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ABSTRACT Multi-category vessel detection and classification based on satellite imagery attract a lot of
attention due to their significant applications in the military and civilian domains. In this study, we gen-
erated a new Artificial-SAR-Vessel dataset based on the combination of the FUSAR-Ship dataset and the
SimpleCopyPaste method.We further proposed a novel multi-category vessel detection called CRAS-YOLO
which consisted of a convolutional block attention module (CBAM), receptive fields block (RFB), and
adaptively spatial feature fusion (ASFF) based on YOLOv5s. The proposed CRAS-YOLO improved the
feature pyramid network based on the path aggregation network (PANet), which integrates the RFB feature
enhancement module and ASFF feature fusion strategy to obtain richer feature information and realize the
adaptive fusion of multi-scale features (RA-PANet). At the same time, a CBAM is added to the backbone
to accurately locate the vessel location and improve detection capability. The results confirmed that the
proposed CRAS-YOLO model reached a precision, recall rate, and mean average precision (mAP) (0.5)
of up to 90.4%, 88.6%, and 92.1% respectively. The proposed model also outperformed previous studies’
results in another Sar Ship Detection (SSDD) dataset with precision, recall, and mAP scores of up to 97.3%,
95.5%, and 98.7% respectively.

INDEX TERMS Artificial-vessel dataset, feature fusion, multi-category vessel detection, satellite imagery,
YOLOv5s.

I. INTRODUCTION
The shipping industry is quickly becoming more intelligent
in the age of artificial intelligence. The port monitoring
service has implemented the use of computer vision for
multi-vessel/ship image detection and classification. A reli-
able detection and classification method based on remote
synthetic aperture radar (SAR) images is receiving a lot of
attention due to its considerable military and civilian appli-
cations. Synthetic aperture radar (SAR) satellites are active
microwave imaging sensors that are not affected by weather,
light, and other conditions, which cast an important role in
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monitoring ships, aircraft, vehicles, and bridges in the mili-
tary and civilian fields [1], [2].

In the early days, ship detection methods for SAR images
were mostly based on traditional object detection algorithms
and were semi-automated. In terms of traditional methods,
a constant false alarm rate (CFAR) algorithm was pro-
posed [3], [4]. In addition, there are other methods such as
entropy [5], wavelet transform [6], and template matching for
ship target detection [7]. These traditional algorithms have a
range of problems, including detection accuracy and model
deployability.

Nowadays, deep learning has broken through the bottle-
neck of traditional object detection algorithms and is the
mainstream algorithm of detection. The deep learningmethod
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does not need to separate sea and land in the SAR images
and only needs to be trained by a labeled data set and has
great advantages in target detection. The current popular
object detection algorithms have two types. One is two-stage
object detection algorithms based on region recommendation,
of which the representative methods are region-based convo-
lutional neural networks (R-CNN), Fast R-CNN, and Faster
R-CNN [8], [9], [10]. The main idea is to utilize selective
search methods to generate the suggested region, and regres-
sion classification is thenmade in the suggested area. Another
type is one-stage object detection algorithms, which simplify
detection problems to regression problems, requiring only
convolutional neural networks to directly obtain class prob-
ability and position coordinates of targets. Representative
algorithms include you only look once (YOLO) [11], single-
shot multibox detector (SSD) [12], Retina-Net [13], and so
on. YOLO series algorithms are generally faster than other
algorithms and have a good effect on small object detection.
They are classic one-stage detection methods, which gener-
ally have faster recognition speed than other algorithms, and
show excellent detection capability in small object detection.

The detection method of deep learning is inseparable from
the support of datasets, and at present, there are many SAR
ship detection datasets. Li et al. [14] first proposed the SAR
Ship Detection Dataset (SSDD) dataset. This dataset contains
ships in various environments, such as image resolution,
ship size, sea condition, and sensor type. Wang et al. [15]
proposed the SAR-Ship-Dataset, which is derived from mul-
timodal SAR images. Based on this dataset, they realize
an integrated deep learning processing system for merchant
ship detection and classification in the complex background
and realize near-real-time automatic detection and classifi-
cation of commercial ships without sea and land division.
Sun et al. [16] proposed a high-resolution and large-scale
SAR image ship detection dataset calledAIR-SARShip. They
also experimented with the dataset using a series of a deep
learning algorithms. The backgrounds include near shore and
the open sea. Su et al. published high-resolution SAR images
called HRSID [17], which can be used for ship detection and
instance segmentation. However, these datasets only contain
ship location information and lack ship class information.
Based on these datasets, deep learning methods have flour-
ished in SAR image ship detection. Li et al. [14] proposed
an improved Faster R-CNN model and achieved good results
on SSDD datasets. Lei et al. [18] proposed a high-resolution
SAR rotation ship detection dataset called SRSDD, which
contains both vessel category information and vessel angle
information. This dataset can be used for rotating frame
target detection. However, the dataset has a category imbal-
ance problem, which seriously affects the detection accuracy.
Hu et al. [19] introduced the SENet channel attention mecha-
nism in Faster R-CNN to strengthen feature extraction capa-
bilities. Zhang et al. [20] proposed an improved YOLOv3
algorithm, which replaced DarkNet53 with DarkNet19 and
had a fast detection speed on SSDD datasets. Hong et al. [21]

input optical images and SAR images into Yolov3 with the
aim of enhancing the generalization ability of the model,
which introduces the k-means++ algorithm, and Gaussian
parameter for ship detection and uses four anchor boxes in
Yolov3.Gong and Wu [22] proposed an improved YOLOv4-
tiny algorithm, which is based on an efficient channel atten-
tion mechanism to enhance channel feature expression. And
the proposed cascade residual dilated fusion module can
promote the algorithm to effectively improve the accuracy of
object detection.

At the same time, considering that different models of
SAR images have different resolutions, this leads to large
differences in the area size of ship pixels in the same dataset.
Feature pyramid network (FPN) [23] fuses multi-scale fea-
tures to improve multi-scale object detection performance.
However, FPN does not feed back the accurate position-
ing information existing in the low-level feature map to the
high-level semantic feature map, and the feature transfer
between the layers is limited to adjacent levels, resulting in
the imbalance of feature fusion. Liu et al. [24] proposed the
PANet network, introduced the bottom-up path augmentation
structure and used the shallow features of the network to
fuse the FPN features. Ghiasi et al. [25] proposed neural
architecture search FPN (NAS-FPN) networks, which use
neural network structure search methods to automatically
design feature networks. The bi-directional feature pyramid
network (BiFPN) [26] introduces contextual information and
weight information based on PANet to balance different scale
features and obtain larger receptive fields and richer semantic
information. However, considering the large difference in
ship scale, the existing feature fusion networks are difficult
to meet the requirements of SAR ship detection in actual
scenarios.

In multi-vessel/ship detection and classification, the ability
to represent the point of interest more accurately is important,
and one way to do it is by utilizing attention. A convolu-
tional block attention module (CBAM) [27] is one of the
attention networks that has widely been used to improve
the detection capabilities in many applications such as fly
species recognition [28], bamboo sticks counting [29], safety
helmets wear-ing recognition [30], and human activity recog-
nition [31]. Therefore, by leveraging attention mechanisms
such as focusing on essential features and suppressing irrel-
evant ones, we hope to boost the power of representation.
In addition, by applying CBAM, an accurate vessel location
as well as an improved detection capability of our proposed
model can be achieved.

Most of the aforementioned SAR ship detection datasets
that have been publicly released so far only include ship
position data and lack ship category data. At the same
time, the only public multi-category ship detection dataset
called SRSDD [18] has a serious category imbalance prob-
lem, which seriously affects the accuracy of ship detection.
Thus, in this study, we generated a novel dataset called the
ArtificialSAR-Vessel dataset based on the combination of the
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FIGURE 1. Our proposed CRAS-YOLO model which consisted of a convolutional block attention module (CBAM), receptive fields block (RFB),
and adaptively spatial feature fusion (ASFF) based on the You Only Look Once version 5s (YOLOv5s) for satellite imagery multi-vessel
detection and classification.

FusarShip dataset [32] and the sea surface remote synthetic
aperture radar (SAR) images taken by the HAISI-1 satellite.
we innovatively introduce the SimpleCopyPaste method into
the dataset construction, hoping to supplement the SAR ship
detection dataset and provide a new solution to the problem
of lack of ship detection datasets.

And many studies based on ship detection only study ship
position information, without further analysis of ship cate-
gories. Therefore, we proposed a novel model called CRAS-
YOLO, which consisted of a convolutional block attention
module (CBAM) [27], receptive fields block (RFB) [33], and
adaptively spatial feature fusion (ASFF) [34] based on the
You Only Look Once [11] version 5s (YOLOv5s) [35] algo-
rithm. An important weakness of the current existing FPN-
based models is that deep semantic features are used more
thoroughly than shallow features, which makes the detec-
tion of small ships inaccurate. Therefore, the CRAS-YOLO
model proposed an improved feature pyramid network
called RA-PANet based on the path aggregation network
(PANet) [24], which integrates theRFB feature enhancement
module andASFF feature fusion strategy to obtain richer fea-
ture information and realize the adaptive fusion of multi-scale

features. At the same time, a CBAM is added to the backbone
to accurately locate the vessel location and improve detection
capability. Finally, the main contributions of this article are as
follows:

• Wegenerated a novel dataset calledArtificialSAR-Vessel
which consists of multi-vessel SAR images and provides
not only the vessel/ship location information but also
its categories such as cargo, dredger, tug, fishing, and
tanker.

• We also proposed a novel model called CRAS-YOLO
which integrated CBAM, and RA-PANet into the
YOLOv5s algorithm. The proposed model improved the
feature pyramid structure called RA-PANet based on
YOLOv5s, which integrates the RFB feature enhance-
ment module and ASFF feature fusion strategy in the
neck structure to enhance themodel detection capability.
CBAMwas added to the backbone of the model to locate
ship targets more accurately.

• We presented and performed a comprehensive analy-
sis of our proposed CRAS-YOLO model on our novel
ArtificialSAR-Vessel dataset as well as another pub-
licly available SAR ship detection dataset (SSDD).
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FIGURE 2. Image examples: (a), (b), and (c) are near-shore complexes, and (d), (e), and (f) are offshore sea surface background images,
respectively.

Seven metrics were measured, such as precision (P),
recall (R), FLOPs, mean average precision (mAP), num-
ber of parameters (Params), and speed. The results
from previous studies were also compared with our
proposed model. Finally, this study could be used by
decision-makers to develop a ship detection model that
can accurately and automatically detect and classify
multiple vessels based on satellite imagery.

The remainder of our work is organized as follows.
Section II presented the proposed CRAS-YOLO including
datasets description, overall design, and modules of the pro-
posed model as well as performance evaluation metrics. Sec-
tion III discusses the performance evaluation of the proposed
model. Finally, the concluding remarks and future works are
presented in Section IV.

II. MATERIALS AND METHODS
The proposed CRAS-YOLO was formed to offer high per-
formance in accurately locating the vessel location and
improving detection capability given the SAR images. The
flowchart in Fig. 1 shows how the proposed CRAS-YOLO is
developed. The details of each step sequentially are presented
and explained in the following subsections. First, the novel
ArtificialSAR-Vessel dataset is generated. Second, the pro-
posed CRAS-YOLO model is formed by adding the CBAM,
RFB, and ASFF into the YOLOv5s network. Next, the
performance metrics are presented to evaluate the

performance of the proposed model as compared to other
models. Finally, the developed CRAS-YOLO model is used
in ship detection based on satellite imagery.

A. ARTIFICIALSAR-VESSEL DATASET
Based on the FusarShip [32] dataset and the sea surface
remote sensing images taken by the HAISI-1 satellite, this
paper constructs a novel dataset named ArtificialSAR-Vessel
using the SimpleCopyPaste [36] method. SimpleCopy-
Paste [36] is a data enhancement method proposed by Google
in 2021, the main idea is to directly copy and paste instances
of an image to another image to obtain new sample data,
which can create new data with more complex scenes,
to enrich the dataset. SimpleCopyPaste is a hybrid data
enhancement method that mixes information from differ-
ent images while modifying the corresponding labels. This
method copies only the pixels of the instance, not all the
pixels of the image. First, randomly select two pictures, each
for random scale shaking, and then randomly select some
examples from one picture, paste them directly onto another
picture, and update the detection box and category labels.
Pasting some instances directly onto another image typically
obscures the original image instance, and SimpleCopyPaste
filters the occluded instances by detecting the box threshold
and the mask pixel threshold.

In the sea surface background image, we constructed near-
shore complex background images and offshore sea surface
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FIGURE 3. Representative images of different vessel/ship categories such as (a) cargo, (b) dredger, (c) fishing, (d) tank, and (e) tug,
respectively.

FIGURE 4. The segmented ship images with transparent backgrounds of different vessel/ship categories such as
(a) cargo, (b) dredger, (c) fishing, (d) tank, and (e) tug, respectively.

background images with dimensions of 640× 640. As shown
in Fig. 2a, b, and c are near-shore complex background
images, and d, e, and f are offshore sea surface background
images.

Next, a total of 1550 vessel files in 5 categories are selected
in the FusarShip [32] dataset, including 388 Cargo types,
368 Dredger types, 342 Fishing types, 228 Tanker types,
and 224 Tug types. At the same time, the filtered vessel
images are threshold-segmented, separating the vessel from
the background. We selected the OTSU threshold segmen-
tation method [37] to segment the vessels and backgrounds

to obtain the vessel masks and used the obtained masks to
multiply the original ship images by pixel to obtain ship
images with transparent backgrounds. The OTSU method
takes advantage of the difference in grayscale between the
target and background and divides the pixel level into several
classes by setting a certain threshold, to separate the target
and background. The original image is f (x, y), T is the thresh-
old, and the formula for segmenting the image is as follows:

g(x, y) =

{
1 f (x, y) ≥ T
0 f (x, y) < T .

(1)
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FIGURE 5. The segmented ship images with black backgrounds of different vessel/ship categories such as (a) cargo,
(b) dredger, (c) fishing, (d) tank, and (e) tug, respectively.

FIGURE 6. ArtificialSAR-Vessel images and corresponding text files.

OTSU is a method of automatically determining thresholds
using the maximum interclass variance, which is a global-
based binary algorithm.When the threshold taken maximizes
the variance between classes, the probability of misdivision
is the smallest and the division effect is the best [31].

We set T as the threshold for segmentation, and the ratio
of target pixels to the total pixels in the image is w0, and the
average grayscale of the target is u0; the ratio of background
pixels to the total pixels in the image is w1, and the average
grayscale of the background is u1. The variance of the fore-
ground and background in images is g. These variables satisfy
the following formula:{

u = w0 × u0 + w1 × u1
g = w0 × (u0 − u)2 + w1 × (u1 − u)2,

(2)

and g satisfies the following formula:

g =
w0

1 − w0
× (u0 − u)2. (3)

When g is the largest, the targets and background are
the most different, and the grayscale T is the most optimal
threshold.

Fig. 3 shows the representative images of the five types
of vessels, and Fig. 4 shows vessel images with transparent
backgrounds that have been segmented. Fig. 5 shows vessel
images with black backgrounds that have been segmented.
Judging from the separation results, the separation between
ships and backgrounds is clean, and the separation effect
is excellent. Next, we divided each class of ships in an
8:2 scale and get training and validation sets of each type,
and mixed the vessel images and background images using
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FIGURE 7. The original YOLOv5 (a) network and (b) module structure.

FIGURE 8. The proposed CRAS-YOLO network structure.

the SimpleCopyPaste [36] method. The purpose is to ensure
that each vessel does not appear in both the training set
and validation set, ensuring the rationality of the dataset.
Delete the unreasonable generated images, and finally obtain
a multi-classification ship dataset containing both the sea sur-
face and ship targets of different categories, and generate the
corresponding location information and category information
files for ships in images. We finally generated 2073 images,
of which 1658 (79.98%) were used as training sets

and 415 (20.02%) as validation sets, and corresponding text
files containing location and category information were gen-
erated for each image as visualized in Fig. 6.

B. PROPOSED CRAS-YOLO MODEL
The proposed CRAS-YOLO is based on the YOLOv5s [35]
algorithm with the addition of CBAM [27], RFB [33], and
ASFF [34].
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FIGURE 9. The structure of the (a) Channel attention module and spatial attention module, and
(b) Convolutional block attention module (CBAM) network.

YOLOv5s [35] is the smallest model structure in the series
of YOLOv5 models. The original YOLOv5 network and
module structure are shown in Fig. 7a and b respectively.
First, a three-channel RGB image is entered at the input with a
feature size of 640 × 640 × 3. At the same time, Mosaic data
enhancement and other methods are used to enrich the image
background of the detection target and reduce the model’s
dependence on batch size. The backbone of YOLOv5 is CSP-
Darknet53 [38], which aims to extract features from images,
and consists mainly of Conv, C3, SPPF, and BottleNeck
modules. The Conv module consists of convolution, batch
normalization (BN), and activation functions (SiLU). The
C3 module is constructed of the Conv module, BottleNeck
module, and concat splicing, of which the BottleNeckmodule
is composed of the Conv module and add operation. SPPF
structure is an improvement of SPP,which is a spatial pyramid
pooling network and can convert any size of the feature map
into a fixed size of the feature vector.

YOLOv5s uses the feature pyramid structure of PANet in
the neck. The structure uses top-down lateral connections to
construct high-level semantic features on all scales, and at the
same time, considering the fuzziness of the underlying target
information, the bottom-up structure is added to compensate
for and strengthen the positioning information. PANet better
integrates shallow and deep feature information, so that the
network fully extracts features at all levels and obtains richer
feature information (strong semantic information and edge,
texture, and other information). The output section has three
Yolo Head detectors and can output three different dimen-
sional feature maps.

In this study, our proposed CRAS-YOLO vessel detec-
tion and classification model is based on YOLOv5s with an
improvement in the FPN by adding RFB and ASFF in the
PANet (RA-PANet) to obtain richer feature information and
achieve adaptive fusion of multi-scale features. The proposed
CRAS-YOLO also integrated the CBAM into the neck of the
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FIGURE 10. The visualization of feature maps of SAR images. (a) The
visualization of feature maps extracted by filters from the backbone
network of RA-PANet. (b) Visualization of the feature maps of small ships
from shallow layers to deep layers.

network. The full network structure of CRAS-YOLO can be
seen in Fig. 8.

Attention mechanisms mainly include spatial attention and
channel attention. SE and ECA are representatives of chan-
nel attention mechanisms. CA is representative of the spa-
tial attention mechanism. CBAM fuses channels and spatial
attentionmechanisms and has good performance.We inserted
CBAM [27] into the neck structure for more efficient feature
extraction. From Fig. 9a, CBAM extracts feature information
through the channel module and spatial module and uses
serial structure to fuse feature information. From Fig. 9b,
first, the input feature map generates the channel weights
through the channel module and multiplies the obtained
weights with the input to generate the channel map. Next,
import the channel feature map into the spatial module to
generate spatial weights and multiply the weights with the
imported feature map to generate the spatial map. Finally, the
final weighted feature map and the original input are added
element by element to obtain the final output result, and the
detailed CBAM structure is shown in Fig. 9. The features
extracted by the shallow filter contain more specific feature
information. Therefore, we integrated CBAM in the shallow
layer to learn and select important features from shallow
feature maps and improve the quantitative performance of
ships.

The proposed RA-PANet model is a variant model of FPN.
The FPN model is designed in a top-down manner, acquiring
fine-grained pyramids of features by using horizontal connec-
tions. An important weakness of existing FPN-based models
is that deep semantic features are used more than shallow

FIGURE 11. The detailed receptive fields block (RFB) feature
enhancement module network structure.

features, making the detection of small ships inaccurate. This
is due to the fact that the characteristics of small objects have
been smeared deep under the pooling operation. As can be
seen from Fig. 10a, the features extracted by the shallow filter
contain more specific feature information, such as edges,
textures, and shapes, which are more useful than abstract
features extracted by the deep filter. In addition, as shown
in Fig. 10b, small ships have more pixels in the shallow
feature map, and these pixels contain more features of small
ships. Therefore, based on the FPN model, this paper com-
bines shallow high-resolution feature maps with deep low-
resolution feature maps to improve the detection effect of
large and small ships in SAR images.

Another problem with FPN models is that it is not clear
which features are more useful for inspecting multiscale ves-
sels. Therefore, this paper proposed an improved RA-PANet
weighted feature pyramid structure on the basis of PANet,
integrates RFB and ASFF on the basis of PANet, learns and
selects important features from multi-scale feature maps, and
improves the detection performance of ships. This paper aims
to combine shallow and deep feature maps to adaptively
select important feature maps from multi-scale feature maps,
and specially designed a multi-scale feature pyramid network
(RA-PANet) for the accurate detection of multi-scale ships in
SAR images.

We added RFB [33] feature enhancement modules at
each output to enhance feature expression and improve the
capability of multi-scale predictions. RFB is a feature extrac-
tion module that draws on the inception idea in structure
and adds atrous convolution based on inception, thus effec-
tively increasing the receptive field. RFB Block first forms
a multi-branched structure through convolution-al layers of
different sizes, and then atrous convolution is used to increase
the receptive field, the specific structure is shown in Fig. 11.

One of the main drawbacks of the feature pyramid is incon-
sistencies between features at different scales, especially for
one-stage detectors. To this end, we introduce an ASFF
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FIGURE 12. The detailed adaptively spatial feature fusion (ASFF) network
structure.

feature fusion strategy to address inconsistencies within the
feature pyramid in one-stage detectors. The ASFF strategy
filters features and retains useful information for fusional
features. For a feature of one level, first, adjust the features of
the other levels to the same resolution and integrate simply,
and then train to find the best way to blend. At each spatial
location, different levels of features are adaptively blended
together [34]. Fig. 12 shows the ASFF structure.

From Fig. 12, we can see that the fused vector is a weighted
combination of the vectors of the first three feature maps,
and the coefficients (the spatial importance weights of the
feature map) are learned by the network adaptively, and they
are shared across all channels.

We set the feature map to a different level l (l∈ 0, 1, 2)
based on the input map dimensions and the corresponding
feature map is called x l . This paper sets level l (l ∈ 0, 1, 2)
to 256, 512, and 1024 depending on the characteristics of the
input size and SAR vessel target. The output of the ASFF
module is defined as follows:

yl = αl ∗ x1→æl
+ β l ∗ x2→æl

+ γ l ∗ x3→æl, l = 1, 2, 3,

(4)

where xn→l represents the feature vector after resizing the
feature of level n to level l. α, β, γ are the learning rate of
level l, level l + 1, and level l + 2, and the definitions are as
follows:

αl + β l + γ l = 1, (5)

αl =
eλ

l
α

eλlα + eλ
l
β + eλ

l
γ

, (6)

where λα , λβ and λγ are obtained when backpropagating and
updating the network and are compressed between [0,1] by
softmax. In equation (4), yl represents the output of ASFF-l.
Taking ASFF-1 as an example, y1 is obtained by the weighted
sum of x1→æ1, x2→æ1, and x3→æ1. To be specific, x1→æ1 is
the same as x1. For x2→æ1, x2 is twice the size of x1, so 3∗3
convolution with stride = 2 is used to convert x2 to x2→æ1.
We should use 3∗3 convolution and the max pool operation
to lower the size of x3 and obtain x3→æ1.
We used the GIOU loss function to calculate the regression

loss, where the union intersection (IOU) loss represents the
difference in the intersection ratio between the prediction box
and the real box. In equation 7, A and B represent the predic-
tion box and the truth box. C is the smallest box containing

A and B. GIOU losses are defined as follows:

Lgiou = 1 − IOU +
|C\(A ∪ úB)|

|C|
. (7)

C. EXPERIMENTAL SETTINGS AND PERFORMANCE
METRICS
The experiments are based on the Pytorch 1.9.1 frame-
work and are computed using an NVIDIA RTX3090
(with 24GB of video memory) graphics processing unit
(GPU) and CUDA11.1 environment. We used the lightest
YOLOv5s [35], and network improvements are made on
this basis. Our study also used the officially announced
YOLOv5s [35] pre-training weights and uses the SGD
optimizer to iteratively update the network parameters.
In the training process, we set the momentum parameter to
0.937 and batch size to 16 and trained 300 epochs. We used
a periodic learning rate and We used periodic learning rate
and Warm-Up method to warm up the learning rate, where
the initial lr0 was set to 0.01. In the Warm-Up phase, the
learning rate of each iteration was updated to 0.1 using linear
interpolation. After that, we updated the learning rate using
the cosine annealing algorithm, and finally, the learning rate
dropped to 0.002. For the performance metrics, we used the
three evaluation metrics such as recall, precision, and mean
average precision (mAP). We calculated various evaluation
metrics based on the result of the confusion matrix as pre-
sented in Fig. 13.

FIGURE 13. Confusion matrix.

The confusion matrix shown in Fig. 13 can be used to
examine the accuracy of any classification task’s predictions.
The correct prediction is represented by the TP and TN
boxes, while the incorrect prediction is represented by the
FP and FN boxes. The proposed CRAS-YOLO model is thus
more accurate as TP and TN values increase. The confusion
matrix’s elements (TP, FP, TN, and FN) were then used to
calculate a more thorough evaluation of the proposed CRAS-
YOLO model.

Recall (R), precision (P), mean average precision (mAP),
parameters (Params), and FLOPs are defined as follows:

R =
TP

TP+ FN
, (8)

P =
TP

TP+ FP
, (9)

mAP =

∫ 1

0
P(R)dR, (10)
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TABLE 1. The experimental results of CRAS-YOLO as compared to other models.

TABLE 2. Comparison results of different neck structures.

Params = kH × kW × Cin/g× Cout , (11)

FLOPs = (2 × kH×kW ×Cin/g− 1)×Cout×Hout×Wout .

(12)

In equation (10), P (R) is the precision and recall curve.
In this experiment, the detection threshold (intersection over
union/IoU) is set to 0.5-0.95. In this study, we used the mAP
value to measure the detection accuracy of the model.

We also introduced some other indexes, such as speed
to evaluate the detection speed, parameters, and FLOPs to
describe model complexity. Speed represents the time that
takes to process an image. While the parameters and the flops
can be used to describe the complexity of the model. Their
calculation formulas are shown in Formula (11) and (12)
respectively. In equations (11) and (12), kH × kW × C is
the kernel size, Cout is the output channels, g is the number
of group convolutions,Cout ×Hout ×Wout is the total number
of units included in the output feature map.

III. RESULTS AND DISCUSSIONS
A. EXPERIMENTAL RESULTS
This section explains the results of the proposed CRAS-
YOLO approach. In this study, the CRAS-YOLO approach
which consisted of CBAM, RFB, and ASFF (RA-PANet)
is compared with its baseline model including YOLOv5s,
with/without CBAM as well as RA-PANet. Based on the
YOLOv5s method, we selected CBAM and RA-PANet fea-
ture pyramid network as independent variable modules and
adapt the control variable method to study the improvement
of each module on the ArtificialSAR-Vessel dataset. Through
several experiments, we verified the capacity of different
modules in CRAS-YOLO through ablation experiments [42].
Table 1 shows the experimental results of CRAS-YOLO as
compared to other models.

It can be seen that, compared with the original YOLOv5s
(baseline) model, the precision (P) of the CRAS-YOLO
model is improved by 2.7%, the recall (R) rate is increased
by 2.6%, the mAP (0.5) value is increased by 1.5%, and
the mAP (0.5-0.95) is improved by 0.6%, and the improved

CRAS-YOLO performs better than the original YOLOv5s
algorithm.

Both the CBAM attention mechanism and the RA-PANet
feature pyramid network can enhance the capacity of the
algorithm to some extent. Among them, CBAM has a cer-
tain degree of improvement in precision, recall, mAP (0.5),
and mAP (0.5-0.95), which are increased by 1.2%, 0.2%,
0.6%, and 0.4% respectively. The RA-PANet feature pyra-
mid network improved by 0.8%, 1.0%, and 0.6% in the
recall, mAP (0.5), and mAP (0.5-0.95), respectively, and
the precision decreased slightly, down 0.9%. Overall, the
CBAM attention mechanism and the RA-PANet feature pyra-
mid network have enhanced the capacity of the detection
model.

We also investigated the impact of different neck structures
in YOLOv5s, including FPN, PANet (baseline), BiFPN, and
RA-PANet structures, to verify the performance of each neck
structure. As presented in Table 2, the results revealed that the
performance of the BiFPN structure is poor, and its precision,
recall, mAP (0.5) and mAP (0.5-0.95) values are the lowest.
The performance of the RA-PANet structure is the best, while
the performance of the FPN and PANet structure is slightly
lower than that of the RA-PANet. In short, considering the
model detection capability, the RA-PANet structure is more
suitable for multi-scale vessel detection.

Furthermore, we also conducted experiments on the effect
of the attention mechanism on the RA-PANet network.
Table 3 showed the experimental effect of adding different
attention mechanisms to the backbone of the RA-PANet net-
work, including not adding an attentionmechanism (baseline)
and adding SE, CA, ECA, and CBAM, to find the best-
performing one. The results shown in Table 3 confirmed
that SE and CA attention mechanisms do not play an effec-
tive role in improving detection accuracy, while ECA and
CBAM can improve detection accuracy to a certain extent,
of which CBAM performs better. Compared with the base-
line, the detection precision is increased by 3.6%, the recall
is increased by 1.8%, mAP (0.5) is increased by 0.5%, and
mAP (0.5-0.95) is increased by 1.0%.
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TABLE 3. Comparison results of different attention mechanisms in the backbone.

TABLE 4. Comparison results of different prediction models.

TABLE 5. Comparison between SAR ship detection methods on the SSDD dataset.

In addition, to verify the reliability of the CRAS-YOLO
model’s performance, the performance of CRAS-YOLO and
other models are compared on the ArtificialSAR-Vessel
dataset, and the results are shown in Table 4.

Compared with other prediction models, our proposed
CRAS-YOLO model has a good performance in terms of the
model detection capability, with model detection precision
reaching 90.4%, recall rate reaching 88.6%, mAP (0.5) reach-
ing 92.1%, and mAP (0.5-0.95) reaching 74.8%. Overall, the
proposed CRAS-YOLO model has a good detection perfor-
mance to meet the requirements of ship detection. For each
different Yolo model, they have different complexities and
different detection accuracy. YOLOv3-tiny has the smallest
number of parameters which is 7.7 M and the fastest calcu-
lation speed which is 4.3 ms, while CRAS-YOLO has the
highest detection accuracy with an acceptable range of model

complexity of which the model Flops and Parameters are
19.7 G and 10.3 M.

At the same time, to verify the effectiveness of the pro-
posed CRAS-YOLOmodel, we performed additional experi-
ments on another Sar ship detection publicly available dataset
called SSDD [14]. The detailed experimental results are
shown in Table 5. Table 5 revealed that, as compared with the
original YOLOv5s, the mAP value of our proposed CRAS-
YOLO is up to 98.7% which increased by 1.1%, the Flops
is increased from 18.0 to 19.7 G, while the Parameters is
increased from 8.0 to 10.3M, the Speed is also increased from
6.1 to 7.9 ms. Additionally, as presented in Table 5, we com-
pared the results of our proposed CRAS-YOLO model in
the SSDD dataset with some previous studies such as fea-
ture balancing and refinement network (FBR-NET) [41],
spatial shuffle-group enhance (SSE) attention module in
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FIGURE 14. Ship detection results based on the proposed CRAS-YOLO model: (a), (b), and (c) are the ship test results in a complex coastal background,
and (d), (e), and (f) are the ship test results with a sparse distribution in the deep sea, respectively.

CenterNet (SSGE-NET) [42], attention receptive pyramid
network (ARP-NET) [43] and MobileNetV3 block mod-
ule in YOLOv5 networks (MNE-NET) [44]. The compar-
ison study revealed that our proposed CRAS-YOLO out-
performed other previous studies in terms of precision,
recall, and mAP by achieving scores of up to 97.3%,
95.5%, and 98.7% respectively. Overall, the proposed
CRAS-YOLO can increase the ship detection accuracy to
some extent with a little increase in the model complexity and
size.

B. SHIP DETECTION RESULTS
Fig. 14 shows the ship detection results of the proposed
CRAS-YOLO model on the ArtificialSAR-Vessel dataset,
where a, b, and c are the ship test results in a complex coastal
background, while d, e, and f are the ship test results with
a sparse distribution in the deep sea respectively. We can
see that the proposed model not only can effectively locate
ships of different sizes on the shore but also can accurately
locate deep-sea ships with sparse distribution and small sizes.
This model has good detection performance and deploya-
bility. Fig. 15a and 15b show the precision-recall curves of
CRAS-YOLO and YOLOv5s in each category respectively.
As can be seen in Fig. 15a and b, the CRAS-YOLO model

performed better than YOLOv5s in 4 categories, including
cargo, dredging, fishing, and tanker. In particular, the mAP
of CRAS-YOLO in the tanker category is 8.6% higher than
that of YOLOv5s. The CRAS-YOLO’s APs in the cargo,
dredging, and fishing categories increase by 4.1%, 4.4%,
and 3.5%, respectively. For the other category, CRAS-YOLO
is only slightly down 1.5% in mAP than YOLOv5s. Thus,
in the ArtificialSAR-Vessel dataset, CRAS-YOLO has better
detection capability than YOLOv5s.

Fig. 16a shows the mAP (IOU = 0.5) curves for
YOLOv5s and CRAS-YOLO on the ArtificialSAR-Vessel
dataset. It can be seen that the mAP values of YOLOv5s
grew faster than CRAS-YOLO at the beginning of training.
As the training progressed, the mAP values of YOLOv5s
and CRAS-YOLO tended to coincide. Finally, the mAP
values of CRAS-YOLOv5s were higher than those of
YOLOv5s. In summary, after a certain number of training, the
improved CARS-YOLO model can achieve better detection
capability.

Fig. 16b shows the training loss curves for YOLOv5s and
CRAS-YOLO on the Arti-ficialSAR-Vessel dataset. It can be
seen that the training loss of YOLOv5s declined faster than
CRAS-YOLO at the beginning of training. As the training
progressed, the training loss of CRAS-YOLOv5s descend
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FIGURE 15. The precision-recall curves of (a) the proposed CRAS-YOLO and (b) the original
YOLOv5s model.

FIGURE 16. The training (a) mAP(0.5) values and (b) loss of different models.

faster than those of YOLOv5s. In summary, after a certain
number of training, the improved CARS-YOLO model can
better reduce detection loss.

IV. CONCLUSION AND FUTURE WORKS
In this study, we generated a novel dataset called the
ArtificialSAR-Vessel dataset which consists not only of
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ship/vessel location information but also its ship/vessel cat-
egory/type such as cargo, dredger, tug, fishing, and tanker.
We also proposed a novel ship detection and classification
model called CRAS-YOLO, which consisted of a CBAM,
RFB, and ASFF based on the YOLOv5s algorithm. The
experimental results confirmed that as compared to the origi-
nal YOLOv5s and other models, the proposed CRAS-YOLO
performed better in SAR ship detection, with an average
improvement of up to 3.6% in detection precision, a 1.8%
increase in recall, an 0.5% increase in mAP (0.5) and a 1.0%
improvement in mAP (0.5-0.95). Additional experiments and
comparison studies in another Sar Ship Detection (SSDD)
dataset revealed that the proposed CRAS-YOLO model out-
performed other models and previous studies’ results with
precision, recall, and mAP scores of up to 97.3%, 95.5%,
and 98.7% respectively. Overall, the proposed model has
strong generalization, excellent performance on ship target
detection, as well as practical significance in the application
field of multi-category ship detection. Finally, the results
of our study could be used by decision-makers to develop
a ship detection model that can accurately and automati-
cally detect and classify multiple vessels based on satellite
imagery.

Although CRAS-YOLO has some improvement over the
original algorithm, our study only divided vessels/ships into
five types/categories, lacking more types of ship data, and the
detection capability, as well as the complexity of the network,
needs to be further enhanced.

Currently, there are two challenges to ship inspection.
Firstly, the image contour information of the SAR ship
detection dataset is not clear and the background is com-
plex, resulting in low ship detection capabilities. Second,
some ship detection models are large, which results in poor
model deployability. In the future, on the one hand, we will
continue to expand our novel ArtificialSAR-Vessel dataset,
by enriching it with different types and quantities of ships,
and models that can detect more types of ships to meet prac-
tical applications. It is also necessary to further improve the
accuracy of themodel which canmore accurately classify and
detect various types of ships. On the other hand, the model
complexity can be further lightened without sacrificing accu-
racy. Therefore, other lightweight model approaches, such as
lightweight backbone networks, knowledge distillation, and
network pruning can be further explored in the future to cope
with the current model limitation.

REFERENCES
[1] Z. M. Li, L. Cheng, D. M. Zhu, Z. J. Yan, C. Ji, Z. X. Duan, M. Jing,

N. Li, S. K. Dongye, Y. R. Song, and J. H. Liu, ‘‘Deep learning and spatial
analysis based port detection,’’ Laster Optoelectron. Prog., vol. 58, no. 20,
2021, Art. no. 2028002, doi: 10.3788/LOP202158.2028002.

[2] T. Zhang and X. Zhang, ‘‘High-speed ship detection in SAR images based
on a grid convolutional neural network,’’ Remote Sens., vol. 11, no. 10,
p. 1206, May 2019, doi: 10.3390/rs11101206.

[3] C. C. Wackerman, K. S. Friedman, W. G. Pichel, P. Clemente-Colón, and
X. Li, ‘‘Automatic detection of ships in RADARSAT-1 SAR imagery,’’
Can. J. Remote Sens., vol. 27, no. 5, pp. 568–577, Oct. 2001, doi:
10.1080/07038992.2001.10854896.

[4] P. W. Vachon, S. J. Thomas, J. Cranton, H. R. Edel, and M. D. Henschel,
‘‘Validation of ship detection by the RADARSAT synthetic aperture radar
and the ocean monitoring workstation,’’ Can. J. Remote Sens., vol. 26,
no. 3, pp. 200–212, Jun. 2000, doi: 10.1080/07038992.2000.10874770.

[5] J. N. Kapur, P. K. Sahoo, and A. K. Wong, ‘‘A new method for gray-
level picture thresholding using the entropy of the histogram,’’ Comput.
Vis. Graph. Image Process., vol. 29, no. 3, pp. 273–285, Mar. 1985, doi:
10.1016/0734-189X(85)90125-2.

[6] B. D. Wardlow, S. L. Egbert, and J. H. Kastens, ‘‘Analysis of time-series
MODIS 250 m vegetation index data for crop classification in the U.S.
Central Great Plains,’’ Remote Sens. Environ., vol. 108, no. 3, pp. 290–310,
Jun. 2007, doi: 10.1016/j.rse.2006.11.021.

[7] S. Wang, M. Wang, S. Yang, and L. Jiao, ‘‘New hierarchical saliency
filtering for fast ship detection in high-resolution SAR images,’’ IEEE
Trans. Geosci. Remote Sens., vol. 55, no. 1, pp. 351–362, Jan. 2017, doi:
10.1109/TGRS.2016.2606481.

[8] S. Ren, K. He, R. Girshick, and J. Sun, ‘‘Faster R-CNN: Towards real-
time object detection with region proposal networks,’’ IEEE Trans. Pat-
tern Anal. Mach. Intell., vol. 39, no. 6, pp. 1137–1149, Jun. 2017, doi:
10.1109/TPAMI.2016.2577031.

[9] R. Girshick, J. Donahue, T. Darrell, and J. Malik, ‘‘Rich feature hierarchies
for accurate object detection and semantic segmentation,’’ in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., Columbus, OH, USA, Jun. 2014,
pp. 580–587, doi: 10.1109/CVPR.2014.81.

[10] R. Girshick, ‘‘Fast R-CNN,’’ in Proc. IEEE Int. Conf. Comput. Vis.
(ICCV), Santiago, Chile, Dec. 2015, pp. 1440–1448, doi: 10.1109/ICCV.
2015.169.

[11] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, ‘‘You only look once:
Unified, real-time object detection,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Las Vegas, NV, USA, Jun. 2016, pp. 779–788,
doi: 10.1109/CVPR.2016.91.

[12] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and
A. C. Berg, ‘‘SSD: Single shot multibox detector,’’ in Computer Vision—
ECCV 2016, vol. 9905, B. Leibe, J. Matas, N. Sebe, and M. Welling, Eds.
Cham, Switzerland: Springer, 2016, pp. 21–37, doi: 10.1007/978-3-319-
46448-0_2.

[13] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar, ‘‘Focal loss for dense
object detection,’’ in Proc. IEEE Int. Conf. Comput. Vis. (ICCV), Venice,
Italy, Oct. 2017, pp. 2999–3007, doi: 10.1109/ICCV.2017.324.

[14] J. Li, C. Qu, and J. Shao, ‘‘Ship detection in SAR images based on
an improved faster R-CNN,’’ in Proc. SAR Big Data Era, Models,
Methods Appl. (BIGSARDATA), Beijing, China, Nov. 2017, pp. 1–6, doi:
10.1109/BIGSARDATA.2017.8124934.

[15] Y.Wang, C.Wang, H. Zhang, Y. Dong, and S.Wei, ‘‘A SAR dataset of ship
detection for deep learning under complex backgrounds,’’ Remote Sens.,
vol. 11, no. 7, p. 765, Mar. 2019, doi: 10.3390/rs11070765.

[16] X. Sun, Z. R. Wang, Y. R. Sun, W. H. Diao, Y. Zhang, and K. Fu, ‘‘AIR-
SARShip-1.0: High-resolution SAR ship detection dataset,’’ J. Radars,
vol. 8, no. 6, pp. 852–862, 2019, doi: 10.12000/JR19097.

[17] S. Wei, X. Zeng, Q. Qu, M. Wang, H. Su, and J. Shi, ‘‘HRSID: A
high-resolution SAR images dataset for ship detection and instance
segmentation,’’ IEEE Access, vol. 8, pp. 120234–120254, 2020, doi:
10.1109/ACCESS.2020.3005861.

[18] S. Lei, D. Lu, X. Qiu, and C. Ding, ‘‘SRSDD-v1.0: A high-resolution SAR
rotation ship detection dataset,’’ Remote Sens., vol. 13, no. 24, p. 5104,
Dec. 2021, doi: 10.3390/rs13245104.

[19] J. Hu, L. Shen, and G. Sun, ‘‘Squeeze-and-excitation networks,’’ in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Salt Lake
City, UT, USA, Jun. 2018, pp. 7132–7141, doi: 10.1109/CVPR.2018.
00745.

[20] T. Zhang, X. Zhang, J. Shi, and S. Wei, ‘‘High-speed ship detection in
SAR images by improved YOLOv3,’’ in Proc. 16th Int. Comput. Conf.
Wavelet Act. Media Technol. Inf. Process., Chengdu, China, Dec. 2019,
pp. 149–152, doi: 10.1109/ICCWAMTIP47768.2019.9067695.

[21] Z. Hong, T. Yang, X. Tong, Y. Zhang, S. Jiang, R. Zhou, Y. Han,
J. Wang, S. Yang, and S. Liu, ‘‘Multi-scale ship detection from SAR
and optical imagery via a more accurate YOLOv3,’’ IEEE J. Sel. Top.
Appl. Earth Observ. Remote Sens., vol. 14, pp. 6083–6101, 2021, doi:
10.1109/JSTARS.2021.3087555.

[22] Q. Gong and Y.Wu, ‘‘Improved YOLOv4-tiny algorithm based on cascade
residual dilated fusion,’’ in Proc. 20th Int. Symp. Distrib. Comput. Appl.
Bus. Eng. Sci. (DCABES), Nanning, China, Dec. 2021, pp. 136–140, doi:
10.1109/DCABES52998.2021.00041.

VOLUME 11, 2023 11477

http://dx.doi.org/10.3788/LOP202158.2028002
http://dx.doi.org/10.3390/rs11101206
http://dx.doi.org/10.1080/07038992.2001.10854896
http://dx.doi.org/10.1080/07038992.2000.10874770
http://dx.doi.org/10.1016/0734-189X(85)90125-2
http://dx.doi.org/10.1016/j.rse.2006.11.021
http://dx.doi.org/10.1109/TGRS.2016.2606481
http://dx.doi.org/10.1109/TPAMI.2016.2577031
http://dx.doi.org/10.1109/CVPR.2014.81
http://dx.doi.org/10.1109/ICCV.2015.169
http://dx.doi.org/10.1109/ICCV.2015.169
http://dx.doi.org/10.1109/CVPR.2016.91
http://dx.doi.org/10.1007/978-3-319-46448-0_2
http://dx.doi.org/10.1007/978-3-319-46448-0_2
http://dx.doi.org/10.1109/ICCV.2017.324
http://dx.doi.org/10.1109/BIGSARDATA.2017.8124934
http://dx.doi.org/10.3390/rs11070765
http://dx.doi.org/10.12000/JR19097
http://dx.doi.org/10.1109/ACCESS.2020.3005861
http://dx.doi.org/10.3390/rs13245104
http://dx.doi.org/10.1109/CVPR.2018.00745
http://dx.doi.org/10.1109/CVPR.2018.00745
http://dx.doi.org/10.1109/ICCWAMTIP47768.2019.9067695
http://dx.doi.org/10.1109/JSTARS.2021.3087555
http://dx.doi.org/10.1109/DCABES52998.2021.00041


W. Zhao et al.: CRAS-YOLO: A Novel Multi-Category Vessel Detection and Classification Model Based on YOLOv5s Algorithm

[23] T.-Y. Lin, P. Dollar, R. Girshick, K. He, B. Hariharan, and S. Belongie,
‘‘Feature Pyramid Networks for Object Detection,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Honolulu, HI, USA, Jul. 2017,
pp. 936–944, doi: 10.1109/CVPR.2017.106.

[24] S. Liu, L. Qi, H. Qin, J. Shi, and J. Jia, ‘‘Path aggregation network for
instance segmentation,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit., Salt Lake City, UT, USA, Jun. 2018, pp. 8759–8768, doi:
10.1109/CVPR.2018.00913.

[25] G. Ghiasi, T.-Y. Lin, and Q. V. Le, ‘‘NAS-FPN: Learning scalable fea-
ture pyramid architecture for object detection,’’ in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Long Beach, CA, USA, Jun. 2019,
pp. 7029–7038, doi: 10.1109/CVPR.2019.00720.

[26] M. Tan, R. Pang, and Q. V. Le, ‘‘EfficientDet: Scalable and effi-
cient object detection,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. (CVPR), Seattle, WA, USA, Jun. 2020, pp. 10778–10787, doi:
10.1109/CVPR42600.2020.01079.

[27] S. Woo, J. Park, J.-Y. Lee, and I. S. Kweon, ‘‘CBAM: Convolutional
block attention module,’’ in Computer Vision—ECCV 2018, vol. 11211,
V. Ferrari, M. Hebert, C. Sminchisescu, and Y. Weiss, Eds. Cham,
Switzerland: Springer, 2018, pp. 3–19, doi: 10.1007/978-3-030-01234-
2_1.

[28] Y. Chen, X. Zhang, W. Chen, Y. Li, and J. Wang, ‘‘Research on recognition
of fly species based on improved RetinaNet and CBAM,’’ IEEE Access,
vol. 8, pp. 102907–102919, 2020, doi: 10.1109/ACCESS.2020.2997466.

[29] L. Jia, Y. Wang, Y. Zang, Q. Li, H. Leng, Z. Xiao, W. Long, and L. Jiang,
‘‘MobileNetV3 with CBAM for bamboo stick counting,’’ IEEE Access,
vol. 10, pp. 53963–53971, 2022, doi: 10.1109/ACCESS.2022.3175818.

[30] L. Wang, Y. Cao, S. Wang, X. Song, S. Zhang, J. Zhang, and J. Niu,
‘‘Investigation into recognition algorithm of helmet violation based on
YOLOv5-CBAM-DCN,’’ IEEE Access, vol. 10, pp. 60622–60632, 2022,
doi: 10.1109/ACCESS.2022.3180796.

[31] Y. Zhang, Y. Chen, Y. Wang, Q. Liu, and A. Cheng, ‘‘CSI-based
human activity recognition with graph few-shot learning,’’ IEEE
Internet Things J., vol. 9, no. 6, pp. 4139–4151, Mar. 2022, doi:
10.1109/JIOT.2021.3103073.

[32] X. Hou, W. Ao, Q. Song, J. Lai, H. Wang, and F. Xu, ‘‘FUSAR-ship:
Building a high-resolution SAR-AIS matchup dataset of Gaofen-3 for ship
detection and recognition,’’ Sci. China Inf. Sci., vol. 63, no. 4, Apr. 2020,
Art. no. 140303, doi: 10.1007/s11432-019-2772-5.

[33] S. Liu, D. Huang, and Y. Wang, ‘‘Receptive field block net for accurate
and fast object detection,’’ in Computer Vision—ECCV 2018, vol. 11215,
V. Ferrari, M. Hebert, C. Sminchisescu, and Y.Weiss, Eds. Cham, Switzer-
land: Springer, 2018, pp. 404–419, doi: 10.1007/978-3-030-01252-6_24.

[34] S. Liu, D. Huang, and Y. Wang, ‘‘Learning spatial fusion for single-shot
object detection,’’ Nov. 2019, arXiv:1911.09516. Accessed: Oct. 24, 2022.

[35] Ultralytics. YOLOv5. Accessed: Nov. 1, 2021. [Online]. Available:
https://github.com/ultralytics/yolov5

[36] G. Ghiasi, Y. Cui, A. Srinivas, R. Qian, T.-Y. Lin, E. D. Cubuk, Q. V. Le,
and B. Zoph, ‘‘Simple copy-paste is a strong data augmentation method for
instance segmentation,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. (CVPR), Nashville, TN, USA, Jun. 2021, pp. 2917–2927, doi:
10.1109/CVPR46437.2021.00294.

[37] N. Otsu, ‘‘A threshold selectionmethod from gray-level histograms,’’ IEEE
Trans. Syst., Man, Cybern., Syst., vol. SMC-9, no. 1, pp. 62–66, Jan. 1979,
doi: 10.1109/TSMC.1979.4310076.

[38] C.-Y. Wang, H.-Y. Mark Liao, Y.-H. Wu, P.-Y. Chen, J.-W. Hsieh, and
I.-H. Yeh, ‘‘CSPNet: A new backbone that can enhance learning capabil-
ity of CNN,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
Workshops (CVPRW), Seattle, WA, USA, Jun. 2020, pp. 1571–1580, doi:
10.1109/CVPRW50498.2020.00203.

[39] J. Redmon and A. Farhadi, ‘‘YOLOv3: An incremental improvement,’’
Apr. 2018, arXiv:1804.02767. Accessed: Oct. 24, 2022.

[40] J. Jiang, X. Fu, R. Qin, X. Wang, and Z. Ma, ‘‘High-speed lightweight
ship detection algorithm based on YOLO-V4 for three-channels RGB
SAR image,’’ Remote Sens., vol. 13, no. 10, p. 1909, May 2021, doi:
10.3390/rs13101909.

[41] J. Fu, X. Sun, Z. Wang, and K. Fu, ‘‘An anchor-free method based on
feature balancing and refinement network for multiscale ship detection
in SAR images,’’ IEEE Trans. Geosci. Remote Sens., vol. 59, no. 2,
pp. 1331–1344, Feb. 2021, doi: 10.1109/TGRS.2020.3005151.

[42] Z. Cui, X. Wang, N. Liu, Z. Cao, and J. Yang, ‘‘Ship detection in large-
scale SAR images via spatial shuffle-group enhance attention,’’ IEEE
Trans. Geosci. Remote Sens., vol. 59, no. 1, pp. 379–391, Jan. 2021, doi:
10.1109/TGRS.2020.2997200.

[43] Y. Zhao, L. Zhao, B. Xiong, and G. Kuang, ‘‘Attention receptive pyra-
mid network for ship detection in SAR images,’’ IEEE J. Sel. Topics
Appl. Earth Observ. Remote Sens., vol. 13, pp. 2738–2756, 2020, doi:
10.1109/JSTARS.2020.2997081.

[44] L. Pang, B. Li, F. Zhang, X.Meng, and L. Zhang, ‘‘A lightweight YOLOv5-
MNE algorithm for SAR ship detection,’’ Sensors, vol. 22, no. 18, p. 7088,
Sep. 2022, doi: 10.3390/s22187088.

WENXIAO ZHAO received the bachelor’s degree
from Chongqing University, Chongqing, China.
She is currently pursuing the master’s degree with
Beijing Normal University. Her current research
interests include deep learning, object detection,
and data analysis.

MUHAMMAD SYAFRUDIN (Member, IEEE)
received the bachelor’s degree from Universi-
tas Islam Negeri Sunan Kalijaga at Yogyakarta,
Yogyakarta, Indonesia, in 2013, and the Ph.D.
degree from Dongguk University, Seoul,
South Korea, in 2019. He has been an Assistant
Professor with the Department of Artificial Intel-
ligence, Sejong University, Seoul, since March
2022. Previously, he worked as an Assistant Pro-
fessor with the Department of Industrial and Sys-

tems Engineering, Dongguk University, from 2019 to 2022. He is also an
Instructor in a practical course on undergraduate topics in linear algebra,
programming languages, databases, and big data systems. In 2019, he was
selected and invited to participate in the world class Scholar Symposium
(SCKD) Event hosted by the Ministry of Research, Technology, and Higher
Education, Indonesia, to make contributions on accelerating the Indonesian
national development. He has published numerous research articles in several
international peer-reviewed journals, including IEEE ACCESS, Food Control,
Sensors, andMathematics. His research interests include industrial artificial
intelligence (IAI), industrial analytics (IA), industrial informatics (II), the
Industrial Internet of Things (IIoT), and industrial big data (IBD), ranging
from theory to design and implementation. He is a Reviewer for well-known
journals, such as Expert Systems with Applications, IEEE TRANSACTIONS ON

INDUSTRIAL INFORMATICS, Computers & Industrial Engineering, and Algo-
rithms. He has served as the guest editor for Scopus-and-Sciences Citation
Index (SCI)-indexed journals.

NORMA LATIF FITRIYANI (Member, IEEE)
received the bachelor’s degree from Universi-
tas Islam Negeri Sunan Kalijaga at Yogyakarta,
Yogyakarta, Indonesia, in 2014, the master’s
degree from the National Taiwan University of
Science and Technology, Taipei, Taiwan, in 2016,
and the Ph.D. degree from Dongguk University,
Seoul, South Korea, in 2021. She has been an
Assistant Professor with the Department of Data
Science, Sejong University, Seoul, since March

2022. She is also an Instructor in undergraduate topics in decision-making
and numerical analysis. She has published numerous research articles in
several international peer-reviewed journals, including IEEE ACCESS, Food
Control, Sensors, Mathematics, Applied Sciences, Asia Pacific Journal of
Marketing and Logistics, and Sustainability. Her research interests include
health informatics, machine learning, the Internet of Things, sensors, and
image processing. She has served as the guest editor and a reviewer for many
peer-reviewed international journals.

11478 VOLUME 11, 2023

http://dx.doi.org/10.1109/CVPR.2017.106
http://dx.doi.org/10.1109/CVPR.2018.00913
http://dx.doi.org/10.1109/CVPR.2019.00720
http://dx.doi.org/10.1109/CVPR42600.2020.01079
http://dx.doi.org/10.1007/978-3-030-01234-2_1
http://dx.doi.org/10.1007/978-3-030-01234-2_1
http://dx.doi.org/10.1109/ACCESS.2020.2997466
http://dx.doi.org/10.1109/ACCESS.2022.3175818
http://dx.doi.org/10.1109/ACCESS.2022.3180796
http://dx.doi.org/10.1109/JIOT.2021.3103073
http://dx.doi.org/10.1007/s11432-019-2772-5
http://dx.doi.org/10.1007/978-3-030-01252-6_24
http://dx.doi.org/10.1109/CVPR46437.2021.00294
http://dx.doi.org/10.1109/TSMC.1979.4310076
http://dx.doi.org/10.1109/CVPRW50498.2020.00203
http://dx.doi.org/10.3390/rs13101909
http://dx.doi.org/10.1109/TGRS.2020.3005151
http://dx.doi.org/10.1109/TGRS.2020.2997200
http://dx.doi.org/10.1109/JSTARS.2020.2997081
http://dx.doi.org/10.3390/s22187088

