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ABSTRACT Smart control tactics, wider stability region, rapid reaction time, and high-speed performance
are essential requirements for any controller to provide a smooth, vibrationless, and efficient performance
of an in-house fabricated active magnetic bearing (AMB) system. In this manuscript, three pre-eminent
population-based metaheuristic optimization techniques: Genetic algorithm (GA), Particle swarm optimiza-
tion (PSO), and Cuckoo search algorithm (CSA) are implemented one by one, to calculate optimized
gain parameters of PID controller for the proposed closed-loop active magnetic bearing (AMB) system.
Performance indices or, objective functions on which these optimization techniques are executed are integral
absolute error (IAE), integral square error (ISE), integral time multiplied absolute error (ITAE), and integral
timemultiplied square error (ITSE). The significance of an optimization technique and objective function can
obtain only by implementing it. As a result, several comparisons are made based on statistical performance,
time domain, frequency response behavior, and algorithm execution time. Finally, the applicability of
optimization strategies in addition to the performance indices is determined with the aid of the comparative
analysis. That could assist in choosing a suitable optimization technique along with a performance index for
a high-speed application of an active magnetic bearing system.

INDEX TERMS Active magnetic bearing, genetic algorithm, cuckoo search algorithm, particle swarm
optimization.

I. INTRODUCTION
In this century, high speed becomes a trend and an
essential requirement in many research areas, like transporta-
tion, machine tools, manufacturing processes, semiconduc-
tor equipment, etc. It is well-known that active magnetic
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bearings (AMBs) are an inevitable alternative to conven-
tional bearings in high-speed applications [1]. AMB belongs
to the family of magnetic bearings which are capable of
reaching very high speeds. The function of magnetic bear-
ings rely on the phenomena of magnetic levitation [2],
the hovering of a ferromagnetic object (rotor) with the
help of a magnetic field. If the generation of the mag-
netic field is with the help of electromagnets then this
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magnetic bearing is categorized as an active magnetic
bearing [3].

For decades, active magnetic bearing (AMB) has attracted
a lot of researchers’ interest. Due to its non-contact charac-
teristic compared to traditional bearings, it has a wide range
of applications in the industry [4]. This non-contact feature of
AMB is the cause of the near-zero friction (almost zero fric-
tion) between the stationary stator and rotating rotor, which
eliminates the need for lubricants. The almost zero friction
empowers the AMB system to attend the maximum allow-
able speed with less or, no vibrations, resulting in increased
efficiency. The absence of lubricants minimizes the risk of oil
contamination and increases the maintenance intervals.

Active magnetic bearings are being used in a wide
range of applications such as Biomedical industries [5], [6],
high-speed machining [7], [8], renewable energy [9], [10],
aerospace [11] etc. Apart from the advantages, AMB has
some limitations and challenges. The presence of electro-
magnetic forces and fields in AMB causes the formation
of nonlinear Lorentz forces and electromagnetic inferences.
This makes the AMB system inherently nonlinear. Other
than these nonlinearities, the AMB system suffers from some
system-based dynamic uncertainties [12]. To deal with the
uncertainties and nonlinearities of AMB, in various research
articles authors have taken the help of some intelligent
optimization algorithms for controlling purposes. Chen and
Chang optimized a PID controller for an active magnetic
bearing system using a genetic algorithm [13]. Yanhong et al.
implemented the particle swarm optimization (PSO) algo-
rithm to optimize the PID controller for a magnetic levitation
system [14], and Štimac et al. tuned the PID controller using
the PSO algorithm. Dhyani et al. optimized a fuzzy-PID
controller using Moth -flame optimization and compare it
performance with a PID controller for active magnetic bear-
ing system [15].

Optimization methods will be used to further improve the
performance of the PID controller [16], [17]. Several pres-
tigious researchers from around the world have contributed
to this field. Like, Jain et al. implemented grey wolf opti-
mization (GWO)/proportional-integral-derivative (PID) with
IAE, ISE, ITAE, and ITSE objective functions and compared
the performance among them [18]. Izci et al. optimized a
PID controller using the slime mould algorithm (SMA) and
compared it performance with other famous metaheuristic
algorithms [19]. Ekinci et al. proposes a novel optimization
approach which is Henry gas solubility optimization with
opposition-based learning (OBL/HGO). This optimization
technique is used to find out the best parameters of the
PID controller using the integral of time multiplied absolute
error (ITAE) objective function [20]. Guo Lei et al. pro-
poses an improved mayfly algorithm based on the median
position of the group. This algorithm reduced the optimal
ITAE index value of the system when used to optimize a
PID parameters [21]. Izci et al. developed a novel hybrid
technique, arithmetic optimization algorithm- Nelder-Mead

(AOA-NM) to achieve an optimum design for automobile
cruise control [22]. Peicheng et al. combined the improved
model predictive control (MPC) with a hybrid PID control
to enhance the accuracy of path tracking in intelligent vehi-
cles [23]. Later, Ekinci et al. proposes a novel metaheuristic
optimization algorithm, logarithmic spiral-arithmetic opti-
mization algorithm (Ls-AOA) [24] and further developed
Lévy flight-based reptile search algorithm to improve the
performance of PID controller [25].

Generally, the metaheuristic optimization methods are
classified as, single solution based and population-based
metaheuristic optimization techniques [26]. Single-solution
based metaheuristics are pattern search, simulated anneal-
ing, tabu search etc. and population-based optimization tech-
niques are GA, artificial bee colony, PSO etc. There is
not any accessible way via a best optimization method
may be picked among the numerous available optimization
approaches. The only way to know the efficacy of any opti-
mization approach is by applying it in any problem. The
relevance of the particular optimization approach is demon-
strated by the obtained outcomes of that problem. In certain
cases, the same optimization approach may perform differ-
ently in multiple applications. In this study, the impact of
three distinct optimization approaches on the proposed sys-
tem will be examined. The very first will be the most famous
evolutionary-based optimization algorithm i.e., the Genetic
algorithm, which can apply to almost all complex problems
and systems. The second is a swarm-based optimization
algorithm, i.e., PSO. The absence of a genetic operator in
PSO makes it much more flexible and versatile. And the
third optimization method is CSA which is based on the
brood breeding strategy of several species of cuckoo birds.
As compared to other optimization method CSA have fewer
tuning parameter which makes it simpler to use and faster in
execution. A comparison of their results will demonstrate the
effectiveness of each optimization approach.

The novelty of the manuscript is represented as depicted in
Figure 1 and as follows-

1. In-house prototype of an active magnetic bear-
ing system is fabricated. The electromagnet and rotor
are made of ferromagnetic material having a higher
value of relative permeability (5000 for the electromag-
net and 11000 for the rotor). The copper coils (hav-
ing relative permeability ≈ 1) are wounded on the
electromagnet.

2. Nonlinearities and dynamic uncertainties of AMB sys-
tems make them complex to analyze and design. Therefore,
using the physical parameters of the proposed AMB system a
transfer function is calculated at a nominal point of operation
(io, xo).

3. For better controlling and bearing action, the Genetic
algorithm, particle swarm optimization algorithm, and
cuckoo search algorithm are used to calculate the gain val-
ues of the PID controller. Which is in the proposed closed
loop.
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FIGURE 1. Core contribution of the manuscript.

FIGURE 2. In-house prototype of proposed active magnetic bearing
(AMB) system.

4. Each metaheuristic optimization algorithm is calibrated
on the scale of four performance indexes (IAE, ISE, ITAE,
and ITSE).

5. A fair comparison is carried out among these algorithms
on the basis of their transient state performance incorporated
with a bode plot, root locus plot, and Nyquist plot analysis.
Further, parameters for compassion are statistical analysis
and fastness in the execution of the algorithm.

The organization of the manuscript is arranged as follows:
Section II deals with the study of the constructional and

linearized model of the proposed active magnetic bearing
(AMB) system. Section III comprises of Application of opti-
mization techniques for AMB system along with necessary
flow charts. Section IV deals with the results and discus-
sion which comprises of implementation of considered algo-
rithms for proposed AMB system. Section V comprises of
performance study and analysis of prosed system, finally

FIGURE 3. Simplified diagram of the active magnetic bearing system.

section VI concludes the complete carried-out out work and
future description of the work for future researchers.

The flowcharts for the three optimization strategies that
were chosen are briefly described in Section III. The perfor-
mance evaluation of various optimization approaches with
various objective functions is the main emphasis of Sec-
tion IV, followed by concluding observations.

II. PROPOSED IN-HOUSE MODEL OF AMB SYSTEM
In house model of the proposed active magnetic bearing
(AMB) system is shown in Figure 2. The electromagnet and
rotor are made of ferromagnetic material having a higher
value of relative permeability (5000 for the electromagnet and
11000 for the rotor) [27]. The copper coils (having relative
permeability ≈ 1) are wounded on an electromagnet having
N numbers of turns.

In Figure 3, the position sensor detects the rotor’s current
location and creates a signal equivalent to the position. The
difference between the reference signal (a unit step signal)
and the position sensor’s signal is an error signal. This error
signal shows the deviation of the rotor from its actual or nom-
inal position. To get the rotor to align in the nominal position
a controller is implemented to produce a controlling signal
which is further fed to the power amplifier [28], [29]. The
power amplifier generates the required current and energies
the coils of the electromagnet to create a sufficient magnetic
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TABLE 1. In-house model parameter of the proposed AMB system.

force for maintaining the rotor position at the nominal point
of operation, against gravity.

Nonlinearities and dynamic uncertainties of AMB systems
make them complex to analyze and design. Therefore, for a
nominal point (io, xo) of operation, the proposed system is
linearized [30], [31] and can be written in a transfer function
form as depicted in Equation 1, [32],

1X (s)
1I (s)

= −
Ka

ms2 − Kz
(1)

where,Ka andKz are force constants whose values depend on
the physical parameters of the AMB system that is shown in
Table 1. 1X (s) is s-domain transformation of a small change
1x (t) in the position of the rotor and due to this the change
in the coil current 1i (t) in s-domain is 1I (s).

For a nominal point of operation, the proposed AMB sys-
tem is calculated in a form of a transfer function using the
data available in Table 1. i.e.,

CAMB =
1X (s)
1I (s)

=
7.69

s2 − 1877.49
(2)

In this study, all of the optimizations are performed for the
nominal point (Equation 2) of operation. This will help in
making a clear and fair comparison among the performances
of optimization techniques. The next section will discuss the
optimization techniques which have been implemented for
the proposed system.

III. APPLICATION OF OPTIMIZATION TECHNIQUES FOR
AMB
A. GENETIC ALGORITHM (GA)
In the area of problem-solving, genetic algorithms (GA) have
been used for almost four decades. In 1970, Holland was
the first to propose the basic ideas of a Genetic Algorithm
[33]. This pioneer idea of problem-solving was a substantial
addition to scientific and engineering applications. Thanks
to the work of scholars and engineers all across the world,
GA development has reached a mature stage. It has grown
rapidly as a result of the widespread availability of low-cost,
high-speed tiny computers.

A genetic algorithm is an optimization approach that draws
inspiration from the biological process of natural selection,
in which the most adaptive and fit individuals succeed [34].

FIGURE 4. Flowchart of Genetic algorithm (GA).

Because of the GA’s inherent properties, a genetic search
may be well adapted to multi-objective optimization prob-
lems. Amajor characteristic is its multi-directional and global
search, which is accomplished by keeping a population of
potential solutions from generation to generation. It is a
stochastic type nonlinear optimization technique. Adaptabil-
ity, robustness, and flexibility are the three major advan-
tages of the GA optimization technique [35]. Applications
of GA are not limited, wherever a global search is required
with a better robustness, GA is the very first choice for the
researchers and engineers. Although, in literature, applica-
tions of GA are in pattern and system identification [36], [37],
control [38], [39]& robotics [40], engineering designs [41],
nonlinear system identification and optimization [42] and
many more.

The GA has a few mathematical requirements for solving
problems and can handle a wide range of objective func-
tions and constraints. Because of their evolutionary character,
GA can look for answers regardless of the inner working of
the problem. Figure 4 shows a flowchart of GA optimization
technique [43].

Genetic Algorithm optimization starts with defining the
initial population which is basically a set of possible solu-
tions in a finite range to the given objective function. Each
element of the set is termed a ‘chromosome’ on which genetic
operators (i.e., selection, crossover, and mutation) perform
the optimization. Referring to Figure 4, after evaluation, if the
optimum solution is not achieved then the selection operator
begins to choose individuals for producing offspring based
on their fitness score or, fitness value. The popular selec-
tion schemes are tournament selection, rank-based selection,
roulette-wheel selection, etc. A comparison among these
selection schemes is given in [44]. Individuals selected by
the selection operator will go for crossover operation. This
is the main variation operator which combines usually two
individuals by exchanging some of their parts and generating
offspring. Techniques to implement crossover operation are-
single-point, n-point, uniform crossover, etc. The probability
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per individual to go through the crossover is defined by the
crossover probability (pc), an externally derived parameter.
The range of pc is [0.6,1.0] [45]. The next step is mutation;
it randomly alters each chromosome of offspring with a
probability known as mutation probability (pm). Value of pm
is typically less than 1% [46]. Greater the value of pm will
change the GA into a local search rather than a global search.

B. PARTICLE SWARM OPTIMIZATION (PSO) ALGORITHM
A stochastic-type method based on swarm intelligence
is called particle swarm optimization (PSO). Kennedy
and Eberhart introduced the PSO algorithm in their arti-
cle in 1995 [47]. The genetic algorithm and PSO both
are stochastic-type population-based algorithms. But PSO
doesn’t have genetic operators and the absence of this oper-
ator made it much more flexible and simpler. In PSO, all
population members will participate and survive in the opti-
mization process from the very beginning to the end [48].

The main feature of a swarm-intelligence-based algorithm
is self-organization, a process in which an initial disorder
populace (called a swarm) arranges itself in coordination only
by local interaction between them and the learning experience
of their own members [49]. Self-organization in birds, fish,
insects, and herds is a natural behavior for searching for
food, hunting, etc. Application of PSO is- renewable energy
area [50], automation and control [51], medical [52] and
biological engineering [53], operation research [54], and so
forth. In a number of studies, the PSO algorithm has been
shown to be a successful optimization technique. A rela-
tively complete flowchart of the PSO algorithm is depicted in
Figure 5 [47],
Explaining the flowchart mathematically, for a swarm size

of n, in an M-dimensional space, the initial parameters are-
The position vector of particles (Yi),

(Yi) = (yi1, yi2, . . . yim, . . . yiM )

The velocity vector of particles (Vi),

(Vi) = (vi1, vi2, . . . vim, . . . viM )

The optimal position of each particle (Pi),

(Pi) = (pi1, pi2, ..pim, ..piM )

The optimal position of swarm (Pg),(
Pg

)
=

(
pg1, pg2, . . . pgm, . . . pgM

)
At each position of the particle, the objective function is eval-
uated and then the particle position and velocity are updated
by Equation 3 and Equation 4,

ymi,t+1 = ymi,t + vmi,t+1 (3)

vmi,t+1 = vmi,t+c1∗r1 ∗
(
pmi,t−y

m
i,t

)
+

(
c2 ∗ r2 −

(
pmg,t−y

m
i,t

))
(4)

Here, c1 = Cognitive parameters, c2 = Social parameters,
r1 and r2 are random numbers between 0 and 1. Subscript

FIGURE 5. Flowchart representation of particle swarm optimization (PSO)
algorithm.

‘t + 1’ shows the updated values and subscript ‘t’ shows the
current value. pmi and pmg are best-remembered individual’s
particle position and swarm position respectively.

C. CUCKOO SEARCH ALGORITHM (CSA)
Yang and Deb introduced the well-known optimization tech-
nique Cuckoo search (CS) in 2009 [55]. This metaheuris-
tic algorithm mimics the brood breeding strategy of several
species of cuckoo birds, together Lévy flight behavior of
some [56]. Some cuckoo species lays their eggs in other bird
nests at first. However, host birdsmay discover that these eggs
are not their own (with a probability of pa) and may either
destroy or abandon them [57]. This indicates that the number
of nests will decrease with each generation, thus it is believed
that the hosting bird that abandoned his nest would establish a
new nest in a different area therefore maintaining the number
of nests constant between generations and introducing varia-
tion to the CS algorithm via fresh nest location [58].

In CSA, the random walk is based on Lévy flight which
makes it most efficient from the perspective of performance
and speed. There are various research fields in which cuckoo
search algorithm has been implemented for optimization [59],
[60]. The flowchart for CSA is depicted in Figure 6.
Newly generated cuckoo (x t+1

i ) using Lévy flight is given
by,

x t+1
i = x ti + α ⊕ Lévy (λ) (5)

where, α is the step size which varies according to the prob-
lem andmostly α = 1. The symbol⊕ shows entry wise multi-
plication. The Lévy flight gives basically a randomwalk, with
the random step length selected from an Lévy distribution.
Equation 6 has infinite variance with an infinite mean.

Lévy ∼ u = t−λ (6)

IV. RESULTS AND DISCUSSION
To implement any optimization technique, the basic require-
ment is to select an objective function. The variable of the
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FIGURE 6. Flowchart representation of cuckoo search algorithm (CSA).

objective function should have the ability to affect the closed-
loop performance. In this manuscript, the gains of a PID
controller (i.e., Proportional gain KP, Integral gain (KI ) and
Derivative gain (KD)) are considered as variables. By chang-
ing the values of these variables, the error signal (difference
between the reference signal and feedback signal) is tried
to be minimized with the help of objective functions. Such
that the closed loop’s performance is steady and exhibits the
fewest oscillations at its normal operating point.

e(t) = r(t) − y(t) (7)

e(t)=Error Signal, r(t) is reference signal and y(t) is feedback
signal.

Performance analysis is conducted using four objective
functions with the use of three optimization techniques, the
goal here is to reduce the error which is input to the controller.
These four objective functions are-

1. Integral of absolute error (IAE)- It integrates the square
of error over time.

IAE =

∫ T

0
|e(t)| dt (8)

2. Integral of squared error (ISE)- IAE integrates the absolute
error over time.

ISE =

∫ T

0
e2 (t) dt (9)

3. Integral of time multiplied absolute error (ITAE)- ITSE
integrates the square of the error multiplied with time over
time.

ITAE =

∫ T

0
t |e(t)| dt (10)

4. Integral of time multiplied squared error (ITSE)- ITAE
integrates the absolute error multiplied by the time over time.

ITSE =

∫ T

0
t.

(
e2(t)

)
dt (11)

The above objective functions are implemented in opti-
mization methods to calculate the gains values of the PID

FIGURE 7. Implementation of optimization techniques in the AMB system.

TABLE 2. Required initialization parameters for genetic algorithm.

controller as shown in Figure 7. These gains are then fed to
the PID controller to maintain the close loop stable, at the
equilibrium point of operation.

The proposed system is briefed in section II of this
manuscript. The linearized transfer function at the normalized
operating point (Equation 2) is implemented in a closed-loop
form with a PID controller as shown in Figure 7. The ref-
erence signal r(t) is a unit step signal which is compared
by the feedback signal c(t) (having numerical value) and
generates an error signal e(t). The objective functions chosen
in this paper are based on the error profile of the system.
The error signal value is then implemented in these objective
functions (IAE, ISE, ITAE, and ITSE), and using different
optimization techniques PID controller gains are calculated
(for the proposed AMB system at a nominal operating point).

A. IMPLEMENTATION OF GENETIC ALGORITHM (GA)
Several parameters must be defined during the GA initial-
ization procedure, and those parameters, along with their
assumed values for optimization, are listed in Table 2.
The gain parameters of the PID controller for the proposed

closed-loop system are computed using the parameters listed
in Table 2 by running the genetic algorithm separately for four
different objective functions. The optimized gain parameters
have been achieved and are shown in Table 3.
A transfer function is formed for each objective function

using the gain parameters value. Utilizing these controller
transfer functions with the AMB transfer function (Equation
2) in a closed loop and by applying a unit step signal (for a
duration of 0.15sec), its response on a proposed closed loop
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TABLE 3. PID gain parameters value optimized by GA technique.

FIGURE 8. (a) Unit step response of proposed closed-loop system
realized by enforcing GA, (b) Magnified for duration 0.006sec-0.026sec.

is observed as depicted in Figure 8(a). A tighter step response
plot with overshoot values over the time of 0.006sec-0.026sec
is depicted in Figure 8(b).

Transient state parameters and phase margin have been
evaluated and are presented in Table 4with the help of the step
response depicted in Figure 8. where, Ess is steady state error,
J is the final value of the objective function and P.M is phase

TABLE 4. Using GA technique -time domain analysis parameters, final
value of performance indies and phase margin values.

TABLE 5. Initialization parameters for PSO algorithm.

margin in degree, %MP is percentage peak overshoot, tr , tp,
ts are rise, peak, and settling times in seconds respectively.
Data of transient state parameters listed in Table 4 shows

that ITSE objective function has minimum value %Mp, tr and
tp of as compared to other objective functions. This results in
a faster and smoother control of the proposed system.

To analyze the stability of the proposed closed loop with
GA optimized PID controller, bode plot is obtained as
depicted in Figure 9 and Table 4 shows that ITSE objective
function has maximum value of phase margin which repre-
sents a wide control region for the system.

For further analysis, the root locus plot and Nyquist plot
are observed as shown in Figure 10. Depending upon the
open loop transfer function of the controller along with
the proposed system and feedback gain of position sen-
sor root locus plot is obtained for different objective func-
tions. The stability of the system is further verified with
the help of the Nyquist plot. Here, for all of the objective
functions, (−1,0) coordinate is encircled in anticlockwise
direction. Which confirms that the closed loop system is
stable.

The genetic algorithm with ITSE objective function shows
almost the fastest and smoothest step response for the pro-
posed system.

B. IMPLEMENTATION OF PARTICLE SWARM
OPTIMIZATION (PSO)
For three-dimensional space, the initial parameters required
for the execution of the PSO algorithm with their assumed
values are placed in Table 5.
The algorithm is executed using the flowchart shown

in Figure 5. After the completion gains the value
of the PID controller is obtained which is listed in
Table 6 in conjunction with the controller transfer
function.
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FIGURE 9. Bode plot with gain margin and phase margin values of (a) GA-IAE (b) GA-ISE (c) GA-ITAE and (d) GA-ITSE.

TABLE 6. PID gain parameters value optimized by PSO technique.

Similar to GA, here again to the proposed system a unit
step signal of 0.15sec duration is applied and step response is
realized as shown in Figure 11 with cramped step response of
duration 0.004sec-0.018sec.

Time domain analysis is carried out on the step response
and its parameters are calculated which are listed in Table 7.

For the above Table 7, it is realized that the ITSE objective
function has the least overshoot with the second-best rise

TABLE 7. Using PSO technique -time domain analysis parameters, final
value of performance indies, and phase margin.

time. Other than ITSE the peak overshoot of the remaining
objective function is almost the same but with ISE rise time is
minimum. From the phase margin value, it is clear that ITSE
shows the greatest stability region. The Bode plot for these
objective functions with the detailed value of gain margin and
phase margin is depicted in Figure 12.

For various objective functions, a root locus plot is created
based on the controller’s open loop transfer function and the
proposed system.
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FIGURE 10. Enforcing GA with objective functions- (a) root locus plot,
(b) Nyquist Plot.

TABLE 8. Initialization parameters of cuckoo search algorithm.

The system’s stability is validated using the Nyquist plot.
In this case, the (−1,0) coordinate is wrapped in an anticlock-
wise orientation for all objective functions. This validates the
closed-loop system’s stability. Both the root locus plot and
Nyquist plot is shown in Figure 13.

From the perspective of time domain analysis and phase
margin, it is evident that PSO-ITSE has a better and more
stable performance.

C. IMPLEMENTATION OF CUCKOO SEARCH ALGORITHM
(CSA)
The initialization of the cuckoo search algorithm requires a
few parameters, which are provided in Table 8.

FIGURE 11. (a) Unit step response of proposed closed-loop system
realized by enforcing PSO, (b) Magnified for duration 0.004 sec -
0.018 sec.

TABLE 9. PID gain parameters value optimized by CSA technique.

For PID controller the gain parameters i.e., KP,KI and KD
are calculated using flowchart of CSA shown in Figure 6 for
four different objective functions and the realized values are
shown in Table 9.
The PID controller transfer function from Table 9 is used in

a closed loop formwith the proposed system, and a step signal
of unit amplitude for 0.15sec is given as input to the system.
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FIGURE 12. Bode plot with gain margin and phase margin values of (a) PSO-IAE (b) PSO-ISE (c) PSO-ITAE and (d) PSO-ITSE.

This yields the suggested system’s step response, as shown
in Figure 14(a), and a closer step response with a duration of
0.005sec-0.022sec is also displayed in Figure 14(b).

The goal of charting step response is to acquire and
evaluate the time domain behavior of a closed loop sys-
tem with optimum PID controller gain settings. Table 10,
displays all of the transient state characteristics of the pro-
posed system, as well as the goal function value and phase
margin.

Table 10, shows that ITSE has the least overshoot with a
faster rising and settling time, followed by the ITAE objective
function. The performance of the IAE and ISE objective
functions is nearly identical, with a little variance in peak
overshoot and settling time. In this case, the phase margin
of the ISE objective function is greater than that of the other
objective functions. However, ITSE has still the best overall
performance. Figure 15 shows a bode plot with the value of
the gain margin and phase margin of the CSA algorithm with
all goal functions.

TABLE 10. Time domain analysis parameter, final value of objective
function and phase margin with CSA.

A root locus plot is generated for each goal function based
on the controller’s open loop transfer function and the pro-
posed system.

The Nyquist plot is used to assess the system’s stability.
For all objective functions, the (−1,0) coordinate is enclosed
in an anticlockwise direction. This confirms the stability of
the closed-loop system. Figure 16 shows both the root locus
plot and the Nyquist plot.
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FIGURE 13. Enforcing PSO with objective functions- (a) root locus plot,
(b) Nyquist Plot.

Here, again among all of the objective functions ITSE
shows a better performance. Further in this paper, on the
basis of statistical information of algorithm, time domain
analysis, phase margin, and algorithm execution time, the
performance of these optimization strategies with various
objective functions is compared.

V. PERFORMANCE EVALUATION OF ALGORITHMS USING
VARIOUS OBJECTIVE FUNCTIONS FOR GA, PSO, AND CSA
For a fair comparison among these three optimization tech-
niques. All of the algorithms are executed for 100 number
of iterations for four different objective functions. Figure 17
shows how the value of the goal function varies with the
number of iterations. Minimum limit maximum limit of gain
parameters and major factor of algorithm (swarm size for
PSO, no. of host nests for CSA and population for GA) is
kept equal.

The calculated values of the objective function for all
objective functions in the CSA and GA algorithms reduce
as the number of iterations rises. In contrast, using the PSO

FIGURE 14. (a) Unit step response of proposed closed-loop system
realized by enforcing CSA, (b) Magnified for duration, 0.006 sec -
0.022 sec.

method, the objective function value drops for a period of
time until being saturated at the optimized value.

1) BASED ON INFORMATION FROM STATISTICAL ANALYSIS
The scientific method of statistical analysis enables us to
deepen our comprehension of data analysis and draw out per-
tinent information from readily available data. In this work,
the statistically performance of the algorithms is observed and
analyzed. Data of several statistical parameters- mean, stan-
dard deviation, and variance, are collected and displayed in
Table 11- Table 13. In addition, for 100 iterations, the objec-
tive function’s minimal highest, and the difference between
minimal and highest values are realized and recorded.

En bloc, data from Table 11-Table 13 are analyzed and a
comparison is observed as illustrated in Figure 18.

The main objective is to gain a complete understanding
of how statistical data parameters evolve over time. Here,
Mean - displays the objective function’s ultimate value, and
it is evident from Figure 18(a) that the IAE, followed by the
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FIGURE 15. Bode plot with gain margin and phase margin values of (a) CSA-IAE (b) CSA-ISE (c) CSA-ITAE and (d) CSA-ITSE.

ISE, offers the objective function’s greatest value. On the
other hand, ITSE enhances and drastically lowers the value of
the objective function. The second-best minimal value of the
objective function is provided by the ITAE objective function.

The amount of statistical dispersion of data points
analogous to its mean is defined as standard deviation. Math-
ematically, the standard deviation is the square root of vari-
ance. Both of these measures demonstrate variability in data
distribution. In this analysis, the standard deviation and vari-
ance data comparison plot is illustrated in Figure 18(b) and
Figure 18(c) respectively.

2) BASED ON INFORMATION COLLECTED FROM PHASE
MARGIN AND TRANSIENT STATE ANALYSIS
The proposed closed-loop system’s stabilization is the main
objective of this work to ensure smooth and effective bearing
functioning. Transient state analysis may be used to assess
how well the suggested closed loop functions and observa-
tions on stability can be made by looking at the phase margin

TABLE 11. Statistical analysis data of genetic algorithm.

of the system. The values of several transient state param-
eters, including peak overshoot, rising time, peak time, and
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FIGURE 16. Enforcing CSA with objective functions- (a) root locus plot,
(b) Nyquist Plot.

TABLE 12. Statistical analysis data of particle swarm optimization.

settling time, for the proposed system with various optimiza-
tion strategies are shown in Tables 4, Table 7, and Table 10.
A comparison is made using these transient state and phase
margin information, as shown in Figure 19.

TABLE 13. Statistical analysis data of cuckoo search algorithm.

TABLE 14. Algorithm execution time for 100 iterations.

For an AMB system, the required features for designing
a controller are less vibration, faster response, and a large
stability region. Here, in Figure 19(a) from the comparison
it is observable that CSA-ITSE has a minimum value of
peak overshoot followed by GA-ITSE and then CSA-ITAE.
The lesser the value of peak overshoot smaller will be the
yank at the nominal point of operation. Therefore, CSA-
ITSE will be the best choice among the other optimization
techniqueobjective function combinations.

In a closed loop response of the controller must be rapid.
This response comprises rise time, peak time, and ultimately
the observation is made on the value of settling time. Smaller
the value of settling time faster the response of the sys-
tem. It may observe from Figure 19(b), Figure 19(c), and
Figure 19(d) that PSO-ISE and GA-ITSE have a minimum
value of rising time followed by CSA-ITSE. PSO-ISE has
the smallest value of peak time and settling time. GA-IAE has
the second-best peak and settling time and CSA-ITSE has the
third-smallest peak and settling time.
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FIGURE 17. GA, PSO and CSA optimized objective function value (a) IAE, (b) ISE, (c) ITAE, and (d) ITSE, for 100 no. of iterations.

Apart from peak overshoot and speed of response, stabil-
ity is also a major factor from the perspective of controller
design. The larger the value of the phase margin denotes the
wider the stability region. From Figure 19(e) it is clear that
CSA-IAE and PSO-ITSE have a maximum value of phase
margin followed by CSA-ITSE and GA-ITSE.

3) BASED ON THE DURATION OF AN ALGORITHM’S
EXECUTION
Time taken by the algorithm to produce the desired outcome
depends on various factors like objective function, system
configuration, the complexity of the closed loop, no. of iter-
ations, etc. In this article, a performance comparison of opti-
mization techniques is carried out by assuming that all system
and environmental factors are identical.

Execution time for optimization techniques with respect
to the objective function for 100 no. of iteration is listed in
Table 14 and the corresponding plot is depicted in Figure 20.

Minimum algorithm execution time is taken by CSA
followed by GA and then PSO. Among the optimization

technique-objective function combination, CSA-IAE took
minimum time and then CSA-ITSE.

VI. CONCLUSION
The linearized transfer function of the proposed AMB sys-
tem is unstable, requiring the inclusion of a PID controller
in a closed loop for stable bearing operation. The gains of
the PID controller play an important role in making the
closed loop stable, and they may be computed using either
traditional methods or intelligent optimization approaches.
In this study, the gain values of the controller are estimated
utilizing three distinct optimization strategies (GA, PSO, and
CSA) with four different goal functions (IAE, ISE, ITAE,
and ITSE). Statistically, the performance of each optimization
technique with every objective function is obtained. Further,
time domain analysis and frequency response analysis of
the proposed closed loop is calculated. Later, the algorithm
execution time for 100 no of iterations is obtained. From
comparing these data, it is found that-

• The lowest value of the objective function is obtained by
ITSE and then ITAE objective function.
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FIGURE 18.AQ:5 Computation based on information of statistical analysis (for 100 no of iterations): (a) Mean, (b) Standard deviation, (c) Variance and
(d) Difference between highest and minimal value of objective function.
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FIGURE 19. Comparative inspection of time domain analysis data: (a) Peak overshoot (%), (b) Rise time (in
seconds), (c) Peak time (in seconds), (d) Settling time (in seconds) and (e) Phase Margin (in degree)).
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FIGURE 20. Algorithm execution time for 100 iterations.

• Parameters of time domain and frequency response anal-
ysis show that minimum peak overshoot is acquired by
ITSE whereas the fastest response time is shown by
PSO-ISE and then optimization techniques with ITSE
objective function.

• CSA-ISE, followed by CSA-ITSE, takes the shortest
amount of time to execute an algorithm.

The choice of optimization strategies and objective func-
tions in terms of their effectiveness and efficiency is well
illustrated by this comparative study analysis. An application
where better closed-loop response along with quick control-
ling is essential, ITSE objective function optimized by cuckoo
search algorithm will be a smart choice.

Although the metaheuristic optimization techniques are
capable to provide improved control of the active magnetic
bearing system as compared to conventional controlling
methods. But by considering other innovative Artificial
intelligence-based controlling strategies like deep neural
network-based model predictive control tactics, the overall
performance of the proposed system can be further improved
in real-time.

With the help of the observation made in this manuscript.
The effectiveness and applicability of GA, PSO, and CSA are
studied which can be further used in such complex systems
like electric vehicles (EVs), flywheel energy storage systems,
and many more.

CONFLICT OF INTEREST
The authors declare no conflicts of interest to disclose.

REFERENCES
[1] G. Schweitzer, H. Bleuler, and A. Traxler, ‘‘Basics, properties and appli-

cations of active magnetic bearings,’’ Act. Magn. Bearings, vol. 210,
pp. 1–112, Jan. 1994.

[2] P. K. Sinha, Electromagnetic Suspension: Dynamics and Control. Steve-
nage, U.K.: Peregrinus, 1987.

[3] G. Schweitzer and E. H. Maslen, Magnetic Bearings: Theory, Design,
and Application to Rotating Machinery, vol. 1. Berlin, Germany: Springer,
2009.

[4] G. Schweitzer, ‘‘Mechatronics—A concept with examples in active mag-
netic bearings,’’Mechatronics, vol. 2, no. 1, pp. 65–74, Feb. 1992.

[5] H. Hoshi, T. Shinshi, and S. Takatani, ‘‘Third-generation blood pumps with
mechanical noncontact magnetic bearings,’’ Artif. Organs, vol. 30, no. 5,
pp. 324–338, May 2006.

[6] T. Akamatsu, T. Nakazeki, and H. Itoh, ‘‘Centrifugal blood pump with
a magnetically suspended impeller,’’ Artif. Organs, vol. 16, no. 3,
pp. 305–308, 1992.

[7] A. Smirnov, N. Uzhegov, T. Sillanpää, J. Pyrhönen, and O. Pyrhönen,
‘‘High-speed electrical machine with active magnetic bearing system opti-
mization,’’ IEEE Trans. Ind. Electron., vol. 64, no. 12, pp. 9876–9885,
Dec. 2017.

[8] A. C. Wroblewski, J. T. Sawicki, and A. H. Pesch, ‘‘Rotor model updating
and validation for an active magnetic bearing based high-speed machining
spindle,’’ J. Eng. Gas Turbines Power, vol. 134, no. 12, Dec. 2012.

[9] M. A. Pichot, J. P. Kajs, B. R.Murphy, A. Ouroua, B.M. Rech, R. J. Hayes,
J. H. Beno, G. D. Buckner, and A. B. Palazzolo, ‘‘Active magnetic bearings
for energy storage systems for combat vehicles,’’ IEEE Trans. Magn.,
vol. 37, no. 1, pp. 318–323, Jan. 2001.

[10] J. R. Fang, L. Z. Lin, L. G. Yan, and L. Y. Xiao, ‘‘A new flywheel energy
storage system using hybrid superconducting magnetic bearings,’’ IEEE
Trans. Appl. Supercond., vol. 11, no. 1, pp. 1657–1660, Mar. 2001.

[11] H. Bangcheng, Z. Shiqiang,W.Xi, andY.Qian, ‘‘Integral design and analy-
sis of passive magnetic bearing and active radial magnetic bearing for agile
satellite application,’’ IEEE Trans. Magn., vol. 48, no. 6, pp. 1959–1966,
Jun. 2012.

[12] G.-P. Ren, Z. Chen, H.-T. Zhang, Y. Wu, H. Meng, D. Wu, and H. Ding,
‘‘Design of interval type-2 fuzzy controllers for active magnetic bearing
systems,’’ IEEE/ASMETrans.Mechatronics, vol. 25, no. 5, pp. 2449–2459,
Oct. 2020.

[13] H.-C. Chen and S.-H. Chang, ‘‘Genetic algorithms based optimization
design of a PID controller for an active magnetic bearing,’’ Int. J. Comput.
Sci. Netw. Secur., vol. 6, no. 12, pp. 95–99, 2006.

[14] Z. Yanhong, Z. Zhongqiao, Z. Jiansheng, and Y. Lei, ‘‘Research on PID
controller in active magnetic levitation based on particle swarm optimiza-
tion algorithm,’’Open Autom. Control Syst. J., vol. 7, no. 1, pp. 1870–1874,
Oct. 2015.

[15] A. Dhyani, M. K. Panda, and B. Jha, ‘‘Moth-flame optimization-based
fuzzy-PID controller for optimal control of active magnetic bearing
system,’’ Iranian J. Sci. Technol., Trans. Electr. Eng., vol. 42, no. 4,
pp. 451–463, Dec. 2018.

[16] D. Izci, B. Hekimoğlu, and S. Ekinci, ‘‘A new artificial ecosystem-
based optimization integrated with Nelder–Mead method for PID con-
troller design of buck converter,’’ Alexandria Eng. J., vol. 61, no. 3,
pp. 2030–2044, Mar. 2022, doi: 10.1016/j.aej.2021.07.037.

[17] D. Izci, S. Ekinci, and S. Mirjalili, ‘‘Optimal PID plus second-order
derivative controller design for AVR system using a modified Runge
Kutta optimizer and Bode’s ideal reference model,’’ Int. J. Dyn. Control,
vol. 2022, pp. 1–18, Oct. 2022, doi: 10.1007/s40435-022-01046-9.

[18] N. Jain, G. Parmar, R. Gupta, and I. Khanam, ‘‘Performance evaluation
of GWO/PID approach in control of ball hoop system with different
objective functions and perturbation,’’Cogent Eng., vol. 5, no. 1, Jan. 2018,
Art. no. 1465328, doi: 10.1080/23311916.2018.1465328.

[19] D. İzci, S. Ekinci, and S. Ekinci, ‘‘Comparative performance anal-
ysis of slime mould algorithm for efficient design of proportional–
integral–derivative controller,’’ Electrica, vol. 21, no. 1, pp. 151–159,
Jan. 2021.

12116 VOLUME 11, 2023

http://dx.doi.org/10.1016/j.aej.2021.07.037
http://dx.doi.org/10.1007/s40435-022-01046-9
http://dx.doi.org/10.1080/23311916.2018.1465328


S. Gupta et al.: Metaheuristic Optimization Techniques Used in Controlling of an Active Magnetic Bearing System

[20] S. Ekinci, B. Hekimoğlu, and D. Izci, ‘‘Opposition based Henry gas
solubility optimization as a novel algorithm for PID control of DC motor,’’
Eng. Sci. Technol., Int. J., vol. 24, no. 2, pp. 331–342, Apr. 2021, doi:
10.1016/j.jestch.2020.08.011.

[21] G. Lei, X. Chang, Y. Tianhang, and W. Tuerxun, ‘‘An improved mayfly
optimization algorithm based on median position and its application in the
optimization of PID parameters of hydro-turbine governor,’’ IEEE Access,
vol. 10, pp. 36335–36349, 2022, doi: 10.1109/ACCESS.2022.3160714.

[22] D. Izci, S. Ekinci, M. Kayri, and E. Eker, ‘‘A novel improved arithmetic
optimization algorithm for optimal design of PID controlled and Bode’s
ideal transfer function based automobile cruise control system,’’ Evolving
Syst., vol. 13, no. 3, pp. 453–468, Jun. 2022, doi: 10.1007/s12530-021-
09402-4.

[23] S. Peicheng, L. Li, X. Ni, and A. Yang, ‘‘Intelligent vehicle path tracking
control based on improved MPC and hybrid PID,’’ IEEE Access, vol. 10,
pp. 94133–94144, 2022, doi: 10.1109/ACCESS.2022.3203451.

[24] S. Ekinci, D. Izci, M. R. A. Nasar, R. A. Zitar, and L. Abualigah,
‘‘Logarithmic spiral search based arithmetic optimization algorithm with
selective mechanism and its application to functional electrical stimulation
system control,’’ Soft Comput., vol. 26, pp. 12257–12269, Apr. 2022, doi:
10.1007/s00500-022-07068-x.

[25] S. Ekinci, D. Izci, R. A. Zitar, A. R. Alsoud, and L. Abualigah, ‘‘Develop-
ment of Lévy flight-based reptile search algorithm with local search ability
for power systems engineering design problems,’’ Neural Comput. Appl.,
vol. 34, no. 22, pp. 20263–20283, Nov. 2022, doi: 10.1007/s00521-022-
07575-w.

[26] I. Boussaïd, J. Lepagnot, and P. Siarry, ‘‘A survey on optimization meta-
heuristics,’’ Inf. Sci., vol. 237, pp. 82–117, Jul. 2013.

[27] S. Debnath and P. K. Biswas, ‘‘Design, analysis, and testing of I-type
electromagnetic actuator used in single-coil active magnetic bearing,’’
Electr. Eng., vol. 103, no. 1, pp. 183–194, Feb. 2021, doi: 10.1007/s00202-
020-01071-x.

[28] D. Jiang, T. Li, Z. Hu, and H. Sun, ‘‘Novel topologies of power electronics
converter as active magnetic bearing drive,’’ IEEE Trans. Ind. Electron.,
vol. 67, no. 2, pp. 950–959, Feb. 2020.

[29] Y. He, X. He, J. Ma, and Y. Fang, ‘‘Optimization research on a
switching power amplifier and a current control strategy of active
magnetic bearing,’’ IEEE Access, vol. 8, pp. 34833–34841, 2020, doi:
10.1109/ACCESS.2020.2974765.

[30] J. D. Lindlau and C. R. Knospe, ‘‘Feedback linearization of an active mag-
netic bearing with voltage control,’’ IEEE Trans. Control Syst. Technol.,
vol. 10, no. 1, pp. 21–31, Jan. 2002.

[31] M. Chen and C. R. Knospe, ‘‘Feedback linearization of active
magnetic bearings: Current-mode implementation,’’ IEEE/ASME
Trans. Mechatronics, vol. 10, no. 6, pp. 632–639, Dec. 2005, doi:
10.1109/TMECH.2005.859824.

[32] S. Debnath and P. K. Biswas, ‘‘Advanced magnetic bearing device
for high-speed applications with an I-type electromagnet,’’ Electr.
Power Compon. Syst., vol. 48, nos. 16–17, pp. 1862–1874, 2020, doi:
10.1080/15325008.2021.1908454.

[33] J. H. Holland, Adaptation in Natural and Artificial Systems. Cambridge,
MA, USA: MIT Press, 1975.

[34] K. Krishnakumar and D. E. Goldberg, ‘‘Control system optimization using
genetic algorithms,’’ J. Guid., Control, Dyn., vol. 15, no. 3, pp. 735–740,
May 1992.

[35] M. Gen, R. Cheng, and L. Lin, Network Models and Optimization: Mul-
tiobjective Genetic Algorithm Approach. Cham, Switzerland: Springer,
2008.

[36] R. Nambiar and P. Mars, ‘‘Adaptive IIR filtering using natural algorithms,’’
in Proc. IEEE Workshop Natural Algorithms Signal Process., vol. 740,
1993.

[37] B.Wilson andM. D.McCleod, ‘‘Low implementation cost IIR filter design
using genetic algorithms,’’ in Proc. IEEE Workshop Natural Algorithms
Signal Process., vol. 740, 1993.

[38] K. S. Tang, K.-F. Man, and D.-W. Gu, ‘‘Structured genetic algorithm for
robust H∞ control systems design,’’ IEEE Trans. Ind. Electron., vol. 43,
no. 5, pp. 575–582, Oct. 1996.

[39] J. J. Grefenstette, ‘‘Optimization of control parameters for genetic
algorithms,’’ IEEE Trans. Syst., Man, Cybern., vol. SMC-16, no. 1,
pp. 122–128, Jan. 1986.

[40] Y. Davidor, ‘‘A genetic algorithm applied to robot trajectory generation,’’
in Handbook of Genetic Algorithms, 1991, pp. 144–165.

[41] J. N. Amaral, K. Tumer, and J. Ghosh, ‘‘Designing genetic algorithms for
the state assignment problem,’’ IEEE Trans. Syst., Man, Cybern., vol. 25,
no. 4, pp. 687–694, Apr. 1995.

[42] L. Yao and W. A. Sethares, ‘‘Nonlinear parameter estimation via
the genetic algorithm,’’ IEEE Trans. Signal Process., vol. 42, no. 4,
pp. 927–935, Apr. 1994.

[43] Y.-S. Yen, Y.-K. Chan, H.-C. Chao, and J. H. Park, ‘‘A genetic algorithm
for energy-efficient based multicast routing on MANETs,’’ Comput. Com-
mun., vol. 31, no. 10, pp. 2632–2641, Jun. 2008.

[44] T. Blickle and L. Thiele, ‘‘A comparison of selection schemes used
in evolutionary algorithms,’’ Evol. Comput., vol. 4, no. 4, pp. 361–394,
Dec. 1996.

[45] T. Bäck and H.-P. Schwefel, ‘‘An overview of evolutionary algorithms for
parameter optimization,’’ Evol. Comput., vol. 1, pp. 1–23, Dec. 1993.

[46] D. E. Goldberg,Genetic Algorithms in Search, Optimization, and Machine
Learning. Boston, MA, USA: Addison Reading, 1989.

[47] J. Kennedy and R. Eberhart, ‘‘Particle swarm optimization,’’ in Proc. Int.
Conf. Neural Netw., vol. 4, 1995, pp. 1942–1948.

[48] X.-S. Yang, Nature-Inspired Optimization Algorithms. New York, NY,
USA: Academic, 2020.

[49] Y. Zhang, S. Wang, and G. Ji, ‘‘A comprehensive survey on particle swarm
optimization algorithm and its applications,’’Math. Probl. Eng., vol. 2015,
Jan. 2015, Art. no. 931256, doi: 10.1155/2015/931256.

[50] J. Yang, L. He, and S. Fu, ‘‘An improved PSO-based charging strategy
of electric vehicles in electrical distribution grid,’’ Appl. Energy, vol. 128,
no. 3, pp. 82–92, Sep. 2014.

[51] S. K. Pandey, S. R. Mohanty, N. Kishor, and J. P. S. Catalão, ‘‘Frequency
regulation in hybrid power systems using particle swarm optimization and
linear matrix inequalities based robust controller design,’’ Int. J. Elect.
Power Energy Syst., vol. 63, pp. 887–900, Dec. 2014.

[52] X. Guo, C. Wang, and R. Yan, ‘‘An electromagnetic localization method
for medical micro-devices based on adaptive particle swarm optimization
with neighborhood search,’’ Measurement, vol. 44, no. 5, pp. 852–858,
Jun. 2011.

[53] M. Karabulut and T. Ibrikci, ‘‘A Bayesian scoring scheme based parti-
cle swarm optimization algorithm to identify transcription factor binding
sites,’’ Appl. Soft Comput., vol. 12, no. 9, pp. 2846–2855, Sep. 2012.

[54] W. Zhang, H. Xie, B. Cao, and A. M. K. Cheng, ‘‘Energy-aware real-
time task scheduling for heterogeneous multiprocessors with particle
swarm optimization algorithm,’’Math. Problems Eng., vol. 2014, pp. 1–9,
Jan. 2014.

[55] X.-S. Yang and S. Deb, ‘‘Cuckoo search via Lévy flights,’’ in Proc. World
Congr. Nature Biologically Inspired Comput. (NaBIC), 2009, pp. 210–214.

[56] D. Chitara, K. R. Niazi, A. Swarnkar, and N. Gupta, ‘‘Cuckoo search
optimization algorithm for designing of a multimachine power sys-
tem stabilizer,’’ IEEE Trans. Ind. Appl., vol. 54, no. 4, pp. 3056–3065,
Jul./Aug. 2018.

[57] J. I. Ababneh and M. M. Khodier, ‘‘Design and optimization of enhanced
magnitude and phase response IIR full-band digital differentiator and
integrator using the cuckoo search algorithm,’’ IEEE Access, vol. 10,
pp. 28938–28948, 2022.

[58] H. H. Issa and S. M. E. Ahmed, ‘‘FPGA implementation of floating point
based cuckoo search algorithm,’’ IEEE Access, vol. 7, pp. 134434–134447,
2019.

[59] X.-S. Yang and S. Deb, ‘‘Cuckoo search: Recent advances and
applications,’’ Neural Comput. Appl., vol. 24, no. 1, pp. 169–174,
Jan. 2014.

[60] I. Fister, X.-S. Yang, and D. Fister, ‘‘Cuckoo search: A brief literature
review,’’ Cuckoo Search and Firefly Algorithm, 2014, pp. 49–62.

SURAJ GUPTA (Graduate Student Mem-
ber, IEEE) received the B.Tech. degree from
Uttar Pradesh Technical University, India, in 2013,
and the M.Tech. degree in power electronics and
drives from the National Institute of Technology
Mizoram, Aizawl, India, in 2018, where he is cur-
rently pursuing the Ph.D. degree with the Depart-
ment of Electrical and Electronics Engineering.

VOLUME 11, 2023 12117

http://dx.doi.org/10.1016/j.jestch.2020.08.011
http://dx.doi.org/10.1109/ACCESS.2022.3160714
http://dx.doi.org/10.1007/s12530-021-09402-4
http://dx.doi.org/10.1007/s12530-021-09402-4
http://dx.doi.org/10.1109/ACCESS.2022.3203451
http://dx.doi.org/10.1007/s00500-022-07068-x
http://dx.doi.org/10.1007/s00521-022-07575-w
http://dx.doi.org/10.1007/s00521-022-07575-w
http://dx.doi.org/10.1007/s00202-020-01071-x
http://dx.doi.org/10.1007/s00202-020-01071-x
http://dx.doi.org/10.1109/ACCESS.2020.2974765
http://dx.doi.org/10.1109/TMECH.2005.859824
http://dx.doi.org/10.1080/15325008.2021.1908454
http://dx.doi.org/10.1155/2015/931256


S. Gupta et al.: Metaheuristic Optimization Techniques Used in Controlling of an Active Magnetic Bearing System

PABITRA KUMAR BISWAS (Member, IEEE)
received the B.Tech. degree from the Asansol
Engineering College, WBUT, India, the M.E.
degree in power electronics and drives from
Bengal Engineering and Science University,
West Bengal, India, in 2007, and the Ph.D. degree
in electrical engineering from the National Insti-
tute of Technology, Durgapur, India, in 2013.
He was the HoD of the EEE Department, from
February 2015 to August 2019. He is currently

working as an Associate Professor in electrical and electronics engineering
with the National Institute of Technology Mizoram, India. He has about
14 years of academic as well as research experience. He has guided five
Ph.D. students and more than ten M.Tech. students and ten more are
pursuing their research at present. He has reviewed papers in reputed
international conference and journals. He has successfully organized a GIAN
course, a two short term course, and a FDP (ATAL). He has completed
one DST-SERB Project. He has published a number of research papers in
national/international conference and records/journals. He has a book and
more than six book chapters and filed three patents. His research interests
include electromagnetic levitation systems, active magnetic bearing, power
electronics converters, PMSM and BLDC motor drives, electric vehicles,
and renewable energy. He is a member of the Institute of Engineers and
the International Association of Engineers. He is also a fellow of the SAS
Society (FSASS). He has received the Best Paper Award and the Best
Researcher Award (International Scientist Awards on Engineering, Science
and Medicine).

SUKANTA DEBNATH was born in Tripura, India,
in 1986. He received the B.Tech. degree from
WBUT, India, the M.Tech. degree from NIT
Agartala, Tripura, and the Ph.D. degree in electri-
cal engineering fromNITMizoram, Aizawl, India.
He is currently working as an Assistant Professor
in electrical and electronics engineering with NIT
Mizoram.

ANUMOY GHOSH is currently working as
an Assistant Professor with the Department
of Electronics and Communication Engineering,
National Institute of Technology Mizoram. His
research interests include antennas, electromag-
netic periodic structures, RF energy scavenging,
and microwave passive circuits.

THANIKANTI SUDHAKAR BABU (Senior
Member, IEEE) received the B.Tech. degree
from Jawaharlal Nehru Technological University,
Ananthapur, India, in 2009, the M.Tech. degree
in power electronics and industrial drives from
Anna University, Chennai, India, in 2011, and the
Ph.D. degree from VIT University, Vellore, India,
in 2017.

He has completed the Postdoctoral Fellow-
ship from the Department of Electrical Power

Engineering, Institute of Power Engineering, University Tenaga Nasional
(UNITEN), Malaysia. He is currently working as an Associate Professor
with the Department of Electrical and Electronics Engineering, Chaitanya
Bharathi Institute of Technology, Hyderabad. He has published more than
140 research articles in various renowned international journals. His research
interests include design and implementation of solar PV systems, renewable
energy resources, power management for hybrid energy systems, storage
systems, fuel cell technologies, electric vehicle, and smart grid. He has been
acting as an Editorial Board Member and a Reviewer for various reputed
journals, such as the IEEE and IEEE ACCESS, IET, Elsevier, and Taylor &
Francis.

HOSSAM M. ZAWBAA received the B.Sc.
and M.Sc. degrees from the Faculty of Com-
puters and Information, Cairo University, Giza,
Egypt, in 2008 and 2012, respectively, and
the Ph.D. degree from Babeş-Bolyai University,
Cluj-Napoca, Romania, in 2018. He is currently
an Assistant Professor with the Faculty of Com-
puters and Artificial Intelligence, Beni-Suef Uni-
versity, Beni Suef, Egypt. He has over 100 research
publications in peer-reviewed reputed journals and

international conference proceedings. His research interests include com-
putational intelligence, machine learning, computer vision, and natural lan-
guage understanding. He has been awarded the State Encouragement Award
for the year 2020 in engineering sciences from the Academy of Scientific
Research and Technology, Egypt. Hewas rated as one of the top 2% scientists
worldwide by Stanford in AI, in 2020, 2021, and 2022.

SALAH KAMEL received the international Ph.D.
degree from the University of Jaén, Spain
(Main), and Aalborg University, Denmark (Host),
in January 2014. He is currently an Associate Pro-
fessor with the Department of Electrical Engineer-
ing, Aswan University. He is also a Leader of
the Advanced Power Systems Research Labora-
tory (APSR Laboratory), Power Systems Research
Group, Aswan, Egypt. His research interests
include power system analysis and optimization,

smart grid, and renewable energy systems.

12118 VOLUME 11, 2023


