satisfied then
4: cls← k
5: return ρs, cls
6: end if
7: end for
8: return -1

B. DISCUSSION
We discuss the computation times of the finite-horizon shield
(Algorithm 1) and the security-aware planning (Algorithm 2).
Both algorithms are based on the satisfiability of quantified
formulas and are PSAPCE-complete [56].

We discuss the numbers of variables used in both
algorithms. While the number of variables used for the
pre-planner and Algorithm 1 are Npre and NAlg1, shown
in (14), (13), that used for Algorithm 2 is Npre + NAlg1.
Algorithm 1 divides the problem into two parts and com-
putes them sequentially. Since QSAT problems are PSPACE-
complete, it is expected that the computation time of Algo-
rithm 2 will be longer than that of Algorithm 1 as the size of
the problem increases.

On the other hands, both algorithms are sound, that is,
paths that they return satisfy the mandatory specifications
(the safety/co-safety specification and the security policy)
and whose closeness to a path satisfying the optional specifi-
cation is less than or equal to the parameter Kmax . Moreover,
Algorithm 2 returns such a path whenever it exists, that is,
Algorithm 2 is complete. However, Algorithm 1 computes
a pre-planned path ρp that satisfies the mandatory speci-
fications and outputs a path whose closeness to ρs is less
than or equal to Kmax . Thus, there is no guarantee that the
finite-horizon shield always outputs a desired path even if it
exists, that is, Algorithm 1 is not complete.
From the above discussions, to reduce the computation

time, Algorithm 1 is useful but may fail to find a desired path
even if it exists.

C. SIMULATION
We investigate computation times for Algorithms 1 and 2 by
simulation. Let task ⊂ P be a set of states and ϕo = ♢task be
an optional specification. TABLE 1 shows the times required
to compute the paths that guarantee initial-state opacity when
we use Algorithms 1 and 2, respectively. Simulation is per-
formed with Hp = Hs for the same grid size. If the grid size
is 6× 6, 7× 7, or 8× 8, Algorithm 2 takes less computation
times than Algorithm 1. However, If it is equal or larger than
9× 9, Algorithm 1 takes less computation times. As the size
of the problem increases, Algorithm 1 is more efficient in
terms of computation time. TABLE 2 shows the satisfaction
number of the optional specification. The notation x/y in

TABLE 2 indicates that the optional specification is satisfied
x times in y experiments. If there exists a path that satisfies
safety/co-safety and optional specifications and security pol-
icy, Algorithm 2 always return it. Therefore, the probability
of satisfying the optional specification is larger than that in
Algorithm 1. TABLE 2 also shows the ratio defined by n1/n2,
where n1 (resp. n2) is the number of experiments for which
Algorithm 1 (resp. Algorithm 2) returns a path satisfying ϕo.
We confirm that the ratio is around 0.8 regardless of the grid
size. The result shown in TABLES 1 and 2 are obtained on
a computer with a 3.4 GHz 16-core processor with 128 GB
RAM.

VII. CONCLUSION AND FUTURE WORK
We develop a finite-horizon shield that ensures that a finite
trace satisfies hyperLTLHf specifications. This shield checks
and modifies the finite trace. We express the requirement
of the finite-horizon shield for hyperLTLHf formulas and
propose an algorithm to compute the output of the shield
using an SMT solver. Then, we consider an opaque path
planning problem in which a pre-planned path that satis-
fies specifications, including safety/co-safety properties as
mandatory specifications, is computed by a planner. This path
is modified as small as possible while satisfying mandatory
specifications and opacity. Simulations confirm that the mod-
ified path is suitable when an intruder exists.

Moreover, the finite-horizon shield is applicable for
the case where the leaked information is known before-
hand. Then, its computation time is less than that of the
security-aware planning when the planning problems are suf-
ficiently large.

In future work, we will extend the proposed finite-horizon
shield for hyperproperties to other settings such as multi-
agent systems or model predictive control [61]. Moreover,
extensions to an infinite-horizon planning problem such as
a surveillance problem are also interesting future work and
one research direction is a usage of a lasso-type infinite path.
Another research direction is the construction of the shield
using an automaton-game-based approach: by describing ω-
regular specifications, it is possible to construct a shield that
guarantees security for non-terminating systems such as web
servers.

We modified a pre-planned path in such a way that a
distance between the modified path and pre-planned path is
less than or equal to a given constant. But, there is a different
modification such as the revision of the optional specification
and it is a future work how to revise the specification such that
an effect of the modification is as small as possible.

APPENDIX A
ENCODING OF HyperLTL FORMULAS
In the bounded model checking for hyperLTL, a problem is
converted into a satisfiability problem of the QFs that are
the encodings of hyperLTL formulas [53]. We review the
encodings of the hyperLTL formulas using QFs. Consider a
set of trace variables, 5, and an assignment function, V :
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TABLE 1. Computation time for Algorithm 1 and 2.

TABLE 2. Satisfaction number of optional specification for Algorithm 1
and 2.

5 → T (H ,P). Let π ∈ 5 and ρ ∈ L(H ,P) denote a
trace variable and path, respectively. For atomic proposition
ap ∈ AP and time h ∈ {0, 1, . . . ,H − 1}, we introduce
Boolean variable zapπ ,ρ(h) ∈ {true, false} that is true if and
only if V (π ) = L(ρ) and ap ∈ V (π )[h]. We define Boolean
variable zϕ(h) ∈ {true, false} that indicates the satisfaction of
quantifier-free hyperLTLHf formula ϕ at time h ∈ [0,H − 1].
zϕ(h) is true if and only if V [h,H − 1] |HT (H ,P) ϕ. The tem-
poral operators used in the hyperLTLHf formulas are encoded
as follows:
• eventually operator : ϕ′ = ♢ϕ

zϕ′ (h) =
H−1∨
τ=h

zϕ(τ ). (44)

• always operator : ϕ′ = □ϕ

zϕ′ (h) =
H−1∧
τ=h

zϕ(τ ). (45)

• until operator : ϕ′ = ϕ1Uϕ2
For h = 0, . . . ,H − 2,

zϕ′ (h) = zϕ2 (h) ∨
(
zϕ1 (h) ∧ zϕ′ (h+ 1)

)
. (46)

For h = H − 1,

zϕ′ (H − 1) = zϕ2 (H − 1). (47)

We describe the encoding of path ρ given by (3). ρ =
ρ[0]ρ[1] . . . ρ[H − 1], where ρ[h] = (p[h], i[h], p[h+ 1]) ∈
1 for each h ∈ [0,H − 1]. For any transition ℓ = (p, i, p′)
and ℓ̂ = (p̂, î, p̂′) ∈ 1, we introduce predicate C(ℓ, ℓ̂) which
is true if and only if p′ = p̂. Then, we have

ρ ∈ L(H ,P)⇔
H−2∧
h=0

C(ρ[h], ρ[h+ 1]). (48)

For assignment V (π ) = L(ρ) and hyperLTLHf formula ψ ,
we introduce Boolean variable zψ (0) ∈ {true, false}. zψ (0) is
true if and only if V |HT (H ,P) ψ . The trace quantifiers used
in the hyperLTLHf formulas are encoded as follows:
• exists: ψ ′ = ∃π. ψ

zψ ′ (0) = ∃ρ[0]∃ρ[1] . . . ∃ρ[H−1]

.

H−2∧
h=0

C(ρ[h], ρ[h+1])∧zψ (0). (49)

• forall: ψ ′ = ∀π. ψ

zψ ′ (0) = ∀ρ[0]∀ρ[1] . . . ∀ρ[H−1]

.

(
H−2∧
h=0

C(ρ[h], ρ[h+1])

)
→zψ (0). (50)
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