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ABSTRACT Modern society needs bathrooms. Poor sanitation is caused by worn-out appliances and
expensive cleaning. The technique also requires an inexpensive, dependable sensor. This study had three
goals. Creating an IoT administration platform is the main goal. Literature evaluations assess the merits
and downsides of existing systems. Second, we suggest predictive maintenance to assist predict bathroom
equipment breakdowns. Finally, a scheduling algorithm was used to determine how many janitors to hire.
We’ll measure the model’s effectiveness and make future recommendations. Infrared, temperature and
humidity sensors create an IoT bathroom. Sensors have been studied to understand how to adapt them to
the hygienic and private toilet environment. Sensor accuracy and cost-effectiveness could be enhanced with
more development and testing. TheAuto-Regressive IntegratedMovingAverage (ARIMA)model accurately
predicts time series lags, making it a good candidate for predictive maintenance. Long Short-Term Memory
(LSTM) is good in time series predictions, therefore it’s fair to compare the two. We use the ARIMA model
to handle Remaining Useful Life (RUL) prediction techniques by altering Moving Average (MA) and Auto-
Regressive (AR). A genetic algorithm is used to create a janitorial cleaning schedule. The genetic algorithm
was proposed to schedule cleaning workers. This approach improves the genetic algorithm by studying soft
and hard scheduling restrictions. The Greedy algorithm is used to compare. Experimental evaluations reveal
that the suggested model ARIGA meets both goals.

INDEX TERMS Scheduling, predictive maintenance, IoT.

I. INTRODUCTION
Increasing global modernization has led to the widespread
adoption of advanced technology. IoT is an example (IoT).
IoT integrates technological and social domains to solve
daily problems [1]. Home automation, smart cities, health-
care, smart business, and monitoring systems will use IoT.
The simplified IoT view is a real-world network integrated
with sensors and drivers that extends the existing Internet
dominated by computers and mobile devices. The smart
toilet could drive the IoT services and hardware business.
The IoT system for smart toilets optimizes resources using
cloud-based and sensory data management systems [2].
People still complain about restroom problems. The Star
reports that visitors like Malaysia but are disgusted by
our public restrooms [3]. According to ioi-analytics.com,
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‘‘Smart Homes,’’ ‘‘Wearables,’’ ‘‘Smart Cities,’’ and ‘‘Oth-
ers’’ employ IoT to increase performance. IoT solutions in
Smart Cities reduce traffic congestion, reduce environmen-
tal impact, and make cities safer. IoT techniques prioritize
energy and material conservation. This study aims to cut
waste and costs.

Maintenance using IoT. A maintenance system ensures a
building or corporation’s resources are in good condition to
prevent an unwanted event. Most structures are managed by
a computerized system (CMMS). CMMS just shows when
anything happened. The author says the printing system’s
maintenance system is vital to its dependability, availability,
and maintainability. This system won’t disrupt manufactur-
ing [4]. Predictive maintenance (PdM) predicts equipment
failures and takes preventative steps. Each piece of equipment
has a predetermined lifetime ranging from hours to decades.
For example, the toilet has a flush, pipe, sink, and lamp. Smart
toilet lifecycle information. Everything will be monitored
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using IoT. With IoT, predictive maintenance sensors may
collect data and predict problems.

Connectivity, data volume, innovative gadgets, inven-
tory reduction, adaption, and regulated production generated
Industry 4.0. Industry 4 can modify and make data available,
and it can enable human or robot action [5]. PdM utilizes
historical data, models, and domain expertise. Using statis-
tical or machine learning models, they can detect trends,
patterns, and correlations to anticipate impending problems
and optimize maintenance to prevent mainly unavailability
[6]. PdM and techniques to increase production capacities
have led to the words intelligent industry and intelligent
manufacturing [7]. Corrective, preventative, predictive, and
prescriptive maintenance occurs. Remedial maintenance is
performed when a malfunction or warning signal appears.
Preventive maintenance schedules are followed. PdM pre-
dicts failure based on time and knowledge, preventing
downtime.

IoT is helpful for Building Management Systems (BMS).
BMS controls and monitors a building’s mechanical and
electrical system, including lighting, ventilation, electricity,
fire, air quality, and comfort management [8], [9]. According
to Mega Jadi, cleaning prices depend on square footage and
type of service. 1 cleaning per week for 4 weeks costs RM380
in the Klang Valley, 2 cleanings per week for 4 weeks costs
RM720, 3 cleanings per week for 4 weeks cost RM1020,
4 cleanings per week for 4 weeks cost RM1280, and 5 clean-
ings per week for 4 weeks costs RM1500. The charges are
based on a single cleaning in a 2500-square-foot office.
Every office cleaning takes 2-4 hours. Larger offices may
require more labor, which will affect pricing. A building’s
use pattern-based scheduling system can save cleaning costs.
Each toilet has a different use pattern based on data from
the smart toilet system, allowing it to display high- and low-
use floors. Thus, cleaning staffing can be based on toilet
usage.

CPM and PERT have been the de facto standards for
scheduling projects during the previous few decades. CPM
and PERT always assume a limitless resource supply. Sci-
entists are using genetic algorithms to construct meta-
heuristic algorithms. Adapting the implementation technique
for resource-constrained building project scheduling won’t
address the scheduling challenge. Prefabricated buildings can
only use project scheduling for repetitive operations, unlike
traditional buildings. This research aims to improve janitor
scheduling by enhancing an algorithm that uses separate
parameters for hard and soft constraints.

Due to privacy and wetness, IoT systems don’t work well
in toilets or bathrooms. IoT development in healthcare has
concentrated on wearable and in-body sensor devices such
as digital pills, smart beds, smart food, and smart band-aid
[10]. Because of soaking and undressing, these wearable
devices aren’t ideal for the bathroom. The Author noted
that restrooms are unsafe for the elderly [11]. Over 235,000
people visit the ER annually due to bathroom injuries, accord-
ing to the CDC.

The toilets aren’t clean enough to satisfy users. According
to New Straits Times (2019), cleaners report seeing dirt in
toilets 20minutes after washing andmoist floors. Oddly, most
users are adults. 61% of Malaysia’s 10,257 public toilets are
dirty, according to reports. Only 350 people (3.4%) got five
stars, while 1,086 (10%) got no stars. Most public restrooms
are in bad condition, according to a Local Government
Department audit. Every piece of equipment has a short- or
long-term lifespan. Flush, pipe, sink, and lamp are utilized
in toilets. According to the author, a three-stage industry life
cycle is the most crucial [12].

High-rise cleaning is expensive. The author says air-
line crew scheduling includes cabin and cockpit crew [13].
The planned schedule would align both crews. This func-
tion checks task scheduling, not use patterns. In the Klang
Valley, commercial cleaning is commonly done in four-
week packages: RM380 for one cleaning per week for four
weeks (RM95 for each session), etc. The charges are based
on a single cleaning in a 2500-square-foot office. Every
office cleaning takes 2-4 hours. Larger offices may require
more labor, which will affect pricing. The author compared
scheduling methods to determine workload importance but
concluded that different articles lack evidence to deliver sat-
isfactory findings [14].

Research objectives assist determine direction and project
goals. This study has three objectives. First, create an Internet
of Things (IoT) smart toilet management system with sensors
to meet user privacy requirements. Second, use ARIMA and
LSTM to reduce prediction error and offer accurate pre-
dictions. Apply resource-efficient scheduling for the smart
toilet using the evolutionary algorithm and the constraint
parameter.

The design of Internet of Things systems, predictive
maintenance, and scheduling are the focus of this study.
The datasets were collected by the Internet of Things
system at Multimedia University’s computing and infor-
matics faculty and vaccine center. These are medium
data. The inquiry will evaluate the sensor data and the
prediction’s accuracy. To increase precision, sensor data
should avoid epidemic conditions. The scheduling of jani-
tors is based on many goals, including flexible employment
scheduling.

II. LITERATURE REVIEW
Linked things are a key part of the actual world thanks
to the IoT. Smart home systems require a whole system,
which incorporates cloud-based data analysis and storage,
end-user apps, middleware, and device connection [15]. The
author identifies the components of any IoT as client devices,
a cloud backend with a database, analytic apps, and user
applications [16]. Figure 1 shows how the IoT is created
utilizing a waterfall technique requiring knowledge, design,
and creation. This comprehensive view of IoT components
gives us options when comparing systems. First, several
groups analyzed the system. These organizations outlined the
system’s needs, goals, and policies. Next, the project flow
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FIGURE 1. An IoT system concept.

and personnel participating in each component are designed.
Next, implement the system.

New technology canmonitor and forecast disease, improve
output, decrease costs, and notify management. IoT monitor-
ing technologies outperform traditional approaches, accord-
ing to researches. The author suggested monitoring vital
indicators with IoT [17]. Case studies monitored football
players’ pulse rates during games. The proposed system
monitored participants’ heart rhythms to predict injuries and
untimely death. Another article proposed an IoT-based agri-
culture monitoring system [18]. The approach monitored
citrus soil moisture and nutrients to determine fertiliza-
tion and irrigation. Case studies showed that the approach
improved citrus production, reduced labor costs, and reduced
chemical fertilizer pollution. The next article proposed
centralized gas level and leakage detection in hazardous
conditions [19]. Wireless sensors captured the data. Remote
servers offered the management of environmental sensor
data via a user interface. The proposed technology would
alert of crucial incidents. Real-time building site monitor-
ing was suggested using a wireless sensor network and
information modeling [20]. Wireless sensor nodes sent dan-
gerous gas levels and ambient parameters like temperature
and humidity to a remote server. The system warned of
abnormalities. A case study showed that a proposed solution
improved workplace safety and helped management make
real-time choices. Figure 2 displays the gas area IoT system
architecture.

Current studies can present real-time IoT sensor data to
monitor environmental variables in a specific area. Smart
buildings and healthcare require IoT-based sensors. Many
studies have demonstrated that Internet of Things sen-
sors can considerably improve system performance. The
author advised monitoring smart facilities with IoT sen-
sors [21]. Before building, simulations tested the system’s
functionality. The study found that various IoT-based sensors

FIGURE 2. The idea behind the system for detecting dangerous gases.

increase smart building monitoring. The proposed tech-
nique should improve energy efficiency and green smart
buildings.

The author demonstrated an IoT-based radon gas sen-
sor [22]. The technology could warn of unsafe radon gas
levels. The developed methodology could alert and begin
pre-programmed steps when radon gas reached a predefined
level. Another author proposed a portable indoor tracking
system with sensors for carbon dioxide, carbon monoxide,
chlorine, sulfur dioxide, nitrogen dioxide, humidity, and
temperature [23]. Raspberry pi gateways processed sensor
data. Unlike temperature and humidity, this suggested sys-
tem tracked six gases during the test. Smart toilets in IoT
systems have ultrasonic and infrared sensors that identify
humans and their distance. The author showed that the smart
toilet system can replace expensive Internet of Things (IoT)
sensors.

An IoT-based healthcare system was created to detect
and stop chikungunya [24]. Medical history, geography,
and weather data determined status. The findings showed
that the suggested technology can identify sick people and
alert nearby governments and clinics to prevent outbreaks.
A ‘‘smart house’’ extends beyond technology and conve-
nience. According to the article proposed automated light
control and keyless access save electricity [25]. Water flow
sensors and smart meters reduce water use by linking to IP
cameras and motion sensors. The author says smart house
hacking is a drawback. Figure 3 shows an advanced urinal
flushing solution [26]. Geological departments must man-
age water. Most public restrooms flush automatically. This
device conserves water. This reduces cross-infection when
flushing. This method can only track bowl cleaning fre-
quency. The smart toilet system should cover the bowl and
environment.

The toilet is one of the most dangerous places, especially
for seniors, according to data [27]. Older people are more
likely to fall and slip in the restroom, which can lead to
serious health issues. Despite redesigning the shower, tub,
floor, and toilet, bathroom injuries have remained high. Pub-
lic restrooms need work. Public bathrooms are available
nationwide, but their poor conditions deter many from using
them. Due to neglect, public restrooms spread disease. Public
restrooms can be used by diseased persons without proper
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FIGURE 3. Overview system for smart urinal flusher.

sanitization. Use it at your own risk of infecting others. Thus,
dirty public restrooms propagate sickness. The author argues
that disease prevention is better than treatment [28].

The author says health monitoring with technology is rare
[29]. They demonstrated long-term health monitoring soft-
ware and hardware. Easy-to-use system. A calorimetric assay
analyses motion and pressure sensors and automatically dis-
play the results. Urine analysis strips could assess urine flow
rate. Deep learning and computer vision monitored health.
Another author wants to remove public microorganisms [30].
Smart technology in public restrooms prevents bacteria trans-
mission. Scanners were used to compare toilet and seated
photos. It indicates cleanliness. If it’s dirty, they’ll tell you to
flush more.Workers are informed of workplace risks. Always
smell the toilet. The next author says a country’s economy
depends on its cleanliness. IoT-based toilet cleaning was
their idea [31]. Sensors notify managers to clean filthy toi-
lets. Odor and turbidity sensors can assess toilet cleanliness.
Another article sought to raise awareness of personal hygiene
in daily life [32]. They used IoT to clean the restrooms.
Ammonia odor sensors detected restroom activity. The next
article sought to emphasize how public bathrooms prevent
disease and improve health [33]. They begged parliament
to mandate public bathrooms in municipal governments.
Clean public restrooms were also stressed to prevent illness
spread.

Maintaining a building’s maintenance system prevents
issues. According to the article, a printing system’s depend-
ability, availability, and maintenance depend on its mainte-
nance program [4]. This maintenance system won’t affect
output. It predicts and prevents equipment failure. Equipment
has a lifecycle, whether short or long. Bathrooms have a
flush, pipe, sink, and light. Smart toilet sensors. IoT should
monitor this. Internet-enabled predictivemaintenance sensors
can detect faults before they occur.

Physical, knowledge and data-driven prediction model
approaches exist. Long-term operating and maintenance
experiences form the knowledge model. Rules, facts,
or examples may represent these experiences [34]. It may be
difficult to acquire correct data for knowledge-based models
to anticipate. Data-driven methods have grown in popularity.
It uses massive technological system data. It can be statistical,

stochastic, or machine learning [35]. Data-driven models
must manage uncertainty. Physics-based models enable com-
putational simulations of degradation, althoughmany physics
events remain unexplained. Despite environmental influences
like temperature, pressure, and others, the result is accurate
and complete [36].

Machine learning algorithms train predictive maintenance
data. Algorithms vary. This project involves time series anal-
ysis methods. Use regression analysis for maintenance data.
This method describes multiple factors. Linear regression
can predict aero-material consumption [37], and student psy-
chomotor domain [38], and generalizemultivariate regression
models utilizing fMRI data [39]. No application uses time
series analysis. Time-series analysis forecasts equipment and
process breakdowns.

This study provided a simple predictive maintenance
method for industrial machinery [40]. Arduino devices auto-
mate, network, and collect data. This method implements
threshold alerts for two automatic polishing and sanding
equipment operating parameters. These parameters consider
both data sets to determine the minimum value needed to
trigger an alert. Predictive maintenance seeks to identify early
warning signs and analyze historical data.

The author developed predictive genetic ion implanter
maintenance using various classifiers [41]. The model
predicts unexpected breakage and unexploited resource lifes-
pan. They used kNN and SVM algorithms. Both algorithms
classify. This model simply counts tool lifetime and usage.
No notice is expected if unanticipated circumstances arise.
Figure 4 illustrates predictive maintenance utilizing multiple
classifiers.

The author suggested an autoregressive integrated mov-
ing average (ARIMA) model predict slitting machine sensor
failures and quality problems [42]. This technique could not
forecast the remaining useful life (RUL) in data-specific set-
tings, according to the author. RUL is crucial since it can keep
the system running during repairs. This model predicts pro-
duction cycle parameters, which are used to categorize data
in a supervised model. Logarithmic transformation reduces
time series data variation.

The author used a hybrid prediction model to evaluate
IoT sensor performance [43]. This model tested IoT sen-
sors. Using eight datasets from an accelerometer, gyroscope,
temperature, and humidity sensors, we predicted this exper-
iment’s findings. IG is calculated from all dataset attributes.
Apache Storm determines if the process is normal or aberrant.
The author ignores sensor time series data. However, it cannot
predict its future.

The Long Short-Term Memory (LSTM) and XGBoost
algorithms considered long-term characteristics and
COVID-19 pandemic data [44]. Despite being more accurate
than the XGBoost model, the LSTM model has a very small
sample size. The LSTM model’s MAE, RMSE, and MAPE
are reduced as a result. LSTM-based and noise-layered
convolutional networks were presented [45]. Noise cannot
be accurately managed, however, RMSE can be improved
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FIGURE 4. Multiple classifiers for PdM overview.

for various mobile window lengths. Next, the author sug-
gests using the Auto Regressive Integrated Moving Average
(ARIMA) model to estimate the power connector system’s
remaining useful life [46]. When unexpected changes occur,
performance may fall, but prediction accuracy is increased.
The following author suggests utilizing the ARIMA (1,1,0)
model with the Nonlinear Auto Regressive (NAR) model to
anticipate COVID-19 instances, which average 1500 each
day [47]. ARIMA’s p, d, and q values take longer to cal-
culate than NAR’s, but it’s more accurate and consistent
with historical patterns. The author recommends logistic
regression models that use temperature, stress, and strain
sensors to predict jet engine blade failure [48]. Although it
can enhance accuracy by 87% in real-world applications, the
approach fails when used to vast amounts of data. Logistic
regression, extreme gradient boost, and random forest were
suggested to forecast machine downtime [49]. The receiver’s
operational characteristics show its superiority, even though
the procedure is slower due to the huge number of variables
to modify.

Operating System (OS) job scheduling allocates system
resources to many tasks. The system chooses CPU-waiting
jobs from queues and sets their time limits. This timetable
ensures that all chores are performed on time.

Parallel machine job scheduling involves assigning tasks to
available machines and determining their processing order.
Moore’s algorithm is the task scheduling standard. It max-
imizes late tasks at one site to earn revenue. The author
adapted this approach for mmachines [50]. The janitor cleans
each floor’s toilets using scheduling. Office and academic
buildings have distinct human presence patterns. The smart
toilet system is used in corporate buildings and universities.
Smart houses schedule appliances to optimize energy use and
load balancing [51]. The author decides between summer
weekdays, summer weekends, winter weekdays, and winter
weekends. They solve grid utility, demand react aggregator,
and customer MOPs using improved enhanced differential
evolution (iEDE).

Due to their efficiency in solving complex issues, meta-
heuristics have grown in favor. We use Ant Colony
Optimization (ACO), Genetic Algorithm (GA), Particle
Swarm Optimization (PSO), and League Championship

Algorithm (LCA) to study several scheduling strategies. ACO
techniques can solve discrete optimization issues that need
elucidating pathways to targets. It has solved the traveling
salesman problem, multidimensional knapsack problem, job
shop scheduling problem, quadratic assignment problem,
grid and cloud task scheduling, and many other challenges.
ACO solves problems by mapping the ant system to the issue.
The author used adaptive pheromone values to schedule grid
jobs [52]. Evaporation is monitored and cannot drop below
zero.

PSO uses local and global search strategies to balance
investigating new areas and developing old ones. PSO’s
appeal is due to its ease and affordability in a range of
applications. PSO scheduling research has suggested many
options. The author suggested combining the PSOwith Grav-
itational Emulation Local Search (GELS) algorithms for grid
computing autonomous job scheduling [53]. This maximized
efficiency. By preventing local optima, the local search algo-
rithm GELS improves PSO results. GELS compares PSO
findings to find the optimum solution instead of randomly
scanning the space. PSO–GELS reduces makespan by 29.2%
compared to Simulated Annealing (SA) in a scenario with
5000 jobs and 30 resources. In this paradigm, the PSO cannot
validate multiple-task scheduling. The author presented the
League Championship Method, a novel global optimization
meta-heuristic algorithm (LCA) [54]. It follows sports asso-
ciation competitions between teams. LCA has been used
to solve several optimization problems, including the trav-
eling salesman problem, reactive power dispatch difficulty,
workshop scheduling issue, electromagnetic device optimiza-
tion challenge, and cloud job scheduling issue. This method
helped to optimize cloud schedules [55]. The authors wanted
to reduce job completion time in an Infrastructure as a Service
(IaaS) cloud environment. It outperforms FCFS, LJF, and
BEF, according to the findings (BEF).

Research has employed numerous representations for GA
scheduling solutions. Direct, permutation-based, and tree rep-
resentations are the most commonly used representations.
Chromosomes (ch) are n-dimensional vectors that specify the
resource on which job I am planning. Chromosomal maps
represent this. The use of direct representation was used in
the article [56], [57]. A two-dimensional vector represents
a chromosome in permutation-based representation. One
dimension represents resources, while the other indicates job
order.

III. METHOD
This section covers three main topics: system design, soft-
ware and hardware requirements for constructing and test-
ing algorithms, and algorithm analysis. We will also briefly
explain the algorithm evaluation technique.

A. THE ARCHITECTURE
Figure 5 shows the system design. This research project’s sys-
tem separated sensing and analytical modules. The sensing
module was the main tool for monitoring and analyzing test
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FIGURE 5. An Overview of the Design of the System Architecture.

platform operations.MQTT andHTTP canmove data. Data is
saved to a local database for filtering, statistical analysis, and
evaluative modeling. Telekom Malaysia’s Open Innovation
Platform (OIP) stores more data. TelekomMalaysia Research
and Development intends to maximize microservices, APIs,
the Internet of Things (IoT), and smart services with OIP.
OIP simplifies device connection, data storage, processing,
analysis, and data protection, making it easier to develop an
end-to-end Internet of Things solution.

Figure 6 shows each operation’s architecture. Hardware
implementation will start this project. The restroom will
use the sensor. Humidity, temperature, and infrared sensors
are offered. System microcomputers are Raspberry Pi and
Arduino TTGO. Wireless connectivity, integrated sensors,
online storage, and a strong CPU are needed for the control
kernel to work. In many trials, Raspberry Pi-based micro-
controllers have met system control kernel requirements.
Simply replacing a Raspberry Pi’s memory card changes its
setup. Small businesses may benefit from using Raspberry
Pi for real-world applications due to its inexpensive cost.
Troubleshooting and data verification after hardware instal-
lation. This will verify data accuracy and identify potential
issues during system operation. Then, the data will be entered
into the database and verified. Predictions and timetables
will use the data. Pre-processes sensor data patterns. After
that, we decided to exploit the degrading feature to develop
an accurate RUL forecasting model at diagnosis. It will
pre-process sensor and fitness calculation data for schedul-
ing. Selection, crossover, mutation, and others make up
the scheduling algorithm. Data analysis will decide model
performance.

B. SOFTWARE ENVIRONMENT
This system requires three software programs to work. First,
Anaconda Navigator 1.18 is used. This software uses Python
to create machine-learning applications. It runs Spyder,
Jupyter Notebook, and RStudio, among others. Programming
the board requires the Arduino IDE, version 1.8.19. Open
innovation platform will save telemetry data (OIP). OIP

FIGURE 6. Architectural details of the process.

TABLE 1. Software description in tabular form.

manages data, services, and IoT devices. Table 1 lists the
system’s software requirements.

C. HARDWARE ENVIRONMENT
Raspberry Pi and ESP32 boards helped build the sensor mod-
ule. A strong CPUwas needed to pre-process data for analysis
in the proposed system’s control kernel, which requiredWi-Fi
connectivity, the ability to integrate many sensors, and online
data storage. After reviewing the many prototyping boards
available, we selected the finest components for these needs.
The Raspberry Pi and TTGO microcontrollers can meet
the requirements as control kernels, according to studies.
Thus, the project’s control kernel was the Raspberry Pi and
TTGO OS. Raspberry Pi, a single-board computer (SOC),
runs Linux and may be upgraded by swapping the memory
card. This expedites upgrades. Like a computer, it can multi-
task. Raspberry Pi applications can leverage networking, data
transport, databases, and web servers. Secure Shell allows
remote access. The Raspberry Pi cannot do ADC. The Rasp-
berry Pi with TTGO combined control kernel for real-world
applications is affordable for small and micro-businesses.
Depending on the information needed, different sensors are
used. It sends sensor data from wired or wireless networks to
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FIGURE 7. Workflow hardware implementation system.

a cloud database for cloud analysis. Figure 7 shows how to
construct the hardware system, and Figure 8 shows a toilet
floor plan.

Figure 7 shows three sensors with wire cables linked to the
Raspberry Pi or TTGO. The database receives data from both
microcontrollers over Wi-Fi. Ethernet connects the router
and server. Figure 8 shows the Faculty of Computing and
Informatics toilet floor plan (FCI). Despite the enclosure’s
infrared sensor, a light bulb signal is. The sensor is inside
the housing to avoid confusion. The Raspberry Pi, router,
and exhaust fan are in the overhead cabinet above the ceiling
level.

Microcontrollers are single-chip computers having proces-
sor core, memory, and programmable input/output periph-
erals. For embedded systems. Automated devices employ
microcontrollers. Many smart gadgets and control systems
exist. The Raspberry Pi Foundation in the UK developed
this credit-card-sized single-board computer. Raspberry Pi
offers several programming opportunities. This study used
a Raspberry Pi 4 Model B. General-purpose input-output
(GPIO) is one of Raspberry Pi’s most useful capabilities.
Board I/O pins input and output signals. Quad-core ARM
BCM2711 processors use four gigabytes of RAM. An eth-
ernet jack and four USB ports link keyboards, mice, cameras,
and more. This device runs Linux OS. Linux users enjoy a
huge selection of libraries and apps. Python, C++, Java, and
many others are supported. I2C, UART, SPI, wireless, and
wired LAN interfaces are available.

TTGO ESP32 provides a complete development environ-
ment. It has over 30 I/O pins, Wi-Fi, Bluetooth Low Energy,
and a microcontroller. Low-cost, low-power microcontrollers
are hard to find. The board can be powered by either a
single-cell lithium-polymer battery or a 5V USB connec-
tion, and the voltage of its working signal can range any-
where from 2.2 V to 3.0 V. TTGO ESP32 I/O pins can only
take 3.3 volts. TTGO ESP32 microcontroller programming
using Arduino software integrated development environment.
Arduino IDE programs can be uploaded to the board through
USB. Arduino’s Sketches language is just C and C++.

FIGURE 8. Floor plan for toilet implementation.

This study included temperature, humidity, and infrared
radiation sensors. Sharp, the industry leader, makes most
infrared detectors and rangers. Sharp Infrared Detectors and
Rangers, available in many combinations, can measure dis-
tances precisely. Infrared distance sensors generate an ana-
log signal proportional to the sensor’s distance from the
thing being measured. The datasheet states that the SHARP
GP2Y0A710K0F output voltage ranges from 2.5 V at 100 cm
to 1.4 V at 500 cm. Distance detection allows this range.
Table 2 lists Sharp sensor specs. The ultrasonic sensor was
superior to the infrared sensor [58]. The author details the
monitoring mechanism. Because a human’s body isn’t flat on
the area being scanned, ultrasonic sensors are better at iden-
tifying them. Increased detection distance reduces infrared
sensor precision.

D. CODE IMPLEMENTATION AND EXECUTION
The Raspberry Pi’s standard Python editor, IDLE (Inte-
grated Development and Learning Environment), helped
us program the gadget. An interpreter lets you test each
instruction to validate the code. This site uses Python 3.5.3.
Figure 9 depicts the method used to count restroom users.
The system operates from 7 am until 10 pm. We chose
this time because it matches the school’s kids’ and teach-
ers’ working hours. If the time limit is surpassed, the sys-
tem won’t run. A user can be ‘‘enter,’’ ‘‘stay,’’ ‘‘leave,’’ or
‘‘nobody’’ depending on whether motion detection detects
movement.

The program’s initial iteration will check the pre-distance.
If the distance is less than the limit, motion detection 1 will
not be done. After this, motion detection 2 requires maintain-
ing stationary for a certain time before moving on. To trigger
motion detection level 3, the final and most essential stage,
the distance must be much larger than the permissible margin
of error. Moving on to the fourth and last motion detection,
which will result in no movement. The word ‘‘nobody’’ indi-
cates a distance reading error. After that, the gain will be
calculated from scratch for the next iteration. The database
will contain all available information. If there is a difficulty
with the internet connection, it will try to reconnect with-
out pausing or interrupting the program. The data will be
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TABLE 2. Sharp infrared sensor specifications.

FIGURE 9. Programming Flowcharts for the Raspberry Pi.

re-entered into the database once the internet connection is
stable again.

Different toilets have different bathroom detection dis-
tances. Males and females are measured by average human
height. 50–200 cm. Most people defecate sitting or squatting.
Defecating at 35 degrees is best. Each cubicle, squatting
toilet, and bowl toilet has infrared sensors on top. Figure 10
shows that a sensor will point straight toward the cubicle’s
occupant. The sensor angle adjusts to x1 and x2.

The dataset was collected from the Faculty of Computing
and Informatics (FCI) at Multimedia University (MMU) and
the vaccination center at the Dewan Tun Canselor MMU.
The team completed the data capture layer task for the
proposed work. Sensors collected contextual data including

FIGURE 10. Inside the cubicle, where the sensor is located.

motion detection, distance, temperature, humidity, total user,
ram, and so on. Passive Infrared (PIR) sensors were used
to determine user occupancy in motion detection states 1–4.
The experiment collected data from September 2019
through December 2021. Each floor of the FCI build-
ing included seven toilet facilities, three male and four
female.

E. DATA ACQUISITION LAYER
Line graphs better showed user statistics. The x-axis shows
the date, while the y-axis shows the number of individuals in
each cubicle. Since university buildings are busy with classes,
the total number of persons using them increases during the
semester but decreases between semesters. From this vantage
point, we can see which cubicles visitors use most for their
toilet type (squatting or sitting). Sitting toilets have more
users than squatting toilets, and most of them won’t utilize
the last cubicle. Figure 11 shows that cubicle 3 has fewer
individuals than cubicles 1 and 2.

Pre-processing removed data outliers. Data noise was
assumed since data recording is vulnerable to numerous
external factors. Data recording prompted these hypotheses.
Like outliers, this incident had several possible causes, such
as sensor malfunction, measurement error, etc. Moving aver-
ages, loess, lowess, Rloess, RLowess, and Savitsky-Golay
smoothing filters help eliminate outliers. Use Savitsky-Golay.
In this study, the moving average filter was employed to make
enormous volumes of data easier to deal with, as previous
researchers have done [59].
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FIGURE 11. A line diagram for IoT data.

Inconsistent data and large samples require normalization.
This reduced the information needed to make a prognosis and
schedule. The machine learning models used normalized data
with values in the same range. This ensures that weights and
biases converge gradually. Normalizing whole sample data
for machine learning algorithm models enhanced predictions
and training.

Below are instructions for implementing this method. I’ll
explain the suggested method’s operation after this. ARIGA
combines ARIMA and Genetic Algorithm for predictive
maintenance and scheduling. The algorithm will improve
outcomes by combining both.

F. PREDICTION METHOD WORKFLOW
Predictive maintenance follows data collection. Pre-
processing follows database export. Filtering data to predict
only important facts. Step 1 of Figure 12 uses IoT monitoring
sensor data to determine the degradation feature value at
the diagnostic time. Next, feature value trends determine the
predicted failure time distribution (step 2). The distribution
can be calculated using the histogram of the remaining
useful life based on many similar failure events. Finally, the
distribution estimates maintenance costs for each projected
future maintenance (step 3). Considering the distribution’s
uncertainty, the maintenance time is the projected time before
an unexpected failure.

FIGURE 12. Diagrammatic representation of predictive maintenance
strategies.

ARIMA model predictions combine recent data with the
long-term historical trend. The ARIMA model predicts this
integration because it intuitively represents numerous practi-
cal time series. Time-domain models like ARIMA are used
to fit and forecast temporally correlated time series. ARIMA
models can describe stationary or nonstationary time series
data. Seasonal time series are nonstationary. This is because
stationary time series are unaffected by observation timing.
Trends and seasonality are nonstationary time series. Sta-
tionary time series have a cyclical pattern but no trend or
seasonality. ARIMA is built on AR,MA, and ARMAmodels.

ARIMA models estimate the next time series degrada-
tion step by linearly combining the present value, previous
values, nonseasonal changes, and lagged prediction errors.
Differences eliminate data non-stationarity. Stationary time
series are independent of observation time. MA combines
regression mistakes linearly, while AR reveals the regression
variable depending on past values.

Prediction algorithms are assessed based on several fac-
tors. The recommended model’s performance evaluation
layer assesses the model’s accuracy using MAE, RMSE,
and MAPE. Model mistakes are these measures. The mean
squared error (MSE) is used to minimize the error range.
MAPE measures the prediction difference as a percentage of
the targeted data, while RMSE measures the error between
actual and anticipated data.

G. SCHEDULING METHOD WORKFLOW
Figure 13 shows the scheduling flowchart. After being
exported from the IoT monitoring system, the data will be
loaded into the scheduling system and time-processed. Based
on your hourly usage pattern, determine peak and off-peak
times. A SimPy simulation showed daily janitorial tasks.
SimPy was written in Python. A discrete-event simulation
library is SimPy. The simulator considers conventional clean-
ing timings, minimum and maximum wait times, cleaning
durations, and janitor capacity. Modeling lets us determine
a cleaner’s time slots. After programming a 5-day, 8-hour
workweek, the simulation will conclude.

We simulated the user’s steps using Monte Carlo. Monte
Carlo simulations generate multiple possible outcomes by
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FIGURE 13. A diagram depicting a scheduling algorithm.

using random numbers as inputs into a mathematical model.
Probability-based solutions to difficult mathematics prob-
lems. It studies risk and uncertainty in many contexts in
academia. Risk and uncertainty assessments benefit greatly
from the normal distribution. The simulation data follow a
normal distribution;

• Standard deviation = 0.4
• Number of repetitions = 12
• Number of simulations = 253
• User target value = 0 to 25
• User probability = 0 to 1

Scheduling involves user input, data point relationships,
system constraints, and genetic algorithm (GA) optimiza-
tion. Despite not being the optimal choice for all topics,
genetic algorithms (GAs) can sometimes provide a reason-
able response. Despite being dubbed genetic algorithms.
GA can solve even the hardest problems, unlike traditional
algorithms, which solve issues step-by-step. GA optimizes
problem-solving. If genetic operators execute ideally, GA can
aid with functions specified across complex, discrete struc-
tures. GA requires this.

Inputs include the number of floors in each building, the
number of janitors, the working days, and the starting time
and timeslot. Systems can have harsh and soft limitations.
However, strict boundaries are unchangeable. The scheduling
engine always follows severe limitations. Soft limitations are
negotiable. Soft constraints are less rigid. The scheduling
engine will try to follow your soft limitations, but it may stray
if necessary. The study limits janitors to one shift each day
and one per level. Due to such constraints, the janitor cannot
take a vacation during business hours and must evenly space
out their shifts.

This study uses evolutionary computation to find a sched-
ule within a suitable timeframe. A genetic algorithm uses
natural selection and population genetics to search probabilis-
tically. Figure 14 shows a quick genetic algorithmflow. Initial
schedules are generated. The crossover and mutation opera-
tions merge two schedules into one, and then the schedule

FIGURE 14. Scheduling step of a genetic algorithm.

set is evolved by replacing a schedule in the old set with
the newly formed schedule. Repeat until the schedule set
converges.

The approach presents a timeline as a matrix. The matrix
rows represent the overall number of users, floors, and hours
in the day, while the columns represent the real schedule.
Each matrix cell might be 0 or 1. 0 means no cleaning,
and 1 means yes. This investigation’s encoding gave each
floor covering kind its row. To clarify, the floor and total
users are treated separately and given sufficient time to per-
form properly. This method simplifies encoding over defining
numerous values for each matrix element. Two schedul-
ing conditions should be considered when dividing jobs
among available periods. Interruptible and non-interruptible
scheduling. We use a finer time slot to shift an interruptible
activity onto several non-interruptible jobs.

Selecting two existing schedules will create a new gener-
ation of schedules. This analysis uses the normal operating
method, which yields the best schedule with four times the
likelihood of the worst schedule. The pointer selects and
creates the parenting schedule for the current time slot. Click
the time slot. This is a probabilistic rule that favors better
scheduling. We’re using a probabilistic technique to avoid
unfair classifications. Deterministic selection of the best
schedules may quickly dominate the scheduling set, causing
early convergence to a local optimum. We risk becoming
dependent on their schedules.

After parental unit selection, the population undergoes
crossover. Crossover recommends combining the productive
parts of both parents to conceive a child, hoping to simplify
routines. Crossovers create new generations. This includes
randomly identifying a crossover location and swapping
genes from both parents. Slicing a matrix column generates
the crossing point.

Mutation operations, which change the developed child for
variety, should be integrated into crossover operations, but
this paper does not discuss mutation operations. The classic
one-point crossover approach may not be practical since it
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does not follow activity time limits. A scheduling unit’s slid-
ing window hitting the crossover point generates a similar
problem. Thus, we must adapt so that the offspring inherits
the scheduling unit from the first parent and the second parent
fills the open spots. If there are empty spots, it will pick
a random place in the sliding window and fill them with
data.

This section covers IoT architecture and overview. This
chapter also discusses the predictive maintenance and
scheduling strategy, research implementation, and approach
formulation and evaluation. This investigation dissects exper-
imental software and hardware. From hardware and data col-
lection through scheduling, the proposed method is detailed.

IV. RESULTS AND DISCUSSION
A. PREDICTION EVALUATION DESIGN AND
PERFORMANCE
The ARIGA model is compared to the Long Short-Term
Memory (LSTM) model to determine its efficacy. This
section evaluates the RUL prediction approach using the
restroom experiment’s results. The factory data sheet acceler-
ated deterioration time and was used to achieve experimental
results. To evaluate a model’s prediction ability, it must be
tested on data not used to fit it. To compare models, it is
usual to train a model using only some of the data (called
‘‘in-sample data’’) and then test its ability to reliably predict
fresh data (called ‘‘out-of-sample data’’). Thus, the sample
data is split into a training set and an evaluation set. The train-
ing set estimates the model’s parameters, while the testing set
selects the most accurate model.

In-sample model fitting and selection are done on the first
600-time series observations. Time series data were split
into a training dataset (70%) and a test dataset (30%) to
appropriately evaluate models. The model evaluation used
both datasets. We can use all observations. Because it out-
performed the others in the testing sample, one model will
represent all candidates in out-of-sample testing. All model
comparisons use data outside the sample. In the example
study, ARIGA models, an upgraded ARIMA model, outper-
form ARMA models. The AR term is always needed, and
the MA term may improve AR component operations. Vari-
able order is crucial when creating an ARIMA model. Time
series make seasonal variations and non-stationarity obvious.
The nonseasonal difference (d = 1) and seasonal difference
(D = 1) abolished non-stationarity. The first-order difference
can analyse the ACF and PACF plots. Figures 15 and 16
exhibit differential time series ACF and PACF plots. The
ARIMAmodel’s seasonal ACF plot indicated a large spike at
lag 12 (Q = 1), however the PACF plot showed no such spike
at lags 12 or 24 (P = 0). Seasonal model analysis employed
the ACF plot.

Figures 17 and 18 show how this model predicts journey
length. ARIMAmodels calculate using the same data set. The
graph’s non-linearity indicates users’ daily activity levels.
The value changes, which affects students enrolled at the
school and increases usage during that time.

FIGURE 15. Autocorrelation function graph.

LSTM Recursive Neural Networks (RNNs) can store and
learn from many observations. The multi-stage univariate
prediction was used. First, 70% of the dataset is used for
training and 30% for testing. To provide fair comparisons,
the ARIMA algorithm is used. Use a fixed random number
seed, such as 7. This ensures exact results replication. One
algorithm function lets the LSTM model be constructed and
trained. Fit LSTM develops and trains. The function requires
three inputs: the size of the training dataset, the number of
users (indicating the number of times a piece of the dataset is
used to calibrate the model), and the number of neurons (the
number of memory units or blocks). Compiling and parsing
the network ensures that it follows Theano’s mathematical
notations and rules. When compiling your model, we will
be asked to choose a loss function and optimization strategy.
Figure 19 shows predictions from either model. ARIGA’s
graph is closer to the data than LSTM’s, improving accuracy.
This contributes to accuracy.

Table 3 shows the root-mean-squared error (RMSE) when
the twomodels used only one predictionmethod. TheARIGA
model has lower RMSE, MAE, and MAPE than the LSTM
model. The ARIGA prediction model offers better fitting
and stability. The entropy weight method first compares the
information provided by each prediction methodology, then
adjusts the relative value of each strategy based on the pre-
dicted day. As a result, the ARIGA prediction model, based
on the entropy method, fully integrates information, uses the
explicit and implicit information in each prediction model,
balances the deviation of each prediction model, and avoids
the concentrated influence of a large number of factors on
prediction accuracy. Since predictions were more accurate,
the suggested strategy is better and feasible.

B. SCHEDULING EVALUATION DESIGN AND
PERFORMANCE
This section presents the performance evaluation findings to
assess the scheduling system’s effectiveness. An FCI toilet
and vaccination center’s IoT sensor data were used to create
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FIGURE 16. Partial autocorrelation function graph.

FIGURE 17. Real and forecasting ARIMA prediction graph.

FIGURE 18. Actual and ARIMA prediction graph.

scheduling simulators. Figure 20 shows the janitor job sched-
ule requirements and limits. The janitormust break the yellow
boxes in the timetable. Weekly availability data determines
the number of janitors, and they must be scheduled to clean
different floors at different times. Janitors work from 7 am
to 4 pm. Monday morning scenario: Janitor 1 cleans Floor 1
from 7 to 9 a.m., while Janitor 2 cleans Floor 2’s facilities at
the same time.

SimPy simulates janitor shifts. A janitor cleans 1,000
square feet in one hour and thirty minutes. Each FCI floor
features a 193.75-square-foot men’s and women’s restroom.
Janitors take 20 minutes to clean each floor. Python-based
SimPy simulates discrete events. Parallel processing mod-
els communications, customers, trucks, and airplanes. This
SimPy simulation requires a specified time slot of eight hours,
an interval time of one hour, a minimum waiting time of
one, a maximum waiting time of two, a worker capacity of

FIGURE 19. Graph of LSTM and ARIGA model.

TABLE 3. Measures used to assess the accuracy of forecasting models.

one, and a cleaning time of twenty minutes. Figure 21 shows
simulation findings. The output shows that one janitor can
clean restrooms seven times a day.

Monte Carlo will simulate the user pattern next. Monte
Carlo simulations can show how input changes affect outputs.
Monte Carlo methods can address optimization and numeri-
cal integration. These algorithms cleverly draw samples from
distribution to imitate system behavior. This chance-based
method simplifies complex numerical issues. This field anal-
yses risk and danger. This simulation uses the normal distri-
bution since its parameters are accurate;

• Standard deviation = 0.4
• Number of repetitions = 12
• Number of simulations = 253 (total data for 1 month)
• User target value = 0 to 25
• User probability = 0 to 1
Figure 22 depicts users’ daily behavior by floor and hour in

a histogram. The y-axis shows the number of times each toilet
is used every day, while the x-axis shows the hours of the day.
This area has seven compartments. The restaurant gets a lot of
guests during lunchtime, when most people are on break. The
user pattern on the third-floor graph does not alter between
eleven and two. Figure 23 shows the planned user as a blue
line and the actual user as a red line. Time is represented by x,
and system users, both hypothetical and real, are represented
by y. This Monte Carlo simulation shows that the population
under examination can maintain its behavior across time.
This development could aid numerous sectors, including user
behavior analysis and theoretical physics.

Each floor had a varied amount of user patterns, therefore
the research was done on four floors (ten, twenty, and thirty,
respectively). Data settings for each parameter can be found
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FIGURE 20. Here is a sample schedule for janitors, complete with
available shifts.

FIGURE 21. SimPy simulation result for janitor.

here. First, there is the total number of floors, which in this
case is four, and the maximum number of persons per floor is
thirty. The janitor’s identification number follows, followed
by four random names as references. Next is cleaning time,
divided into eight rows starting with C1 and ending with C8.
C1 is the start of the workday, usually around 7 am, and C8
is the finish, usually around 4 pm. The number of users is
calculated using sensor data from the Internet of Things.

In Figure 24 to 28, the janitor schedule is compared to
the recently suggested ARIGA model, an improved genetic

FIGURE 22. Histogram graph of user pattern with the selected hour.

FIGURE 23. Line graph of real user with the targeted user.

FIGURE 24. Cleaning demand = 10.

algorithm scheduling system. In the original system, all avail-
able time slots between the announcement date and the due
date were chosen at random. The Greedy scheduler is also
modelled for comparison. The Greedy scheduler gives each
unit a cleaning time window.
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FIGURE 25. Cleaning demand = 20.

FIGURE 26. Cleaning demand = 30.

FIGURE 27. Cleaning demand = 40.

As shown in the figure, the proposed scheduling system
performs better than the competition regardless of building
size. The ARIGA model enhances performance by 24.7%
on average and 15.0% overall compared to the baseline
scheduling technique. In a high-rise structure with more than
50 cleaning demands, the proposed scheduling method per-
forms better. The ARIGA model schedules most cleaning
time demands for off-peak hours while trying not to exceed
the threshold for a high number of cleaners. Since the ARIGA
model was created, this is why. As cleaning time needs rise,
the needed total number of janitors may surpass the threshold

FIGURE 28. Cleaning demand = 50.

FIGURE 29. Janitor scheduling dashboard for facility view.

for increasing the number of janitors. A mechanism that lets
users exchange their schedules has been proposed to fix this
issue.

The Greedy scheduler performs marginally better than the
baseline system in a scenario with 20 cleanliness needs.
When the building’s floors grow, the Greedy scheduler’s
performance worsens much more than the first schedulers.
The Greedy scheduler can reduce performance by 29.4%
compared to the first scheduling. Progressive stage systems
can lead to unexpected results like this. The Greedy sched-
uler avoids the peak period, but it doesn’t account for price
progression, therefore it may produce excessive load in other
periods.

Figure 29 shows how to see and manage janitorial sched-
ules on the smart toilet dashboard’s Scheduling System tab.
By changing the janitor’s name and ID, the facility manage-
ment staff can receive help. The facilities management team
can tell the cleaning firm how many janitors are needed to
clean all the floors.

In all analyses, the proposed ARIGA approach performs
well. Data collection and querying are simplified using
ARIGA. During pre-processing, the ARIGA preserves space,
and the findings reveal that the model’s space requirements
increase linearly with data size. ARIGA and LSTM, two
archetypal approaches for forecasting time series data, are
analyzed and compared in this paper. Using a range of clean-
ing demand scenarios, we found that the proposed algorithm
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could greatly reduce the number of cleaning employees,
saving salary.

V. CONCLUSION
This research focuses on three goals: The main goal of this
study is to build and construct an IoT smart toilet management
system. We covered the pros and cons of a few IoT solutions,
including hardware functionality, in section II. This study’s
capacity to support the toilet system required examining
the system’s functionality and cost, even if its main goal is
to recommend and create an IoT smart toilet management
system. The sensor’s cost and sensitivity, when installed in
the bathroom’s toilet, must be evaluated. Data pre-processing
hardware must be reliable, consistent, and meaningful in the
suggested model. This project’s second purpose is to sched-
ule a smart toilet efficiently within our resource limits. Our
revised ARIGA model is presented here. ARIGA can sched-
ule and predict maintenance for a building’s IoT sensors since
it uses a prediction algorithm and a scheduling algorithm.
This allows ARIGA to schedule and predict building IoT
sensor maintenance. Genetic algorithms are used to change
the janitor’s shift schedule to meet the second goal. The
proposed approach reduced the number of cleaners by 24.7%
on average and 15% overall in experiments on various floors
and user populations. By comparing experiment results, this
was determined. The model is currently evaluating the greedy
algorithm and baseline scheduling method. Section III details
the plan’s strategy. The study’s goal is to use the presented
technology to do predictive maintenance on smart toilet sys-
tems. Recent advances in machine learning, particularly deep
learning algorithms, are attracting researchers from many
fields. Then, how efficient and precise these unique ways are
compared to the conventional method is essential. We will
compare the ARIGA and LSTM, two popular time series
predictionmethods, in the next part to seewhich ismore accu-
rate. The two models were employed on the same Internet of
Things sensor data. The ARIGA model enhanced prediction
by decreasing RMSE, MAE, and MAPE. For the ARIGA to
lower AIC and BIC, it must be tuned to the right AR value.
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