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ABSTRACT Fog computing has emerged as a computing paradigm for resource-restricted Internet of
things (IoT) devices to support time-sensitive and computationally intensive applications. Offloading can
be utilized to transfer resource-intensive tasks from resource-limited end devices to a resource-rich fog
or cloud layer to reduce end-to-end latency and enhance the performance of the system. However, this
advantage is still challenging to achieve in systems with a high request rate because it leads to long queues
of tasks in fog nodes and reveals inefficiencies in terms of delays. In this regard, reinforcement learning
(RL) is a well-known method for addressing such decision-making issues. However, in large-scale wireless
networks, both action and state spaces are complex and extremely extensive. Consequently, reinforcement
learning techniques may not be able to identify an efficient strategy within an acceptable time frame. Hence,
deep reinforcement learning (DRL) was developed to integrate RL and deep learning (DL) to address this
problem. This paper presents a systematic analysis of using RL or DRL algorithms to address offloading-
related issues in fog computing. First, the taxonomy of fog computing offloading mechanisms based on
RL and DRL algorithms was divided into three major categories: value-based, policy-based, and hybrid-
based algorithms. These categories were then compared based on important features, including offloading
problem formulation, utilized techniques, performance metrics, evaluation tools, case studies, their strengths
and drawbacks, offloading directions, offloading mode, SDN-based architecture, and offloading decisions.
Finally, the future research directions and open issues are discussed thoroughly.

INDEX TERMS Fog computing, Internet of Things (IoT), offloading, reinforcement learning, deep

reinforcement learning.

I. INTRODUCTION therefore, storing and processing data on these devices

The exponential growth in the number of IoT devices,
estimated to reach approximately 75 billion by 2025, will
result in the generation of huge amounts of data (big data) [1].
Big data must be saved, transmitted, and analyzed to be
converted into meaningful information that the user can
understand. However, most IoT end devices are known
for their limited storage and computational capabilities;
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is not an option. Cloud computing technology provides
unlimited storage and a large processing capacity via a large
number of powerful virtual servers, which can be utilized for
applications that are not time-sensitive and do not require a
higher level of responsiveness. Nevertheless, because of the
centralized fashion, cloud computing technologies are unable
to meet the needs of real-time processing applications, owing
to the large end-to-end delay and high network bandwidth
utilization. Moreover, the centralized approach used by
cloud computing leads to increasing delays, which cannot
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be tolerated by most IoT applications, including virtual
reality (VR) [2], augmented reality (AR) [3], autonomous
vehicles [4], industrial IoT, and e-health. To satisfy the
intensive computational demands and stringent latency
requirements of such applications, fog computing has been
developed as a potential solution for transferring storage,
networking, and processing abilities to the edge of a
network [5]. The primary objective of fog computing is to
bring cloud-like services to the network edge to optimize
the performance of the system in terms of service latency,
network bandwidth, resource utilization, and workload
balancing [6].

However, deploying fog computing poses additional issues
concerning decisions regarding whether tasks should be
performed locally or transferred to the fog or cloud.
Offloading is essentially the movement of resource-intensive
tasks to different platforms to accomplish tasks more
efficiently. Therefore, offloading must satisfy different
constraints, including latency, load balancing, privacy, and
storage. Nevertheless, the distribution of the workload
across complicated heterogeneous fog devices, with varying
computational resources and capacities, is a major challenge
for such fog offloading solutions. The challenge is increased
by the growing number of requests, which likely causes
the task queues of the powerful fog nodes to become
longer. Owing to the increased waiting time of a long
queue, the requirements for time-critical applications may be
exceeded [5].

In addition, many single fogs are incapable of handling
resource-intensive tasks because of their limited processing
capabilities, lack of available resources, or dynamic nature
of resource needs. Therefore, when a task’s processing needs
exceed the capabilities of fog platforms, it will be offloaded
to the remote cloud server via the vertical offloading
mechanism. Another option is a horizontal offloading. This
is primarily achieved by sending computing tasks to the
best surrogate fog nodes [6]. Making an intelligent decision
between horizontal and vertical offloading is essential so that
time is not wasted, and attempting to move a load horizontally
when vertical offloading is more effective. For example, if a
fog node becomes overloaded and unable to handle the load
by itself, it can horizontally offload computations to several
less loaded fog modes in the same fog layer, rather than
vertically offloading to a stronger FN in a higher fog layer or
to the cloud. This will assist in lowering the network traffic
and latency.

Four major decisions commonly need to be made through-
out the offloading process: what tasks should be offloaded
(what), where to execute them (locally or remotely) (where),
which slot should a task be offloaded (when), and how
the task should be offloaded or through which channel
(how) [7]. The offloading process can be made more efficient
by making high-quality, timely decisions based on what,
where, when, and how. For high quality based on the
aforementioned decisions, efficient resource scheduling and
allocation are required to satisfy the quality of service (QoS)
requirements.
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The majority of the currently available conventional
approaches are considered effective resource management
solutions for distributing, scheduling, and executing tasks in
dedicated computing situations. These approaches are not
useful and efficient in fog environments because of the large
number of resources and tasks that are mainly dynamic in
nature, such as the Goldman algorithm, Banker’s algorithm,
Haas-Mohan algorithm, and Isloor-Marsland algorithm [8].
In other words, they do not have a common framework
for studying resource management problems in the real-
world computing environment, which involves multiple
parameters to obtain effective solutions, including mobility,
heterogeneity, federation, QoS management, interoperability,
and scalability [9]. Different Methods designed to handle this
issue are classified as classical optimization, game theory,
metaheuristics, and machine learning.

Machine learning, including reinforcement learning (RL)
and deep reinforcement learning (DRL) has been widely
investigated and studied in the literature to solve offloading
issues and other resource management concerns in different
uncertain computing contexts. These strategies help make
better decisions regarding when, where, what, and how to
offload. For example, task offloading approaches based on
RL methods have been proposed for fog computing scenarios
to determine the optimal decision on where and when to
offload a task [10]. Furthermore, an RL-based load balancing
algorithm was proposed and deployed in the dynamic fog
context to lower the failed allocation probability and reduce
the average processing delay [11]. Owing to the large
and complex action and state spaces of wide-area wireless
networks, traditional reinforcement learning (RL) algorithms
may not be capable of determining the optimal strategy within
an acceptable amount of time. Furthermore, in large- space
situations, such as vehicular networks, the state space is large,
and the agent cannot analyze every action in each state to
guarantee success. In such situations, the agents are required
to generalize the state space. Some states are rarely visited.
Reinforcement learning cannot handle continuous or high-
dimensional spaces.

As an alternative solution, deep reinforcement learning
(DRL) was created by combining reinforcement learning
(RL) and deep learning (DL) [12]. DRL algorithms can
achieve exceptional performance in complicated control
domains, proving that they are better for making decisions in
complex and uncertain situations. For example, the authors
of [13] solved a task allocation problem based on DRL
methods in a dynamic vehicular environment. Another study
solved the problem of computation offloading and resource
allocation by using a DRL algorithm to reduce system
delay [14].

To the best of the authors’ knowledge, no comprehensive
survey or systematic review paper has been conducted on
research articles that used RL and DRL techniques to address
offloading concerns in fog scenarios. The goal of this study is
to analyze existing research that uses RL and DRL methods
to solve offloading problems in fog computing in a systematic
and comprehensive manner.
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In brief, the following are the major contributions of this
review:

o Exploring different survey articles on RL or DRL-
based offloading mechanisms in fog and discussing the
strengths and drawbacks of each.

« A systematic and comprehensive review of the latest RL
and DRL approaches in the field of fog offloading.

o A new taxonomy of current RL and DRL algorithms was
developed for offloading mechanisms in fog computing.

« Finally, open issues and future research directions are
discuss as well as weakly covered research challenges
to enhance offloading mechanisms in the context of fog
computing.

The remainder of this paper is organized as follows.
Section II reviews the essential related work and motivation.
Section III provides the necessary background on fog com-
puting and offloading mechanisms, as well as an overview of
the RL and DRL principles. The paper selection and research
methodology are presented in Section I'V. Section V presents
a systematic and comprehensive review of the existing studies
that leverage RL and DRL algorithms in the context of fog
computing. An analytical discussion is presented in section
VI. Section VII discusses corresponding open issues and
research challenges for future studies. Finally, conclusions
are presented in Section VIII.

Il. RELATED WORK AND MOTIVATION

This section presents the current survey and review papers on
offloading issues in fog computing. The main advantages and
drawbacks of each study were then discussed.

A comprehensive survey of edge computing environments
regarding offloading metrics was presented which included
quality of service (QoS) and quality of experience (QoE),
energy consumption, resource scheduling approaches, per-
formance, gaming theory, and overhead, to make the most
suitable decision for computation offloading. This article
includes a sufficient number of recently published high-
quality studies, and is reasonably organized. However, the
article suffers from the following weaknesses: the selection
criteria for the included papers were not well defined, the
study was not a systematic review, and open issues and
future directions were incomplete [7]. Another study provides
a comprehensive systematic literature review (SLR) of
recent studies focused on resource management approaches
in fog computing environments [15]. These studies have
been categorized into six classes: resource scheduling,
resource allocation, task offloading, application placement,
load balancing, and resource provisioning techniques.

In addition, previous studies have provided a compre-
hensive review of offloading methods in mobile edge com-
puting from the perspectives of game-theoretic offloading
methods [16], machine-learning offloading methods [17],
and stochastic-based offloading methods [18]. As a strength,
these review articles are well structured and follow the
standards and format of a systematic study, and they include
up-to-date published papers on related studies. However,
their surveys did not cover all the reinforcement learning
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methods. This study is also directly related to mobile edge
computing, and the concept of fog computing has not been
emphasized. In [19], a comprehensive overview of research
areas related to offloading modeling in edge computing
was presented by analyzing various types of offloading
modeling based on different patterns, such as game theory,
(non-)convex optimization, and machine learning. Markov
decision process, or Lyapunov optimization. However, the
selection criteria for the included papers were not well
defined, and the study was not a systematic review. Besides,
it does not include future directions.

Furthermore, the authors of [20] provided a survey
on computational offloading in edge computing, including
different offloading scenarios (IoT devices, between edge
servers, and the cloud), influencing factors (device, network,
service, and user factors), and offloading strategies (partial
and full). During the offloading process, they also discussed
key issues, such as whether, what, and where to offload.
However, the selection criteria for the included papers were
not well defined, and the study was not a systematic review.
Besides, it did not include future directions or open issues,
which were measured as a core part of the surveys.

Another study provides a survey of recent studies on
fog environmenst from the perspectives of argument reality
applications [21], smart city applications [22], and healthcare
applications [23]. However, these studies did not consider
offloading in fog settings. In addition, a taxonomy of
optimization techniques and their applications in fog com-
puting environments was presented in [24]. They classified
the related research articles into three categories: inte-
ger programming, heuristics, and metaheuristics. Examples
of applications of optimization techniques found in the
reviewed literature include allocation, scheduling, offloading,
placement, load balancing, selection, resource provisioning,
resource management, migration, clustering, and a combina-
tion of these optimization problems.

The authors [25] presented a comprehensive study of
offloading mechanisms, focusing on current research papers
on offloading strategies in a fog environment, including
its architecture, application, and technologies. The selected
studies were classified into four main categories: methods
based on storage, methods based on computation, methods
based on energy, and hybrid methods. Then, it provides a
comparison between different offloading mechanism metrics,
algorithm types, and evaluation based on the categorization
of the selected papers. Moreover, the work in [26] reviewed
the literature on fog computing simulation tools and was
intended to aid researchers in exploring and evaluating fog-
related solutions.

The work in [5] surveyed the existing literature on RL
applications for solving resource allocation problems in
fog computing environment. In future studies, open issues
and challenges should be addressed. However, the selection
criteria for the included papers were not well defined, and
the study was not a systematic review. Besides, this study
focuses on resource allocation rather than offloading issues
in fog computing. In addition, [27] provided a detailed
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overview of the current applications of RL and DRL to handle
various problems in vehicular networks. These schemes
are divided into two classes: vehicle management and
vehicle infrastructure management. However, this study only
considered vehicular networks as a case study in their review
paper. Besides, the selection criteria for the included papers
were not well defined, and the study was not a systematic
review.

Furthermore, in [28], the most recent findings on ser-
vice placement computation and offloading in fog were
presented. Specifically, this study suggests a novel category
of optimization techniques for tackling service placement
issues in IoT applications running on fog nodes. The
methods and optimization objectives play a significant
role in this categorization. However, reinforcement learning
methods were not investigated as a solution to the offloading
issues in fog computing in this study. In addition, the
authors of [29] reviewed resource management strategies
in fog computing environments considering heterogeneity,
resource limitations, and unknown future fog computing
traffic. In addition, they presented significant management
issues including resource scheduling, resource allocation,
task offloading, and resource provisioning. Nevertheless,
the selection criteria for the included papers were not well
defined, and the study was not a systematic review. Table 1
summarizes previous surveys. Each paper lists its publication
year, environment, review type, paper selection method,
taxonomy, open issues, and year covered.

The weaknesses of most previous surveys and review
papers are as follows.

o Some related review papers did not focus on offloading

issues in fog computing.

e Some studies have not focused on RL and DRL
approaches in solving offloading related issues.

e Some papers did not present any reasonable
classifications.

o Some studies did not address open issues and future
directions, which are crucial elements in surveys.

o The process and selection criteria for the papers involved
have not been well defined in some studies.

o Some papers did not have an adequate number of
articles.

« Some studies did not include newly published articles
or state-of-the-art studies, especially those published
between 2021 and 2022.

The aforementioned limitations motivated us to conduct a

systematic and comprehensive review of offloading strategies
based on the RL and DRL methods in fog computing.

Ill. BACKGROUND INFORMATION

This section presents a brief definition of a fog. First,
the layered architecture of fog is described. The offload-
ing process is then explained from different perspectives,
including offloading decisions, offloading modes, offloading
directions, and offloading metrics. Next, the fog computing
evaluation are further discussed. Finally, the fundamental
concepts of RL and DRL are also explained.

12558

A. FOG COMPUTING

Fog computing is an extremely virtualized platform that
delivers storage, computation, and networking resources
between IoT devices and conventional cloud server [30]. Fog
computing is considered a supplement to cloud computing
and was introduced by Cisco [31] to address the shortcomings
of cloud computing such as reducing delays, and minimizing
network usage [32], [33]. OpenFog Consortium defined fog
computing [34] as; “‘a system-level horizontal architecture
that distributes resources and services of computing, storage,
control and networking anywhere along the continuum from
Cloud to Things”.

Fog computing is also defined by the authors of arti-
cles [15] as; “Fog computing is a scenario where a huge num-
ber of heterogeneous (wireless and sometimes autonomous)
ubiquitous and decentralized devices communicate and
potentially cooperate among them and with the network to
perform storage and processing tasks without the intervention
of third parties. These tasks can be used to support basic
network functions or new services and applications that
operate in a sandboxed environment. Users leasing part of
their devices to host these services get incentives for doing
s0”.

Fog computing is composed of a large number of fog
nodes and is categorized into two main types: resource-
rich devices that include cloudlets and IOx cables whereas
routers, wireless access point (WAP) end devices, set-top-
units, switches, and stations are resource- hungry devices.

B. FOG COMPUTING ARCHITECTURE

According to previous studies [35], [36], and [37], the
hierarchical architecture of fog computing comprises the
following three main layers:

Edge layer: This is the layer closest to the user device in the
physical environment. It contains different IoT smart devices
such as mobile phones, self-driving vehicles, humidity sen-
sors, temperature sensors, and CCTV surveillance systems,
and so on. These IoT devices create large amounts of data
using sensing physical objects or events. Owing to the limited
resources of these IoT devices, the sensed data are transferred
to the upper tire (for/cloud) for storage and processing.

Fog layer: This is the middle layer between the cloud
and edge devices. The fog layer consists of many fog nodes
with limited computing or storage capabilities, including
routers, switchers, gateways, base stations, access points,
and cloudlets. These fog devices are distributed between the
end devices and the cloud, such as shopping centers, cafes,
parks, bus terminals, and streets. They can be mobile on
a moving carrier or static at a fixed location. End devices
are usually connected to fog nodes to obtain capabilities
for computing and storing the received sensed data. The
fog node stores the data of time-sensitive application for a
specific time before transferring it to the cloud. To process
the data, the fog computing infrastructure is enabled as a
supporting middle layer between edge nodes and the cloud
to collect, process, and analyze the data at the edge. The
cloud is responsible for storing data in its storage when it
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TABLE 1. Summary of related surveys.

Ref. Publication . Review Paper selection Taxonomy Open issue and Covered year
year Environment type method challenges
[7] 2019 Edge Computing Survey Not- Clear yes Not presented Not mentioned
[15] 2019 Fog Computing SLRs Clear Yes Presented 2014_2-(1): le 3 ruary
[16] 2020 MEC SLRs Clear Yes Presented 2013-2019
[17] 2020 MEC SLRs Clear Yes Presented 2013 - 2020
[18] 2020 MEC SLRs Clear Yes Presented 2016-2020
[19] 2020 Edge Computing Survey Not- Clear Yes Not presented Not mentioned
[20] 2020 Edge Computing Survey Not- Clear Yes Not presented Not mentioned
[21] 2020 Fog Computing SLRs Clear Yes Presented up to October 2019
[22] 2021 Fog Computing Survey Not- Clear Yes Presented Not mentioned
[23] 2021 Fog Computing Survey Not- Clear Not- Clear Not presented Not mentioned
[38] 2021 Fog Computing SLRs Clear Yes Presented Not mentioned
[24] 2021 Fog Computing SLRs Clear Yes Presented 201 67-2N0(2)gember
[25] 2021 Fog computing SLRs Clear Yes Presented 2016-2020
[26] 2021 Fog Computing Survey Not- Clear Not- Clear Not presented 2015-2020
[5] 2022 Fog computing Survey Not- Clear Not- Clear Presented Not mentioned
[27] 2021 6G vehicular networks Survey Not- Clear Not- Clear Presented Not mentioned
[28] 2022 Fog computing Survey Not- Clear Not- Clear Presented Not mentioned
[29] 2022 Fog computing Survey Not- Clear Yes Presented Not mentioned
proposed 2022 Fog computing SLRs Clear Yes Presented 2019-mid-2022

is no longer required by the fog node [32]. The fog layer
played a crucial role in solving long-latency and real-time
analysis problems. Fog nodes are connected to cloud servers
to achieve powerful storage and computing capabilities. The
proxy server enables communication between the fog and the
cloud.

Cloud layer: This layer is located at the top layer. The
cloud computing layer is composed of several storage devices
and high-power servers, which can provide powerful storage
and computing abilities to support permanent extensive
computation analysis and the storage of a large amount of
data. It also delivers various application services, including
smart homes, factories, and transportation. This layer plays
a vital role in processing large amounts of data, storing data,
and managing the platform services and monitoring systems.
Conversely, there is a large distance between this layer and the
edge layer, particularly in the IoT layer. The fog computing
architecture is shown in figure 1.
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In this architecture, each end device or IoT object is
linked to one of the fog nodes through various available
communication technologies (e.g., 3G, 4G, wireless local
area network (WLAN), ZigBee, WiFi, and Bluetooth) or
wired connections. Fog nodes can be connected to the cloud
or other fog nodes using wireless or wired communication
technologies. In addition, all fog nodes were linked to the
cloud via an IP core network.

C. EDGE COMPUTING (EC) PARADIGMS

Edge computing paradigms can be divided into three types:
mobile edge computing (MEC), fog computing, and cloudlet
computing. Many academic researchers use these concepts
interchangeably, but there are key differences between them.
This section introduces the concepts of cloudlets and mobile
edge computing. It then describes the main differences
between these terms.
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Cloud

End Devices

FIGURE 1. Architecture of fog computing.

1) CLOUDLETS

The term “‘cloudlet” was introduced for the first time
in 2009 [39]. Cloudlets are small data centers that are
normally one hop away from mobile devices and can be
accessed via high-speed connectivity such as Wi-Fi, and
mobile broadband. The potential benefits of cloudlets include
increased bandwidth, decreased latency, offline accessibility,
and lower costs [40]. A cloudlet is a reliable, and, powerful
computer or a group of computers with a robust internet
connection that is used in the proximity of mobile devices.
For example, in a classroom or coffee shop.

The architecture of this scheme comprises three layers:
mobile devices, cloudlets, and cloud. The purpose of adopting
cloudlets is to enable mobile devices with limited storage
and computational resources to offload heavy computations
to cloudlets, which is particularly useful for time-sensitive
applications [41]. Limited coverage is one of the limitations
of cloudlets [42]. However, fog computing can overcome this
limitation by providing resources to be located anywhere,
from end devices to the cloud, and allowing large network
sizes.

2) MOBILE EDGE COMPUTING (MEC)

Mobile Edge Computing (MEC) intended to provide cloud
computing services at the base stations of cellular net-
works [43]. The MEC server is a new device that must be
deployed close to the base station towers to deliver computing
and storage abilities at the edge.

MEC was proposed in 2014 by the European Telecommu-
nication Standards Institute (ETSI) for the first time [44].
In 2017, ETSI officially renamed it MEC for multi-access
edge computing. This computing paradigm can be used to
provide a wide range of services including augmented reality,
location services, video analytics, local content distribution,
and caching services. By caching content on the MEC server,
it can enable access to local content in real time and with low
latency. For example, the authors of [45] proposed reinforce-
ment learning (RL) based energy-efficient MEC collaborative
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inference scheme to reduce the inference latency and save the
MEC energy consumption. According to [24], [35], and [44],
the characteristics of the abovementioned edge computing
paradigms are summarized in table 2.

Computation offloading in an edge computing environ-
ment is different from traditional computation offloading
in a mobile cloud environment (MCC). The MCC relied
solely on mobile devices and the main cloud server for
offloading tasks. Therefore, the main cloud servers may
be physically and logically distant from mobile devices,
resulting in large response latencies [46]. Edge computing
paradigms have been developed to address the latency
issue that occurs during the offloading process in MCC.
Edge computing is distinguished by the requirement for
low latency and the provision of a high workload capacity
while being close to user devices. In addition, based on
the research article [44] and the features of new edge
computing paradigms, computation offloading differs among
edge computing technologies.

Regarding proximity to the edge, in a fog computing
environment, the fog node may not be the first hop access
point for the end device due to the utilization of legacy devices
as fog computing nodes (FCNs). For instance, the first router
linked to the end device may not have the resources to run an
FCN framework. Therefore, the nearest FCN may be several
hops away. However, in the case of cloudlets and MEC, the
devices communicate directly with the node via Wi-Fi, and at
the base station of the mobile network, respectively. They are
only a single hop away from the end device.

In addition, fog devices are diverse and heterogeneous
in terms of storage, computation, and communication capa-
bilities, such as hubs and, switches. Cloudlet and MEC,
on the other hand, do not support heterogeneity devices.
Furthermore, the offloading process has changed in fog
environments because of the hierarchical and distributed
structure of fog computing (IoT, fog, and cloud). On the
other hand, MEC and cloudlets have localized structures.
The proximity, diversity and heterogeneity of devices and the
centralized and distributed architecture of edge computing
make the computation offloading process different and more
challenging.

D. FOG COMPUTING CHALLENGES

The fog computing paradigm intends to address several IoT
and cloud computing application challenges. However, it also
has its own challenges that will be discussed in this section.

1) SECURITY AND PRIVACY ISSUES

Because fog computing devices are typically deployed in
places that are not under strict surveillance and protection,
they may be at risk of traditional attacks that could compro-
mise the system of fog devices in order to carry out malicious
tasks such as eavesdropping and data hijacking. Furthermore,
privacy and security concerns can be triggered if end users
offload computations to neighboring fog servers injected
by attackers [47]. Man-in-the-middle, authentication, access
control, port scanning, and denial-of-service (DoS) threats
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TABLE 2. The characteristics of edge computing paradigms.

Characteristic Fog MEC Cloudlets
Architectural Distributed/ Localized/ Localized
design Hierarchical Hierarchical
Storage Limited Low Low
Processing High Medium Medium
Latency Low Low Low
Bandwidth Low Low Low
usage
Set-top
boxes,
routers,
Main switches, MEC server Cloudlets
computation ,gateways, running in base data center in
element access stations a box
points, base
stations,
mini servers
One or
Proximity multiple One hop One hop
hops
Location for Devices in Base stations and Nearby
. the path of . .
computing . nearby devices devices
routing
Bluetooth,
Access Wi-Fi, . J—
mechanisms Mobile Mobile networks Wi-Fi
Networks
IoT
application,
o Big data, Mobile Mobile
Application Smart home, applications applications
Smart cities, pp PP
game video
streaming
Mobility High Moderate Moderate
support
Heterogeneity Yes No No
support
Small (uses Large
legacy or Large (requiring (requiring
Cost . . . .
commodity special devices) special
devices) devices)

have been addressed by a number of proposed solutions for
fog computing security challenges [48].

2) RESOURCE MANAGEMENT

Resource management is considered the most challenging
issue in fog landscapes because of resource heterogene-
ity, resource limitations, unpredictability, and the dynamic
nature of the fog environment [15]. These issues make it
more difficult to manage resource allocation, scheduling,
placement, provision, offloading, and sharing. Therefore,
effective management solutions are required to satisfy the
requirements of these applications.

3) ENERGY MANAGEMENT

Fog computing systems are composed of a large number of
geographically distributed nodes and these fog noses has less
capability of storage and computing than cloud. Thus, the
energy consumption in a fog environment is expected to be
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greater than that of the cloud. This problem can be reduced
by an effective offloading mechanism by sending the energy-
intensive parts from fog nodes to other powerful neighboring
fog nodes or clouds servers. For instance, the authors of
[49] proposed an energy-efficient offloading decision method
to simultaneously reduce energy consumption and meet
response time constraints. A schedule-delay aware offloading
technique was designed in their paper to ensure service
quality in real-time jobs and reduce the energy consumption
of fog-cloud devices, thereby maximizing device lifetime.
Substantial research is required to develop successful energy
management technologies in fog environment [50].

4) QUALITY OF SERVICE (QoS)

Fog systems consider various QoS metrics when designing
a successful system. According to [51], 11 types of QoS
metrics were defined (response time, deadline, through-
put, resource utilization, execution time cost, energy con-
sumption, availability, reliability, security, and scalability).
Depending on the application requirements, these metrics
were considered. Trade-offs between different QoS metrics
are often necessary when implementing QoS provisioning,
which is made more challenging owing to the dynamic nature
of different applications and their requirements.

E. OFFLOADING

Offloading is an efficient mechanism that migrates com-
putation or data from a resource-constrained device to
another powerful device or fog/cloud to improve the sys-
tem performance, particularly for computation-intensive or
latency-sensitive applications. This mechanism offers various
benefits such as reduced latency, decreased device energy
consumption, and improved QoS parameters. Various aspects
must be considered when making offloading decisions,
including performance maximization, delay minimization,
and energy consumption minimization.

F. OFFLOADING DECISIONS
Before offloading the computation, several decisions must be
made [52], such as

1) WHAT TO OFFLOAD?

How much of the workload should be offloaded? Or what
to offload? The task scheduler is responsible for deciding
whether the task can be offloaded, and if so, in what capacity
(i.e., partial or full offload).

2) WHEN IS OFFLOADING?

The task scheduler is responsible for selecting the appropriate
time period for offloading the tasks. The offload interval is
chosen by the task scheduler under different constraints.

3) WHERE IS TO OFFLOAD?

This question is related to the location of execution (either
locally or remotely). If remote, the optimal fog node for
offloading should be selected among the available nodes.

12561



IEEE Access

D. H. Abdulazeez, S. K. Askar: Offloading Mechanisms Based on RL and DL Algorithms in the Fog Computing Environment

4) HOW TO OFFLOAD?
Through which channel or through which path to offload.

5) WHAT KIND OF OFFLOADING STRATEGY WILL BE USED?
What is the main goal of offloading, maximizing or
minimizing a single performance metric, joint opti-
mization, and the trade-off among multiple objective
metrics?

Different techniques have been suggested to make better
decisions with respect to computational tasks and data (what)
to offload, place to execute (either locally or remotely)
(where), what point in time to offload (when), and through
what channel (how) to offload. High-quality and timely
offloading decisions are based on what, weather, where,
when, and how questions help to enhance the efficiency of
the offloading process. To achieve high-quality based on the
above mentioned decisions, effective resources management
solutions are required to satisfy the requirements of the
applications.

A crucial aspect of computation offloading is deciding
where to offload the task (e,g., fog, cloud, or a combination
of these). Here, task scheduler is required to determine
which tasks will be handled by the edge, fog, and cloud
layers in order to meet the desired design goals. Generally,
computation offloading methods handle computing resource
restrictions such as the storage space of IoT devices, power,
battery backup, and sensors. Resource allocation refers to the
algorithm used to allocate computing tasks among different
fog nodes under different QoS requirements and other
restrictions. Several strategies have been introduced, which
can be categorized into auction-based and optimization-based
approaches. The proposed auction-based solutions are based
on market pricing mechanisms that consider the demand and
supply of fog nodes. Resource allocation approaches based
on optimization, on the other hand, match cloud servers and
fog nodes for IoT users [29]. For instance, [53] proposed a
resource allocation method based on priced timed petri nets
in a fog computing setting.

Task allocation and scheduling are considered the most
challenging and important step in the computation offloading
process of the fog computing environment because of
resource limitations, unpredictability, resource heterogeneity,
and the dynamic nature of the fog environment [15].
Methods designed to handle this issue are classified as
classical optimization, game theory, metaheuristics, and
machine learning. Machine learning, including the RL and
DRL algorithms, is widely considered an efficient alterna-
tive to traditional optimization strategies. These methods
make more intelligent decisions while offloading tasks
to cloud or fog servers. In addition, resource allocation
concerns such as CPU cycles, channel access, and time
allocation, can be addressed using these approaches. The
effectiveness of computation offloading is improved by
identifying suitable nodes and appropriate resource allo-
cation strategies that satisfy the QoS requirements of
applications.
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G. OFFLOADING MODE

Typically, mobile apps can be split into a series of coarse-
grained or fine-grained tasks, each of which comprises
sequential and parallel components. In fine-grained offload-
ing, only a small proportion of the task is sent to a higher-
powered computational device, whereas in coarse-grained
offloading, the entire job is sent [54]. It may not always be
advantageous to offload all the computing components to a
remote cloud. During the offloading process, the device may
waste more energy and time than locally. In addition, the cost
of the transfer may not be insignificant if an unsuitable part
is chosen for offloading.

Therefore, we must intelligently select which parts of the
application should be executed on a remote cloud server
and which parts should remain on the mobile device to
decrease response time and energy consumption. However,
some applications are relatively basic or strongly integrated
and cannot be separated into multiple tasks for parallel
processing [20]. They must be completely offloaded to a
server or run on a local device. The fog contains two
computational offloading modes: full (or binary) and partial
offloading. In binary offloading, the tasks of the application
cannot be partitioned and must be executed as a whole, either
locally or offloaded to the server [20], [55]. With partial
offloading, application tasks can be subdivided into several
components. These components are then executed locally
or offloaded to the servers [55]. The application can be
partitioned statically or dynamically as follows:

1) STATIC PARTITIONING

Itis decided in advance which application components should
be executed locally and which should be offloaded [20].
For instance, software programmers apply static annotations
(e.g., @offloadable or @Remote) to methods that indicate
that they should be offloaded. However, programs always
have non-offloadable components that must be processed
locally, such as face detection, user input, and positioning.

2) DYNAMIC PARTITIONING

A task’s resource needs may change based on its input data
and user-defined objectives (e.g., battery consumption and,
response time). In addition, resource availability may change
in wireless network (e.g., network latency and, bandwidth)
and service nodes (e.g., memory and, available CPU power).
To adapt to various network conditions, latency limitations,
and server states, appropriate partitioning decisions must be
dynamically determined during the runtime [52].

H. OFFLOADING METRICS
In this section, the most important metrics used in the
computational offloading domain are briefly explained.
These offloading metrics are selected in accordance with the
requirements of the application. Trade-offs between different
metrics are often necessary when implementing successful
applications.

Energy consumption: The offloading mechanism is con-
sumed the total energy. This mechanism sends the task
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from the end device to the server, runs a task on the
server, and returns the results to the end device [56]. In this
context, various considerations play an essential role in
consuming energy in fog computing including the data size
to be offloaded, the wireless channel’s transmission rate,
power, gain, and bandwidth, as well as the CPU’s power
consumption per cycle and the required CPU cycle of the IoT
device per task bit.

Latency: The total time taken from transferring the task
to the edge servers, running on the server, and receiving
the response from the server is referred to as task execution
latency [57]. Some parameters have a significant impact on
the total delay, such as the data size of the task to be offloaded,
wireless channel bandwidth, CPU rate of the edge servers,
and the number of CPU cycles required to process each byte
of incoming data.

Cost: In the offloading scope, the total execution cost
comprises local and remote execution costs, considering both
processing and buffering delays. This cost metric depends on
the task demand, response time of the task, and location of
the task deployments [58].

Response time: Response time is presented as the total time
required to offload a task from the local device to a remote
server and to receive a suitable answer on the local device.
The response time differs from the latency of the system.
Latency is the amount of time taken for a request to be sent
and then received at its destination, whereas response time is
the amount of time between sending a request and receiving
a suitable answer [59].

I. OFFLOADING DIRECTION

This section investigates where the computational tasks may
be offloaded. Offloading computational tasks can occur in
a variety of locations, including IoT devices, fog servers,
and clouds. The offloading destination is determined by the
trade-off between influencing factors and several objectives.
Therefore, the offloading location is crucial because it
determines the algorithms to be performed [60]. Such
offloading is required when a service provider’s assigned task
exceeds its processing capacity, and must be transferred to
another service provider with adequate computing power [6].
Offloading can be done in three different ways [6]: horizon-
tally, vertically, or in a hybrid topology.

1) HORIZONTAL OFFLOADING

Horizontal offloading occurs when two entities belong to the
same tier, such as a cloud-cloud edge-edge, fog-fog, or cloud-
cloud.

2) VERTICAL OFFLOADING

Vertical offloading always occurs between two entities
belonging to different tiers, such as edge-fog, edge-cloud,
edge-fog or fog-cloud.

3) HYBRID OFFLOADING
Hybrid offloading is a mix of horizontal and vertical
offloading in which entities can offload horizontally with
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another entity in the same tier, while also offloading vertically
with another entity in another tier. For instance, in a fog-fog-
cloud, fog is offloaded with another fog in tier-2 and also
offloaded with a cloud in tier-3.

J. EVALUATION OF FOG COMPUTING SOLUTIONS

The fog computing testbed has the potential to enhance
the evolution of fog computing. However, it is challenging
to conduct large-scale real-world experiments in a fog
computing context because of implementation time and high
cost. Therefore, few studies have evaluated the experimental
results in realistic and large scale areas. For instance, in [61],
a multilayer (IoT-device, edge, fog, and cloud) streaming
analytics platform with a two-tier fog layer consisting of
analytics and streaming tiers was proposed. This approach,
which has been functionally verified on a testbed consisting
of clusters of low-cost off-the-shelf components, illustrates
the feasibility of both large-scale data analytics and real-
time streaming processing. The objective is to manage a
large number of cyber physical systems applications based
on streaming and big data analytics IoT.

Another study [62] proposed a time-changing graph
to evaluate the competency of vehicular fog computing
(VEC) by analyzing Beijing’s vehicular mobility trace and
constructing a mode under diverse scenarios in a large-scale
urban mobility environment. Furthermore, in [63], a case
study on the creation and deployment of applications in a
large-scale, dynamic fog computing setting utilizing an open-
source platform distributed node-RED (DNR) was presented.
Solutions for dynamic and scalability-nature prototypes were
created using the Omnet++ network simulator. In addition,
the work [64] a self-similarity-based load balancing (SSLB)
approach for large-scale systems in a fog computing setting
was presented. To enhance SSLB efficiency, they presented
an adaptive threshold strategy and a corresponding schedul-
ing algorithm.

Because fog nodes are distributed, it is difficult and
expensive for researchers to develop a testbed prototype.
Some of them can manage it, but it is expensive to
build a large fog/edge computing infrastructure. Therefore,
it is important to create a fog/edge testbed as a service.
An appropriate real network testbed is necessary to assist
researchers in testing their experiments, ideas, and algorithms
in realistic fog computing environments. It can also benefit
researchers by decreasing the deployment time and saving
costs. The piFogBed was introduced in [65] as the first fog
computing testbed based on a real network and devices,
which enables users to execute real fog applications and
receive more realistic results by utilizing Docker container
and Raspberry Pi technologies.

Furthermore, the study in [66] introduced Fogbed, an open
source fog simulation system based on Docker and Mininet.
The existing components were developed for rapid pro-
totyping and testing of fog services in a real desktop
environment. Fogbed enables developers to use their verified
applications in real-world settings, with minimal modifica-
tions. FogTestBed was also presented as a framework for

12563



IEEE Access

D. H. Abdulazeez, S. K. Askar: Offloading Mechanisms Based on RL and DL Algorithms in the Fog Computing Environment

FogTestBed as a service [67]. It enables testbed owners to
construct their testbed infrastructure at the network’s edge
and to provide secure and private access to clients executing
experiments or tests.”

However, no specialized fog computing testbed exists to
date to assist researchers in testing their concepts, designs,
prototypes, and distributed algorithms in large-scale realistic
fog computing situations. Therefore, researchers typically
use existing simulators to validate the efficiency of fog
computing offloading solutions under specific use cases and
scenarios. For example, iFogSim [68] was the first simulator
for fog computing. It is an extension of the most well-known
cloud computing simulator, CloudSim [69]. iFogSim allows
for the evaluation of resource management techniques based
on energy consumption, latency, network usage, throughput,
and operational costs. iFogSim provides a graphical user
interface for describing fog network topologies, including
sensors, actuators, cloud servers, and connections between
them.

EmuFog [70] is another piece of edge computing sim-
ulation software that allows users to emulate large-scale
edge computing networks on individual computers. EmuFog
is based on container technology, which means that each
device in the emulation network utilizes its own namespace
to save execution and network information and run the
same program independently. However, some nodes in
realistic edge computing situations are dynamic and resource-
constrained, and EmuFog is unable to model such situations,
making it difficult to obtain accurate experimental results.
Furthermore, EdgeCLoudSim [71] is a CloudSim-based
edge computing simulator that can assess edge computing
performance. Its edge computing situations enable real load
generation and mobility with respect to computing load,
package size, and the ability of users to combine their own
requirements into a tool. However, the outcomes of the
experiment differd from those of the real scenario.

The MobFogSim simulator was recently been developed
to simulate application migration and device mobility in a
fog computing scenario [72]. This is an extension of iFogSim
that incorporates mobility features into the fundamental
functionality of several iFogSim components. However, the
MobFogSim mobility support system only interacts with
cloud datacenters and IoT gateways, which limits its ability
to create clusters in fog computing settings. In addition, [73]
proposed the iFogSim2 simulator, an extension of the
iFogsim simulator, to handle service migration for various
IoT device mobility models, microservice orchestration,
and node clustering in edge/fog computing environments.
The benefits of employing simulation-based techniques
include the reproducibility of the studies and a less expensive
method for evaluating the efficiency of a target platform
because physical hardware is not required.

K. REINFORCEMENT LEARNING

Reinforcement learning is defined as a feedback-based
machine learning technique in which an agent learns to inter-
act with the environment by executing actions and observing
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FIGURE 2. Reinforcement learning process.

their outcomes. Markov Decision Processes (MDPs) are
mathematical models [74] that describe how an agent
interacts with its environment. When an RL problem meets
the Markov property, the future depends only on the current
state and action and not on what happened in history [75].
According to work [76], an MDP is formally defined as a
tuple of five components (S,A,PR, and Y), where S denotes
the collection of states, A denotes the collection of actions, P:
SxAxS— [0, 1] denotes the probability of moving from one
state to another given a specific action, R denotes the reward
function, and Y represents a discount factor that determines
the significance of future rewards Y € [0, 1].

In order to solve the MDP problem, At the beginning, the
agent is in a specific state ‘s’ of the environment, it executes
an action ‘a’. Once the agent has taken action, the agent
moves into the next state ‘s-’ of the environment and receives
some reward ‘r’. As shown in figure 2, the agent performs this
cycle several times for learning.

The agent takes different actions to discover new informa-
tion and learns by receiving a reward for each correct action
and a penalty for each wrong action. Action space refers to the
set of options that an agent can execute in a given state. There
are two categories of action spaces: discrete and continuous.
A discrete action space is used to describe systems where
the action space is small, finite, and countable, whereas a
continuous action space is used to describe in systems which
an action can take any value within a given range [77].

The agent received a reward immediately after performing
the action. The immediate reward R is defined by a numeric
value (positive or negative) to assess the desirability of the
action taken by the agent. Thus, the agent’s objective is to
optimize cumulative rewards rather than immediate rewards.

In large space problems, such as vehicular networks, the
state space is vast, and it is impractical for the agent to
continually explore every potential action in each state to
achieve the appropriate confidence. An agent must generalize
the state space in such situations. Some states may be
infrequently visited or may have characteristics that allow for
generalization. Such continuous spaces and high dimensions
cannot be handled using conventional reinforcement learning.
Deep reinforcement learning was used to solve this problem.

Deep reinforcement learning integrates deep learning (DL)
and reinforcement learning (RL) [78]. DRL is an enhanced
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version of the RL technique proposed by DeepMind [79],
in which DL is utilized as a powerful tool for enhancing
the learning rate of RL techniques [80]. In traditional RL,
the values of states and actions are recorded using a tabular
method. Therefore, the deep learning architecture in deep
reinforcement learning can be considered as a functional
approximator, helping the system handle high-dimensional
data and provide an approximation in the face of massive
actions and state spaces. The mapping from state to action
in this learning is defined by neural networks rather than an
SVM, decision trees, or other function approximators [45].
Deep learning convolution and recurrent neural networks
have also been used [81]. For example, the Q-values for a
finite number of discrete actions and states can be represented
in a table. However, to represent Q-values in continuous state
spaces, function approximators, such as DNNs, are required.
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IV. RESEARCH METHODOLOGY

This section presents the methodology used to conduct
the comprehensive literature review. First, it formalizes the
research question. Next, the electronic database sources
used for finding and retrieving papers related to offloading
mechanisms based on the RL and DRL methods in fog
computing are discussed. Furthermore, it outlines the general
and exact keywords used to identify relevant articles and their
quality evaluation process.

A. QUESTION FORMALIZATION

The research objective is to search, collect, and identify the
best articles on offloading techniques based on RL or DRL
approaches in the fog computing field. The following are
some of the research questions that will be answered in this
study:

RQ1: What categorization can be applied to RL or DRL
based offloading mechanisms in fog computing?

RQ2: Which types of algorithms are utilized by RL or DRL
based offloading mechanisms in fog systems?

RQ3: Which typical performance metrics are utilized in RL
or DRL-based offloading techniques in fog computing?

RQ4: What cases are studies considered in RL or DRL
based offloading techniques in the fog paradigm?

RQ5: Which tools are used to evaluate RL or DRL based
mechanisms for offloading in fog systems?

RQ6: Which offloading modes are applied in RL or DRL-
based offloading techniques in the fog paradigm?

RQ7: What offloading direction is usually applied in RL or
DRL-based offloading techniques in fog areas?

RQ8: Which offloading decisions are made with respect to
what, where, when, and how are decisions in their strategy
based on RL or DRL-based offloading techniques in the fog
area?

RQ9: Is SDN incorporated into their strategy based
on RL or DRL-based offloading mechanisms in fog
computing?

RQ10: How many studies have formulated their offloading
strategy problem as an MDP or partially observable Markov
decision processes (POMDP) problem and solved it based on
RL or DRL approaches in a fog environment?

RQ11: What are the future research directions and open
issues for RL and DRL based offloading mechanisms in the
fog paradigm?

In Sections VI and VII, the answers to the research
questions are discussed.

B. SOURCE OF INFORMATION
The following electronic databases were searched for stud-
ies relevant to offloading mechanism-based RL or DRL
approaches in fog systems:

e Google Scholar (<www.scholar.google.co.in>)

e IEEE eXplore (<www.ieeexplore.ieee.org>)

e Springer (<link.springer.com>)

e ScienceDirect (<www.sciencedirect.com>)

e Wileylnterscience (<www.Interscience.wiley.com>)

e MDPI (<https://www.mdpi.com>)

e ACM Digital Library (<www.acm.org/dl>)
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TABLE 3. Automatic search paper filtering using inclusion/exclusion
criteria.

Exclusion
1. Study not applying
reinforcement learning methods
in offloading mechanism.
2. Study related to reinforcement
learning methods based on
Multi-Armed Bandit (MAB)

Inclusion

1. The publications present
assessments, solutions, or
experiences for offloading
strategy in a fog
environment.

2. Studies emphasizing

offloading issues in the fog ~ methods.

environment. 3. Study related to edge, cloudlet,
3. Papers published MCC or MEC.

between 2019 and mid- 4. Non-English research papers
2022. 5. Books and book chapters.

6. Review and survey papers.
7. Duplicate paper.

C. PAPER SELECTION PROCESS

This comprehensive literature review has searched the
aforementioned digital libraries using relevant keywords such
as “fog,” “fog computing,” “offloading,” “reinforcement
learning,” “Deep learning learning,” “DQN,” “DDQN,”
“A2C,” “SAC,” and “Q learning”., Snowball searches
were also performed using the publications that cited each
found paper to find further related papers. In addition, this
systematic review included research publications written in
English between 2019 and mid-2022. A total of 276 research
articles from various conferences and journals were identified
through the search procedure. As shown in figure 3, the
final paper selection was filtered using both inclusion
and exclusion strategies. The total number of research
publications decreased in four stages: first, based on their
titles, to 170; and second, based on their abstracts and
conclusions, to 90. In the third stage, 60 research papers were
selected based on full-text analysis. Finally, based on the
inclusion and exclusion principle shown in table 3, 56 papers
were selected to answer the current study technical questions.
No research articles found in the MDPI or ACM digital
libraries met the inclusion and exclusion criteria.
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V. OFFLOADING MECHANISMS IN FOG COMPUTING
BASED ON RL AND DRL TECHNIQUES

This section provides a review of current publications
on RL and DRL algorithms used to address offloading
problems in fog computing. Figure 4 shows the taxonomy
in which RL and DRL algorithms are organized into three
major classes: value-based, policy-based, and hybrid-based
algorithms. Q learning, DQN, Double DQN, Dueling DQN,
DRQN, and SARSA are ““value-based” approaches, whereas
PG, DDPG, and PPO are “policy-based”” approaches. Hybrid
approaches include DDPG and SAC. This study focuses
on model-free approaches to address offloading issues in
a fog environment. A summary of the results is presented
in table 4.

A. VALUE-BASED ALGORITHMS

The value function, also referred to as the value of the
policy, is used to assess the states depending on the
cumulative reward the agent obtains over time. Value-based
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RL approaches use temporal difference (TD) learning to
approximate the value function rather than learning the policy
explicitly [78]. For each learned policy (i), there are two
related value functions: the state-value function ’V(s) and
the state-action value function ’Q(s, a). The objective of
the value-based method is to identify the optimum value
function, which is the maximum value in any given state that
can be obtained under any policy. Typical value-based RL
algorithms include Q-learning and SARSA.

1) Q-LEARNING

Q-learning is a model-free reinforcement learning technique
that can be used to determine the optimum policy for a given
state. The Q-learning algorithm learns each state to determine
the optimal course of action based on the Q- value function.
Learning occurs through trial and error until a particular
course of action yields an ideal policy [82].

Several offloading problems in fog computing have been
solved with the help of the Q learning method. For example,
the authors of the paper [10] proposed an innovative approach
to the issue by giving IoT nodes the option to choose to
offload tasks to the proximity of fog nodes or the ideal
fog node and the remote cloud to meet the needs of the
applications. A Q-learning-based algorithm is employed to
solve the model and select the optimal offloading policy.
The fundamental aim of this study is to reduce the total
latency and distribute tasks evenly across fog nodes by
lowering the number of offloading operations required to
allocate a task to an appropriate fog node. Numerical
simulations demonstrate that the recommended technique
outperforms other approaches in terms of decreasing latency,
processing more tasks, and distributing the workload more
smoothly. Furthermore, the authors of work [11] address
the load balancing problem while achieving the lowest
possible latency in fog networks. To address this issue,
a decision-making approach based on Q learning was
developed to determine the best offloading action to take
while the reward and transition functions are unknown.
To reduce the overload probability and processing time, the
proposed methods enable fog nodes to choose an available
neighboring fog node based on their resource capabilities
and to offload the maximum number of incoming tasks.
Similarly, in [83], a Q-learning-based technique for selecting
ideal offloading nodes in opportunistic edge computing was
proposed.

Additionally, a new approach to fog-based IoV network
communication security, QoS improvement, and end-to-end
delay reduction has been proposed by a study [84]. This
system exploits the advantages of SDN and the block-
chain technology. The SDN controller uses a Q learning
based RL algorithm to assign tasks to fog nodes so that
traffic can be distributed more evenly. As a result of the
authors’ experiments, SaFIoV is capable of avoiding network
congestion, reducing latency, and efficiently utilizing net-
work resources. Similarly, the authors in [85] proposed a
secure computation offloading scheme to minimize delay
and energy consumption in the IoT-Fog-Cloud environment.
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FIGURE 4. Taxonomy of fog computing offloading mechanisms based on RL and DRL methods.

Selection of the best fog node is based on Particle Swarm propose a Q-learning-based dynamic offloading strategy for
Optimization (PSO). When the fog node cannot handle the this purpose. In the next step, the researchers used a neuro-
workload within the latency constraints, it is forwarded to fuzzy model to secure information at the fog node’s smart
the remote cloud server for further processing. The authors gateway.
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One of the most challenging aspects of resource manage-
ment for intelligent mobile apps is deciding when and how
to offload and provides edge servers to control their dynamic
workloads of mobile applications. The authors of [86] used
the learning automata technique to make the most optimal
offloading selection for workloads submitted by smart mobile
applications. In addition, the Q-learning technique and LSTM
prediction model were utilized to make an appropriate scaling
decision for adding or removing the edge server to adapt
to workload fluctuations. Compared with other methods, the
proposed technique enhances CPU usage and reduces the
energy consumption and execution time. In [87], proposed an
innovative framework named ‘“DroneCOCoNet “ for drone
video analytics that enables sophisticated processing of large
video data sources utilizing fog computation offloading and
accomplishes network protocol selection related to resource
awareness. Heuristic and reinforcement learning based Q
learning approaches were used to deal with computation
offloading problems to reduce overall computation costs
and latency in edge/fog resources while also reducing video
processing times to fulfill application requirements.

The study in [88] proposed a reinforcement learning-
based user access and computation offloading technique in an
F-RAN scenario, which used Q learning to maximize system
resource utilization and minimize energy consumption by
considering both the downlink and uplink task requirements.
Furthermore, [89] proposed an intelligent local offloading
to enhance the latency and energy efficiency of smart
factories. Besides, [90] designed cost-efficient computation
offloading (CeCO) for green industrial fog environments.
In their research the fog controller concept was introduced
to control computation offloading between industrial devices.
Initially, industrial devices distinguished between remote
and IToT executable tasks. They also included a frequency-
enabled power management strategy to minimize energy
emissions in an industrial context. Overburdened tasks were
then transferred to the fog controller, where the primary fog
controller used a probabilistic technique to select the best fog
device. Additionally, the fog controller uses the Q-learning
method to determine the shortest path to the destination.

Moreover, [91] proposed a novel framework called
(ARTNet) for efficient task offloading in software defined
vehicular (SDV F) based on the Q learning method. The
major objective of the proposed framework is to improve
the offloading action through each system to optimize
the utility while optimally distributing the IoV workloads
and reducing the processing time. In addition, the authors
of [92] presented a technique called GASDEO for offloading
a decision-based MAPE to different mobile devices, fog,
or cloud architectures. According to the proposed technique,
fog devices (FDs) were analyzed locally using a greedy
technique, starting with the sibling nodes and continuing to
the parent nodes. In the following stage, the DRL method is
used to select the best destination for running modules on a
mobile device, fog, or cloud environment, in terms of power
consumption, total execution cost, and network resource
usage. The results indicated that the suggested technique led
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to improvements over the local execution, First-Fit (FF), and
ASDEOQO methods.

Furthermore, offloading tasks from heterogeneous nodes
at the edge of an open and dynamic network is challenging
because of the fluctuating workload generated by applications
with different service level agreement (SLA) and quality
of service (QoS) requirements. The study presented in [93]
provided a new learning-based task offloading approach to
orchestrate the workload at the network’s edge. In compar-
ison with the baseline algorithms, the results indicate that
resources are better utilized and tasks are performed with a
higher success rate.

2) DEEP Q NETWORK (DQN)

In the context of fog computing, it is challenging to fully
understand the system dynamics. Q-learning is a model-free
approach for solving this issue. However, Q-learning is a
tabular approach, and its size increases exponentially with
the number of nodes. Therefore, defining and updating a
Q-table in a large state space environment is a complex and
challenging task. The deep Q network (DQN) method was
used to resolve this problem. In this configuration, rather than
generating a Q-table, the neural network estimates the Q-
values for each action and state. Many academic researchers
have proposed offloading problems in fog computing under
MDP, which can be addressed by the DQN, which decreases
the number of Q-states that must be trained for each action.

For example, in [94], a computation offloading and
resource allocation system for F-RANs was proposed using
Deep Reinforcement Learning (DRL). This offloading prob-
lem can be described as an MDP and solved efficiently
using a DQN. The main idea of the proposed approach
is that the DRL controller can make intelligent decisions
to process a produced task locally or to transfer the task
to a fog access point (FAP) or remote cloud server. The
simulation results indicated that the recommended design
considerably minimized delays and maximized throughput in
the system. Following a similar idea, for long-term reduction
in system energy consumption, the authors of [95] proposed
a deep reinforcement learning (DRL) approach based on a
DQN with a scenario of multiple IIoT devices and multiple
fog access points (F-APs). Subsequently, [96] presented
a new incentive system for the IoV scenario based on
contracts that integrate both resource utilization and resource
contribution. The proposed approach was used to determine
the best location for executing the modules (mobile devices,
fog or cloud). The authors proposed a distributed deep
reinforcement learning (DRL) based DQN method to assign
resources and reduce the system complexity.

In addition, a deep learning based reinforcement network
was presented for the resource allocation and task offloading
problem in [97]. Specifically, a deep Q learning network
(DQN) was used to address issues modeled as an MDP. The
DQN receives the tasks in the queue as the input and the
resources available on the fog node. Therefore, instead of
using a standard convolutional neural network, this study
used a short term memory network (LSTM) in the DQN.
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A DQN environment was constructed with fog nodes using
the reinforcement learning toolkit in MATLAB and the
SUMO environment for VANET behavior. The DQN selects
the fog node to be offloaded, and the vehicle must be inside
the new node’s range of transmission when the simulation
is run. Next, the vehicle locations were predicted using the
Kalman filter prediction algorithm in the DQN setting.

Moreover, the authors of [98], studied a task offloading
scheme in optimal query and policy dynamic environ-
ments. The authors were able to acquire the ideal query
policy at the task node using the reinforcement learning
framework, resulting in long-term optimized task offloading
performance. Their research also proposed a simple and,
effective approach for the task node to learn the best query
decision by utilizing deep Q-networks, whereas the task
node is unaware of the dynamics of the system. According
to the numerical results, the performance of the proposed
query policy learning method was close to the optimum
performance. Similarly, in [99] task offloading based deep
Q learning in the healthcare Internet of Things (IoT)
was used to distribute the load across the edge, fog, and
cloud. Besides, the task offloading problem in collaborative
vehicle networks was modeled as an MDP by the authors
of [100].Then, to enhance user vehicle performance while
still meeting URLLC constraints, a Deep Reinforcement
learning—based URLLC-aware DQN-based task offloading
algorithm DREAM, was developed. The proposed schema
outperformed other schemes with existing task offloading
methods in terms of queuing delay, throughput, and URLLC.
Finally, [101] proposed an offloading strategy based on deep
Q-learning to maximize the QoE of tasks in delay-constrained
VEC. Considering both the deadline and delay of a task in the
reward function of Deep Q-Learning

With the continued growth of extensive IloT applications,
effective service delivery and energy reduction face signif-
icant obstacles. However, a single fog device cannot fully
perform large-scale applications owing to a lack of resource
availability. A partial service provisioning approach offers a
potentially successful solution to activate services on several
fog devices or to collaborate with cloud servers. Inspired
by this scenario, the work [102] presented a cooperative
partial service provisioning technique for tackling massive
industrial applications in fog networks. First, this study
aims to jointly enhance energy consumption and processing
latency across all IIoT applications in industrial fog networks.
To accomplish this goal, a task partitioning technique for
splitting large IIoT tasks into several independent tasks was
presented. Then, to intelligently distribute the partitioned
tasks across the proximate fog devices, a DRL based DQN
enabled service provisioning technique is deployed.

According to [103], task offloading can be solved by
considering both communication and computation resources
in a mobile vehicle network. The authors formulated a non-
linear issue for energy efficiency. A deep reinforcement
learning (DRL)-based DQN approach is used to solve the
formulated problem. The authors of [104] proposed a deep Q-
learning network (DQN) method to minimize both delay and
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energy consumption in vehicle fog computing. Offloading
decisions in IoV are challenging because of the dynamic
nature of the environment and large number of existing state
spaces. In addition, [14] proposed a low-complexity deep
reinforcement learning technique based on DQN to address
the issue of job offloading and resource allocation in a cell-
free radio access network. An optimization aim of decreasing
the system latency is employed, and a DNN is utilized
to speed up the learning of the system, which can make
optimal selections under a high number of users and tasks and
generate appropriate offloading techniques for computation.
Consequently, computational resource allocation and task
offloading have been jointly enhanced to address and
solve the computational offloading problem in collaborative
vehicle networks [105]. To reduce the inferior learning per-
formance resulting from excessive vehicle mobility, an AF-
DQN asynchronous federation mechanism was deployed.
The simulation results illustrate that the proposed approach
can help reduce the total queuing latency and enhance system
throughput. To address the task offloading issues in delay
restriction vehicular edge computing, [106] suggested two
techniques of value-based reinforcement learning: b-FDQO
and baseline DQN.

According to a previous study [107], a smart mobility fog
agent (MFA) is included in the SDN controller. The authors
also developed an adaptive policy for resource allocation
that handles offloading tasks along with the user mobility
information. It also showed an innovative IoT-fog system
based on an SDN controller and a DRL strategy. This system
provides awareness of mobility services and responds to
environmental changes. In their research study, they also
proposed an innovative local search-based DQN strategy that
improves system costs (energy and execution time) for the
workloads demanded in different time zones. Furthermore,
the research paper [108] presents DRL energy-efficient task
scheduling and offloading in a fog IoT network based on
SDN. A single SDN controller layer was used to centralize
network control and orchestration. SDN-fog computing
reduces network latency and traffic overhead. In addition,
they proposed a DRL technique to enhance latency reduction
and minimize energy consumption in dynamic and distributed
IoT networks. There have been a number of problems
with optimizing task offloading in highly dynamic vehicle
networks, including insufficient information, conflicting
queuing latency, and high dimensional curse. In [109],
a queuing delay-aware task offloading algorithm based on
DRL methods was proposed to dynamically improve the
task offloading problem and maximize the throughput of
user vehicles while meeting the requirements for the long-
term queueing delay in collaborative vehicular networks.
The simulation results indicate that the proposed method
outperforms the D-QLOA and EMM approaches in terms of
throughput and end-to-end queuing delay.

3) DOUBLE DQN
A traditional DQN often uses a single mathematical estimator
to select and evaluate an action, which could cause the
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value of the action to be overestimated [110]. To address
this problem, a double DQN (DDQN) was presented
in [111]. Specifically, the Double DQN algorithm splits
the evaluation and selection processes into two maximum
function estimators. The double estimator method does not
overestimate the action value, resulting in a more accurate
estimation.

A double DQN-based computation offloading policy in
a F-RAN considering D2D communication between user
devices was proposed in [110]. This study aims to reduce
costs by considering both execution delay and power
consumption. Simulation findings indicate that the proposed
method efficiently minimizes the total cost compared to
existing methods. Moreover, in [12], an energy-efficient com-
putational offloading strategy was proposed for a three-layer
architecture in oV, which incorporates layers of cloudlets,
RSUs, and fog nodes. In their research, they considered both
stationary and moving vehicles as fog servers and developed
a DRL method based on queuing theory to coordinate task
flows in order to minimize overall energy usage.

For offloading and allocation optimization problems,
a double DQN was used to address the high-dimensional
state space when there were more wireless devices. A study
in [112] suggested a decentralized optimization scheme based
on a double DQN called (DOCRRL) for bandwidth allocation
and partial offloading. The suggested schema can learn the
best way to make decisions when there are strict limits on
latency and risk, thereby avoiding the curse of dimensionality
caused by a high number of possible actions and states.

4) DUELING DQN

One significant limitation of the DQN algorithm is that,
in some states, the value function does not depend on
the selected action. The Dueling Deep Q-network (Dueling
DQN) algorithm has been proposed as a solution to overcome
the aforementioned dilemma [113].

In addition, depending on the network architecture of
the DDQN, the agent in the RL gradually acquires a more
accurate value. This indicates that the dueling DQN algorithm
might achieve a higher performance than the DQN method
when it comes to handling problems related to offloading
policies and resources. The work in [114] adopts a dueling
DQN algorithm to choose the most suitable offloading
strategy for each user equipment (UE), which includes
offloading to fog access points (FAP), proximity idle UEs,
or processing by itself. As the number of UEs requiring
offloading increases, the centralized dueling DQN algorithm
becomes more complex. Therefore, a preprocessing mecha-
nism is implemented to reduce the complexity of the dueling
DQN algorithm by immediately fulfilling some of the UE’s
task demands. Similarly, [115] proposed a new offloading
policy in an F-RAN that uses the dueling DQN method to
optimize the overall utility of UEs.

5) DEEP RECURRENT Q-NETWORK (DRQN)
In conventional neural network training, training samples
are primarily determined by the current state. However,
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it performs poorly when processing data with long-term
dependency. To overcome this problem, an LSTM algorithm
was introduced. The LSTM is more efficient than traditional
neural networks in terms of storing and retrieving informa-
tion. Therefore, it has recently been used in several fields
related to sequence processing [116]. The DRQN method
enhances the DQN by using an LSTM instead of a fully
connected layer [117]. To efficiently memorize the action that
maximizes the reward in each state, the DRQN uses LSTM to
store additional information regarding action choices within
a state. By combining information over a longer period, the
DRQN further improves the network’s ability to deal with
partially observable models [118].

As an alternative to the DQN, a DRQN approach can
be used to estimate optimal value functions and effectively
deal with inadequate state observations while dealing with
partial observability and a large state space. Therefore, many
fog computing computational task offloading problems are
formed as partially observable Markov decision processes
(POMDPs) because the agent can only view a portion of
the entire observation environment and academic researchers
tackle these issues based on the DRQN method. The DRQN
method combines the past state with the current input state,
allowing appropriate decisions, even if the present state of
the environment is not observable. For instance, the authors
of [119] formulated dynamic computation offloading in IoT
fog systems as a POMDP and solved it using a DRQN to
provide the IoT device’s ideal offloading policy for each
state. Compared to benchmark offloading techniques, the
suggested offloading strategy may efficiently minimize the
energy consumption of IoT devices and satisfy the processing
delay requirements of computing tasks.

Similarly, a computational offloading and task scheduling
method for minimizing energy consumption under delay
constraints was proposed by the authors of [120]. The DRQN
is then used to address partial observability based on limited
data. The results demonstrate that the proposed offloading
algorithm outperforms conventional methods. Furthermore,
to ensure a specific quality of service for each task and
maximize the utilization of resources by collaborating
between several fog computing nodes, a joint task offloading
strategy and heterogeneous resource allocation using DRQN
algorithm was proposed in [121]. The goal of this study was to
increase the number of processing tasks within their latency
time limits.

Moreover, DRQN enhancements to the DQN algorithm,
make it more suitable for handling issues related to the
offloading of vehicle tasks in IoV. In [122], an offloading
approach using the DRQN algorithm was proposed to reduce
the latency of vehicle task offloading. Initially, an actual
map was modeled, the task queue was initialized, and a
task offloading environment with many service nodes was
created. Subsequently, the DQN algorithm, which integrates
deep learning with reinforcement learning, was designed
to improve the offloading strategy by minimizing offload
delay. Finally, because complete information cannot be
adequately observed in the environment, the DQN applies
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an LSTM model to train its neural network to increase the
offloading effectiveness. According to the simulation results,
the proposed schema-based offloading of vehicle tasks can
significantly minimize vehicle offloading delays.

6) STATE ACTION REWARD STATE ACTION (SARSA)

This is a method for learning about temporal differences in
policy. In the on-policy control approach, each state’s action
is selected while learning how to use a particular policy. The
primary difference between SARSA and Q-learning is that,
in contrast to Q-learning, modifying the Q-value in the table
does not require a maximum reward for the following state.
SARSA selects new actions and rewards based on the same
policy as the initial action [80]. The study in [123] proposed a
fuzzy reinforcement learning (FRL) approach for an energy-
saving task offloading schema in a VFC. The FRL combines
fuzzy logic with the SARSA method to reduce both the power
consumption and response time.

7) COMBING RL OR DRL METHODS

Many researchers have used two RL or DRL methods
to address the offloading problems in fog computing.
For example, in research [124], the co-offloading of both
computation and traffic for industrial applications in fog
computing was studied. Initially, they created a table that
stored task properties based on a content-centric design.
Subsequently, a strategy is proposed for offloading network
tasks that require high volume and expensive computation
in fog computing, which considers both the computational
workload and traffic volume. The author presented a novel
formulation that considers both resource constraints and
vehicle mobility with the goal of meeting traffic vehicle
offloading requirements. Subsequently, the tradeoff between
service latency and energy usage was addressed in edge
offloading by concentrating on execution usage and response
latency. The author solved the suggested cost reduction
challenge by devising two RL-based algorithms: the dynamic
RLscheduling (DRLS) method and the deep dynamic
scheduling (DDS) method. The authors proposed DDS based
on DQN and Double DQN. The results demonstrate that
the proposed offloading method reduces service delay and
energy consumption in comparison to the baseline offloading
schemes.

An effective decision-making system was described in
[125], which gives fog nodes the intelligence to choose an
appropriate algorithm for processing data. By combining
reinforcement learning algorithms (SARSA and Q learning)
into its architecture, Devote can adapt to the dynamic
environment of IoT. The selection of an appropriate algorithm
is based on the characteristics of the data, which can be
normal, critical, or too critical. To offload crucial data,
researchers have proposed a secretary-based online algorithm
to selec the most suitable fog node. The mobility of fog nodes
and IoT devices is typical in various applications such as
vehicle networks. However, the mobility aspect is ignored in
this study.
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B. POLICY-BASED ALGORITHMS

The policy-based approach aims to discover the best policy
to optimize the reward in the future without relying on the
value function [80]. This method explicitly builds a policy
(mapping m:s—a) representation and maintains it in the
memory during the learning process. Policy gradients (PG)
and proximal policy optimization(PPO) are typical policy-
based RL algorithms. The policy-based approach consists of
two primary types of policies: deterministic and stochastic.
In deterministic terms, policy (;r) produces the same action
in all states, whereas under a stochastic policy, the produced
action is determined by probability. The advantage of policy-
based approaches is that they have superior convergence
properties and are efficient in continuous action spaces or in
high dimensionality.

1) POLICY GRADIENT (PG)

The policy gradient approach optimizes parameterized poli-
cies in relation to expected returns by using gradient descent
(long-term cumulative reward). They are not burdened by
many of the issues that plague traditional reinforcement
learning approaches, such as the lack of assurance of a
value function, complexity imposed by continuous states
and actions, and intractability issue imposed by unknown
state information [126]. In [127], the authors addressed the
issue of computation offloading in an Internet of Things
(IoT) fog system enabled by energy harvesting (EH). The
researchers modeled the issue as a distributed partially
observable Markov decision process (Dec-POMDP). Dec-
POMDP is designed to maximize the latency-satisfied utility
of all the IoT devices. Then, Lagrangian and policy gradient
methods were used to find a local optimal solution to the
given optimization problem.

2) ADVANTAGE ACTOR-CRITIC (A2C)

The actor—critic deep reinforcement learning method was
first introduced in [128] to incorporate the core concept of
value-based and policy-based algorithms and concurrently
predict two sets of parameters. A2C requires the deployment
of actors and critical networks. The actor is responsible for
mapping states to actions, whereas the critic is responsible for
mapping state—action pairs to the expected cumulative long-
term reward.

Using the advantage actor-critic (A2C) algorithm in deep
reinforcement learning (DRL), the author of [129] presented
a joint optimization method for resource allocation and
offloading strategies to decrease the delay for computational
tasks in a fog environment. Multiple action dimensions
make the network convergence challenging. As a result,
this study employs a multi-agent strategy to obtain the
solution by dividing the entire offload decision action into
multiple sub-actions. Besides, the paper [130] presents a
collaborative approach for content caching, radio resource
allocation, and computing offloading in fog-enabled IoT,
with the goal of reducing the overall delay for all service
requests. They then used a model-free reinforcement learning
framework to interact with the environment and choose the
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best course of action, which eliminated the requirement
for a complete system evolution model. As a function
approximator, a DNN is used to estimate the value functions
owing to the large number of possible system states and
actions. The study proposed an actor-critic deep RL method
to learn the optimal stochastic policy for radio resource
allocation, content caching, and computing offloading. With
the help of a critic, the actor represents a stochastically
parameterized policy with another DNN and improves the
policy.

3) PROXIMAL POLICY OPTIMIZATION (PPO)

The PPO is a deep reinforcement learning method based
on the A2C technique. PPO is an extension of the trust
region policy optimization (TRPO) approach, which has
been successful [131], [132]. The TRPO incorporates a
novel objective function called the surrogate objective and
a KL-divergence constraint known as a trusted region to
enhance the efficiency of other previous policy gradient-
based reinforcement learning approaches. Because sudden
changes in the policy can result in inconsistent performance,
the trust region prevents TRPO from altering the decision-
making policy too frequently with each training period
update. However, computing the derivative of the KL-
divergence is difficult. By introducing a clipped substitute
objective function, PPO overcame this TRPO issue. Because
the objective function’s clipping restricts the policy’s ability
to alter, the PPO can be trained without a trusted region,
which uses fewer computations than TRPO. Compared to
other DRL algorithms, the DQN method as an example,
performs well on the problem of continuous action. In terms
of sample complexity, it also performs better than A2C and is
similar to ACER, although it is much simpler. The PPO can
also be expanded by adding more workers to accelerate the
training.

The study [133] formulated the challenge of assigning
limited fog resources to vehicular applications with the
goal of minimizing service delays using parked vehicles.
Then, a heuristic technique is presented to efficiently find
solutions to the problem. To further improve resource
allocation, the proposed method is combined with the PPO’s
utilized data on parking status and vehicle movement in the
city’s smart environment. Moreover, [134] formulated an
unmanned aerial vehicles (UAV)-assisted offloading problem
for IoT to jointly reduce the queue length and energy
consumption in smart buildings and environments. The
control decisions include evaluating whether IoT device
tasks should be offloaded or processed locally as well as
allocating time resources and bandwidth to IoT devices
attached to the UAV. This was reformulated as an MDP-
based offloading problem. To achieve a balance between the
two conflicting optimization objectives of queue length and
energy usage, the author incorporated both objectives into a
single reward function. The UTO approach-based PPO was
designed to address the issue of UAV-assisted offloading. The
proposed method can effectively solve problems faced by
high-dimensional consecutive state and action spaces. The
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proposed strategy successfully addresses the challenges faced
by high-dimensional sequential states and action spaces.
Besides, [135] developed IIoT blockchain networks and
highlighted the use of RL approaches in IloT blockchain
networks such as PPO.

C. HYBRID ALGORITHMS

Value-based and policy-based algorithms were combined into
a hybrid algorithm. Their objective was to implement policy-
based algorithms to model the policy function, whereas
updates to these policy functions were based on value-
based algorithms. The DDPG and SAC are typical hybrid
algorithms.

1) DEEP DETERMINISTIC POLICY GRADIENT (DDPG)

DDPG can be viewed as a combination of DQN and DPG
algorithms [136]. The primary network, target network,
and reply memory are the essential components of DDPG
networks. Both the primary and target networks consist of
two neural networks: actor and critic. The actor network was
used to investigate policies, whereas the critic network was
used to evaluate the policies. The critic network also provides
critical value for enhancing the policy gradient. The state-
action pairs, associated rewards, and subsequent states are
all stored in replay memory. These samples were chosen
randomly by the agent during training to minimize the impact
of the data correlation.

In the literature, the DDPG approach has been utilized to
tackle several optimization problems related to offloading
computations in fog. For example, a fog-based vehicle
architecture with computational offloading and service
caching was developed in [137]. Peer-pool and fog-pool
computation cooperation were used in this design to improve
efficiency. To minimize long-term energy utilization and
task processing time, an optimization problem is defined for
combining computation offloading with service caching. The
DDPG algorithm was used to find an optimal solution to
the optimization problem. In addition, [138] presented an
intelligent computation offloading technique with resources
to enhance the cooperative processing efficiency of fog nodes
and improve the user service experience. First, the authors
of the papers formulated an energy consumption reduction
issue for all computer workloads that considers offloading
decisions, transmission power, and bandwidth resources.
Moreover, a (D3PG-ICO) algorithm based on DDPG is
proposed to solve the formulated problem. The recommended
technique creates two separate critic networks to better
construct the best global computation offloading policy, and
a discretization operation that includes continuous variables
is incorporated to improve the randomness of the policy
exploration. Finally, the simulation results demonstrate that
the proposed system is reliable and that the policy for
reducing power consumption by offloading computations can
be implemented quickly and flexibly.

In addition, a learning-based mobile fog scheme to offload
code blocks in IoT was proposed in a research article [142],
that maximizes the use of idle edge computing and storage
resources. Offloading state sets are modeled as Markov
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decision processes (MDPs) and the DDPG algorithm to
address the problem of state space explosion and identify
an optimal policy for offloading code blocks in different
contexts. Besides, [139] investigated the problem of joint task
partitioning and power control in a fog computing network
with various mobile devices (MDs) and fog devices (FDs),
where each MD must accomplish a periodic computing task
under the restrictions of latency and power consumption.
To satisfy the latency and power consumption restrictions,
the tasks of each MD can be divided into subtasks and
performed in collaboration with the FDs. To satisfy the energy
consumption and delay limitations, the tasks of each MD
can be divided into subtasks simultaneously performed by
the MD and the FDs. The solution to this issue was a task
offloading algorithm based on MADDPG, which determines
the task partitioning and transmission power technique for
each MD to optimize the performance of the system in terms
of power consumption and processing delay. Finally, the
study [140] offers a resource allocation and task offloading
system based on blockchain. The authors began by examining
both direct and indirect trust using a subjective logical
aggregation methodology and distributed trust assessment
method. The researchers examined different quality of service
features and created a smart contract that uses a DRL
algorithm called DDPG to maximize fog revenue while
meeting the maximum number of user requests. Blockchain
facilitates the entire procedure, from task generation to result
computation, and all task transactions are recorded in a
secure, unchangeable, tamper-resistant ledger

2) SOFT ACTOR-CRITIC (SAC)

SAC is a DRL algorithm based on an off-policy A2C model
that provides sample-efficient learning while preserving the
advantages of entropy and stability optimization [144], [145].
The primary principle behind SAC is to utilize all available
actions to optimize the actor’s entropy and expected reward
while ensuring task success. This can be accomplished
by integrating entropy maximization with the goal of a
stochastic actor. SAC is more suitable than other value-based
DRL algorithms, DQN and double DQN as examples, for
the allocation of vehicular tasks under fluctuating traffic
volumes because it is more effective at handling problems
with high-dimensional action space. In addition, the SAC
can investigate more effective solutions by adding a policy
entropy measure to the reward structure. If many optimal
options are available, the SAC strategy selects each option
with equal probability. Compared with other policy-based
DRL algorithms, such as A3C and DDPG, SAC is more
robust and sample-efficient, making it simpler to implement
improvements in a stochastic vehicular environment. For
example, the work in [13] proposed a DRL method based
on SAC to handle the task allocation problem to adjust
the offloading policy to changes in a dynamic vehicular
environment. The proposed approach becomes more robust
and generalized by integrating the policy entropy measure
into the reward. Based on the simulation results, the proposed
scheme ensured that high-priority tasks were performed
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first. In terms of offloading delay and task completion rate,
it outperformed conventional algorithms. Similarly, astudy
[142] suggested a SAC-based DRL algorithm to address the
issue of V2V partial computation offloading in vehicular
fog computing, in which vehicles with inadequate computing
capabilities can offload part of their offloading tasks to nearby
vehicles with idle computing resources.

In [143] the problem of joint energy and task offloading
in UAV-aided 6G intelligent edge networks was discussed,
where each UAV can offload part of its energy and task to
the FCNs to decrease the amount of power used locally and
the time it takes to complete the entire task by implementing
SWIPT. The authors formulated the problem as a cooperative
multi-agent Markov game for UAVs with the objective of
maximizing the total system utility by optimizing the power
allocation strategies and task partitioning of each UAV
with respect to energy consumption, task size, and average
latency during the execution of tasks, taking into account the
network dynamics. A multi-agent soft actor—critic (MASAC)
approach is proposed to solve the problem formulation.

To sum up, the core difference between the value-based
and the policy-based approaches is that in the value-based
approaches approaches use temporal difference (TD) learning
to approximate the value function rather than learning
the policy explicitly [78]. In contrast, the policy-based
approaches learn the ‘policy’ directly without relying on the
value function [80]. This method explicitly builds a policy
(mapping m:s—a) representation and maintains it in the
memory during the learning process. Another distinction
between the value-based approaches and the policy-based
approaches is that value-based approaches are suitable for
scenarios with small and discrete action-space. Whereas
policy -based approaches are more suited for scenarios
with large and continuous action spaces. The advantages
of policy-based approaches over value-based approaches
are that they have superior convergence properties and
are efficient in continuous action spaces or high dimen-
sionality [146]. The value-based reinforcement method has
the advantages of simplicity and efficiency. On the other
hand, policy-based evaluation has the disadvantage of being
inefficient and having a high variance. Since both categories
have their own advantages and disadvantages, Therefore,
hybrid approaches work based on the combination of value-
based and policy-based algorithms that take advantage of
both categories.

VI. ANALYTICAL DISCUSSION

Existing research utilizing RL or DRL techniques for
handling offloading problems in fog computing has been
critically analyzed according to the research questions
highlighted in section IV-A. The discussion is provided as
follows.

Fig. 5, a two-level pie chart depicts the percentages
of research articles from the various conferences and
journals of different publishers that were studied in this
comprehensive review of the literature. The pie chart’s inner
circle demonstrates that 72% of the research publications
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TABLE 4. Side-by-side comparison RL and DRL methods for solving offloading problems in fog.
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Latency, Smart Vertical (IoT- fFecti &Y «  No security
) factories fog-cloud) i effectiveness
[89] - Energy NS-3/ C++ Binary x Where «  Low delay in smart
consumption factories
«  Energy wastage
Latency, Green Vertical (IoT- e Delay «  No security
Python A . L
[90] MDP Energy industrial fog-cloud) Binary x ‘Where/when minimization
consumption
e Minimizing the
overall latency of
) . . . N it
Latency, Horizontal (fog- nme.cm.lcal IoV .o security
Res Vehicul f applications e  Single
[91] MDP conree - ceuar to-fog) Binary v ‘Where . Optimizing point of failure
utilization, network Vertical (IoT-fog- resource usage in
Scalability cloud) the fog layer
«  Distributing the
IoV tasks optimally
Latency, . IIjow lEatency
MDP ° OW Energy .
E; . . Smart L No S t
ncrgy. iFogsim ! . Vertical (IoT-fog-  Partial(dynamic What/Where/w ¢ Execution time ° o Seeurty
[92] consumption, surveillance L X
L cloud) partitioning) hen e  Resource
Resource application utilization
utilization
e The technique has a
* Resource ingle point of failure; if
émcncy’ PureEdgeSi ) Vertical (IoT- utilization single point of fatlure; 1
esource m Smart city fog) o . Low delay the orchestrator node
[93] - utilization, Binary % Where fails, the entire system
Reliability will fail.
on offloading mechanisms based on RL+DRL algorithms are presented at conferences. The outer circle depicts the
in the Fog paradigm are published in journals, and 28% many publishers considered for publication of the research
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TABLE 4. (Continued.) Side-by-side comparison RL and DRL methods for solving offloading problems in fog.

[94]

[95]

196]

[98]

[99]

[100]
DQN

[101]

[102]

[103]

[104]

[14]

[105]

[106]

[107]

MDP

MDP

MDP

MDP

MDP

MDP

Non-linear

problem

MDP

Non-linear

problem

MDP

MDP

MDP

Latency

Energy

consumption

Latency

Latency,
Energy
consumption,
Throughput

Latency

Response
time,
Energy

consumption

Latency,
Throughput

QoE

Latency,
Energy
consumption

Energy
consumption

Latency,
Energy
consumption

Latency

Latency,
Throughput

QoS

Latency,
Energy
consumption

Tensor
Flow

Tensor
Flow

UrbanTraffi
¢ (SUMO) /
MATLAB

Python

Matlab

Matlab

edgex
mobile

foundry

F-RAN

Industrial
Application
s

Vehicular
network

Vehicular
network

General
Healthcare

Vehicular
network

Vehicular
network

Green
industrial

Vehicular
network

Vehicular
network

F-RAN

Vehicular
network

Vehicular
network

IoT
application
inside
mobile
devices

Vertical (IoT-
fog)
Vertical (IoT-
cloud)

Vertical (IoT-
fog)
Or
Vertical (IoT- -
cloud)

Horizontal (IoT-
IoT)

Vertical (IoT-fog)

Vertical (IoT-

fog)
Horizontal (fog-

fog)

Vertical (IoT-
fog)

Vertical (IoT-
fog-cloud)

Vertical (IoT-fog)

Vertical (IoT-fog)

Horizontal (fog-
to-fog)
vertical(fog-to-
cloud)

Horizontal (IoT-
IoT)
Vertical (IoT-

fog)

Horizontal (IoT-
IoT)

Vertical (IoT-fog)

Vertical (IoT-
fog)
Or
Vertical (IoT- -
cloud)

Horizontal (IoT-
ToT)

Vertical (IoT-fog)
Vertical (IoT-

fog)

Vertical (IoT -
fog-cloud)

Binary

Binary

Binary

Binary

Binary

Binary

Binary

Binary

Partial(dynamic
partitioning)

Binary

Binary

Binary

Binary

Binary

Binary

Where/when/H
ow

‘Where/when/H

ow

Where/when/H
ow

‘Where/when

Where

‘Where/when

‘Where/when/H
ow

Where/How

What/Where/
When

Where/When/
How

‘Where/When/
How

Where/When

Where/when

‘Where/When

Where/When

Minimizes latency
Increases
throughput

Minimizing long-
term system energy
consumption.

Avoid decision
collisions in multi-
vehicles task
offloading

Reduce the task
processing

Low energy
Low latency
Increase
throughput

Low latency

optimize the
response time
Enhance energy

Reduce end-to-end
queuing Delay
Increase
throughput

Improved QoE with
delay constraint of
task

Minimizing
processing delay
Energy
consumption
Large-scale area
Low energy
Considered the
dynamics of mobile
vehicular networks

Low latency
Low energy

Minimizing system
latency

Maximizing the
throughput
Reduces end-to-
end queuing delay
mobility

The scheme has
high average QoE
Considered
mobility of the
vehicles

Reducing
execution time
Low energy
consumption

No mobility
No security

No mobility
No security

No mobility
No security

. No mobility
. No security

No energy consumption
No security
Small scale area

. No security

. No mobility
e No security

Did not consider both
operation cost and
energy consumption.

No security

No security

No energy consumption
Without considering

the cost of
communication between
edge devices and edge
servers,

No security

No Mobility

No security

No scalability in the case
of fast dynamic
movement and a large
number of users

No security

No security

Security was not taken
into account in the
mobility network when
data was sent from one
node in the fog cloud
network to another.
Data tempering,
validation, and
immutability are widely
ignored .
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TABLE 4. (Continued.) Side-by-side comparison RL and DRL methods for solving offloading problems in fog.

[108]
[109]
Double
Double [12]
DQN
[110]
[112]
[114]
Dueling
DQN
[115]
DRQN
[119]
[120]
[121]
[122]
SARSA
[123]

MDP

MDP

MDP

POMDP

POMDP)

(POMDP

POMDP

MDP

Latency,
Energy
consumption

Latency,
Throughput

Energy
consumption

Latency,
Energy
consumption

Latency,
Energy
consumption,
Privacy and
security

Latency,
Energy
consumption

Latency,
Energy

consumption

Energy
consumption

Latency,
Energy

consumption

Latency,
Resource
utilization,

QoE

Latency

Energy
consumption

Mininet

TensorFlow

TensorFlow

Pycharm
with

Tensorflow

Tensorflow

PyTorch

TensorFlow

TensorFlow

PyTorch

Monte
Carlo

General

Vehicular
network

Vehicular
network

F-RAN

General

F-RAN

F-RAN

General

General

General

Vehicular
network

Vehicular
network

Vertical (ToT-fog)

Horizontal (IoT-
IoT)
Vertical (IoT-
fog)
Vertical (IoT-
fog)
Horizontal(fog-
fog)
Vertical (IoT-
fog)
Horizontal(IoT-
IoT)

Vertical (ToT-fog)

Vertical (IoT-fog-
cloud)/
Horizontal(IoT-

IoT)
Vertical (IoT-
fog-cloud)/
Horizontal(ToT-
IoT)

Vertical (IoT-fog)

Vertical (ToT-fog-
cloud)/
Horizontal(fog-
fog)

Vertical (IoT-fog-
cloud)/
Horizontal(fog-
fog)

Vertical (IoT-
fog)/
Vertical (IoT -
cloud)/
Horizontal(IoT-
IoT)

Horizontal(IoT-
IoT)

Binary

Binary

Binary

Binary

Partial(dynamic
partitioning)

Binary

Binary

Binary

Partial(static
partitioning)

Partial(static
partitioning)

Partial(static
partitioning)

Binary

Where/when/h
ow

Where/When

Where/When/
How

Where/When

What/Where/w
hen

Where/When/
How

Where/When/
How

Where/When/
How

What/Where/
When

What/Where/w
hen

‘What/Where/
When/How

Where

.

.

reduce the

Minimizes network
latency

Increased energy
efficiency
Scalability

Low queuing delay
Low throughput

Decrease average
energy

consumption

Low energy
Low latency

Privacy and
security cost
Optimized
execution delays
save bandwidth,
Low energy
consumption
Minimize
computation time
Tackle the curse of
dimensionality
caused by large
number of wireless
devices

Low energy
Low latency

Low energy

Low latency
Ensuring
processing latency
requirements for
computing tasks.
Minimize the
energy usage of the
IoT device

Considered
heterogeneous task
Minimizing the
energy consumption
under the
corresponding delay
constraint of each
task.

Cooperation
between fog
computing nodes
with the objective
of maximizing
resource usage and
ensuring the
quality of service
for each task.
Considered
heterogeneous task
offloading
Maximize the
completion of
processing tasks
within their latency
time restrictions.
Scalability

a lower system

energy
consumption

tasks

offloading latency

.

Minimizing RSU
energy within
tolerate response
time

The mobility of the
terminal devices was not
considered.

No security

No mobility
No security

Scalability
No security

No security

No mobility

No mobility
No security

No mobility
No security

. No security

No security

No security

No security
No mobility

No security
No mobility

publications. The majority of these research articles were
published by IEEE in both journals (36%) and conferences

12576

(28%). On the other hand, 18%, 9%, and 9% were published

in Science Direct, Wiley, and Springer respectively.
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TABLE 4. (Continued.) Side-by-side comparison RL and DRL methods for solving offloading problems in fog.

DQN and
Double [124]
DQN

SARSA
and Q-
learning [125]

PG

[127]

[129]

A2C

[130]
PPO

[133]

[134]

[135]

DDPG

[137]

[138]

[139]

[140]

[141]

SAC

[13]

[144]

[145]

Latency,
MDP Energy
consumption
MDP
Latency
Latency,
POMDP Energy
consumption
Latency,
MDP Energy
consumption
MDP latency
- Latency
Ener;
MDP gy
consumption
Latency,
Energy
MDP )
consumption,
Security
Latency,
MDP Energy
consumption
Energ
MDP 1:.}"
consumption
MDP Latency
Latency,
MDP Energy
consumption
Latency,
Ener;
MDP g}f
consumption,
security
MDP Latency
sequential
decision
. Latency
making
problem
Latency,
MDP
Energy
consumption

Industrial

TensorFlow L
applications

,Matlab

Matlab General

Matlab General

Vehicular
network

- General

Tensorflow Vehicular

network

- UAV

- General

Vehicular
Tensorflow
network

- General

Tensorflow General

- General

- General

Pytorch Vehicular

network

Vehicular
network

Tensorflow uav

Vertical (IoT-

fog)
Horizontal(IoT-
IoT)

Vertical (IoT-
fog-cloud)/
Horizontal(fog-
fog)

Vertical (IoT-fog)

Vertical (IoT-
fog-cloud)

Vertical (IoT-

fog)
Or
Vertical (IoT-
cloud)

Vertical (IoT-fog-
cloud)
Horizontal(fog-
fog)

Vertical (IoT-
fog)

Vertical (IoT-
fog)

Vertical (IoT-fog-
cloud)
Horizontal(fog-
fog)

Vertical (IoT-
fog)

Vertical (IoT-
fog-cloud)
Horizontal(fog-
fog)

Vertical (IoT-
fog)

Vertical (IoT-
fog-cloud)

Vertical (IoT-
fog)
Horizontal(IoT-

IoT)

Vertical (IoT-
fog)
Horizontal(IoT-
IoT)

Vertical (IoT-
fog)

Binary

Partial(static
partitioning)

Binary

Partial(static
partitioning)

Binary

Binary

Binary

Binary

Binary

Binary

Binary

Partial(dynamic
partitioning)

Binary

Partial(static

partitioning)

Partial(dynamic
partitioning)

Partial(dynamic
partitioning)

Where/When

‘What/Where/w
hen

What/Where/w
hen/How

‘What/Where/w
hen

Where/when/H

ow

Where/when

‘Where/When/
How

‘Where

Where/when

Where/when

‘Where/When

‘What/Where/w
hen

Where/when

‘What/Where/w

hen

What/Where/w
hen

What/Where/w

hen

Trade-off between
energy
consumption and
service delay
considers

Less service delay

Guaranteeing IoT
device processing
latency
requirements.
Reduce the energy
cost

Low energy

Low latency

Reduce end-to-end
service latency

Service latency is
minimized.

Minimize the
queue length
minimize the
energy

consumption

Shortening the
delay.

Reducing high
power
consumption.
Minimize Long-
term energy
utilization.
Minimize the task
processing time

Reduce the entire
energy
consumption of all
tasks

Low delay

Reduce energy
consumption
Minimize task
execution latency

Trusted offloading
schema

reduce task
execution delay
Reduce energy
consumption

The mobility of
vehicles is taken
into account
Optimize the
average latency-
aware utility of
offloading tasks in
a period

Maximizing the
mean utility of all
the tasks in a task
vehicle

Reduce local
energy
consumption
Reduce average
execution delay
Higher total
system utility

Scalability
No security

No mobility
No security

No security

No security

No security

No security
Did not consider energy
of Vehicles

No security
No mobility

Scalability
No mobility

No security
Did not considering the
mobility of the vehicles

No security and privacy

Did not focus on the
following :
Virtualization
Privacy, Mobility
problem of mobile fog
with learning based
schemes

The instability during
the training process
when the number of
mobile devices is large
No security

Did not consider user

mobility.
No scalability

No security

No security
Did not considering the
mobility of the vehicles

No security
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o

FIGURE 5. Percentage of journals, conferences, and research paper
publishers reviewed.

FIGURE 6. Percentage of RL and DRL methods used in fog system
offloading based on mode free categorization.

RQ1: What categorization can be applied to RL or DRL
based offloading mechanisms in fog computing?

According to the proposed taxonomy, Fig. 6 presents a
statistical comparison of the offloading mechanisms based
on the RL and DRL approaches for fog. Based on the
taxonomy, RL and DRL algorithms are organized into three
main categories, namely, value-based algorithms, policy
algorithms, and hybrid algorithms As it is illustrated, 62%
of the selected articles belong to the value-based approach
category. The policy-based approach ranks second with a
29% coverage rate. In addition, only 9% of the reviewed
articles were dedicated to hybrid techniques.

RQ2: Which types of algorithms are utilized by RL or
DRL-based offloading mechanisms in fog systems?

Fig. 7 shows the percentage of RL and DRL algorithms
utilized for solving offloading problems in fog computing.
Based on proposed taxonomy and the aforementioned
research articles, DQN is the most popular algorithm with
32% usage. As it is illustrated, 21% of the research papers
have used Q learning for their proposed offloading schema.

12578

SARSA
2%

B
L)

a

FIGURE 7. Percentage of RL and DRL methods used in fog system
offloading mechanism.

\ 4

Reliability QoE+ QoS
. 3% 3%
Security

3%

Throughput
5%
Resource Utilization
6%

Delay
44%

Energy
31%

FIGURE 8. Percentage of performance metrics for assessing offloading
mechanism.

In addition, 9% and 7% of articles used DDPG and DRQN,
respectively. On the other hand, SARSA (2%), PG (2%),
and combining methods (SARSA+Q learning (2%), DQN
+Double (2%)) are less-used methods. Additionally, the
utilized method of offloading mechanisms makes moderate
use of the RL and DRL methods: SAC (5%), PPO (5%),
double DQN (5%), A2C (4%), and dueling DQN (4%).

RQ3: Which typical performance metrics are utilized in RL
or DRL-based offloading techniques in fog computing?

Fig. 8 shows the percentage of performance metrics
utilized to assess the offloading mechanisms based on
different RL and DRL algorithms. It can be concluded
from the figure that latency (46%) and energy (32%),
respectively, are two of the most popular metrics used to
evaluate offloading strategies. On the other hand, security
(3%),Q0E+QoS (3%), response time (1%), reliability (1%),
and cost (1%) are less-used parameters. Additionally, the
evaluation of offloading mechanisms makes moderate use
of the following parameters: resource utilization (6%),
throughput (5%), and scalability (5%).

RQ4: What cases are studies considered in RL or DRL-
based offloading techniques in the fog paradigm?
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Smart factories o,
5 4%

—
2

11% .
Industrial
Applications
3%
Network
%

Vehicular
34

Healthcare
2%

Smart surveillance
application
2%

Smart city
applications
3%

FIGURE 9. Percentage of case study distribution based on offloading
mechanism.

FIGURE 10. Percentage of evaluation tools for evaluating offloading
mechanism.

Fig. 9 shows the percentage of case studies considered in
the RL and DRL approach-based offloading mechanisms in
the fog system. The following are examples of existing case
studies that were utilized in the experiment results: general
apps, vehicular networks, industrial applications, fog radio
access (F-RAN), unmanned aerial vehicles (UAV), smart
city applications, smart surveillance applications, health
care, smart factories, green industry, and smart mobile
applications. It concludes from the figure that case studies
on vehicular networks, general apps, and F-RANs have been
implemented by 34%, 32%, and 11% of the research arti-
cles, respectively. The application areas such as UAV(5%),
green industrial(4%), smart city application(3%), industrial
applications (2%), smart surveillance application(2%), health
care(2%), smart factory(2%), and smart mobile applica-
tion(2%) are rarely explored.

RQ5: Which tools are used to evaluate RL or DRL based
mechanisms for offloading in fog systems?

Fig. 10 illustrates several tools utilized for the evaluation
of offloading mechanisms based on different RL and DRL

VOLUME 11, 2023

FIGURE 11. Percentage of offloading modes used in fog system
offloading mechanism.

Hybrid
43%

__ Vertical
} 55%

//

Horizontal
2%

FIGURE 12. Percentage of offloading direction in the fog system
offloading mechanism.

methods. The pie chart’s inner circle shows the percentage
of tools used for evaluating offloading strategies, including
simulation environments (41%), programming languages
(13%), and hybrid approaches (SE4+PL and SE+SE) (7%),
and others (39%). In contrast, the outer circle shows
that 20% of articles evaluated their proposed approaches
using TensorFlow under the simulation category. Besides,
PureEdgeSim, iFogSim, and Pytorch simulations have the
same percentage of 4%. Other simulation tools, such as Edgex
Mobile, Pycharm,NS-3,Mininet, Mininet-Wifi, and Monte-
Carlo also have the same percentage of 2%. Furthermore, 9%
of the studies used MATLAB, and 4% of the research articles
utilized Python, both of which fall under the programming
language category. In addition to these, approximately 7%
of research papers have used a hybrid approach to assess
the various offloading techniques. In about 39% of the
publications, no evaluation tool was specified or reported.

RQ6: Which offloading modes are applied in RL or
DRL-based offloading techniques in the fog paradigm?

Fig. 11 shows the offloading mode used for the imple-
mentation of an offloading mechanism based on different
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What/Where/When/How Where
3%

Where/When/How
29%

Where/when
30%

\ Where/How
2%

What/Where/when
25%

FIGURE 13. Percentage of decisions was made in fog system offloading
mechanism.

Integrated

with SDN
' 14%

Not
integrated
with SDN

86%

FIGURE 14. The percentage of research articles using or not using SDN in
their offloading strategy architecture.

RL and DRL approaches. The pie chart’s inner circle shows
the percentage of modes used for implementing offloading
strategies, including binary offloading (80%) and partial
offloading (20%). In contrast, the outer circle shows that,
in the partial offloading category, authors of 11% of research
articles have used static partitioning to implement their
proposed offloading schema, while authors of 9% of research
articles have used dynamic partitioning.

RQ7: What offloading direction is usually applied in RL or
DRL-based offloading techniques in fog areas?

Fig. 12 shows a statistical comparison of the offloading
direction applied in the RL and DRL approach based
offloading mechanisms in the fog system. Three offloading
directions were considered: vertical, horizontal, and hybrid
flows. The vertical offloading mode has the highest percent-
age of 55% usage in the literature. The hybrid offloading
mode, on the other hand, comes in second place, with 43%
usage. Finally, with 2% usage, the horizontal offloading mode
had the lowest ranking percentage.

RQ8: Which offloading decisions are made with respect to
what, where, when, and how are decisions in their strategy
based on RL or DRL-based offloading techniques in the fog
area?

Fig. 13 shows that the majority of the research articles
addressed questions regarding where/when, where/when/how
and what/where/when questions by 30%, 29%and 25%,
respectively. On the other hand, 11%, 3%, and 2% of
decisions were made regarding where, what/where/when/how,
and where/how questions.
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FIGURE 15. Percentage of studies based on offloading problem
formulation.

RQO9: Is SDN incorporated into their strategy based on RL
or DRL-based offloading mechanisms in fog computing?

Fig. 14 shows that 86% of the reviewed papers did not use
SDN in their offloading schema architecture, wheras 14% of
the research articles did use SDN in their offloading strategy
architecture.

RQ10: How many studies have formulated their offloading
strategy problem as an MDP or POMDP problem and solved
it based on RL or DRL approaches in a fog environment?

Fig. 15 shows that the RL or DRL method was used in
66% of the research papers to solve the MDP formulation
problem. Besides, 9% of the research papers developed
their offloading strategy under the POMDP. Also, 25% of
research studies used mathematical or non-linear problems to
formulate their offloading strategies, or they used RL or DRL
methods in their offloading strategies for different purposes,
such as finding the shortest route or choosing the best fog
candidate.

VII. OPEN ISSUES AND FUTURE TRENDS

This review indicates that some critical issues regarding
offloading techniques in fog computing have not yet been
researched. To address RQ11, this section discusses several
open research issues.

A. SECURITY

One of the significant challenges in modern technology
is finding ways to make the system more robust and
secure against phishers. When it comes to offloading in
fog environments, massive amounts of data are generated
from multiple interacting IoT smart devices. This data
must be moved to the fog/cloud layer for processing and
storage. However, users’ devices might mistakenly send their
computations or data to neighboring fog servers, which
have probably been hacked by a number of attackers, and
hence generate serious security concerns. Thus, security
issues regularly impact network performance and energy
efficiency when multiple overloaded fog and edge nodes are
considered. There may be a need for further investigation into
smart enterprise security provisioning. It is recommended
that blockchain technology be integrated into the proposed
strategy to improve the system security.

B. MOBILITY
The offloading scope of a fog environment faces additional
obstacles because of its mobility. Important obstacles to
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mobility include dynamism and lack of communication.
Because mobile devices with naturally dynamic behaviour
can move quickly between locations, these devices may
need to relocate their dedicated servers across a large
geographic area. To solve this issue, a strong mobility
management approach must be implemented such that
devices can continue to communicate with the fog server
even after leaving the source location. Additionally, mobility
poses considerable challenges in several research domains,
including vehicular networks and unmanned aerial vehicles
(UAV). The mobility of the device can impact the offloading
performance and cannot be ignored in the stated domains.
For instance, a device needs to select a new fog server
to offload the task again if it leaves the existing service
scope before receiving the offloading result. This results in
an increased latency. Therefore, new approaches must be
developed to solve these problems efficiently. Despite their
significance, mobility difficulties in fog contexts have not
received adequate attention in fog environment literature.
In addition, fog node selection during offloading depends
on the location of the mobile device, which remains a
challenging problem.

C. MULTI-OBJECTIVE MECHANISMS

Most existing offloading studies based on reinforcement
learning methods in the fog paradigm consider single or bi-
objectives in their design. To address the pressing problems in
fog computing, including task allocation, job scheduling and
offloading, resource provisioning, clustering, cache place-
ment, and load balancing, designing optimization models that
jointly optimize multiple objectives (energy consumption,
delay, cost, capacity, task execution stability, trust and
mobility, and bandwidth reliability) will be an interesting
research topic in the future. At the same time, other objectives
were overlooked, such as scalability, availability, capacity,
security, bandwidth, trust, mobility, and cost. Other relevant
obstacles to this unresolved problem include the trade-off
between several different objectives, which will become an
interesting topic for additional research.

D. IMPLEMENTATION CHALLENGES

It is essential to implement the proposed offloading strategies
in real networks to ensure that the QoS requirements
are satisfied. However, it is challenging to conduct real-
world experiments in a fog computing context because of
implementation time and high cost. Therefore, only a few
selected publications have validated the proposed offloading
mechanisms based on a real-testbed technique. To date, there
is no dedicated fog computing testbed to assist researchers
in testing their concepts, designs, prototypes, and distributed
algorithms in realistic fog computing situations.

E. WORKLOAD PREDICTION IN FOG (OFFLOADING
PREDICTION)

Managing resources for various workloads is crucial in
fog environments because of the large volume and rapid
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proliferation of requests. This requires dynamic and efficient
resource auto-scaling to optimally distribute fog resources to
the requests. A lack of fog resources can lead to a problem
known as “Over-Provisioning”’, whereas an abundance of fog
resources can lead to “Under-Provisioning” [147]. Notably,
only a small percentage of the examined studies provided
an approach in this regard. Thus, it is essential to study
effective auto-scaling to handle fluctuating workloads in fog
environments.

F. FINDING OPTIMAL POLICY FOR CANDIDATE FOG
SELECTION

Major contributions provide a wide range of network
architectures as well as a number of different criteria for
action selection. For example, choosing the most powerful
computing devices to offload resource-intensive tasks, and
choosing the shortest path for offloading. Therefore, finding
the best policy that meets multiple goals and is robust is an
area of research that has not yet been fully explored and
remains open.

G. OFFLOADING MODELING WITH SDN TECHNOLOGY
SDN integrated fog computing is still in its infancy when
it comes to offloading computation, and additional research
is needed to address several open challenges, particularly
in offloading modeling. For both distributed and centralized
SDNs, offloading models can be created based on new
characteristics such as the timeliness of the collected
information.

H. OFFLOADING PARTITIONING

Offloading partitioning refers to the amount of code that must
be offloaded and run remotely to increase the effectiveness of
resource or time constrained applications in fog computing.
There are two different types of computational offloading:
binary and partial. Binary offloading is widely used in the
literature, whereas partial offloading is weakly covered in
the literature. Nevertheless, in practice, task partitioning
is essential in some applications, including 3D gaming
audio, video, and face recognition, which require more
energy and resources than existing devices. Binary offloading
is simpler to implement and ideal for simple tasks that
cannot be segmented, whereas partial offloading increases
the fog server’s capabilities but makes offloading modeling
considerably complex.

I. OFFLOADING LARGE-SCALE NETWORKS

Fog network offloading techniques for large-scale areas are
difficult to solve. The first problem is that a wide network
significantly increases the complexity of all offloading
model types, which in turn increases the time required
to make an offloading decision and the overall offloading
delay. Reinforcement learning is a centralized approach that
makes it difficult to collect information. The gathering of
information on a large-scale network may lead to network
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overload and contravene the real-time offloading decision
requirements. This is due to the fact that the decision
is made after all the necessary information has been
gathered, and the amount of time it takes to complete this
procedure is not insignificant. In addition, some of the
most promising offloading techniques for fog networks must
operate efficiently on small-scale networks with a certain
number of user devices. However, the reliability of these
mechanisms cannot be guaranteed in a large-scale context.
Hence, offloading mechanisms on fog networks for large-
scale areas will be pursued in the future.

J. HETEROGENEITY AND INTEROPERABILITY

The majority of existing studies on offloading models
consider computation tasks to be homogeneous. This makes
the modeling of the offloading procedure easier. However,
many different tasks are involved in practice. Examples
include preemptive and non-preemptive tasks. Modeling is
extremely challenging owing to the diversity of tasks. It is
also essential to have interoperability, which is the ability
of the destination to execute source code correctly. This
is required in such heterogeneous computational models to
share data and computations. Interoperability also arises in
a highly heterogeneous networked environment (consisting
of several types of software and hardware from different
vendors). In IoT-fog cloud communication, interoperability
issues have become increasingly challenging. For example,
various cloud storage providers have employed diverse stor-
age technologies. Compression techniques, synchronization
systems, and data security and privacy measures may differ
for each storage provider. Heterogeneous systems make fog
servers more effective. However, they increase the challenge
of offloading models. Indeed, the aforementioned open issues
provide an opportunity to bring together research based on the
offloading mechanisms in fog environments.

K. FAULT TOLERANCE

In addition to security and privacy, fault tolerance is a crucial
for establishing trust in task offloading in fog. As discussed
in the preceding sections, mobility assistance is one of the
most significant requirements during task offloading because
freedom of movement and autonomy of communication are
essential user satisfaction factors. However, there are sev-
eral challenges to maintaining continuous connectivity and
ongoing access to fog servers during relocation. For instance,
data transfer rates and network bandwidth can fluctuate or a
connection can be lost. Consequently, task offloading should
be improved with fault tolerance mechanisms to ensure that
the task is successfully transmitted and executed, as well
as to decrease the time energy consumption and application
response in end-user devices.

VIil. CONCLUSION

Fog computing has emerged as a promising approach to
significantly improve the QoS of user devices and reduce
network operational costs by moving computation resources
to network edges. Computation offloading is a technique that
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has the potential to enhance the performance of an application
and minimize the overall latency by transferring intensive
tasks from resource-limited user devices to a resource-rich
fog or cloud server. This paper presents a systematic and
comprehensive research analysis of offloading mechanisms
based on the RL and DRL methods in a fog computing
environment.

By applying our search techniques, 56 research articles
were selected for the final selection. According to RQ1, the
applied RL or DRL algorithms based on offloading mecha-
nisms in fog computing can be classified into three categories:
value-based, policy-based, and hybrid-based algorithms.
These categories are then compared based on important
features, including offloading problem formulation, utilized
techniques, performance metrics, evaluation tools, case
studies, their strengths and drawbacks, offloading directions,
offloading mode, SDN based architecture, and offloading
decisions.

According to RQ2, DQN and Q learning were the most
common algorithms used in their proposed offloading schema
by 32% and 21%, respectively. Based on RQ3, the most
crucial metrics used to assess the offloading mechanisms
were latency (46%) and energy (32%). In the manner of RQ4,
the majority of case studies were utilized in the experiment
results were vehicular networks (34%), and general apps
(32%). Furthermore, regarding RQ5, the highest percentage
of studies evaluated their proposed approaches using the
TensorFlow simulator. According to RQ6, the offloading
modes used for the implementation of their offloading
schemas were binary offloading (80%) and partial offloading
(20%).

In the manner of RQ7, the vertical offloading mode had
the highest percentage of 55% in the literature. Regarding to
RQS8, the majority of the research articles addressed questions
regarding where/when, by 30%. Furthermore, based on RQ9,
only 14% of the research articles did use SDN in their
offloading strategy architecture. Regarding to RQ10, 66% of
the research papers have formulated their offloading strategy
problem into an MDP and solved it based on RL or DRL
approaches.

In addition, based on RQI11, existing fog offloading
techniques have faced a number of unresolved challenges,
including security, mobility, multi-objective mechanisms,
implementation challenges, workload prediction in fog,
finding optimal policy for candidate fog selection, offloading
modeling with SDN technology, offloading partitioning,
offloading large-scale networks, heterogeneity and inter-
operability, and fault tolerance. Based on an extensive
study, an offloading mechanism based on RL and DRL
method taxonomy has been presented, which will help the
research community to achieve a better understanding of the
offloading mechanism in fog environments.
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