
Received 20 January 2023, accepted 28 January 2023, date of publication 2 February 2023, date of current version 10 February 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3241799

An Intelligent Rebalance System for Tidal
Phenomenon of Dockless Bicycle-Sharing
LYUCHAO LIAO 1, (Senior Member, IEEE), BEN LI 1, DEJUAN HUANG1,
ZHU XIAO 2,3, (Senior Member, IEEE), AND QI ZHENG1
1School of Transportation, Fujian University of Technology, Fuzhou 350118, China
2College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China
3Shenzhen Research Institute, Hunan University, Shenzhen 518055, China

Corresponding authors: Ben Li (liben0210@outlook.com) and Zhu Xiao (zhxiao@hnu.edu.cn)

This work was supported in part by the Projects of the National Natural Science Foundation of China under Grant 41971340 and Grant
62272152; in part by the Fujian Provincial Department of Science and Technology under Grant 2021Y4019, Grant 2020D002, Grant
2020L3014, and Grant 2019I0019; in part by the Fujian Provincial Universities Engineering Research Center for Intelligent Driving
Technology (FJUT) under Grant KF-J21012; in part by the Key Research and Development Project of Hunan Province of China under
Grant 2022GK2020; and in part by the Shenzhen Science and Technology Program under Grant JCYJ20220530160408019.

ABSTRACT With the advantages of flexible parking locations and convenient cycling, Dockless Bicycle-
sharing (DBS) has become increasingly popular worldwide. However, with the massive increase of DBSs
and electric fences, DBS systems face several challenges: (1) the hardness of identifying the DBS tidal zones;
(2) the difficulty of accurately evaluating and identifying overload fences; (3) the issues of rebalancing
DBS in time. To deal with these challenges, we propose a Dockless Bicycle-sharing Dynamic Rebalance
(DBSDR) system to dynamically provide the optimal bicycle guidance for the DBS network. The DBSDR
system contains three modules: DBS tidal zone identification, evaluation framework of overload fences, and
DBS dynamic guidance. For DBS tidal zone identification, tidal zone identification and location from each
fence with bicycle flows are provided with the HDBSCAN clustering method. The evaluation framework,
covering DBS flows and the parking demand density, is proposed to assess the characteristics of overload
fences. Finally, a DBS dynamic guidance method is provided to balance DBS for the tidal phenomenon with
guiding users to the optimal target fence. Extensive experiments conducted on real-world DBS datasets show
the effectiveness and accuracy of rebalancing the tidal phenomenon in the DBS system.

INDEX TERMS Dockless Bicycle-sharing system, bicycle rebalancing, HDBSCAN, user-based guidance.

I. INTRODUCTION
In recent years, energy waste and environmental pollution
have become more and more serious, and greenhouse gas
emissions are one of the important factors [1], [2]. The rapid
growth of bicycle-sharing provides an excellent opportunity
to meet the needs of urban residents for green travel [3], [4].
In fact, for the public, the first/last mile problem is often
the most immediate, and bicycle-sharing has the advan-
tages of zero carbon emissions and convenient cycling [5],
[6], [7]. Therefore, bicycle-sharing has obvious advantages in
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short-distance travel and is widely used as public transporta-
tion to solve the first/last mile problem [8], [9].

At present, there are two main bicycle-sharing systems,
station/dock-based bicycle-sharing (SDBS) system [10], [11]
and Dockless Bicycle-sharing (DBS) system [12], [13], [14].
In the SDBS system, each station has multiple fixed bicy-
cle docks, which greatly limits the movement of the sta-
tion and the increase of bicycles, and prevents users from
renting and parking bicycles [15]. The DBS system deploys
bicycle-sharing at flexible electric fences rather than fixed
stations where users can park their bicycles anywhere near
the fences [16]. However, numerous bicycles are parked on
some fences, while others have few bicycles, resulting in

VOLUME 11, 2023 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 12937

https://orcid.org/0000-0001-5337-9083
https://orcid.org/0000-0003-1069-3608
https://orcid.org/0000-0001-5645-160X


L. Liao et al.: Intelligent Rebalance System for Tidal Phenomenon of Dockless Bicycle-Sharing

the tidal phenomenon (no bicycles’ renting and parking in
the morning and evening peak hours). Meanwhile, massive
overload fences and idle fences in tidal zones lead to unbal-
ance between supply and demand. Therefore, a reasonable
guidance method is crucial for DBS.

Abound efforts have been devoted to the DBS [17], [18],
[19], such as bicycle demand prediction, station layout mod-
eling, and bicycle rebalance. However, balancing bicycle-
sharing distribution in real-time is still challenging. Bicycle
demand prediction is often used to predict bicycle flow during
a period to guide staff to redistribute bicycles from overload
fences to idle fences, which is hard to be efficient. Moreover,
there is no clear evaluation framework for overload fences,
making it hard to determine the specific overload fences
accurately [5], [6], [7], [8], [9], [10], [11], [12], [13], [14].
Furthermore, based on the worker scheduling model, which
cannot meet the needs of people’s parking in time, this will
lead to excessive operating costs. Significantly, the tidal zones
are not well identified to evaluate overload fences further.
However, the identification of overload fences can well solve
the tidal phenomenon.

In this work, we propose a DBSDR system to guide users
to park adjacent idle fences for rebalancing DBS. Unlike
traditional methods based on a worker scheduling system, the
DBSDR system is proposed to dynamically identify the tidal
zones, evaluate the overload fences and rebalance themwith a
recommendation mechanism. More significantly, the system
can provide users with the most suitable parking fences at
any time from five target fence indicators (DBS flows of the
recommended parking fences, density, active level, distances,
and whether to cross the road) when they need to park. Mean-
while, we also took into account the global balance, guiding
the bicycles of the overload fences to the adjacent idle fences
to avoid excessive bicycles to park the same empty fence.

The main contributions of this work are summarized as
follows:

• A method to identify the tidal zones with HDBSCAN
is proposed, which meets the characteristics of the
DBS dataset and combines the time-varying and spatial
continuity.

• An evaluation framework is provided to assess the char-
acteristics of overload fences and take it as the basis for
identification.

• We propose a DBSDR system, which provides users
with five target fence indicators to guide users in bal-
ancing the bicycle system for the tidal phenomenon.
Extensive experiments on Xiamen’s DBS dataset show
the effectiveness of the DBSDR system.

The rest of the paper is organized as follows:
In Section II, we summarize the related research on
bicycle-sharing scheduling in recent years; notation and
definition are provided in Section III. Then, we describe
the methodology framework and the detailed three tasks
in Section IV, and we conduct extensive experiments and
discuss the experimental results in Section V. Finally, this
work is concluded in Section VI.

II. RELATED WORKS
With the rapid development of the bicycle-sharing system in
the last two decades, the DBS system particularly prospered
in the past five years in China, and a large number of studies
on DBS have emerged. Increasing attention has been paid to
bicycle-sharing demand prediction and DBS rebalance.

A. BICYCLE-SHARING DEMAND PREDICTION
Accurate estimations for bicycle-sharing parking demands
are crucial to managing and rebalancing bicycles [18], [20].
In general, the bicycle-sharing demand prediction can be
conducted in two steps: the spatial-temporal zone divi-
sion [21] and prediction algorithm design. For example,
Chen et al. [22] built a weighted correlation network
to support the application of geographically-constrained
clustering for overdemand cluster prediction. Similarly,
Huang et al. [23] further proposed a Two-Stage Station Clus-
tering algorithm to cluster the central stations and common
stations before predicting. In summary, the identification of
the spatial-temporal zones is the basis of demand predic-
tion. However, they lack an accurate evaluation framework
for overload fences, and cannot accurately identify overload
fences.

Numerous machine learning [24], [25] and deep learning
methods [26], [27], [28], [29], [30] are applied to capture
the spatial-temporal dependence of bicycle-sharing demand.
For example, Gated Graph Neural Network (GGNN) was
introduced to dynamically predict the bicycle station layout,
the number of bicycles, and bicycle dispatching in work [31].
Although demand prediction algorithms can help predict
the demand for electric fences, an inappropriate prediction
method may mislead the user’s judgment and often lead to
locally optimal, guiding massive users to the same empty
fence and resulting in a new overload fence.

B. BICYCLE-SHARING REBALANCE
Bicycle-sharing rebalance refers to the process in which the
bicycles are relocated from the overload fences to the idle
ones. A bicycle rebalances problem (BRP) is crucial to the
rebalance operation of the system. Therefore, abundant stud-
ies have focused on static BRP (SBRP), which means repo-
sitioning bicycles at a fixed period [32], [33]. For example,
Liu et al. [34] proposed an Adaptive Capacity Constrained
K-centers Clustering (AdaCCKC) algorithm to divide outlier
stations, reducing the largescale bicycle routing problems to
the inner cluster one bicycle routing problem. Furthermore,
swarm intelligence algorithms [35], [36] are also used to
optimize the bicycle-sharing rebalancing process.

Dynamic BRP (DBRP) is widely studied and discussed
to optimize the bicycle-sharing rebalance of the system.
DBRPmeans the whole system is constantly updated, and the
rebalancing schemes can be continuously adjusted [37], [38].
For example, Zhang et al. [37] proposed a zone-based two-
stage rebalancing model, regulating zones with sufficient
and deficient bikes two-stage. Tian et al. [39] designed a
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new framework to solve DBRP, which contains two sections:
dynamic rebalancing of the inner station and static rebalanc-
ing among stations. Recently, user incentives-based bicycle-
sharing rebalance was adopted to determine the optimal
incentive scheme through reinforcement learning [12], [40].

However, these studies did not well identify the tidal zones
and evaluate overload fences. The guidance on the overload
fences and parking management scheme remains unclear.
Therefore, we propose a DBSDR system to analyze the tidal
zones and overload fences from the electric fence data and
the DBS dataset. Recommendations with five target fence
indicators are provided for parking guidance based on the
overload fence identification results. Then, the balance of
DSB system is achieved dynamically.

III. PRELIMINARIES
In this section, we first introduce the notations and defini-
tions. Then we briefly introduce the geohash encoding.

A. NOTATION AND DEFINITION
For ease of illustration, we first summarize the notations and
definitions.

TABLE 1. List of notations.

TABLE 2. List of indicators.

Definition 1: Tidal phenomenon. The tidal phenomenon is
defined as the phenomenon that bike-sharing cannot be rented
or parked in some areas during morning and evening rush
hours.
Definition 2: The active level of the fence. It describes the

active days ofPm > 0 for the fence. The different active levels
represent the degree to of demand exceeds supply.

B. GEOHASH ENCODING
Geohash (Geographical hashing) encoding is an algorithm
that converts two-dimensional latitude and longitude data into
a string, which is one of the most widely used urban address

encodings. Geohash represents equal-length and equal-width
squares. The longer the string length, the higher the accuracy.

Geocode = geohash (Xlat ,Xlon) (1)

In this work, a Geohash represents an electric fence or
a bicycle location. For example, Geocode = geohash
(24.468531, 118.098985) = ws7gpqm. Users could publish
address codes to protect privacy, providing their location
without exposing precise coordinates. The encoding length
needs to be selected according to the data. In this work,
a spatial index based on Geohash could also help to improve
the extraction efficiency of spatial data.

IV. METHODOLOGIES
In this section, we attempt to deal with three tasks: How are
tidal zones distributed in space? How to evaluate and identify
overload fences? How to guide users to park Bicycles for
‘‘peak clipping and valley filling’’?

A. METHODOLOGY FRAMEWORK
The methodology framework is shown in Figure 1. The
method collects multisource data, including DBS trip data,
electric fence data, and DBS order data, to support DBS tidal
zone identification, overload fences identification, and the
guidance system.

1) TASK 1: DBS TIDAL ZONES IDENTIFICATION
Each trip’s origin (O) and destination (D) are extracted from
DBS order data. The longitude and latitude of each fence
center are packed as the input of HDBSCAN. The determi-
nation of neighbor parameters of HDBSCAN is obtained by
the KNN method. Finally, DBS tidal zones are identified.

2) TASK 2: EVALUATION FRAMEWORK OF OVERLOAD
FENCES
The overload fences (OFs) are the critical areas for rebal-
ancing the DBS. Meanwhile, the government also pays great
attention to the bicycle parking demand in OFs. Therefore,
the OFs obtained from Task 1 DBS tidal zones are chosen as
Task 2’s main rebalancing areas. Two indicators are extracted
from the collected data to measure the OFs with high DBS
flows and high parking demand density. For uniformity, DBS
tidal zones are assessed similarly to overload fences. The
identification result is used to guide parking management
schemes.

3) TASK 3: DBS DYNAMIC GUIDANCE
Based on the rebalancing areas identified by the above two
tasks, we propose a method to solve the rebalancing problem
based on guiding users by five indicators. It can help ‘‘peak
clipping and valley filling’’ for the overload fences while
liberating a large amount of labor and saving scheduling
costs. Furthermore, we took extensive factors into account for
achieving global balance and preventing local optimums.
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FIGURE 1. The framework of DBSDR. Task 1: DBS tidal zones identification. Each trip’s origin (O) and destination (D) are extracted from DBS order data.
The longitude and latitude of each fence center are packed as the input of HDBSCAN to obtain the DBS tidal zones. Task 2: Evaluation Framework of
Overload Fences. Two indicators are extracted from the collected data to measure the OFs with high DBS flows and high parking demand density. Task 3:
DBS dynamic guidance. We extract the neighbor fences from the nine grids near each bicycle. The Dijkstra algorithm is employed to calculate the shortest
distance between the shared bicycle and these fences in the directed weighted graph. Finally, user obtains the nearest fence based on guiding users by
five indicators.

FIGURE 2. The division of three different fence tolerance ranges.

B. IDENTIFICATION OF DBS TIDAL ZONES
A DBS tidal zone is where many shared bicycles flow in
or out in a specific time range. The main challenges faced
by DBS operators and regulators are the DBS tidal zone
identification. We propose an HDBSCAN-based method to
identify the DBS tidal zones in this work.

Firstly, we set a suitable geohash encoding length to match
the appropriate fence areas. The bicycles that are too far from
the fences (more than 306 meters) will be taken as outliers
and ongoing situations. These data can be regarded as part
of the ‘‘disorderly parking’’ data in real world. Different
fences have different areas, and their tolerance ranges could
be different. Tolerance ranges of large fences are much more
difficult than that of small and medium-sized fences, and
special treatment of large fences will reduce the tolerable
parking distance to make the results more accurate. Figure 2
shows the division of three different fence tolerance ranges.
Based on three different fence tolerance ranges, we calculate
the distance between the bicycles and the center of the fence
and divide the order data into valid and invalid orders. Invalid

orders are defined as points 40 meters from the parking fence
center (for small andmedium-sized fences) or 20meters from
the parking boundary (for large fences).

The tidal zone owns the characteristics of multiple domain-
density maximums (MDDM), varying density distribution
(VDD), and equilibrium distribution (ED). Specifically,
bicycle-sharing has a different distribution in different peri-
ods, with time-varying. It is in line with the VDD feature.
In addition, inflow and outflow in the stable distribution
region will reach the balance between supply and demand,
belonging to ED.Moreover, the tidal zonesmay havemultiple
domain density maximums during the morning peak. The
HDBSCAN algorithm can obtain more reasonable clustering
results for data with MDDM, ED, and VDD features. There-
fore, we employ HDBSCAN to cluster the tidal zones.

HDBSCAN, based on density clustering combined with
hierarchical analysis largely meets data features, whose
input parameters are min_cluster_size andmin_samples [41].
Specifically, there are some key definitions in the HDB-
SCAN, which are as follows: (1) Core distance: the distance
between the sample point and the K-th nearest sample point;
(2) mutual reachability distance: the value is the maximum
value of the core distance of two sample points and the
distance between two sample points. The mutual reachability
distance can be obtained with Equation (2):

dmr (a, b) = max {dc (a) , dc (b) , d (a, b)} , (2)

where d (a, b) is the Euclidean distance between point a and
point b, which increases the adaptability and robustness for
different density regions.
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To cluster the tidal zones, we first establish a minimum
spanning tree with the mutual reachable distance between
sample points as the edge and transform the tree into a hierar-
chical structure. Then, the input parameter min_cluster_size
is employed to generate the compressed cluster tree. Finally,
the density-adaptive clustering results are generated through
a stability function.

Let ϕi and ψi be the latitude and longitude of the fence νi;
we can use the Haversine method to calculate the distance
between fences νi (ϕi, ψi) and νj

(
ϕj, ψj

)
:

dij = 2R · sin

√
H

(
d
R

)
= 2R ·

× sin
√
H

(∣∣ψi − ψj
∣∣)+cos (ψi) cos

(
ψj

)
H

(∣∣ϕi−ϕj∣∣)
(3)

where R is the radius of the earth, usually set to 6371.0 km,
and the Haversine function H (α) is defined as:

H (α) = sin2
(α
2

)
=

1
2
(1 − cos (α)) . (4)

C. EVALUATION FRAMEWORK OF OVERLOAD FENCES
In this section, we develop an evaluation framework covering
DBS flows Pm and the parking demand density Dm to assess
the characteristics of overload fences, as shown in Table 2.

DBS flows of the fences represent the level of demand
in a place and reflect the state of a fence. In general, it is
divided into positive flows and negative flows (i.e., Pm> 0
and Pm< 0). The former means that the supply and demand
can achieve a dynamic balance in the fence, while the latter
means that staff is required to dispatch bicycles from other
fences.

The parking demand density is also essential to reflect the
congestion state of the fence. For example, the fence area with
the same flow could be very different, in which the larger
fence area will lead to a lower density.

1) DBS FLOW
DBS flow is an important index for OFs evaluation. Com-
pared with docked bicycle-sharing, the parking of dockless
bicycle-sharing tends to be more dispersed. DBS parking has
become more restricted since implementing electric fences in
the real world. The electric fences that specify the area that
bicycles can be returned to and can be regarded as the parking
supply location.

DBS flow is not only the basis for DBS tidal zones iden-
tification but also a key evaluation index of overload fences.
Although tidal zones represent areas with high demand, the
demand among these tidal zones is still uneven. The DBS
flow is calculated as follows. As an example, a record of OD
data will generate a departure demand at the origin and an
arrival demand at the destination. The parking DBS flows Pm
of this fence at time t could be calculated as follows:

Pm = N + Fin − Fout , (5)

where Pm denotes the parking demand; Fin, Fout represent
DBS trips arriving in electric fences and trips departing from
electric fences, respectively. N is the number of existing
bicycles of electric fences.

2) THE PARKING DEMAND DENSITY
The spatial-temporal variation of DBS demand density gen-
erally leads to the different congestion states of the fence.
Demand density is defined as the ratio between the parking
demand and the fenced area. Therefore, the parking demand
density Dm can be calculated as follows:

Sm = lengthm·widthm (6)

Dm =
Pm
Sm
, (7)

where lengthm and widthm represent the length and width of
the M-th fence, respectively; Sm is the area of the M-th fence,
and Dm is the bicycle density of the M-th fence.
To identify the overload fences accurately, we sum up

the Z-score normalized the parking demand density and the
parking demand to get the final overload fences. The compre-
hensive index Om can be calculated as follows:

zscore (·) =
x − µ

σ
(8)

Om = zscore (Pm)+ zscore (Dm) , (9)

where zscore (·) is the standardized equation; Om is the com-
prehensive index for the M-th fence.

Evaluation and identification of overload fences using
evaluation framework after identification of DBS tidal zones.
Algorithm 1 describes the detailed steps of identification of
overload fences.

D. DBS DYNAMIC GUIDANCE
We can obtain the location of overload fences based on the
identification results of overload fences. Asmentioned above,
users could park their bicycles anywhere near their destina-
tion in a traditional DBS network. Generally, users’ disorder
parking will result in overload fences. Therefore, we need to
guide users to park bicycles for ‘‘peak clipping and valley
filling’’.

Firstly, we use geohash to encode the bicycles in overload
fences and all the electric fences and match them with nine
grids, respectively. We extract the neighbor fences from the
nine grids near each bicycle. Then, remove or refuse bicycle
parking without neighbor fences to prevent the user from
parking disorderly. Secondly, with each fence as a node and
the distance between them as weight, it can be seen as a
directed weighted graph. And then, the Dijkstra algorithm
is employed to calculate the shortest distance between the
shared bicycle and these fences in the directed weighted
graph. Finally, DBS dynamic guidance system obtains the
nearest fence hash encoding.

In the case of the isolation belt, we match bicycles with the
road network to determine whether it is necessary to cross the
road to reach the nearest fence and provide it to the user. It is
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Algorithm 1 Identification of Overload Fences
Input:

X : The bicycle dataset and the electric fence dataset for clustering;
θ : The threshold for the comprehensive index of each fence;

Output:
The overload fences.

1: extract all bicycle locations from X ;
2: filter outers and obtain bicycle locations and fences locations;
3: the clusters C of the fences by HDBSCAN;
4: for each cluster ci in clusters C do
5: for each fence in the cluster ci do
6: calculate N ,Fin,Fout of each fence for the BS flows Pm;
7: calculate Sm of each fence for the parking demand density Dm;
8: calculate the comprehensive index Om of each fence using Equation (9);
9: if Om > θ then
10: obtain the overload fences;
11: end if
12: end for
13: end for
14: return overload fences.

not only convenient for people, but also ensures the safety
of users. Furthermore, the active level of the fence is also
crucial, which describes the active days of Pm> 0 for the
fence, as shown in Equation (10). The different active levels
represent the degree of demand exceeding supply. For exam-
ple, after the original number of bicycles in different fences
flows out, the staff manually dispatches bicycles from other
fences.

Am =

∑T

t=1
am

{
1 if Pm > 0
0 otherwise

(10)

where T is the total sampling days, and am is the active days
for the M-th fence.

Users could also set their acceptable range, generally about
200 - 500 meters. DBS dynamic guidance system sums up
standardized the comprehensive index weight of the elec-
tric fence, active level, and the guidance distance to obtain
the recommended index, as shown in Equation (11). The
system sorts the recommended index and offers several rec-
ommended parking fences. The lower the score, the more
recommended parking. And the system will provide detailed
information to users, including DBS flows of the recom-
mended parking fences, density, active level, distances, and
whether to cross the road. Different discounts can also further
be developed based on different guidance schemes to encour-
age users to accept the guidance actively.

Rm = wo · zscore (Om)+ wl · zscore (Lm)

+wa · zscore (Am) , (11)

where zscore (·) is the standardized equation; Rm is the rec-
ommended index for the M-th fence; wo, wl , wa are the
comprehensive indexweight of the electric fence, the distance
weight between the bicycle and the recommended fence,

and the active level weight, respectively. In this work, they
are 0.3, 0.5, 0.2.

After guiding the user to park, DBS dynamic guidance
system updates the value of all fences flow and bicycle loca-
tions. Finally, we obtain the rebalanced fences for the current
urban area. Algorithm 2 gives the details about DBS dynamic
guidance method.

V. EXPERIMENTS
In this section, we conducted experiments on real-world
datasets to verify the effectiveness and accuracy of DBSDR
system. We collected DBS order datasets, DBS trajectory
records, and electric fence datasets in Xiamen city from
December 21 to 25, 2020. There are 12 million trajectory
data (recorded once in 15 seconds), 600,000 order data, and
14071 fences.

A. DATASETS
The DBS trajectory dataset was collected from the road
network in Xiamen city, China, containing the bicycle ID,
source of bicycle, longitude, latitude, and its timestamp. Each
electric fence data contains the fence ID and its position infor-
mation. Bicycle-sharing order datasets are routinely collected
from all stationary bicycles. Each order data contains the
bicycle ID, longitude, latitude, the locking status of bicycles
(i.e., opening and closing), and an updated timestamp of the
locking status. Due to the inaccurate coordinate positioning
of some bicycles, we preprocessed the data with data cleaning
and filtering to obtain valid datasets.

B. CASE STUDY
To better understand the variation and trend of the early peak
tidal phenomenon, the geohash is employed to encode the
bicycles and the electric fences. Orders far from the fence
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Algorithm 2 DBS Dynamic Guidance
Input:

X : The bicycle dataset and the electric fence dataset; Y : The bicycles in overload fences;
δ : The distance threshold for acceptable guiding distance;

Output:
The rebalanced fences.

1: for each bicycle in Y and each fence in X do
2: geohash encode each bicycle and each fence and matches them with nine grids;
3: extract the neighbor fences from the nine grids near each bicycle;
4: remove or refuse bicycles parking without neighbor fences;
5: for each fence in neighbor fences do
6: calculate the shortest distance Lm by Dijkstra algorithm;
7: if Lm < δ then
8: obtain the nearest fence geohash encoding G (including multiple fences);
9: end if
10: end for
11: end for
12: for each fence in G do
13: calculate the recommended index Rm of each fence using Equation (11);
14: sort index and show Lm, whether cross the road, Pm, Dm,Am by Equation (5) (7) (10);
15: if the users accept the guidance then
16: target fences flow +1, original fences flow −1;
17: update the value of all fences flow;
18: end if
19: end for
20: return rebalanced fences.

FIGURE 3. The error states bicycle-sharing.

were selected as outliers and ongoing situations. In general,
order states have two states, incuding opening and closing.
Due to equipment failure, the same bicycles may appear
opening many times and the closing status are not equal to
the locking state. In Figure 3, the bicycles move continuously
when the unlocking data occur. Therefore, we need to retain
the data generated when the bicycle state changes. For contin-
uous unlocking data, only the first is retained; for continuous
lock data, only the last one is retained.

In this work, too long geohash codes directly match the
electric fences can cause some electric fences to be not

completely covered. Therefore, we use 7-bit geohash code
that is 153 ∗ 153 square lattice for four vertex positioning
that can cover 306 ∗ 306 fence. Bicycles that cannot be
covered only account for less than 1 % of the total amount
of data, which can be classified as ‘‘disorderly parking’’. The
spatio-temporal distribution of valid orders and invalid orders
is shown in Figure 4. There is an obvious tidal phenomenon
in the time variation trend between valid orders and invalid
orders. In the space of valid orders and invalid orders, the
‘‘disorderly parking’’ phenomenon in some areas is more
serious.

Figure 5 shows the tidal zones distribution under three
different indicators. Figure 5(a) shows the tidal distribution
using the number of bicycle-sharing Pm as an indicator.
It shows the top 40 crowded tidal zones which contain
559 electric fences, showing the phenomenon of ‘‘large
number of bicycles’’. Figure 5(b) shows the tidal distribu-
tion using the parking demand density Dm as an indicator.
It shows the top 40 crowded tidal zones which contain only
64 electric fences, showing the phenomenon of ‘‘bicycle
congestion’’. Most of the fences with high density were
observed to be clustered separately. Figure 5(c) shows the
tidal distribution according to the comprehensive index Om.
It shows the top 40 crowded tidal zones which contain
353 electric fences, showing the phenomenon of ‘‘much and
congestion’’.

The tidal zones analysis and scheduling feasibility under
the comprehensive index Om of Figure 5(c) are discussed.
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FIGURE 4. The spatio-temporal distribution of valid and invalid orders. There is an obvious tidal phenomenon in the time variation trend between valid
orders and invalid orders. In the space of valid orders and invalid orders, the ‘‘disorderly parking’’ phenomenon in some areas is more serious.

FIGURE 5. The tidal zone distribution under three different indicators. (a) The tidal distribution using the number of bicycle-sharing Pm as an indicator.
(b) The tidal distribution using the parking demand density Dm as an indicator. (c) The tidal distribution according to the comprehensive index Om.

Figure 5(c) shows that these tidal zones are central business
districts (CBDs), schools, and commercial areas, which are
in line with the actual situation. The overload fences are
obtained by the comprehensive indicator Om. The minimum
congestion degree in the overload fences is (five-day reten-
tion flow 27, retention density 1.51, comprehensive score =

1.616992). Figure 6 shows details of the 353 fences in the
top 40 tidal zones, and it could be found that 52.4 % of

the 353 fences are not overload fences while the remaining
47.6 % fences contains 92.9 % (14,766) of bicycles.

A tidal zone is selected for observation to prove whether
there is a large tidal degree gap between adjacent electric
fences. Figure 7 shows a tidal zone containing 35 electric
fences. The overload fences are marked as red and the idle
fence is marked as blue. It is found that there is a great degree
gap in the adjacent electric fences, which fully shows that
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FIGURE 6. The division of 353 fences in the top 40 tidal zones.

FIGURE 7. A tidal zone containing 35 electric fences.

there are some relatively idle fences in the tidal zones for
guidance, and provides feasible support for the guidance on
parking management schemes.

C. COMPARISON WITH OTHER CLUSTERING
ALGORITHMS
In this section, the HDBSCAN-based tidal zones cluster-
ing algorithm will be discussed in the comparison with the
traditional DBSCAN, K-means, Hierarchical Clustering and
GMMalgorithm.We use the followingmetrics to evaluate the
clustering result accuracy:

precision =
|TP|

|TP| + |FP|
, (12)

recall =
|TP|

|TP| + |FN |
, (13)

F1score =
2 · precision · recall
precision+ recall

. (14)

As shown in Figure 8 and Table 3, we analyze the accuracy
of different clustering methods under three indicators. The
clustering results show that the HDBSCAN-based tidal zones
clustering algorithm outperforms the baseline methods in
three indicators. Specifically, the DBS density of the fences
with the same flow will be very different and single density

FIGURE 8. Performance Comparison of Different Clustering Methods.

cannot reflect the flow of the fences, which lends to the
clustering results on a composite indicator Om are better than
single-flow indicators Pm and density indicator Dm. Further-
more, when a disconnected nonconvex set appears, K-means
and GMM will have an incorrect classification. When the
same cluster has a little of sparse points, DBSCAN divides
points in the same cluster into multiple clusters. Hierarchical
Clustering combines multiple cluster crossing points into the
same cluster.

In contrast, the HDBSCAN-based tidal zones clustering
algorithm combines DBSCAN and Hierarchical Clustering,
which can be used to find clusters of multiple shapes, and
will not split the cluster wrongly when there are a little of
discontinuous points. The clustering results show that the
optimal performance of the HDBSCAN-based tidal zones
clustering algorithm can reach 81.45%.

To further explore the effectiveness of the proposed
DBSDR system, we analyzed the guiding strategies of
overload fences in four tidal zones including guiding dis-
tance and DBS flow of target fences. The two target fence
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FIGURE 9. The two target fence indicators of different overload fences in four tidal zones. (a) The guiding distance of different overload fences in four
tidal zones, most of which is within 100 meters. For users, it could be generally accepted. (b) The DBS flow of target fences of different overload fences
in four tidal zones, most of the target fences are in the absence of DBS, which just solves the imbalance problem between overload fences and idle
fences. The DBS flow of the target fences in the tidal zone a is slightly higher but also belongs to idle fences.

TABLE 3. Descriptions of comparing clustering algorithm.

indicators of different overload fences are shown in Fig-
ure 9. Figure 9(a) shows the guiding distance of differ-
ent overload fences in four tidal zones, most of which is
within 100 meters. For users, it could be generally accepted.
On the other hand, Figure 9(b) shows that the DBS flow
of target fences of different overload fences in four tidal
zones, most of the target fences are in the absence of DBS,
which just solves the imbalance problem between overload
fences and idle fences. The DBS flow of the target fences
in the tidal zone a is slightly higher but also belongs to idle
fences.

D. PARAMETER SETTINGS
The experimental server was equipped with an Intel i5 CPU,
NVIDIA 3060GPU. The version of Python is 3.7. The param-
eter min_cluster_size is set to 3, gen_min_span_tree is True,
and cluster_selection_epsilon is 0.0003.

VI. CONCLUSION
In this work, we propose a Dockless Bicycle-sharing
Dynamic Rebalance (DBSDR) system to dynamically pro-
vide optimal bicycle guidance for the DBS network. The
DBSDR system consists of DBS tidal zone identification,
evaluation framework of overload fences, and DBS dynamic
guidance system. In detail, tidal zone identification and loca-
tion from each fence with bicycle flows are provided based
on HDBSCAN clustering. Then, both DBS flow and parking
demand density are considered in the model’s evaluation
framework. Experimental results on real-world datasets vali-
dated the effectiveness and accuracy of DBSDR system. For
the DBS network, DBS dynamic guidance system provides
users with five target fence indicators that can effectively
guide users to balance DBS for solving tidal phenomenon,
and the method could also be applied to the scheduling of
DBS in various regions. For the society, traffic rules do not
allow disorderly parking situation and punish users who park
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disorderly, the system can assist the normal operation of traf-
fic. Meanwhile, the system will provide detailed information
to users, including DBS flows of the recommended parking
fences, density, active level, distances, and whether to cross
the road. Users can choose their own parking fences. In the
future, different discounts can also further be developed based
on different guidance schemes to encourage users to accept
the guidance actively. We will further study the discounts
that encourage user scheduling. In addition, bicycle-sharing
station dynamic planning is also worthy of further study.
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