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ABSTRACT This paper studies consensus disturbance rejection problem of discrete-time multi-agent
systems with communication noises. The involved agents are modeled by linear dynamics with disturbance,
and are assumed to receive information corrupted by additive communication noises receiving from their
neighbours. The control aim, not only is to guarantee the average state of the agents that is subject to
deterministic disturbance, but also is to exclude the communication noises. In order to achieve this control
aim, some disturbance observers are designed under two kinds of stochastic-approximation type control
gains. By utilizing the martingale convergence theorem and some mathematical techniques, two sufficient
conditions are obtained to ensure consensus and disturbance rejection in mean square. Finally, a numerical
example is given to show the applicability of considered methods.

INDEX TERMS Consensus control, disturbance rejection, multi-agent systems, communication noises.

I. INTRODUCTION
Consensus is a typical problem in cooperation control of
multi-agent systems. The so-called consensus usually stands
for all the agents reaching a common agreement as time
evolves [1]. In consensus control, the important progress
is to design an appropriate control strategy according to
local information of an agent from its neighbours. This
control strategy is a kind of distributed control that has
a wide range of applications, such as distributed filtering,
distributed estimation, formation control and distributed
optimization [2], [3], [4], [5], [6], [7]. Therefore, the
consensus control problem has naturally attracted increasing
interests in relative research fields [8], [9], [10], [11], [12],
[13], [14].

When considering the consensus of multi-agent sys-
tems, disturbance rejection is one of basic requirements
[15], [16], [17]. It not only expands the applicability
of the control theory, but also has been developed by
tremendous applications, including navigation, robotics and
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process control [18], [19], [20]. The disturbance rejection
in these applications, appeared as disturbance suppression,
external disturbance, output regulation or antidisturbance,
is essentially an approach for estimating the disturbance
[21], [22], [23], [24], [25]. This approach presents a require-
ment that has a capacity to cancel the disturbance according to
remodeling the output or state measurements as a new control
input [13], [20]. From this perspective, the disturbance
rejection can be regraded as a kind of observer involving
the internal model of disturbance. In distributed control, the
disturbance rejection naturally relates to distributed observer
that is formed by both the disturbance and measurement of
relative state. For example, in [16] and [17], some kinds of
disturbed disturbance rejection control have been applied to
studying networked systems by utilizing event-triggered and
adaptive control strategies, respectively. In [21], mismatched
disturbance has been introduced into output consensus
problem of higher-order multi-agent systems. Then, some
works have considered the disturbance rejection into some
practical problems, such as formation control [25], [26].

In addition to disturbance rejection, there is an other
requirement to implement distributed control strategy in
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many existing works [9], [11], [12], which is assumed that
all the agents can send and receive the signals through an
ideal communication channel. It is to say that all the agents
can get accurate state information from their neighbouring
agents. However, signal transmission among the agents may
be subject to a noisy process in digital implementations. The
reason caused this phenomenon is some random influences
that spontaneously exist in electric devices or other complex
environments. In networked control systems, these random
influences can be modeled by communication noises. For
sake of excluding such communication noises, the primary
aim is to design an appropriate control gain that is called
the stochastic-approximation type gain in many existing
works [27], [28], [29], [30]. The main idea of this control
gain is to construct some sequences of martingale difference
such that the communication noises can be transformed
into a certain stationary process. It further means that the
effect of the communication noises is converged under the
action of such control gain. Recently, many works have
focused on this problem [31], [32], [33], [34], [35]. For
example, in [27], consensus problems have been studied for
multi-agent systems with communication noises, in which
several kinds of communication topologies have been
considered, respectively. In [30], leader-following consensus
convergence rate has been discussed for multi-agent systems
with communication noises. In [33], a kind of communication
noise, named as networked attack, has been introduced into
distributed resilient fault-tolerant control via an observer-
based strategy.

As mentioned above, the disturbance and communica-
tion noises are unavoidable phenomena in the distributed
control problem. Although the existing works related to
such topic have been obtained many remarkable results
[15], [28], [29], they can not be applied to the disturbance
and communication noises at the same time. In this case,
how to design an appropriate distributed disturbance observer
with the stochastic-approximation type gain that, not only
can estimate and cancel the disturbance, but also can be
utilized to deal with the communication noises, has still
some challenges. On the other hand, compared with the
continuous-time systems, discrete-time behaviors of agents,
especially general linear dynamics, play an important factor
to understand the cooperation control mechanism, and also
have many advantages in digitized signal of communication
process [6]. However, how to analyze such general linear
discrete-time dynamics in the case of the disturbance
and communication noises are still some difficulties. The
primary difficulties are to derive the relationship among the
general linear discrete-time dynamics, the disturbance and
communication noises, such that this relationship can be
utilized to represent the final control aim.

Motivated by above considerations, disturbance and com-
munication noise of general linear discrete-time multi-agent
systems have been considered in this paper, where the
disturbance and communication noises are molded by an
exosystem and a sequence of additive noises, respectively.

Then, an observer-based consensus control has been intro-
duced to estimate the disturbance and the state of each
agent. Meanwhile, two kinds of stochastic-approximation
type control gains have been applied to excluding the
influence of communication noises, respectively. Under
the estimated results and martingale convergence theorem,
two sufficient conditions have been derived to ensure
consensus and disturbance rejection in mean square, which
means that consensus among the agents can be guaranteed.
Finally, the applicability of obtained results is shown by an
example. The mainly contributions of this paper are listed as
follows: (1) The additive communication noises have been
introduced into the consensus disturbance rejection problem
of linear discrete-time multi-agent systems. (2) Two kinds
of stochastic-approximation type control gains have been
utilized to deal with the consensus disturbance rejection
problem with communication noises.
Notations: Let RN×M and Rn be the set of N × M

real matrix and n-dimensional Euclidean space, respectively.
N+ stands for the set of positive natural numbers. IN means
theN×N identity matrix.ON presents theN×N null matrix.
1n and 0n represent the n-dimensional column identity and
null vectors, respectively. For a vector x ∈ Rn and a matrix
X ∈ RN×N , ∥x∥ = xT x and ∥X∥ =

√
λN (XTX ), where

the superscript T stands for the transposition of a vector or
matrix, and λi(·) is the i-th smallest eigenvalue. For anymatrix
A with appropriate dimensions, Sym(A) = A + AT . The
symbol ⊗ stands for the Kronecker product of matrix. For
a given random variable ξ , the corresponding mathematical
expectation is given by E[ξ ].

II. PROBLEM STATEMENT AND PRELIMINARIES
A. PRELIMINARIES
Denote a probability space as (�,F ,P), where � is the
set of events, F means σ -algebra on the set �, and P is
the corresponding probability. For a sequence of random
variables {ξ (k), k = 1, 2, . . .}, the σ -algebra σ {{ξ ∈ 1}, 1 ∈

B, k = 1, 2, . . .} is denoted by σ {ξ (k), k = 1, 2, . . .},
where B presents a Borel set. If a random variable is F-
measurable, ξ is adapted to a σ -algebra F . Define {ζ (k), k =

1, 2, . . .} as an adapted sequence of random variables, then,
{ζ (k), k = 1, 2, . . .} is said to be a martingale relative to the
filtration {ξ (k), k = 1, 2, . . .} on (�,F ,P), if for each k ,
E[ζ (k + 1)|ξ (k)] = ζ (k) [36]. Correspondingly, the adapted
sequence {γ (k), k = 1, 2, . . .} is said to be a martingale
difference relative to the filtration {ξ (k), k = 1, 2, . . .} on
(�,F ,P), if for each k , E[γ (k + 1)|ξ (k)] = 0, a.s., and
E|γ (k + 1)| < ∞. By simple construction, one can imply
γ (k + 1) = ζ (k + 1) − ζ (k) for a martingale {ζ (k), k =

1, 2, . . .}.
The communication topology is given by a weighted

undirected graph G = (V, E,A), where V = {1, . . . ,N }

is the set of N nodes, E = e(i, j) means the edge set, and
A = [aij] presents the corresponding adjacency matrix. For
the adjacency matrix A = [aij], aij = aji > 0 if e(i, j) ∈ E
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(implies e(j, i) ∈ E), otherwise aij = 0. The associated
Laplacian matrix L of the graph G denotes as follows: for
any i ̸= j, ℓij = ℓji = −aij if e(i, j) ∈ E , otherwise
ℓij = ℓji = 0, and ℓii =

∑N
j=1,j̸=i ℓij. Through all this

paper, the undirected graph G is assumed to be connected
and simple, which means that all the eigenvalues of matrix
L satisfy: 0 = λ1(L) < λ2(L) ≤ . . . ≤ λN (L), where λi(L)
is the i-th smallest eigenvalue of matrix L [37].

B. PROBLEM STATEMENT
Now, consider a linear discrete-time agent with disturbance
in an n-dimensional Euclidean space, the dynamics of agent
i is given below:

xi(k + 1) = Axi(k) + Bui(k) + Dwi(k), (1)

where A ∈ Rn×n, B ∈ Rn×p and D ∈ Nn×m are constant
matrices, xi(k) ∈ Rn is the state vector at time instant k ∈ N+,
ui(k) ∈ Rp is the control input at time instant k ∈ N+, and
wi(k) ∈ Rm stands for a disturbance at time instant k ∈ N+

that is attributed to an exosystem with the form

wi(k + 1) = Swi(k), (2)

with S ∈ Rm×m being a known constant matrix.
The information available to agent i at each time instant

k ∈ N+ is the relative measurements among its neighbours,
denoted by ζi(k). Then, this relative information ζi(k) is given
by

ζi(k) =

N∑
j=i,j̸=i

aij(xi(k) − yji(k)), (3)

where yji(k) ∈ Rn stands for the state information from agent
j to agent i, this information is corrupted by communication
noises ξji(k) ∈ Rn with following form

yji(k) = xj(k) + ξji(k). (4)

Similar to [15], assume that the disturbance (1) is matched,
which means that there exists a matrix F ∈ Rp×m such that
D = BF holds. Then, the control input ui(k) for disturbance
rejection is designed by

ui(k) = −Kχi(k) − Fϖi(k), (5)

whereK is a control gainmatrix with a proper dimension such
that (A − BK ) is Hurwitz, χi(k) ∈ Rn and ϖi(k) ∈ Rm are
the relative estimations of states xi(k) and wi(k), respectively.
These estimations χi(k) and ϖi(k) have the following form

χi(k + 1) = (A− BK )χi(k) + ci(k)
(
ζi(k)

−

N∑
j=i,j̸=i

aij(χi(k) − χj(k))
)
, (6)

ϖi(k + 1) = Sϖi(k) + ci(k)
(
ζi(k) −

N∑
j=i,j̸=i

aij(χi(k)

− χj(k))
)
, (7)

where ci(k) (i ∈ V) is a stochastic-approximation type
control gain designed later. Note that the relative estimations
χi(k) and ϖi(k) (6) and (7) can be regarded as a kind of
consensus-based disturbance observers of the systems (1)
and (2).

Denote εi(k) = xi(k) − χi(k) and δi(k) = wi(k) − ϖi(k).
Then, from (1) to (7), the following systems can be obtained

εi(k + 1) = Aεi(k) + Dδi(k) − ci(k)
( N∑
j=i

ℓijεj(k)

−

N∑
j=i,j̸=i

aijξji(k)
)
, (8)

δi(k + 1) = Sδi(k) − ci(k)
( N∑
j=i

ℓijεj(k) −

N∑
j=i,j̸=i

aijξji(k)
)
.

(9)

Denote e(k) = [ε(k), δ(k)]T , where ε(k) =

[εT1 (k), . . . , ε
T
N (k)]

T and δ(k) = [δT1 (k), . . . , δ
T
N (k)]

T . Thus,
the systems (8) and (9) can be rewritten in the following
Kronecker-product from

e(k + 1) =

(
(IN ⊗ A) − c(k)(L⊗ I)

)
e(k)

+ c(k)(3 ⊗ I2n)ξ (k), (10)

where ξ (k) = [ξT11(k), . . . , ξ
T
N1(k), ξ

T
12(k), . . . , ξ

T
N2(k), . . . ,

ξT1N (k), . . . , ξ
T
NN (k), ]

T
⊗ I2, c(k) = diag{c1(t), . . . , cN (t),

c1(t), . . . , cN (t)} ⊗ In, 3 = diag{AT
1 , . . . , AT

N } ∈ RN×N 2

withAi being the i-th row of the adjacency matrixA, and the
matrices A and I have the following form

A =

[
A D
On S

]
, I =

[
Î
Î

]
Î =

[
In On

]
.

For sake of obtaining the main results, the following
definition, lemmas and assumptions are required.
Definition 1: The multi-agent system (1) is said to achieve

consensus disturbance rejection in mean square, if there exist
two random vectors x∗ and w∗ such that, for i ∈ V

lim
k→∞

E[∥xi(k) − χi(k) − x∗
∥
2] = 0,

lim
k→∞

E[∥wi(k) − ϖi(k) − w∗
∥
2] = 0.

Lemma 1: If the pair (S,D) is observable, the pair (A, Î)
is observable, with A and Î in (10).

Proof: This lemma can be regarded as a special case of
Lemma 1 in [15]. Therefore, the proof is omitted here.
Note that the consensus-based disturbance observers (6) and
(7) exist if Lemma 1 holds. It is to say that the states xi(k) and
wi(k) can be estimated by using the observers (6) and (7).
Lemma 2: [27] Let {u(k), k = 1, 2, . . .}, {α(k), k =

1, 2, . . .} and {q(k), k = 1, 2, . . .} be real sequences,
satisfying 0 ≤ q(k) ≤ 1, α(k) ≥ 0, k = 1, 2, . . .,∑

∞

k=1 q(k) = ∞, α(k)/q(k) → 0, k → ∞, and

u(k + 1) ≤ (1 − q(k))u(k) + α(k).
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Then, limk→∞ u(k) ≤ 0. In particular, if u(k) ≥ 0, k =

1, 2, . . ., then u(k) → 0, k → ∞.
Assumption 1: {ξi(k), k ∈ N+, i ∈ V} ⊂ S, where

S = {ζ |(ζ ∈ Rn,F ζ (k) is a martingale difference, σζ =

supk>0 E[∥ζ (k)∥
2] < ∞}.

Assumption 2: For any i, j ∈ V , ci(k) = cj(k) = c(k) ≤ 1,∑
∞

k=1 c(k) = ∞, and limk→∞ c(k) = 0.
Assumption 3:

∑
∞

k=1 ci(k) = ∞, limk→∞ ci(k) = 0,
maxi≤i,j≤N |ci(k) − cj(k)| = o(

∑N
j=1 cj(k)) as k → ∞, and

ci(k) ≤ 1 for all k and i, where the operator o(·) means the
infinitesimal of higher order.

It is worth pointing out that the above assumptions are
primarily used to describe the parameters of the systems
(8) and (9). Assumption 1 shows that communication noises
ξji(k) are a bounded and adaptive process, which are more
general than the case in [33]. Assumptions 2 and 3 will be
utilized to design the control gain ci(k) in the rest of this paper.
Remark 1: When considering the cooperation prob-

lems of multi-agent systems, the consensus disturbance
rejection is a basic requirement. Recently, there are
many works that have been discussed about this topic
[15], [16], [17], [22], [23]. However, some of these works
have mainly concerned with the design of disturbance
estimator rather than the communication noises. Compare
with the results in [15], [16], and [17], the communication
noises have been introduced into the disturbance rejection
problem of linear discrete-time multi-agent systems in this
paper. The communication noises are molded by a sequence
of additive noises, which can reflectmany potential properties
of distributed control.

III. MAIN RESULTS
In this section, the consensus disturbance rejection problem
with communication noises (10) is studied in mean square
under the control input (5) and the relative estimations
(6) and (7). In order to study this problem, two kinds
of stochastic-approximation type control gains have been
introduced. First, consider the case that for any i, j ∈ V
and k ∈ N+, ci(k) = cj(k), i.e., ci(k) = c(k) for all
i ∈ V .
Theorem 1: Suppose that Assumptions 1 and 2 hold. The

linear discrete-time multi-agent system (10) can realize the
consensus disturbance rejection in mean square, if there exist
a positive definite matrix P ∈ R2n×2n and a scalar k ∈ N+,
such that the following conditions hold

Sym(A
TI) + P > 0, (11)

ηc(k) ≤ a < 1, (12)

2c(k)∥L∥
2 > η, (13)

where a = ∥A∥
2
+λ2n(P), and η = λ1(Sym(A

TI)+P)λ2(L).
Proof: Denote J = (1/N )1N1TN , and ρ(k) = ((IN −J )⊗

I2n)e(k). Consider the Lyapunov function V (k) = ρT (k)ρ(k)
for the consensus error of the system (10). Note that the
undirected graph G is connected and simple, then L = LT ,

(IN − J )(IN − J ) = (IN − J ) and 1TNL = 0N . One has

ρ(k + 1) =

(
(IN − J ) ⊗ I2n

)
e(k + 1)

=

(
(IN − J ) ⊗ I2n

)[(
(IN ⊗ A) − c(k)(L⊗ I)

)
× e(k) + c(k)(3 ⊗ I2n)ξ (k)

]
=

[(
(IN − J ) ⊗ A

)
− c(k)

(
((IN − J )L) ⊗ I

)]
× e(k) + c(k)

[(
((IN − J )3) ⊗ I2n

)]
ξ (k)

=

(
(IN ⊗ A) − c(k)(L⊗ I)

)
ρ(k)

+ c(k)
(
((IN − J )3) ⊗ I2n

)
ξ (k) (14)

and therefore, one can write

V (k + 1) =

[(
(IN ⊗ A) − c(k)(L⊗ I)

)
ρ(k)

+ c(k)
(
((IN − J )3) ⊗ I2n)

)
ξ (k)

]T
×

[(
(IN ⊗ A) − c(k)(L⊗ I)

)
ρ(k)

+ c(k)
(
((IN − J )3) ⊗ I2n)

)
ξ (k)

]
= ρT (k)

(
(IN ⊗ (A

T
A)) + c2(k)(L2

⊗ ITI)

− c(k)(L⊗ Sym(A
TI))

)
ρ(k) + ρT (k)

×

[
c(k)

(
((IN − J )3) ⊗ A

T
)

− c2(k)
(
(L(IN − J )3) ⊗ IT

)]
ξ (k)

+ ξT (k)
[
c(k)

(
(3(IN − J )) ⊗ A

)
− c2(k)

(
(3(IN − J )L) ⊗ I

)]
ρ(k)

+ c2(k)ξT (k)
(
(3(IN − J )3) ⊗ I2n

)
ξ (k).

(15)

From the properties of Laplacian matrix [37], there exists
a unitary matrix U = [u1, u2, . . . , uN ] ∈ RN×N such that
UTLU = diag{0, λ2(L), . . . , λN (L)} ≜ 8, where u1 =

1/
√
N [1, 1, . . . , 1]T ∈ RN and ui = [u1i, u2i, . . . , uNi]T ∈

RN for i = 2, . . . ,N . Therefore, one constructs z(k) =

(U ⊗ I2n)ρ(k), and gets the following equation

−ρT (k)
(
L⊗ Sym(A

TI)
)
ρ(k)

= −zT (k)(UT
⊗ I2n)

(
L⊗ Sym(A

TI)
)
(U ⊗ I2n)z(k)

= −zT (k)
(
(UTLU ) ⊗ Sym(A

TI)
)
z(k)

= −zT (k)(8 ⊗ Sym(A
TI))z(k). (16)

According to (11), there exists a positive definite matrix
P ∈ R2n×2n, such that Sym(A

TI) + P is positive
semidefinite. Thus, there also exists a unitary matrix V =

[v1, v2, . . . , v2n] ∈ R2n×2n such that V T (Sym(A
TI) +

P)V = diag{λ1(Sym(A
TI)+P), . . . , λ2n(Sym(A

TI)+P)} ∈
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R2n×2n ≜ 9, where vi = [v1i, v2i, . . . , v(2n)i]T ∈ R2n for
i = 1, . . . , 2n. Let y(k) = (IN ⊗ V )z(k), it follows from (16)

−zT (k)(8 ⊗ (Sym(A
TI) + P))z(k)

= −yT (k)(IN ⊗ V T )
(
8 ⊗ (Sym(A

TI) + P)
)

× (IN ⊗ V )y(k)

= −yT (k)
(
8 ⊗ (V T (Sym(A

TI) + P)V )
)
y(k)

= −yT (k)(8 ⊗ 9)y(k). (17)

Note that Sym(A
TI)+P is a positive definite matrix, andL

is a positive semidefinite matrix. It further derives from (16)
and (17)

−E[ρT (k)(L⊗ (A
TI + ITA+ P)ρ(k)]

= −E[yT (k)(8 ⊗ 9)y(k)]

≤ −λ1(Sym(A
TI) + P)λ2(L)

×E[yT (k)(UTU ⊗ V TV )y(k)]

= −ηE[V (k)]. (18)

Based on the discussions from (16)-(18), takingmathematical
expectation on both sides of (15), one has

E[V (k + 1)] ≤ E[ρT (k)(∥A∥
2
+ λ2n(P) − ηc(k)

+ 2c2(k)∥L∥
2)ρ(k) + ξT (k)c2(k)∥3∥

2

× ∥IN − J∥2ξ (k)]

≤ (a− ηc(k) + 2c2(k)∥L∥
2)E[V (k)]

+ c2(k)∥3∥
2
∥IN − J∥2σξ , (19)

where σξ = supk∈N+ E[∥ξ (k)∥2] from Assumption 1.
Due to Assumptions 1 and 2, c(k) → 0 as k → ∞, thus,

one knows that there is a k0 > 0, such that, for any k ≥ k0,

c(k)∥L∥
2 < η/2,

and from (11) and (12), one gets

ηc(k) ≤ a < 1.

In this case, one gets

0 ≤ a− ηc(k) + 2c2(k)∥L∥
2 < 1, (20)

which means that the following inequalities hold
∞∑
k=k0

(
ηc(k) − c2(k)∥L∥

2
)

≥
η
2

∑
∞

k=k0 c(k) = ∞, (21)

and for k → ∞,

c2(k)
η

→ 0. (22)

Together with (19), (21), (22) and Lemma 2, one gets
limk→∞ E[V (k)] = 0. It completes the proof.

The above theorem studies the case of the control gain c(k)
for all the agents. This condition may be not applied to some
practical cases. For instance, there may be a small change
between the control gain c(k) for some parts of the agents

and the control gain ci(k) of the i-th agent. Thus, one has the
following theorem to investigate this case.
Theorem 2: Suppose that Assumptions 1 and 3 hold. The

linear discrete-time multi-agent system (10) can realize the
consensus disturbance rejection inmean square, if there exists
a positive definite matrix P ∈ R2n×2n and a scalar k ∈ N+,
such that (11), (12), and the following condition hold

µ(k) ≤ 1, (23)

where µ(k) = a − η̃c(k) + 2̃c2(k)∥L∥
2

+ (2∥A∥ +

ς∥L∥∥I∥)∥L∥∥I∥∥4(k)∥, ς = maxi supk>0 ci(k), c̃(k) =∑N
i=1 ci(k)/N , and η, a are given in Theorem 1.
Proof: Denote 4(k) = diag{41(k), . . . , 4N (k),

41(k), . . . , 4N (k)} ⊗ In, where 4i(k) = c̃(k) − ci(k), and
c(k) = c̃(k) − 4(k). Similar to (14), one has

ρ(k + 1) =

(
IN ⊗ A− c̃(k)(L⊗ I) + (J ⊗ I2n)

× 4(k)(L⊗ I)
)
ρ(k) + ((IN − J ) ⊗ I2n)

× (̃c(k)I2nN − 4(k))(3 ⊗ I2n)ξ (k). (24)

Consider the same Lyapunov function in Theorem 1, one gets

V (k + 1) =

[(
IN ⊗ A− c̃(k)(L⊗ I) + (J ⊗ I2n)

× 4(k)(L⊗ I)
)
ρ(k) + ((IN − J ) ⊗ I2n)

× (̃c(k)I2nN − 4(k))(3 ⊗ I2n)ξ (k)
]T

×

[(
IN ⊗ A− c̃(k)(L⊗ I) + (J ⊗ I2n)

× 4(k)(L⊗ I)
)
ρ(k) + ((IN − J ) ⊗ I2n)

× (̃c(k)I2nN − 4(k))(3 ⊗ I2n)ξ (k)
]

= ρT (k)
(
(IN ⊗ (A

T
A)) + c̃2(k)(L2

⊗ ITI)

− c̃(k)(L⊗ Sym(A
TI)) + Sym((L⊗ IT )

× 4(k)(J ⊗ A)) + (L⊗ IT )4(k)(J ⊗ I2n)

× 4(k)(L⊗ I)
)
ρ(k) + ρT (k)

(
((IN − J )

⊗ A
T
) − c̃(k)(L⊗ IT )

)
(̃c(k)I2nN − 4(k))

× (3 ⊗ I2n)ξ (k) + ξT (k)(3 ⊗ I2n)(̃c(k)I2nN

− 4(k))
(
((IN − J ) ⊗ A) − c̃(k)(L⊗ I)

)
× ρ(k) + ξT (k)(3 ⊗ I2n)(̃c(k)I2nN − 4(k))

× ((IN − J ) ⊗ I2n)(̃c(k)I2nN − 4(k))

× (3 ⊗ I2n)ξ (k). (25)

Taking mathematical expectation of the last term of (25),
one has
E[ξT (k)(3 ⊗ I2n)(̃c(k)I2nN − 4(k))((IN − J ) ⊗ I2n)

× (̃c(k)I2nN − 4(k))(3 ⊗ I2n)ξ (k)]

≤ E[ξT (k)∥̃c(k)I2nN − 4(k)∥2∥3∥
2
∥IN − J∥2ξ (k)]

≤ ∥̃c(k)I2nN − 4(k)∥2∥3∥
2
∥IN − J∥2σξ

≤ 2(nN )2̃c2(k)∥3∥
2
∥IN − J∥2σξ ,

where σξ is given by the proof of Theorem 1.
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Similar to the discussions (15)-(19), and taking mathemat-
ical expectation on both sides of (25), one has

E[V (k + 1)] ≤ E[ρT (k)(a− η̃c(k) + 2̃c2(k)∥L∥
2
+ (2∥A∥

+ ς∥L∥∥I∥)∥L∥∥I∥∥4(k)∥)ρ(k)]

+ 2(nN )2̃c2(k)∥3∥
2
∥IN − J∥2σξ

≤ µ(k)E[V (k)] + 2(nN )2̃c2(k)∥3∥
2

× ∥IN − J∥2σξ , (26)

where µ(k) = a − η̃c(k) + 2̃c2(k)∥L∥
2

+ (2∥A∥ +

ς∥L∥∥I∥)∥L∥∥I∥∥4(k)∥, ς = maxi supk>0 ci(k), and η and
a are given by the proof of Theorem 1.
Due to ∥1(k)∥ ≤ max1≤i.j≤N ∥ci(k) − cj(k)∥, ∥1(k)∥ =

o(̃c(k)) holds as k → ∞. Then, from Assumption 3, one has
limk→∞ c̃(k) = 0 and

∑
∞

k=1 c̃(k) = ∞. Based on (25), (26)
and the above discussions, one gets that there exists a k1 > 0,
such that, for all k ≥ k1, 0 < µ(k) ≤ 1,

∞∑
k=k1

µ(k) = ∞,

and as k → ∞,

c̃2(k)/µ(k) = 0,

which further implies that limk→∞ E[V (k)] = 0. It com-
pletes the proof.
Remark 2: Theorems 1 and 2 consider two different kinds

of the stochastic-approximation type gain ci(k). For each pair
of agents i, j ∈ V , the stochastic-approximation type gain
ci(k) satisfies c(k) = ci(k) = cj(k) in Theorem 1, and for
all agents i ∈ V , each control gain ci(k) can be distinction in
Theorem 2. Different from the disturbance rejection problems
in [22] and [23], the reason introduced these control gains
into Theorems 1 and 2 is that the additive communication
noises can be handled under the consensus-based disturbance
observers (6) and (7). These control gains result in more
complicated mathematical analysis.
Remark 3: Actually, there are some restricted conditions

during the proofs of Theorems 1 and 2. Specifically, these
restrictions are mainly expressed as the condition (11).
In view of the matrix theory, the condition (11) means that
both the dynamics and disturbances of the system must be
stable. The reason for these restrictions is to ensure the Lya-
punov function V (k) is a monotone nonincreasing function.
However, from the perspective of the system analysis, these
restrictions are conservative condition. Therefore, our future
works will try to reduce the conservatism of these restrictions.
Remark 4: Note that Lemma 2 depends on the martingale

convergence theorem [36], which plays an important role to
analyze of the consensus disturbance rejection problem (10).
The main advantage of this method is to reduce the
requirements of the additive noise ξji(k). Actually, there
are several works considering the additive noises that are
assumed to be the Gaussian noises, or the independent
and identically noises [28]. Different from these works, the
method in this paper are only assumed that the additive

FIGURE 1. The structure of network.

noise ξji(k) is a martingale difference sequence with bounded
second order moments.
Remark 5: It should be pointed out that there have some

recent works related to the disturbance [15], [17], [18], [21],
[22] or communication noise [14], [27], [27], [28], [30],
[31], respectively. Specifically, the disturbance wi(k) in these
works needs to be estimated by utilizing the disturbance
observer (7) that depends on the state observer (6) for
estimating xi(k). The existence of these observers (6) and
(7) can be guaranteed by Lemma 1. Different from the
disturbance, the communication noise is usually assumed that
the relative measurements ζi(k) in (3) satisfy some kinds
of random sequences. It inevitably makes the convergence
analysis more difficult. However, in practice, the systemsmay
not only involve the disturbance, but also may be subject
to the communication noise. In order to fill this gap, this
paper explores the relationship between the disturbance and
communication noise, which leads to a more general case.

IV. SIMULATION EXAMPLE
An example is given to explain the effectiveness of the main
results in this section.

In what follows, consider the linear discrete-time multi-
agent system with disturbances and communication noises,
where the topology is given in Fig. 1 with weighted
communication links all being 0.1.

The matrices A,B, and S in the system (10) are given as:

A =

[
−0.02 −0.02
0.15 −0.03;

]
,B =

[
−0.1
0.2

]
,

S =

[
0.01 0.16

−0.07 −0.13

]
,D =

[
−0.02 0.01
0.04 −0.02;

]
.

For all i, j ∈ V , Fig. 2 draws the additive noise ξji(k) that is
formed by a normal distribution with mean 2 and variance 12.

Note that A − BK is Hurwitz and the disturbance (1) is
matched. In this case, it is easy to check that Re(λi(A −

BK )) = −0.04 < 0 for all i = 1, 2, and D = BF
if one chooses K = [−0.1, 0.1] and F = [−0.2, 0.1].
Moreover, one selects the stochastic-approximation type gain
ci(k) = c(k) = 1/(1 + k)0.3 for all i = {1, 2, 3, 4}. Then,
one calculates λ1(Sym(A

TI) + 0.5I4) = 0.1661 > 0, a =
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FIGURE 2. Evolution of the states ξji .

FIGURE 3. Evolution of the states xi .

FIGURE 4. Evolution of the states εi .

0.1396 < 1, and supk{a−ηc(k)+2c2(k)∥L∥
2
} = 0.734 < 1.

Thus, all conditions in Theorem 1 are satisfied, which means
that the consensus disturbance rejection with communication
noises is guaranteed in mean square. Fig. 2 draws the state
trajectories xi of the linear discrete-time multi-agent system
(1) with the above parameters. In Figs. 4 and 5, the relative

FIGURE 5. Evolution of the states δi .

estimation errors εi(k), δi(k) are illustrated, respectively.
It should be pointed out that all states of xi reach consensus
as times goes on in Fig. 3, and meanwhile, according to
Definition 1, the relative errors εi(k) = xi(k) − χi(k) and
δi(k) = wi(k) − ϖi(k) approach to two random vectors x∗

and w∗ in Figs. 4 and 5.

V. CONCLUSION
This paper considers the consensus disturbance rejection
problem of the linear discrete-time multi-agent systems with
communication noises. Each agent, not only is influenced by
the disturbances, but also is subject to the communication
noises when receiving the state information among its
neighbours. The consensus disturbance rejection guarantees
the state of each agent that converges to a consensus
state in mean square. In order to do this, two disturbance
observers are designed to estimate the states of agents and
disturbances. Then, two sufficient conditions are derived
to ensure consensus disturbance rejection in mean square.
Finally, a simulation is provided to show the theoretical
results. For the further research, more complex cases may be
considered in consensus disturbance rejection problem.
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