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ABSTRACT For autonomous vehicles, real-time localization and mapping in the unknown environment is
very important. In this paper, a fast and lightweight 3D LiDAR simultaneously localization and mapping
(SLAM) is presented for the localization of autonomous vehicles in large-scale urban environments. A novel
encoding approach based on depth information is proposed to encode unordered point clouds with various
resolutions, which avoids missing dimensional information in the projection of point clouds onto a 2D plane.
Principal components analysis (PCA) ismodified by dynamically selecting neighborhood points according to
the encoded depth information to fit the local plane with less time consuming. The threshold and the number
of feature points are adaptive according to distance intervals, results in sparse feature points extracted and
uniformly distributed in the three-dimensional space. The extracted significant feature points improve the
accuracy of the odometer and speed up the alignment of the point cloud. The effectiveness and robustness
of the proposed algorithm are verified on the KITTI odometry benchmark and MVSECD. A fast runtime of
21 ms is obtained for the odometer estimation. Compared to several typical state-of-the-art methods on the
KITTI odometry benchmark, the proposed approach reduces translation errors by at least 19% and rotation
errors by 7.1%.

INDEX TERMS 3D SLAM, localization, autonomous driving, loop closure, large-scale urban area.

I. INTRODUCTION
As one of core techniques in autonomous driving [1], local-
ization and navigation of vehicles have been a research
hotspot. The algorithm needs to process a large amount of
data [2], and the lightweight algorithm is especially impor-
tant. These technologies are of great value to the automobile
industry [3]. Localization and navigation generally can be
realized by high-definition maps and GPS. However, high-
definition maps and GPS are not always available in all
urban scenarios, such as out of service induced by tunnels,
overpasses, shielding of tall buildings, and technical prob-
lems. The localization in the absence of high-definition maps
and GPS can be addressed by the ego-motion estimation
of SLAM. Stable technical algorithms provide security for
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autonomous driving [4]. SLAM is capable of solving position
estimation problems of vehicles in unknown environment,
and constructs the map of the surrounding environment.
It generally can be classified by visual SLAM [5], [6], [7] and
LiDAR SLAM [8], [9], [10], [11], [12] according to sensors
(camera, LiDAR) employed. Passively acquiring information
from cameras, visual SLAM is greatly affected by the illu-
mination and texture conditions of surrounding environment.
In contrast, 3D LiDAR SLAM relies on the active measure-
ment of the geometric information of environment by LiDAR
rather than texture information. Therefore, LiDAR SLAM is
more robust and widely used in outdoor scenarios for practi-
cal applications. A complete LiDAR SLAM system includes
a pose estimation odometer in the front-end and a global pose
graph optimization in the back-end. The point cloud regis-
tration is the core in the front-end, from which the vehicle
pose can be obtained. Typical approaches include Iterative
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Closest Point (ICP) [13], Normalized Distribution Transform
(NDT) [14] and feature-based approaches. The classic ICP
pairs the nearest points on the basis of Euclidean distance,
and constantly optimizes the point-to-point correspondence
in an iterative manner to obtain the transformation of the
vehicle. However, the transformation of each point pair in a
frame point cloud requires a large amount of computation.
The NDT divides the point cloud into many small grids and
then calculates the probability distribution between grids. The
continuous differentiable probability density is employed to
estimate the ego-motion between continuous LiDAR frames.
However, the algorithm is sensitive to the rotation angle and
the registration accuracy is affected by the grid size. Feature-
based approaches only extract point clouds with features for
matching to achieve excellent real-time performance together
with high precision. However, the feature extraction approach
is still a challenge for autonomous vehicles in urban scenes
where geometric features are not obvious.

Based on the above approaches, several 3D LiDAR SLAM
methods in outdoor have been proposed. LOAM [8] proposed
point-to-line and point-to-plane registration of point clouds
based on feature points to achieve an accurate odometer.
However, it produced significant drift in the case of few geo-
metric features for large-scale environments due to the lack
of back-end optimization. LeGO-LOAM [9] proposed a fast
and lightweight SLAM approach utilizing ground optimiza-
tion, but the absence of ground point clouds brought more
errors in the odometer. HDL_GRAPH_SLAM [10] is a 3D
LiDAR SLAM framework based on graph optimization with
loopback, which can fuse IMU, GPS and road constraints,
etc., but the scan-to-scan point cloud registration method
of front-end odometer is not accurate enough. LIOM [11]
proposed a low drift and robust LiDAR inertial odometer and
mapping method in large-scale fast-moving environment, but
it has a large memory occupation and poor time performance.
These solutions still remain drawbacks in large-scale urban
environments.

In this paper, we focus on robust real-time localization
and mapping of autonomous vehicles in complex large-scale
urban environments. The number of the input point clouds
is cut down by the removal of ground points based on
plane fitting. Then the preprocessed unordered point clouds
are encoded according to the depth information rather than
being projected onto 2D plane. A robust dual-adaptive feature
extraction algorithm based on the encoded depth information
is proposed by modifying PCA. The pose of the vehicle is
estimated by registering the extracted edge and plane points.
Finally, a two-step loop detection is used to optimize the
global map with eliminated cumulative error. The effective-
ness and robustness of our system has been verified on the
datasets KITTI [15] and MVSECD [16]. The main contribu-
tions of this paper are as follows:

1) Unordered point clouds are encoded using the depth
information, which avoids the missing of dimensional
information induced by the projection of point clouds
onto 2D plane. The encoding is adaptive to kinds of

resolution of point cloudswithout ordering point clouds
by layers.

2) The approach of selecting neighborhood points in PCA
is improved to dynamically select points according to
the encoded depth information to fit the local plane,
which can effectively reduce the time cost of the algo-
rithm compared with the original PCA of selecting
fixed points.

3) An approach is proposed for adaptively selecting the
threshold and number of feature points in different
distance intervals. This approach extractsmore uniform
sparse feature points in three-dimensional space than
the traditional fixed number feature extraction method,
which improves the odometer accuracy and reduces the
time cost.

II. RELATED WORK
In 3D LiDAR SLAM, pose estimation is mainly accom-
plished by registering point clouds of two frames. Common
point cloud registration in SLAM includes ICP [13] direct
registration and feature point registration. ICP does not need
to sort the input point cloud and only needs to find the nearest
point to register, however it takes a lot of time to register each
point. The method based on feature points needs to order the
input disordered point cloud, however it can register quickly.
The classical ICP iteration solves the point-to-point transfor-
mation. In order to improve the speed and accuracy of point
cloud registration, the distance from registered point to plane
is used as the error measure to pair points with local planes.
GICP [17] modified the loss model by the matching between
two local planes by combining the point-to-plane ICP and
plane-to-plane ICP approaches. IMLS-SLAM [18] proposed
an implicit moving least squares-based point-to-model align-
ment method that aligns sampled points with an implicit sur-
face by extracting observable sampling points. These works
improve ICP to some extent, however the real-time perfor-
mance is still affected when large amounts of point cloud
data are processed. Unlike ICP method, the feature point
method only registers a small number of extracted feature
points, thus registration is fast. LOAM [8] is a classical
outdoor 3D LiDAR SLAM, which is the first to propose a
method based on feature point registration. The input point
clouds are ordered according to the angular resolution of the
lidar. LOAM calculates the smoothness of several neighbor-
hood point clouds on the same line beam to extract edge
features and plane features, and optimizes the point-to-line
and point-to-plane distance residuals to obtain the odometer
poses. On the basis of LOAM, LeGO-LOAM [9] proposed a
lightweight SLAM system. It ordered input disordered point
clouds by projecting point clouds as distance images. Then,
a two-step L-M nonlinear optimization was carried out on
the segmented ground points and edge points, and the trans-
formation coefficients of the two sets of point clouds were
sequentially solved. However, projecting a point cloud onto
2D plane will lose one dimension information. Lio-sam [19]
is a fusionmethod based on feature points that combines IMU
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FIGURE 1. The overview of the proposed 3D-SLAM system.

and GPS factors, but it required joint calibration of sensors.
F-loam [20] extracts the same number of feature points at
different distances as several works above. It employed a non-
iterative two-stage distortion compensationmethod to replace
the iterative distortion compensation method, providing high
computational efficiency and accurate pose. MULLS [21]
proposed multi-metric linear least square iterative closest
points algorithm based on the classified feature points. Prin-
cipal components analysis (PCA) approach is employed to
extract six fine features, including ground points, facade, roof
pillar, beam and vertex. The feature points were classified for
point-to-point, point-to-line and point-to-plane ICP registra-
tion to obtain a low drift and multifunctional pure LiDAR
SLAM system.

III. FRAMEWORK OVERVIEW
The framework of the system proposed in this paper is shown
in Figure 1, where the front-end acquires point cloud data
from the sensors and pre-processes the raw point cloud to
segment ground points. Non-ground points are ordered using
depth information. Edge and plane features are extracted from
the non-ground points by adaptive extraction method. The
relative poses of the vehiclemovements are obtained based on
the alignment of the feature points in two consecutive frames.
The odometer of the vehicle can be estimated by accumu-
lating relative positions over time. The back-end receives
the position from the odometer and judges that whether the
vehicle has reached its previous position. Finally, a graph-
based optimization approach is used to eliminate errors in
thematching process to obtain globally consistent trajectories
and mapping.

IV. METHODOLOGY
A. GROUND SEGMENTATION
Ground points generically occupy a large proportion of 3D
point clouds recorded by autonomous vehicles. The number
of point clouds can be reduced by ground segmentation on
the input point clouds. The traditional ground segmentation
methods include RANSAC [22] and the ray ground filter

method [23]. RANSAC estimates model parameters by a
random sample of observed data. Ray Ground Filter algo-
rithm calculates the change of point radius on the same angle
to acquire ground points. However, the above algorithms
randomly select points from the whole point cloud, lead-
ing to slow runtime and segmentation errors. In this paper,
we employ a fast ground filtering method [24], which selects
seed point set as the prior value to speed up the algorithm.
Firstly, a frame of point cloud is divided into n segments along
the moving direction of the vehicle. The area in the x-axis
direction is divided into a number of sub planes. Multiple
sub planes are merged into one plane to reduce segmentation
errors brought by the change of ground slope. Then, we select
points with small values along the z-axis and calculate their
average height Hm. The term thz is the threshold to select
seed point. A point is selected as a seed point set S ∈ R3

when its z value is less than the threshold Hm+ thz. The seed
points are taken as the prior of the initial plane to speed up
the plane fitting. The set of seed points is fitted into the initial
plane. The cross-projection distance between each point and
the initial plane is calculated. As shown in Figure 2 (a), if the
distance is smaller than the artificial threshold thg, the point
will be taken as the ground point.

The mathematical expression used to estimate the plane
model is as follows:

ax + by+ cz+ d = 0. (1)

By expressing it in vector form:

[
a b c

]  x
y
z

 = −d,

nTp = −d (2)

n is solved by the covarianceM ∈ R3×3 andM describes the
dispersion of the seed point set of each sub region:

M =
|S|∑
i=1

(si − s) (si − s)T = U6VT , (3)
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FIGURE 2. Point cloud ground segmentation. (a) Ground segmentation
detection results. (b) Ground Point Cloud.

where s ∈ R3 is the mean of all points si ∈ R3, U =
MTM , U ∈ R3×3, V = MMT , V ∈ R3×3 and
6 = diag(σ1, σ2, σ3). The normal n is perpendicular to the
plane, which indicates the direction with the least variance.
The parameter d can be solved by replacing p in equation (1)
with s. The vertical distance between each point and the initial
plane is calculated to judge whether it belongs to the next
plane by comparing with the threshold Thdist .Finally, all
ground points after classification are regarded as the seed
point set in the next iteration for iterative optimization. The
merged ground point cloud by the sub-planes using the above
algorithm is shown in Figure 2 (b).

B. POINT CLOUD ORDERED ENCODING
The input data acquired from LiDAR are usually unordered
3D point clouds, which can be transformed into organized
point cloud sequence by projecting onto a 2D plane or clas-
sifying according angular information. Here, the depth infor-
mation is adopted to organize the unordered input point cloud
avoiding the loss of dimensional information or dependence
on the resolution of LiDAR. The 3D scan is divided into Nr
rings by equal intervals in the radial direction of the sensor
coordinates. The index of rings is calculated as follows:

i =


Dj
1T

, if integer[
Dj
1T

]
+ 1, otherwise,

(4)

where [·] is an integer symbol, 1T is the radial gap distance
between the different rings, Dj is the depth information of
each non-ground point cloud pNj (xj, yj, zj) that calculated

by Dj =
√
x2j + y

2
j + z

2
j . When the interval is too large,

the feature points are distributed sparsely, which affects the
accuracy of odometer. In this paper, we use 1T = 4 m and
Nr = 21. According to the distance valueDj of each point, the
point pNj is divided into corresponding rings Nj (as shown in
Figure 3). The point clouds subset of each ring is represented
as follows:

ρ =
⋃

i ∈[Nr ]
ρi, (5)

where ρi is the set of points belonging to the ith ring, [Nr ] =
{1, 2, . . . ,Nr−1,Nr } .

After the point cloud is partitioned, each ring R(i) is repre-
sented by a point cloud subset as:

R(i) = ρi. (6)

FIGURE 3. Depth encoding on point cloud.

Thus, the point clouds are classified to be sets with different
distance indices Did , and further processing on the point
clouds are performed according to the index.

C. COMPUTING DISPERSION BASED ON MODIFIED PCA
Singular value points in the non-ground point cloud have
adverse effect on the localization accuracy of the odometer
due to no matching points during registering. Therefore, Sin-
gular value points need to be removed before feature extrac-
tion. Euclidean clustering method is employed to classify
objects by clustering non-ground points. Outliers are classi-
fied and removed when the number of clustered point clouds
is less than the threshold. The removal of outliers before
feature extraction can reduce redundantpoints and increase
the feasibility of feature points.

LOAM [8] proposed a feature extraction method to cal-
culate the local smoothness of several neighborhood points
on the same beam. However, it may fail in geometric degra-
dation scenarios due to equal smoothness values. In order
to improve the robustness of feature extraction algorithm,
principal components analysis (PCA) algorithm is improved
to extract point cloud features. In the original PCA algorithm,
a fixed number of neighborhood points is used to fit the
local plane. We improved the method by adaptively selecting
neighborhood points according to distance intervals to fit the
local plane. The number of neighborhood points k is defined
as: k = α − [βDid (i)], where [·] is an integer symbol, α and
β are linear parameters. To reduce the searching computa-
tional cost, point clouds are stored in 3D KD-trees. The local
domain dispersion is calculated by using these neighborhood
points. The distance between the selected neighborhood point
pi(xi, yi, zi) and the local center is:

∂i = pi −
1
k

k∑
j=1

pj =
[
∂ix , ∂iy, ∂iz

]
, (7)

where k is the total number of neighborhood points and i =
1, 2, 3, . . . , k . Then the covariance matrix of the following k
points are calculated by:

C =
1

k − 1



k∑
i=1

∂2ix

k∑
i=1

(
∂ix∂iy

) k∑
i=1

(∂ix∂iz)

k∑
i=1

(
∂ix∂iy

) k∑
i=1

∂2iy

k∑
i=1

(
∂iy∂iz

)
k∑
i=1

(∂ix∂iz)
k∑
i=1

(
∂iy∂iz

) k∑
i=1

∂2iz


(8)
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The eigenvalues λi (i = 1, 2, 3) and the corresponding
eigenvectors Ni (i = 1, 2, 3) of the covariance matrix C
are determined by singular value decomposition (SVD). The
eigenvalues are sorted to obtain λ1 > λ2 > λ3. The
eigenvector N1 corresponding to the maximum eigenvalue
λ1 is the primary vector, and the N3 corresponding to the
λ3 is the normal vector. These eigenvalues and eigenvectors
can be used to extract edge and plane features of local point
clouds. According to the relationship between eigenvalues,
local linearity and planarity can be defined as [25]:

δ =
λ1 − λ2

λ1
, (9)

ε =
λ2 − λ3

λ1
, (10)

where δ is the planarity and ε is the linearity. The feature
points are selected based on the values of δ and ε. The
modified PCA algorithm speeds up the feature extraction
compared to the original PCAmethod. The feature extraction
using adaptive selection of neighborhood points (k = α −

[βDid (i)] , α = 10, β = 0.1) is 4 ms faster than the fixed
points (k = 5).

D. ADAPTIVE SELECTION OF FEATURE POINTS
Generally, the selection threshold of feature points is fixed,
together with the number of feature points (For example, [8]
selects 20 edge points). However, point clouds obtained by
LiDAR scanning are sparse at long distance and dense at
short distance, resulting the nonuniform distribution of fea-
ture points. The nonuniform distribution has adverse effect on
the accuracy of the odometer and the stability of the SLAM
system. Therefore, we propose an adaptive selection method
of feature points based on distance. According to Section 3.3,
the index Did of each point cloud is obtained in the encoding
stage. The threshold χ of feature point selection is adaptively
calculated according to the distance intervals as:

χ = 1− γtRk , t = (edge, plane) , (11)

where is k the distance number of each point, Rk is the range
with the distance number k obtained via equation (4), γ is the
linear factor. In general, the value of γplane is set larger than
γedge due to more plane points needed by the pose estimation.
As shown in Figure 4, the edge pε and plane pS feature points
are selected by comparing the obtained threshold and local
dispersion values according to Equations (9) and (10):

P =

{
pS← pN , if δ > χp

pε ← pN , if ε > χl .
(12)

Different number of feature points are dynamically selected
in different distance intervals. The adaptive number of fea-
ture points is mathematically expressed as follows: num =
ωtRk , ω < 1, num is an integer. As shown in Figure 5,
the feature points obtained by the adaptive selection method
are sparser than those obtained by the fixed selection method.
The extracted feature points are uniformly distributed in six

Algorithm 1 Feature Extraction

Parameters: pN non-ground point cloud; p current point;
δ/ε planarity / linearity value; χe/χpedge/ plane point selec-
tion threshold; Ne/N pnumber of edge/ plane features to be
selected; N ∗e /N ∗P number of edge / plane features already
selected; pε/pS edge / plane feature points.
Input: pN , p ∈ pN

Output: pε, pS
1 for every Rang ID i = 0 to n do
2 δ, ε← PCA calculation features (pi)
3 χe, χp← 1− γtRi, t = (edge, plane)
4 Ne,N p← ωtRi
5 if ε > χe then
6 if N ∗e < Ne then
7 pε ← pi
8 N ∗e = N ∗e + 1
9 end
10 else if δ > χp then
11 if N ∗p < Np then
12 pS← pi
13 N ∗p = N ∗p + 1
14 end
15 end
16 end
17 OUTPUT: pε, pS

FIGURE 4. Extraction of edge and plane features from non-ground point
clouds. (a)-(c) Edge feature points, (d)-(f) plane feature points.

degrees of freedom. The uniformly distributed feature points
in the space of six dimensions brings constraints on each
degree of freedom, and improves the accuracy of the odome-
ter and the stability of the SLAM system. The complete pro-
cess of feature extraction algorithm is shown in algorithm 1.

E. UPDATE MODEL
Pose estimation is to align the current edge feature points and
plane feature points in the world coordinate of global map.
In order to speed up the search of corresponding points, edge
and plane feature points are stored in KD-tree. The world
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FIGURE 5. Comparison on different feature point selections. (a)-(c) Fixed
selection of feature points, (d)-(f) adaptive selection of feature points.

coordinate system is marked as and the LiDAR coordinate
system is marked as L. The state transition relationship of a
vehicle can be expressed as:

˜
k = TL ⊗

L
k . (13)

By the Lie algebra, the state transformation of the six degrees
of freedom is expressed as follows:

ξ
∧

k =

[
φ× ρ

0T 0

]
∈se(3), ξ

∧

k = [ρ, φ]T ∈ R6, (14)

where ρ and φ respectively represent the corresponding trans-
lation and rotation in the tangent vector,

φ× =

 0 −φ3 φ2
φ3 0 −φ1
−φ2 φ1 0

 ∈ R3×3. (15)

Lie algebras and Lie groups are transformed by exponential
mapping and logarithmic mapping [24]. The transformation
of Lie group TL = [R, t] ∈ SE(3) contains a rotation matrix
R ∈ SO(3) and a translation vector t ∈ R3. The mapping
relationship between the rotation matrix and the translation
vector is:

TL = exp
(
ξk

)
=

[
exp

(
φ×

)
Jρ

0T 1

]
=

[
R t
0T 1

]
, (16)

where J is the Jacobian matrix [26], which is defined as:

J =
sin θ

θ
I +

(
1−

sin θ

θ

)
aaT +

1− cos θ

θ
a×, (17)

θ is the module length of ξk , and a is a direction vector of
ξk with a length of 1, ||a|| = 1.

ξk = log
(
TL

)
=

[
J−1t

log (R)

]
. (18)

The status update model of the vehicle is as follows:

˜ξk = log
(
exp

(
ξk

)
· exp

(
δξk

))
, (19)

δξk is the increment of pose, which is obtained through
continuous iterative optimization.

F. POSE ESTIMATION
The point cloud is transformed into the same coordinate sys-
tem to estimate odometer pose. The edge features ℓ

εkϵP are
transformed to the world coordinate system ˜ εk . Two edge
points ( , b ) need to be found in the world coordinate
system. These two points are connected into a straight line
to construct point-to-line residuals. First, five nearby edge
points are searched in the world coordinate system. Then, the
local center points of the five points are calculated accord-
ing to equation (7). Finally, the point in front of the center
is selected using and the point behind is selected b
using. The distance residual equation from point to line is
constructed as follows:

Rε =

(
˜
εk − εb

)
×

(
˜
εk − ε

)∣∣
ε − εb

∣∣ . (20)

Similarly, the plane feature point ℓ
SkϵP are transformed to

the world coordinate system ˜
Sk . Three nearby plane points

( S , S , S ) are searched in the world coordinate system
to form a plane. The residual equation of the distance from
the point to the plane is as follows:

RS =

(
˜
Sk − S

)
·

(
S − S

)
×

(
S − S

)
∣∣∣( S − S

)
×

(
S − S

)∣∣∣ . (21)

We combine line residuals and plane residuals to obtain the
loss function for pose optimization as follows:

F(T ) = min
T∈SE(3)

f
(∑

Rε +

∑
RS

)
, (22)

The nonlinear optimization problem is solved by Gauss New-
ton method. A first-order Taylor expansion is carried out to
solve the increment as follows: f (x +1x) ≈ f (x)+J(x)1x.
The incremental equation is rewritten as follows:

H1x = g, (23)

here J is Jacobian matrix, H is a Hessian matrix defined
as H = J(x)JT (x), 1x is the incremental amount, and
g= −J(x)f (x). The nonlinear problem is transformed into
iterative solution increment 1x. The Jacobian matrix Jε of
edge residual can be calculated by:

Jε =
∂Rε

∂T
=

∂Rε

∂ ˜ εk

∂ ˜ εk

∂T

= −

((
˜
εk − εb

)
×

(
˜
εk − ε

))T∣∣( ˜
εk − εb

)
×

(
˜
εk − ε

)∣∣
·

(
ε − εb

)
×∣∣

ε − εb

∣∣ · JC , (24)

the Jacobian JC can be estimated by applying left perturba-
tion model with δξϵ se(3)

JεC =
∂ ˜ εk

∂δξ
= lim

δξ→0

exp (δξ×) ˜ εk − ˜ εk

δξ

=

[
I −

[
˜
εk

]
×

0T 0T

]
. (25)
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FIGURE 6. Graph-based optimization of loop detection. The left figure is
the diagram of the loop detection, the right top figure is the trajectory of
the loop detected by the algorithm and the right bottom is the point
cloud mapping.

Similarly, the plane Jacobian matrix can be obtained

JS =
∂RS

∂T
=

(
S − S

)
×

(
S − S

)T∣∣∣( S − S

)
×

(
S − S

)∣∣∣ · JSC . (26)

The incremental equation is solved by the Jacobian matrix,
of which increments is optimized iteratively until the equation
converges.

G. BACK-END OPTIMIZATION
The long-term odometer continuously produces cumulative
errors, resulting in poor global mapping. The cumulative
error can be eliminated by loop detection and then global
optimization of the map. In order to accelerate the map opti-
mization, we adopt the approach based on key frames during
loop detection and global optimization. When the attitude
change between two frames exceeds a certain threshold, the
current frame is selected as the key frame. A frame similar
to the current frame is omitted in the historical key frame.
The relative poses of two similar frames are added to the
graph optimization as constrained edges. We use a two-step
loop detection method. Firstly, the fast and efficient loop
detection approach Scan Context [27] is used to find the
closed-loop candidate frame from the historical key frame.
Scan Context introduces a ‘‘rotation invariance’’ descriptor to
quickly detect loops occurring in different directions. Then,
ICP is used to match the current frame with the candidate
frame to get the score between the two frames. As shown
in Figure 6, a loop occurs in two frames if the score is less
than a preset threshold. The relative position between the two
frames of the loop is added to the graph optimization system
GTSAM [28] as a constrained edge. This optimization system
can effectively optimize mapping to eliminate cumulative
errors. Historical position and global mapping are updated
accordingly.

V. EXPERIMENTAL EVALUATION
A. TESTING FRONT-END ODOMETRY IN KITTI
We first validate the accuracy and effectiveness of the
front-end odometer in the proposed system on the KITTI

odometry benchmark [15]. The data acquisition platform for
the KITTI dataset is fitted with two grey-scale cameras, two
color cameras, a Velodyne HDL-64E LIDAR, and a GPS
navigation system. In the testing, only data from the LIDAR
were used. The dataset was collected from large complex
scenes including urban, rural and highway. Sequences 00-10,
which provided ground truth values, were chosen to evaluate
the algorithm. There are 23,201 frames and 22 km of track
length in 11 sequences. The accuracy of the odometer was
tested using the odometer metric provided by KITTI. The
translation and rotation errors were calculated for different
lengths, specifically, every 100 m up to 800 m. The average
of the errors ARE and ATE defined by the KITTI odome-
try benchmark are indicators of the average rotational error
and average translation error, respectively. The smaller value
indicates better accuracy of the algorithm.

The proposed algorithm is compared with typical
state-of-the-art odometers ALOAM, FLOAM [20] and
SUMA [29]. The results of ALOAM are from the paper [12]
and the results of SUMA are from its original paper.
In Table 1, the average translation error of our method on
11 sequences is 59% smaller than SUMA, 71% smaller
than ALOAM and 19% smaller than FLOAM. The average
rotation error is 42% smaller than SUMA, 69% smaller than
ALOAM and 7.1% smaller than FLOAM. The comparison
shows that ours is more accurate than the above methods.
The localization error of our algorithm is smaller, especially
in large urban environments such as the 00 sequence (The
trajectory length of 00 sequence is 3741m).

The proposed odometry method (without the use of loop
detection) is compared with the state-of-the-art algorithm
FLOAM on the trajectory. Figure 7 shows a comparison of
three trajectories among our algorithm, FLOAM and ground
truth on 11 sequences. The solid red line is the track of our
algorithm, the solid blue line is the FLOAM odometer track,
and the dotted green line is the ground truth from GPS/INS.
As the proposed algorithm removes some redundant points.
The extracted feature points are more uniformly distributed
in six degrees of freedom. Therefore, our algorithm is closer
to the ground truth than FLOAM on most sequences. All tra-
jectories essentially coincide with the ground truth. Figure 8
shows the accuracy of the proposed odometer estimate,
we compare the absolute pose errors (APE) estimated by the
odometer between FLOAM and the proposed algorithm. The
APE of the proposed algorithm is smaller than FLOAM, our
algorithm is more accurate. The error has a smaller range of
fluctuations, our system is more stable. The proposed algo-
rithm is also smaller than FLOAM in other evaluation met-
rics, including root mean square error (RMSE) and standard
deviation (STD). Experiments prove that the proposed algo-
rithm can accurately locate in large-scale urban environment.

B. SLAM SYSTEM ROBUSTNESS EXPERIMENTS
We have chosen three representative urban scenario
sequences 00, 05 and 07 from the KITTI odometry bench-
mark to analyze. Figure 9 shows the results of the mapping
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TABLE 1. LiDAR Odometry evaluation comparison on KITTI dataset. All errors are represented as ATE [%] / ARE [degree/1m] (the smaller the better). Loop
detection is not used in all methods.

FIGURE 7. The proposed front-end odometer, FLOAM and KITTI ground truth track alignment. (a)-(k) correspond to the sequence 00-10
of KITTI, respectively.

created by the SLAM system in a large urban environment
with KITTI 00 sequences, and the errors in the position and
direction of the mapping. The environment 00 sequence is

characterized by a large urban area and a complex envi-
ronment, containing most typical urban scenes with moving
objects such as moving vehicles, cyclists and pedestrians,
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FIGURE 8. Absolute pose error (APE) of the odometry estimation comparison
between FLOAM and ours on KITTI 10 sequence.

FIGURE 9. The left figure shows the point cloud mapping created by the proposed system on the KITTI sequence 00, the right
ones show the errors of the positions and orientations compared with the ground truth. (The xyz coordinate system has been
transformed into the zxy coordinate system).

all of which have impacts on positioning accuracy. The
proposed algorithm is able to cope with the above scenarios
with moving objects. The localization error of the algorithm
is small in the x, y and yaw directions. As shown in Figure 9,
the 2D pose components in x, y, and yaw are approaching
to the ground truth, while some errors exist in altitude,

roll, and pitch directions. The errors can be attributed to
the difficulty of capturing slope and transient directional
changes by LiDAR. The localization accuracy is less affected
in flat urban environments. Therefore, the proposed SLAM
system achieves accurate localization in large-scale urban
environment.
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FIGURE 10. The left figure shows the point cloud mapping created by the proposed system on the KITTI sequence 05, the right
ones show the errors of the positions and orientations compared with the ground truth. (The xyz coordinate system has been
transformed into the zxy coordinate system).

FIGURE 11. The left figure shows the point cloud mapping created by the proposed system on the KITTI sequence 07, the right
ones show the errors of the positions and orientations compared with the ground truth. (The xyz coordinate system has been
transformed into the zxy coordinate system).

The trajectory of the vehicle is curved in the KITTI
05 sequence with a length of 2,223 m. The vehicle passing
the same crossroads from different directions leads to the dif-
ficulty of loop detection. Scan Context can effectively detect
loops in the above scenario due to the induction of rotation
invariants descriptor. As shown in Figure 10, the proposed
system can build 3D point cloud map in KITTI 05 scenario
which is basically consistent with the real environment. The
localization accuracies in x, y and yaw directions approach

the ground truth. As shown in Figure 11, sequence 07 is
another urban scenario different from sequence 05. The vehi-
cle circles the urban and comes back to its origin in sequence
07. The proposed system locates accurately and builds low-
drift 3D point cloud maps in this scenario. The testing results
show that the system can accurately locate and mapping in
three different urban scenarios of KITTI.

To verify feasibility of the feature extraction algorithm on
LiDAR with different resolutions. The proposed algorithm
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FIGURE 12. Trajectory deviations of GPS, Cartographer and LOAM overlaid on satellite images of
(a) Day 1 and (c) Day 2 from the MVSECD dataset. Comparisons of our algorithm’s trajectory with the
ground truth trajectories on the MVSECD, (b) Day 1 and (d) Day2.

was tested on MVSECD [16] datasets MVSECD, in which
the horizontal and vertical resolutions of LiDAR are different
from KITTI’s. As shown in Figure 12, The solid blue line is
the trajectory of our algorithm, and the red line is the ground
truth. Our system achieves excellent positioning accuracy in
different urban scenarios. The trajectories obtained by the
proposed system are approaching to the ground truth in Day 1
and 2, which verifies the effectiveness of the feature point
extraction method using depth information without depen-
dence on LiDAR resolution and the robustness of the pro-
posed SLAM system applied in complex urban environments.

C. RUNTIME ANALYSIS
The real-time performance of the proposed SLAM system
was tested on KITTI sequence 00. The running time of our
system is compared with that of ALOAM and FLOAM.
We conducted the experiments on a PC platform with Intel
Core i7-10700 2.90GHz CPU, the testing environment is

based on ROS Melodic and Ubuntu 18.04 LTS. In the front-
end, the running time of ground segmentation, feature extrac-
tion and range attitude estimation were tested respectively.
In the back-end, loop detection and pose graph optimiza-
tion were combined as one module to test the time. As he
results shown in Table 2, the average runtimes of running
ground segmentation module, feature extraction module,
and odometer position estimation module are 26, 29, and
21 ms, respectively. The whole front-end costs an average
of 76 ms. The proposed feature extraction algorithm using
adaptive selection manner extracts fewer points compared
with ALOAMand FLOAM. Therefore, the pose estimation in
our system costs less time. The running time of the front-end
odometer in our system is 23 ms faster than that of ALOAM.
The front-ends in the proposed system and FLOAM cost
almost equal time. As the number of point clouds increases
during the mapping process, the mapping time of FLOAM
and ALOAM are increasing. However, our system has fewer
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TABLE 2. Runtime comparison and analysis.

feature points, so the real-time mapping is better.1 For the
back-end, loop occurs after the vehicle running for some time.
The map is optimized only when the loops occur. We use a
lower frequency of 2 Hz to detect loop. The whole back-end
costs an average of 290 ms.

The back-end costs more time compared to the front-end
due to the need of optimizing and updating the global map
and poses. It is necessary to be noted that the optimization
and update of global map performs only when the loop occurs
rather than every frame. Therefore, its effect on the real-time
performance of the system can be neglected. The testing
results show that the proposed SLAM system has achieved
excellent real-time performance in all the above testing. The
system can be applied to autonomous vehicles with resource
constraint devices.

VI. CONCLUSION
A lightweight real-time 3D LiDAR SLAM system is pre-
sented to solve the localization and mapping problems of
autonomous vehicles in large and complex urban environ-
ments. The proposed system consists of ground segmentation,
depth encoding, features extraction based on modified PCA
and loop detection. The disordered non-ground point clouds
are encoded according to depth information. The encoded
point clouds maintain three-dimensional information with-
out being projected onto a 2D plane. This coding approach
can be applied to LiDAR with different resolutions. The
adaptive selection approach of neighbor points in modified
PCA improves the speed of feature extraction. Uniformly
distributed points can be extracted in six degrees of free-
dom to increase the localization accuracy of the odometer
by selecting different number of feature points according to
the distance. The average translation error of the odome-
ter is only 1.17% and the average rotation error is only
0.052 (degree/1m) on KITTI dataset. Due to sparse points
extracted by the adaptive feature extraction approach, the
pose estimation in the odometer costs only 21 ms. The whole
front-end costs 76 ms, achieving real-time performance. Scan
Context and ICP are employed for loop detection in order
to eliminate mapping accumulation errors. A graph-based
optimization method is used to optimize the global mapping.
To demonstrate the robustness of the proposed system in
different urban scenarios, the performance of the system was
evaluated on KITTI and MVSECD datasets. The localization

1https://youtu.be/jnL7UMFvzbU

accuracy of the system can approach the ground truth in
different scenarios of both above datasets.
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