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ABSTRACT Most of world’s electrical energy demand is fulfilled by natural resources (Oil, Coal, Gas, etc.)
and there is a huge gap between demand and supply. Therefore, utilities are facing the problem of peak load
burden. Broadly speaking, to sustain future electricity demand renewable/alternate sources (solar, wind etc.)
of energy must be integrated with smart grid (SG) to cope with energy demand. These sources are freely
available, inexhaustible and can be used as an alternate source of energy. For smart utilization of electrical
energy, a balance between supply and demand is required at all instants of time. In the SG environment,
the most promising solution to reduce the peak load burden on utility is demand side management (DSM)
which is possible because of the property of smart grid inertia. DSM permits all types of consumers to alter
their energy consumption pattern to reduce the cost of energy and it helps the utility to reduce peak load
burden and reshape load profile. In this study, DSM has been formulated as a single objective minimization
problem to reduce peak load burden on utility. Although several optimization techniques has been listed in
the literature which reduces the peak load and cost of energy, but integration of renewable energy is limited
to residential consumers only. In this paper, a robust optimization algorithm inspired by the lifestyle of grey
wolves, popularly known as grey wolf optimization (GWO) algorithm is utilized to solve the proposed DSM
minimization problem. The DSM minimization problem optimization using GWO is demonstrated on three
different cases-residential, commercial, and industrial loads in time of use (TOU) pricing scheme with and
without solar PV energy (SPVE). Validation of GWO displays remarkable reductions in peak load on utility
and cost of energy of consumers with and without SPVE. Also, GWO optimization results are compared
with existing research papers having identical data sets.

INDEX TERMS Demand side management, smart grid, appliance scheduling, grey wolf optimization, solar
PV energy, time of use pricing, peak load, cost of energy.

I. INTRODUCTION
In a traditional grid system, energy management is main-
tained with limited static controls. Now, it has become
the need of time for better utilization of renewable energy
resources with more reliability along with the reduced cost
of energy utilization by moving in a SG environment [1].
Smart grid implementation has become a burning topic for
the national energy strategy of a country. The smart grid is
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featured with modern control technologies and paved the way
for smart controls starting from generation centers, distribu-
tion stations to load centers. All the stakeholders of SG can
actively participate in the primary challenge of maintaining
the balance between supply and demand to alleviate the peak
load burden on the utility [2]. The worldwide development in
all sectors needs a continuous and reliable supply of electric-
ity having less carbon emission and good power quality [3].
The rapid growth in electricity demand with the huge limita-
tions on the installation of new generating plants is opening
a new era of DSM to fulfil the energy needs of a country.
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DSM can provide an expedient solution to the difficulty such
as limited natural resources producing a major portion of
energy, lack of utilization of renewable energy sources, and
limited controls on utility and users [4]. The bidirectional
information and energy flow between prosumer and utility
pronounces the application of DSM in SG [5]. A dynamic
programming approach has been used for optimization of
dispatch of direct load control (DLC) to maximize the fuel
cost saving in Taiwan power system [6]. For the utility profit,
a linear programming optimization algorithm is used in DLC
scheduling along with two different pricing scheme TOU and
flat rate tariff to differentiate cost based and profit based
DLC [7]. A linear programming optimization algorithm has
been used to schedule the load of residential, commercial, and
industrial area at Florida Power and Light company to reduce
the system peak load [8].

There are various DSM techniques such as load shift-
ing, peak clipping, valley filling, strategic conservation, and
strategic load growth used for the alteration of consumer load,
but load shifting is the most extensively used technique in the
literature [9]. The DSM techniques encompass cost of energy
reduction, alleviating utility peak load burden, and enhancing
the utility revenue by incorporating the derived objective
function with constraints for various DSM techniques [10].
In all the available DSM techniques load shifting provides a
promising solution that incorporates maximum benefits and
flexibility to end users and generates good revenue to concern
utility [11] The objective of energy cost minimization of the
consumer is validated using Binary Particle SwarmOptimiza-
tion (PSO) with reduced maximum demand on utility. As the
alteration of consumer loads takes place to lower electricity
tariff hours the maximum demand on utility decreases inher-
ently [12]. In [13] a hybrid GA-PSO algorithm is used to
reduce the cost of energy by optimal allocation of generations
and loads in a day ahead market. Also, PSO outperforms GA
in this study. Optimal scheduling of generations and loads in
a microgrid having commercial and industrial loads has been
conducted by GA and significant saving in consumers elec-
tricity bill is achieved [14]. In [15] deep enforcement learning
is utilized to optimize the energy cost and dis-satisfaction
of the consumer in a home by formulating the consumer
shiftable appliances as a Markov decision process (MDP)
problem for cost minimization and thereby demonstrated a
remarkable reduction in energy cost and dis-satisfaction level
of end users.

A universal load management system with intelligent con-
trol for implementation of DSM in a group of consumers
from an apartment is considered to minimize only the cost of
energy of end users. The Binary PSO and GWO optimization
algorithms are used for the alteration of electrical appli-
ances. The result demonstrates the superiority of binaryGWO
over Binary PSO for residential consumers and a remarkable
reduction in energy cost along with minimization of peak to
average ratio (PAR) and peak load has been noticed [16]. Uti-
lizing the concept of bidirectional information flow between

utility and consumer, an approach of game theory is used to
schedule consumer appliances by the consumer itself who
are participating in the game. This game theory approach
achieves the minimization in PAR and cost of energy of
residential load consumers [17]. A GWO approach is used
for electrical appliances power scheduling in a smart home
to optimize energy cost, PAR, and user satisfaction seven
consumption profile with the variable tariff is considered for
its validation and finally, a significant reduction is seen in the
results [18]. DSM employing day ahead shifting using integer
genetic algorithm (GA) is proposed to optimize peak load
burden on utility and thereby a reduction in cost of energy has
been also achieved in context to Indian utility [19]. In [20] the
bacterial foraging optimization (BFO) algorithm is used to
solve the load scheduling in a smart grid network comprising
of residential, commercial, and industrial loads to minimize
the peak load on utility and results achieved a significant
reduction in peak load alongwith saving in energy cost. A day
ahead load shifting DSM technique is used for the alteration
of non-critical consumer’s load and it is mathematically for-
mulated as a peak load minimization problem and an Evo-
lutionary Algorithm (EA) based on heuristics was developed
for solving this minimization problem in [21]. The simulation
generates peak load reduction with saving in energy cost
in the residential, commercial, and industrial areas having
a huge number of controllable devices. The DSM has been
formulated as a minimization problem using the day ahead
load shifting technique for peak load reduction in a residential
and commercial area which is optimized using themoth flame
optimization (MFO) algorithm and a significant peak load
reduction is observed [22]. Although, a significant saving in
energy cost is still superior in PSO. In [23] the DSM using
GA for peak load optimization in an industrial area is carried
out by AC load shifting in a DC microgrid equipped with
solar PV installations and battery energy storage system and
a remarkable reduction in utility peak load and cost of energy
is seen.

The DSM for load shifting has been carried out in three
types of residential scenarios traditional homes, smart homes
and smart homes installed with renewable solar PV energy
using BPSO, GA and Cuckoo search algorithm and a sig-
nificant reduction in peak load and the cost is observed and
cuckoo search algorithm outperforms the other two algo-
rithms [24]. GA based DSM has been implemented for allo-
cation of residential loads to maximize the user satisfaction
along with minimization of cost of energy. The cost per
unit satisfaction index is derived for the estimation of user
satisfaction while shifting the load [25]. DSM has become
the need of present as well as future scenarios to alleviate the
energy shortage by postponing the installation of new gener-
ating stations along with the integration of renewable energy
resources. The integration of renewable resources reduces
the dependency on fossil fuels in the smart grid thereby
decreasing carbon emissions and increasing the diminishing
timespan of fossil fuels.
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TABLE 1. Nomenclature.

In reviewed papers, some authors have considered the
cost minimization objective function, and some have used
peak load minimization objective function only and it can
be grouped as single objective minimization problems. In a
single objective, if cost is optimized then there will be a
reduction in peak load also and if peak load is optimized then
the cost of energy also reduces. Some authors have considered
renewable energy integration with DSM in the home energy
management system but in the case of a large area containing
a huge number of devices renewable energy is not considered
with DSM so far extensively.

In this paper, DSM using the most popular load-shifting
technique has been carried out through the GWO algorithm
with and without solar PV energy (SPVE) in residential,
commercial, and industrial areas having a huge number of
shiftable devices. The DSM is formulated as a single objec-
tive peak load minimization problem.

The rest of the portion is organized as follows. Section II
presents the related work and motivation. Section III
describes the problem formulation and required constraints.
Section IV explains the proposed GWO algorithm. Section V
describes the SG environment for DSM implementation.
Section VI illustrates the results and discussion. Section VII
concludes the paper with future scopes. All the abbreviations
used in this paper has been listed in Table 1.

II. RELATED WORK AND MOTIVATION
Smart grid is a collection of different efficient technologies
for smart transmission, distribution, and utilization of elec-
tricity with excellent communication infrastructure among all
stakeholders. DSM is the most important feature of SGwhich
mange the entire or portion of system load by avoiding the
expansion of power generation, replacement of overloaded
components in the existing network. DSM basically alters

the energy consumption of consumer’s non-critical devices to
reduce peak load burden on utility and cost of energy of con-
sumer. Various pricing schemes such as TOU, critical peak
pricing (CPP), Real time pricing (RTP) etc. are popularly
used in DSM implementation. TOU is widely used in the
literature and proves to be most economical among all other
pricing scheme [26]. In urban area of India, TOU pricing is
applicable for large industrial and commercial consumers but
in residential area variable pricing schemes are not applicable
so far [19]. The residential consumers become isolated form
variable pricing scheme because they pay flat rate tariff for the
electricity consumption and unable to familiar the saving in
cost of energy with this scheme [27]. In this study, residential
area has been revealedwith TOUpricing to show the potential
in cost and peak load reduction in DSM. The traditional linear
and dynamic programming algorithm of DSM [6], [7], [8]
depicts significant reduction in considered parameters but
unable to handle huge number of controllable devices of
different types having complex constraints [21]. Some papers
has given more importance to consumers energy cost reduc-
tion rather than utility in case of home energy manage-
ment [12], [15], [16], [17], [18], [24], [25]. Many researchers
have taken peak load [20], [21], [22], [23] as main objective
because literature portrays that utility profit is more essential
rather than consumer as utility is the utmost importance
for consumer services. The DSM minimization problems
has been solved by evolutionary algorithm in the literature
[13], [14], [20], [21], [22], [23], [24], [25] and revealed many
benefits in DSM scheduling. In general, according to the
statistical analysis, swarm-based algorithms are more accu-
rate and robust than evolutionary algorithms. However, evo-
lutionary algorithms are faster than swarm-based in terms of
algorithm run time. [28]. In this paper, a robust optimization
algorithm inspired by the lifestyle of grey wolves, popularly
known as grey wolf optimization (GWO) algorithm is utilized
to solve the proposed DSM minimization problem. GWO
displays remarkable reductions in peak load on utility and
cost of energy of consumers when compared with existing
research papers [20], [21], [22] having identical data sets.

The contribution of this works are as follows:
1) Themixed integer non-linear nonconvexDSMproblem

is solved with GWO algorithm which validates declin-
ing peak load on utility along with the reduced cost of
energy of consumers.

2) Integration of solar PV Energy (SPVE) in smart grid
demonstrate more reduction in the cost of energy after
deploying DSM in all the three cases.

3) The results produced by an optimization technique can
be validated by the equation of load equalization pre-
sented in this research.

III. PROBLEM FORMULATION
The load-shifting single objective strategy of DSM has been
proposed here for the optimization of peak load on utility. The
load-shifting technique of DSM is used to schedule shiftable
loads of residential, commercial, and industrial areas at
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different hours of the day to bring the final load curve closer
to the objective load curve. The objective load curve has
different value for each slot with time of use pricing (TOU)
which provides maximum benefits to consumers. The load
shifting strategy of DSM is mathematically formulated as a
single-objective minimization problem as given by (1) and
the nature of DSM minimization is nonlinear, mixed integer
having non-convex properties.

OF (t) =

(∑t=N

t=1
(PL (t) − OL (t))2

)
(1)

where OF (t) is the value of the objective function for peak
load optimization, PL(t) is the actual load consumption and
OL(t) is the objective Load at any time slot t respectively.
N is the number of one hour time slots in a day.

A. ACTUAL LOAD IN DSM WITHOUT SPVE
The actual load consumption in each slot at any time t is
given by (2). The value of the actual load is given by different
equations in DSM without SPVE and DSM with PV.

PL (t) = FL (t) + CL (t) − DL (t) (2)

Here, PL(t) and FL(t) are actual load consumption and fore-
casted load respectively and CL(t) andDL(t) are the numbers
of loads connected and disconnected at time slots t respec-
tively in the shifting process of load.

B. ACTUAL LOAD IN DSM WITH SPVE
The actual load is given by (3). For the validation of the GWO
algorithm with SPVE, an hourly generated solar energy pro-
file is considered in the simulation. While executing the algo-
rithm firstly it checks for the availability of SPVE. If SPVE
available, then iteration moves to the next execution step and
generates a random ON/OFF schedule for all the shiftable
devices. Thereafter, it calculates the power consumption of
shiftable devices and SPVE is subtracted from the summation
of shiftable devices power and base load before proceeding to
minimization of the objective function and executing all the
steps to complete the iterations. Finally, a reduction in the
cost of energy is surely achieved and increases with higher
hourly available SPVE. More reduction in peak load occurs
when SPVE is available in the slot where peak load occurs.

PL (t) = FL (t) + CL (t) − DL (t) − SPVE (t) (3)

The GWO algorithm for DSM developed has capability to
handle a huge number of controllable loads of different
natures. The designed algorithm will be able to address the
complex nature of devices such as different consumption
patterns and duration. Also, the model supports a variable
delay for different devices.

C. CONNECTED LOAD
The connected load is given by (4)

CL(t) =

∑i=t−1

i=1

∑k=n

k=1
XkitP1k

+

∑l=j−1

l=1

∑i=t−1

i=1

∑k=n

k=1
Xki(t−1)P(1+l)k (4)

Connected loadCL(t) consist of two terms, the first term is the
increase in load at time t due to the placement of devices to
this time slot and the second term represents the increment in
load at time t due to devices already scheduled for a time that
precedes time t . Here Xkit is the type k devices number that
are replaced from time slot i to t . P1k is the power consumed
at time step i for device type k. J is the operation time of type
k device and n is the nature of available devices.

D. DISCONNECTED LOAD
The disconnected load is represented by the equation-(5).
This equation comprises of two parts: the first part is the
reduction in load because of interruption given to the connec-
tion time of devices that were planned to consume energy at
time step t and the second part is due to the operation time of
devices which are operating for more than one hour. The term
in this equation has a similar meaning as that of the (4). Here,
d is the maximum interruption time in shifting the devices.

DL(t) =

∑q=t+d

q=t+1

∑k=n

k=1
XktqP1k

+

∑l=j−1

l=1

∑q=t+d

q=t+1

∑k=n

k=1
Xk(t−1)qP(1+l)k

(5)

The connection and disconnection of loads are illustrated in
Fig. 1 and Fig. 2. In Fig. 1 load A and B are shiftable but in
the current situation these creates a burden on utility. This
burden is alleviated after the implementation of the DSM
program. Fig. 2 depicts the lessening of peak load on utility.
The shiftable load A has been shifted from time slots t1, t2 to
t4, t5 and load B from t6, t7, t8 to t12, t13, and t14 respectively.

E. OBJECTIVE LOAD
In variable pricing schemes such as TOU pricing, the objec-
tive load curve is preferred load curve for the utility. The
objective load becomes an ideal load curve for the utility.
This ideal load curve offers maximum profit irrespective of
any DSM scheduling algorithm. In the TOU pricing scheme,
every optimization technique aims to attain the load curve
after DSM closer to the objective curve. In actual practice,
the load curve after shifting deviates from the objective load
curve because off-peak hours slots are not able to adjust
shiftable loads entirely. The objective load in a time slot can
be computed by the expression given in (6).

OL (t) =

{(∑24
t=1 LDBDSM(t)

)
(∑24

t=1
1

TOU(t)

)
}

TOU (t)
(6)

Here, LDBDSM(t) is the load before applying DSM and
TOU(t) is the TOU pricing at different hours of the day. Since
our main consideration in DSM is to reduce the consumer
electricity bill to motivate consumers to take part in load shift-
ing. Thus, the objective load is chosen inversely proportional
to TOU pricing which corresponds to the maximum possible
reduction in the electricity bill of end users.
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FIGURE 1. Load in different time slots before DSM.

FIGURE 2. Load in different time slots after DSM.

F. CONSTRAINTS
The required inequality constraints are given here by the (6)
and (8). Equation (9) is the required equality constraint for
the validation of an algorithm in DSM implementation.

G. INEQUALITY CONSTRAINTS

Xkit > 0, for every i, j and k (7)

That is the shiftable devices number cannot be negative.
Also, ∑t=N

t=1
Xkit ≤ Controllable (i) (8)

This constraint validates that number of shiftable devices
available in a particular time slot are only eligible for shifting
to other time slots. Here Controllable (i) is the number of type
k devices of accessible for control at time slot i.

H. EQUATION OF LOAD EQUALIZATION
The load equalization equation is the equality constraints and
indicates that the load has been moved only from one-time
slot to another time slot in minimization of objective function.
The total load before DSM and after DSM remains same and
it validates that load shifting has been taken place properly
for all shiftable devices. Although it can also be observed
from area under load curves of objective load, load before
DSM and load after DSM which will be same for all the
curves for a particular area. However, equation-(9) proves
exact load shifting by calculating load before DSM and after
DSM. Here, LDBDSM(t) is evaluated from addition of base
load with initial schedule kW in each slot and LDADSM(t) is
taken from algorithm execution.∑24

t=1
LDBDSM (t) =

∑24

t=1
LDADSM (t) (9)

I. COST OF ENERGY
In proposed algorithm peak load minimization has been for-
mulated and load after shifting is compared with objective
load to minimize the difference. The objective load corre-
sponds to minimum cost irrespective of any algorithm and
after application of DSM cost of energy must be reduced.
Here, to calculate the cost reduction (11) is utilized.

CostReduction =

∑24

t=1
LDBDSM(t) ∗ TOU(t)

−

∑24

t=1
LDADSM(t) ∗ TOU(t) (10)

The first term in this equation represents cost of energy before
DSM, which is obtained after multiplication of LDBDSM(t)
with TOU(t) in each time slot. Second term represents the
cost of energy after DSM and LDADSM(t) is the load in each
time slot after execution of algorithm. Finally, cost reduction
is obtained from the difference of two terms in (11).

IV. PROPOSED ALGORITHM FOR DSM
The implementation of DSM in the future smart grid has
a variety of challenges due to the huge number of devices
to be controlled in different areas. The devices of different
areas like residential, commercial, and industrial have an
array of constraints. Therefore, the algorithm should have
excellent intelligence power to tackle all these complexities.
Although various appliance scheduling techniques listed in
the literature have been implemented for scheduling, these
turn out to be insufficient when a huge number of controllable
devices are available for scheduling. In the proposed GWO
algorithm these difficulties are eliminated due to the inherent
capabilities of the proposed algorithm to cope up with the
scheduling of many devices having huge constraints. This
algorithm provides promising solutions to schedule devices
of a smart home to even a huge smart grid dealing with var-
ious areas like residential, commercial, and industrial. GWO
optimization algorithm is based on the hunting of wolves,
and it has been extensively utilized to optimize the various
parameters of real-world problems [29]. Grey wolves tend
to live in packs and a leader among wolves named alpha,
is selected to monitor various activities such as hunting,
sleeping, and escorting the packs. Alpha being the leader of
the pack is the decision-making body and others in the pack
must obey the instruction issued by the alpha. Also, alpha
may not be the strongest but maybe having the quality of
a manager to manage the activities of a group. The second
and third in the social hierarchy are beta and delta wolves
and must work like subordinates in an organization in which
the alpha is the leader [30]. Group hunting is the most inter-
esting behavior of grey wolves in which the main activities
performed are tracking, chasing, and approaching the prey
followed by pursuing, encircling, and harassing the prey until
it stops moving. The mathematics involved in encircling the
prey and hunting is described below.

In mathematical modelling of social behavior, alpha is
taken as the fittest solution followed by beta and delta.
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(11) and (14) represents the encircling behavior in GWO
optimization [31].

D = |CXP (t) −X (t)| (11)

X (t + 1) = XP (t) −AD (12)

Here for the current iteration t, XP (t) describes the position
of prey while X(t) is the position vector of the grey wolf. The
coefficient vectors A and C are evaluated by (13) and (14)
respectively.

A = 2 (a× r1) − a (13)

C = 2 × r2 (14)

Here r1 and r2 are random vectors between 0 and 1 and the
component of a is linearly reduced from 2 to 0 in until the
convergence of iterations. Grey wolf updates its positions
using (11) and (12) in the entire working space available for
optimization.

The hunting is driven by the instruction of alpha which is
the fittest solution, and the best three solutions alpha, beta and
delta are utilized further for evaluating the position of other
search agents. The following (15)-(17) evaluate the positions
of the remaining agents.

Dα = |C1Xα−X | , Dβ =
∣∣C2Xβ−X

∣∣ ,
Dδ = |C3Xδ−X | (15)

X1 = (Xα − A1Dα) , X2 =
(
Xβ − A2Dβ

)
,

X3 = (Xδ − A3Dδ) (16)

X (t + 1) = (X1 + X2 + X3) /3 (17)

GWO allows all other search agents to update their position
according to alpha, beta and delta followed by attacking the
prey.

Fitness Function =
1{

1 +
∑t=N

t=1 (PL (t) − OL (t))2
}
(18)

The fitness function used in GWO optimization is given
by (18). This demand side management algorithm using the
grey wolf optimization algorithm (GWO) is developed in
MATLAB which uses the load shifting technique to shift the
non-critical load in the given area. The algorithm labelled the
devices responsible for generating peaks in a time slot and a
proper shifting mechanism is used to redeploy the shiftable
devices. GWO provides a near-optimal solution to the given
problem. DSM is carried out at the start of the day and
when the DSM controller receives a request for the appliance
scheduling for the next day.

The flowchart for the execution of the GWO algorithm
shown in Fig. 3 clearly explains the GWO steps. Algorithm
initially generates the random ON/OFF schedule of devices
after validating all the constraints. The number of population
corresponds to number of ON/OFF schedule for each device
and fitness values are evaluated. Now, first best, second best
and third best fitness values corresponds to three sched-
ules of devices, identified as Xα,Xβ, and Xδ respectively.

FIGURE 3. Flowchart for execution of GWO optimization algorithm.

Now, first iteration starts and calculate the three different
values of A and C as A1, A2,A3 and C1,C2, C3 from (13)
and (14) corresponding to first fitness value termed as first
wolf. Then Evaluate Dα,Dβ,Dδ given by equation (15). Now,
values of X1, X2,X3are calculated by the expression men-
tioned in (16). Finally, X(t+1) is calculated by (17) which
is assumed to be the new best value. Now, value of fitness
function is calculated from this new value and compared with
previous value followed by replacement if better fitness value
is achieved otherwise retained for the considered solution.
Same process is repeated for all the initial generated schedule.
After completion of this step first iteration ends and algorithm
proceeds for next iteration. After the execution of all the
iteration best global schedule of all the concerned devices are
displayed. Further, a sensitivity analysis has been carried out
in GWO and observed that if population size is increased the
better result may be achieved. In case of increased number
iterations algorithm takes large run, time and may produce
improved results.

V. SMART GRID ENVIORNMENT FOR
DSM IMPLEMENTATION
A paradigm shift from the traditional grid to a smart grid
occurs through the integration of various advanced technolo-
gies such as smart sensors, measurement, and bidirectional
flow of information and energy among users and utility
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TABLE 2. Load before DSM and objective load of different areas [21].

with efficient edge computing control [32]. Dynamic pricing
scheme such as time-of-use pricing depicts an important
characteristic of a smart grid system

equipped with advanced metering infrastructure and smart
meters. With the evolution of the smart grid, the intelligent
optimization of electrical assets like the upgradation of bulk
area consumers, implementation of new technologies along
with the active participation of consumers [33]. The deploy-
ment of AdvancedMetering Infrastructure (AMI) in the smart
grid facilitates energy management in the area connected
with the grid. The feature of AMI enables the utility and
consumers equipped with smart meters to perform a variety
of activities like the bidirectional flow of information, outage
reporting, connect or disconnect request execution, reconfig-
uring after the occurrence of a fault, and billing of the con-
sumers [34]. Also, the AMI allows efficient implementation

of challenging new technologies like demand side manage-
ment. Smart meters installed in the user premises play a
vital role while executing DSM activities in the selected area.
A smart meter records the consumption of energy in user
premises and shares these data with the utility for further
processing. Smart meters can remotely schedule the user
appliance as per DSM instructions [35].

VI. RESULT AND DISCUSSION
The GWO algorithm has been examined on three different
area residential, commercial, and industrial in SG having
various types of devices. Simulations has been carried out
without SPVE andwith SPVE in all the three areas. An objec-
tive load curve is evaluated for all the three cases and actual
load curve tries to attain values close to objective load data
in each time slot. The delay provided to shiftable devices of
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FIGURE 4. Available SPVE hourly output.

TABLE 3. Controllable devices of residential area [21].

is 0 to 12 hours in [20], [21], and [22] and in proposed study
of this paper. Table 2 represents the data of load before DSM
and objective load of all the cases along with TOU pricing
which is same for all the areas. The peak load occurring in
residential, commercial, and industrial areas in this study are
1363.6 kW, 1818. kW and 2727.3 kW respectively and total
loads are 17666.21 kW, 25656.55 kW and 40470.70 kW.Here
one point must be noticed that the peak load and total load
are same in [20], [21], and [22]. The load shifting hours are
taken from the 8 AM of the current day to the 7 AM of the
following day.

A. SOLAR PV DATA SELECTION
The data on solar PV used in projected research has been
calculated using solar radiation on the earth’s surface by Pho-
tovoltaic Geographic Information System (PVGIS). PVGIS
has facilitated open access to solar PV data incidents at any

TABLE 4. Cost of energy and peak load of residential area after DSM.

FIGURE 5. DSM results of residential area with and without SPVE.

place on earth [36]. In this article, 500-kW solar PV array
data is calculated, and the available power has been utilized in
the optimization algorithm. Based on incident solar radiation
hourly available PV power is estimated here and given in
Fig.4. The same solar PV generated power is used in all the
areas to exhibit the benefits of integrating renewable energy
in the smart grid DSM environment. The solar profile used in
this research has been taken for a cloudy day which proves to
be the worst solar profile and thereby improvement in output
parameters indicates the efficacy of the proposed algorithm.

B. CASE 1. RESIDENTIAL AREA
In the GWO algorithm, the initial population and maximum
of iterations are 40 and 200 respectively. The results are
shown in detail after testing the algorithm on the residential
data of the smart grid test system. The controllable devices in
a residential area are given in Table 3 and a total of 2604 con-
trollable devices of 14 different types having different power
consumption are available for control. The forecasted load
data is evaluated with the initial slot of controllable devices
and a base load of a residential area. GWO optimization
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FIGURE 6. Convergence Graph of residential area without SPVE.

FIGURE 7. Convergence Graph of residential area with SPVE.

algorithm generates random ON and OFF schedules of con-
trollable devices for its shifting to new time slots and calcu-
lates the value of loads and cost of energy in each slot for the
current iteration. The first three best solutions are considered
for the next iteration to get the best result in the optimization
of peak load and cost of energy and finally the best scheduling
is achieved with significant reduction after the completion of
all the iteration.

The DSM results are shown in Fig. 5 and a reduction in
peak load without and with SPVE is observed as compared
with the forecasted load curve. The peak load before DSM
was 1363.6 kW and reduces to 1039.3 kW and 1031.9 kW
without and with SPVE respectively. Peak load in [20], [21],
and [22] reduces from 1363.3 kW to 1106.3, 1114.4 and
1067.15 kW respectively. The proposed algorithm gives a
maximum reduction in peak load in comparison to [20], [21],
and [22]. The peak load reduction with SPVE is more than

TABLE 5. Controllable devices of commercial area [21].

TABLE 6. Cost of energy and peak load of commercial area after DSM.

without SPVE as the worst solar profile is considered here
and SPVE is not available in that time slot.

Results of DSM with and without SPVE integration are
presented in Table 4. Results depict a remarkable reduction in
peak load of 23.76% without SPVE and 24.30 % with SPVE.

Also, the reduction in the cost of energy is 7.52 % without
SPVE and 12.55 % with SPVE as shown in Table 5. The
cost of energy before DSM was 230290 INRs and reduces
to 212950 INRs which is the maximum reduction as com-
pared with [20], [21], and [22].

The convergence graph shown in Fig. 6 and Fig. 7 con-
verges to maximize the fitness value because the fitness
function is inversely proportional to the objective function.
It means as the fitness function approaches maximum value
the objective function minimizes which in turn gives reduced
peak load and cost of energy.
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FIGURE 8. DSM results of commercial area with and without SPVE.

FIGURE 9. Convergence Graph of Commercial area with SPVE.

The proposed GWO algorithm converges in less than
10 iterations which prove its superiority over other algorithms
in the literature and the convergence graph is shown in Fig.6
and Fig. 7.

Also, during peak load on utility high running cost gener-
ators are operated to fulfil the demand and thus reduction in
peak load reduces the utility operational cost.

C. CASE 2. COMMERCIAL AREA
The controllable devices of commercials having 8 different
types of 808 devices with their power consumption are shown
in table 5.

The DSM results of the commercial area are shown in
Fig. 8 and the reduction in peak load without and with
SPVE is reduced as compared with the forecasted load curve.
The peak load before DSM was 1818.2 kW and reduces to
1438.7 kW and 1442.7 kW without and with SPVE respec-
tively. The peak load reductionwith SPVE is slightly less than

FIGURE 10. Convergence Graph of Commercial area with SPVE.

FIGURE 11. DSM results of industrial area with and without SPVE.

without SPVE as theworst solar profile is considered here and
SPVE is not available in that time slot.

It has been noticed from table 6 that a significant reduction
of 20.87% without SPVE and 20.65% with SPVE

in peak load. Also, a reduction in the cost of energy is
9.33% without SPVE and 12.42% with SPVE is achieved.
The cost of energy before DSM was 362660 INRs and
reduces to 328820 INRs without SPVE and 317600 INRs
with SPVE. The proposed algorithm gives a maximum reduc-
tion in peak load and cost as compared with [20], [21],
and [22]. The population and number of iterations taken here
are 40 and 200 respectively.

The convergence graph shown in Fig. 9 and Fig. 10 con-
verges to maximize the fitness value as the fitness function is
reciprocal to the objective function. It implies as the fitness
function approaches maximum value the objective function
minimizes which in-turning gives reduced peak load and cost
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TABLE 7. Controllable devices of industrial area.

TABLE 8. Cost of energy and peak load of industrial area.

FIGURE 12. Convergence graph of industrial area without SPVE.

of energy. The proposed GWO algorithm converges in less
than 40 iterations in commercial area appliance scheduling
without and with SPVE.

FIGURE 13. Convergence Graph of Industrial area with SPVE.

D. CASE 3. INDUSTRIAL AREA
The controllable devices of industrial area having 6 different
types of 109 devices with their power consumption are shown
in table 7. The controllable devices are the smallest among all
the three cases.

The controllable devices in industrial areas are limited and
base load or non-controllable devices are high. Industrial
devices are operated continuously for many hours.

The DSM results of the industrial area are shown in Fig. 11
and the reduction in peak load without and with SPVE is
reduced as comparedwith the forecasted load curve. The peak
load before DSM was 2727.3 kW and reduces to 2335.1 kW
and 2315.1 kW without and with SPVE respectively. The
peak load reduction with SPVE is slightly more than without
SPVE as the SPVE is available in that time slot.

The optimization results of the industrial area depicts a
significant reduction of 14.38% without SPVE and 15.11%
with SPVE in peak load as given in table 8. Here reduc-
tion in peak load with SPVE as peak load is occurring in
18-19 hours and in this time slot SPVE is available.
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Also, a reduction in the cost of energy is 18.81% without
SPVE and 20.60%with SPVE is achieved. The cost of energy
before DSM was 567510 INRs and reduces to 460760 INRs
and 450570 INRs without and with SPVE respectively. It has
been noticed here that the maximum reduction in the cost of
energy occurs in industrial areas as compared with residential
and commercial cases as bulk load consumption occurs in the
industrial area.

The proposed GWO algorithm converges in less than
20 iterations as shown in Fig. 12 and Fig. 13 demonstrating
its effectiveness in the optimization of real-world problems.

VII. CONCLUSION AND FUTURE SCOPE
The proposed DSM minimization problem has been solved
with the application of the GWO algorithm and tested on
three different cases residential, commercial, and industrial
load. The model was aimed to reduce utility peak load burden
and consumer’s cost of energy and proves a successful imple-
mentation of DSM using the GWO algorithm. The results
achieved with the worst solar profile

considered here, depict a significant reduction in cost of
energy in all the cases and open prospects for great savings
with improved solar generation profiles in future smart grid.

Thus, consumers of each area can be motivated to use more
and more renewable energy to reduce the cost of energy and
thereby reduced CO2for a sustainable green and pollution-
free environment in future energy scenarios. The prosumers
with smart control facilities can create a new sustainable
electricity cloud for future smart grid.
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