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ABSTRACT Query by Image Content (QBIC), subsequently known as Content-Based Image Retrieval
(CBIR), offers an advantageous solution in a variety of applications, including medical, meteorological,
search by image, and other applications. Such CBIR systems primarily use similarity matching algorithms
to compare image content to get matched images from datasets. They essentially measure the spatial distance
between extracted visual features from a query image and its similar versions in the dataset. One of the most
challenging query retrieval problems is Facial Sketched-Real Image Retrieval (FSRIR), which is based on
content similarity matching. These facial retrieval systems are employed in a variety of contexts, including
criminal justice. The difficulties of retrieving such sorts come from the composition of the human face and
its distinctive parts. In addition, the comparison between these types of images is made within two different
domains. Besides, to our knowledge, there is a few large-scale facial datasets that can be used to assess the
performance of the retrieval systems. The success of the retrieval process is governed by the method used to
estimate similarity and the efficient representation of compared images. However, by effectively representing
visual features, the main challenge-posing component of such systems might be resolved. Hence, this paper
has several contributions that fill the research gap in content-based similarity matching and retrieval. The
first contribution is extending the Chinese University Face Sketch (CUFS) dataset by including augmented
images, introducing to the community a novel dataset named Extended Sketched-Real Image Retrieval
(ESRIR). The CUFS dataset has been extended from 100 images to include 53,000 facial sketches and
53,000 real facial images. The paper second contribution is presenting three new systems for sketched-real
image retrieval based on convolutional autoencoder, InfoGAN, and Vision Transformer (ViT) unsupervised
models for large datasets. Furthermore, to meet the subjective demands of the users due to the prevalence
of multiple query formats, the third contribution of the paper is to train and assess the performance of the
proposed models on two additional facial datasets of different image types. Recently, the majority of people
have preferred searching for brand logo images, but it may be tricky to separate certain brand logo features
their alternatives and even from other features in an image. Thus, the fourth contribution is to compare logo
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image retrieval performance based on visual features derived from each of the three suggested retrieval systems. The
paper also presents cloud-based energy and computational complexity saving approaches on large-scale datasets.
Due to the ubiquity of touchscreen devices, users often make drawings based on their fantasies for certain object
image searches. Thus, the proposed models are tested and assessed on a tough dataset of doodle-scratched human
artworks. They are also studied on a multi-category dataset to cover practically all possible image types and
situations. The results are compared with those of the most recent algorithms found in the literature. The results
show that the proposed systems outperform the recent counterparts.

INDEX TERMS Feature extraction, InfoGAN, sketched-real image retrieval, object matching, spatial distance
measurement, vision transformer.

I. INTRODUCTION
A. OVERVIEW
Generally, feature extraction, indexing, and similarity mea-
surement are the primary building blocks for any image
retrieval system. In such types of systems, the feature extrac-
tion block serves as the key engine for the rest of the blocks
[3]. The capacity of such technologies to generate appro-
priate results is constrained by the refinement of the image
content [4]. The need to manage vast amounts of features
representing details in images raises a slew of enforcement
hurdles. Furthermore, the availability of a diversity of quality
and query forms [5] leads to the appearance of numerous
data choices, making it harder to match the user’s intent
with high retrieval speed and accuracy. In addition, the large
size of the image datasets decreases the system computa-
tional efficiency, accuracy, and memory saving. Indeed, the
redundancy level in images significantly impacts the image
storage size and retrieved features using extraction methods.
As a result, the more discriminative the image representation
with suitable feature descriptor dimensionality, the better the
accuracy of image matching is.

Therefore, the applicable feature extraction algorithm,
which allows such image representation, becomes more suc-
cessful. Image features might be represented globally or
locally. The complete image contour is represented by global
features, which may be utilized to detect duplication in a
large-scale image dataset [6]. On the other hand, a local fea-
ture representation is a pattern or unique structure detected in
an image, such as a point, an edge, or a tiny image patch. Such
approaches portray the contents by focusing on a few key
regions within the same image that might differ from region
to region. These regions are unaffected by changes in per-
spective and lighting. Content-Based Image Retrieval (CBIR)
and other applications rely largely on such local fine details
or features [7], [8]. Consequently, the most significant issue
to consider is how such features are extracted.

Convolutional Neural Networks (CNNs) have played an
essential role in feature extraction throughout the previous
decade [9]. Local features in CNN are basically the feature
maps derived from the network intermediate convolutional
layers, whereas global features are those created by the
whole CNN architecture. Therefore, fully-connected layers
are often supplied with global features as input. However,
while the CNN performs admirably in many applications,

it has several surprising limits. The CNN limitations include
the fact that it can only provide image predictions if and only
if the compared images are almost perfectly aligned. Also,
it lacks encoding for image posture and orientation.

Furthermore, a CNN does not examine the relative posi-
tions of the traits in relation to one another. It also transports
high-dimensional data from lower to higher levels. Indeed,
rather than propagating images (i.e., information) via all
neurons, it is preferable to direct them to specific neurons
that can cope with certain properties. This process resem-
bles the human brain actions, in which distinct parts decode
different types of information. Doing the same in a Neural
Network (NN) improves predictions [10], [11], [12].

Nonetheless, applications that rely on visual localization
analysis do not reach the same degree of posture precision.
In addition, existing techniques do not consistently beat a
hand-made image retrieval baseline [13]. Therefore, it should
be highlighted that much effort is being made to rectify CNN
shortcomings. However, the baseline for the whole point will
be determined by thoroughly understanding the identified
feature uniqueness and discrimination ability. This will aid in
the decision-making process for the optimum feature extrac-
tion algorithms.

One of the challenges for the CBIR system to work over
large-scale datasets is labeling of training data. The general-
izability of the learned deep representations of new classes is
thus constrained by the requirement of supervised training for
all target images [24]. Insights are therefore directed to either
unsupervised or semi-supervised learning approaches. Unsu-
pervised learning is the general problem of extracting useful
information from enormous volumes of unlabeled data. Thus,
convolutional autoencoders, Information-Maximizing Gen-
erative Adversarial Networks (InfoGAN), and Vision Trans-
former (ViT) are utilized as unsupervised learning methods
for CBIR.

Most CBIR systems use reduction or selection for derived
feature descriptors to have low-dimensional vectors in order
to speed up similarity matching and retrieval. Convolutional
autoencoders will be used to retrieve images after compres-
sion, while reducing the number of parameters required.
Autoencoders are used to extract features, since it is desirable
to represent images with low-dimensional features [14].

20446 VOLUME 11, 2023



E. S. Sabry et al.: Image Retrieval Using Convolutional Autoencoder, InfoGAN, and Vision Transformer Unsupervised Models

In this case, the created latent vector serves as a feature
descriptor, representing the content of the image in the feature
space. It is worth noting that in terms of dimensionality reduc-
tion, the autoencoder is comparable to Principal Component
Analysis (PCA), but it is more powerful and intelligent.

In addition, Generative Adversarial Networks (GANs) are
computational structures that generate new, synthetic exam-
ples of real data. They are commonly utilized in image, video,
speech, and sketch retrieval. Information Maximizing Gener-
ative Adversarial Networks (InfoGANs) are other generative
adversarial networks that maximize the mutual information
between latent variables and the observation. They are also
used in extracting features for content-based retrieval through
the knowledge of the InfoGAN discriminator model [15].
The transformer is a brand-new type of neural network that
extracts intrinsic features through the self-attention process,
and it has much potential for Artificial Intelligence (AI)
applications [16], [17]. Transformers are employed, because
they relate various positions in the same sequence, using the
self-attention approach to give a representation of the features
within images.

B. MOTIVATIONS
Image retrieval system is a feature-based system that is the
key engine of various disciplines, such as medical applica-
tions, web browsing, satellite imaging, and others. Moreover,
the need for such a system has become inevitable with the
proliferation of touchscreen devices and the expansion of
large-scale web browsing. The inability to retrieve images
depending on the user’s intent is a roadblock to meeting
his needs. This depends upon the similarity matching pro-
cedure, which examines the spatial distance between gen-
erated features from images to delete irrelevant images.
It establishes the optimal correspondence of image distinctive
features to those of other images by assessing the similar-
ity of feature details between a query image and a set of
other images [1], [2].

C. LIST OF CONTRIBUTIONS
This research is focused on evaluating the effectiveness of
image retrieval using various deep feature extraction algo-
rithms. As a result, the following items are the paper primary
contributions:

1) Facial sketched-to-real image retrieval is difficult to
address since faces are made up of different sections,
and images from two different domains are compared.
Therefore, in this paper, a novel dataset entitled ESRIR
is created by a number of augmentation techniques
for the CUFS dataset in order to address the need for
large-scale data for face retrieval.

2) For retrieving ESRIR queries, a novel architecture is
proposed adopting three different image retrieval sys-
tems based on convolutional autoencoder, InfoGAN,
and ViT, under changing viewpoints of visual
scenes.

3) The three suggested system designs are trained on two
additional facial datasets of different image forms due
to the prevalence of multiple query forms, particularly
with the rise of touchscreen devices.

4) The proposed architectures illustrate that the network
power can be used to boost an existing system per-
formance for image retrieval. As a result, the retrieval
performance of such systems is also evaluated and prac-
tically compared to those of cutting-edge methods.

5) The suggested systems are tested on a challenging
dataset of doodle-scratched human artworks.

6) A multi-category dataset is also examined to cover
almost all potential image types and circumstances.

7) Finally, systems that use logo content pictures for brand
logo search, another widely used image search type, are
investigated. Therefore, using visual features extracted
from each of the three suggested retrieval systems,
we compare the performance of logo image retrieval.

8) The paper also presents cloud-based energy and com-
putational complexity saving approaches for large-scale
datasets.

D. PAPER STRUCTURE
The following sections make up the structure of the paper.
Section II is focused on the related work with a discussion
of the current feature extraction and retrieval methodologies.
The definition of the involved problem is shown in Section III.
The suggested image retrieval system designs are shown
in Section IV. Section V gives a discussion of how image
retrieval performance can be tested. The utilized datasets
are explored in Section VI. A summary of the involved test
scenarios is provided in Section VII. The performance com-
parison of all trained models is introduced in Section VIII.
Section IX describes the experimental settings as well as
the results obtained. The analysis of outcomes is given in
Section X. Finally, section XI gives the conclusion.

II. RELATED WORK
One of the most challenging problems is the sketch-to-real
matching used in CBIR applications. Sketched-real retrieval
is often conducted using object edge features and other
detected features. It is rare to use learned features in real
images, when compared to sketched images. Either hand-
crafted features or learning algorithms are used. Features
detected from the query sketch are compared to those col-
lected from real images. Several studies have been presented
for image retrieval inside sketched-drawn representations and
their relations to real scenes. Handcrafted features are either
global or local. Global features are used to reflect the full
image contour. On the other hand, a local feature represen-
tation is a pattern or unique structure detected in an image,
such as a point, an edge, or a tiny picture patch. The search
methods depict the contents by concentrating on a few key
areas within the image that vary from region to region and
are unaffected by variations in perspective or illumination.
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The tensor-based image descriptor, which extracts global
features for the edges and outperforms the edge histogram
descriptor, was presented in [18]. However, the global visual
features may not work effectively, when the target images
have several background clutters. As a result, they might be
used as a supplement to improve image retrieval accuracy [3].
In addition, to solve the shape-to-image matching problem,
the Angular Radial Partitioning (ARP) technique was intro-
duced [19]. A mixture of angular and radial partitioning is
used to improve angular partitioning. In the ARP, the image
is segmented intoM×N sectors when the edges are detected,
whereM represents the number of partitioning angles and N
is the number of radial partitioning angles. However, the ARP
is vulnerable to affine transformations, which impede image
matching and lower the retrieval performance.

Furthermore, data retrieval speed and system performance
are degraded as computational complexity rises. Therefore,
the Angular Radial Orientation Partitioning (AROP) tech-
nique, which employs global and local features in the match-
ing process, was proposed [20]. It uses two types of image
contour maps: global contour maps and salient contour maps.
The Berkeley detector is used to get the contour maps, and
Regional Contrast (RC) extracts the salient image regions
from dataset images. The AROP features are then specified
using the retrieved candidate contour maps. Indeed, the newly
disclosed AROP feature methodology is an enhancement
of the ARP method by using orientation partitioning. As a
result, the AROP features have total dimensions of M ×

N × O. Thus, each sector is represented by the number of
pixels under different orientation maps by the AROP feature.
Although the AROP technique is orientation-invariant, it still
has scaling and translation dependencies. Furthermore, its
computational cost is relatively high, which slows down the
matching process. In addition, the authors of [21] described
the Edgel (edge pixel) index approach for pixel-to-pixel
matching, where the shape-to-image matching challenge was
solved using the local features technique. A mind finder is
a real-time image retrieval system that matches pixels at
the pixel level. Its purpose was to deal with the problem of
Sketched-Based Image Retrieval (SBIR) on a large scale. For
contour comparison, distancemaps are constructed usingOri-
ented ChamferMatching (OCM) as a similarity measure. The
hit maps, which are binary similarity maps used to construct
the Edgel Index Structure (EIS), are then transformed from
these maps. However, due to the high computational cost, the
Edgel approach is unreliable, when dealing with local affine
fluctuations.

The bag-of-features technique [22] was proposed to
address the shape-to-image matching challenge with local
features. These local features are extracted using the Canny
edge detector and the Scale-Invariant Feature Transform
(SIFT) descriptor. The bag-of-features technique has outper-
formed standard global descriptors, but with a high com-
putational cost. SIFT enforcement is not the ideal solution
owing to the sparse spatial distribution of its detected points

and the large dimensions of its calculated descriptors [23].
In addition, it is inadequate for large-scale datasets.

In [24], the authors proposed TOP-SIFTs, a descriptor
selection approach based on dictionary learning, to eliminate
duplicate features. Dictionary learning, which works with
sparse data, is reserved for a few excellent geographic distri-
bution features. There are two practical shortages that result
from this approach. The first is with SIFT, which is techni-
cally and computationally challenging. The second point of
concern is the selection method, because the whole descrip-
tor computation is required to be completed first, followed
by the selectivity procedure. Hence, additional computation
enumeration is introduced. As a result, similarity matching in
any image-retrieval system will be hindered. Besides, several
problems emerge in matching on large-scale datasets. Con-
sequently, the authors of [23] proposed matching based on
approximate shapes, with the object represented as a collec-
tion of recognized approximate forms termed as primitives.
Each primitive has various descriptive parameters as well as
information about its kind. Thismethod of rapid access exists,
but it has only been tested on small datasets. This may not be
possible to maintain with the rapid growth of web images.

A paradigm for creating visual representations that cap-
ture the scene essential components and semantic notions
was proposed in [25]. To create features with seman-
tic associations, first, connections between picture areas
are put up, and then the reasoning is accomplished
using Graph Convolutional Networks (GCNs). The gate
and memory methods are then used to execute global
semantic reasoning based on these relationship-enhanced
attributes. As a result, discriminative information is selected,
and a representation of the entire image is progressively
generated.

Since the human face is composed of many different parts,
facial retrieval is considered challenging. It is more compli-
cated to distinguish facial sketches and retrieve their relatives
from real ones. Therefore, in [26], InfoGAN has been used
to extract a human facial image from the real alternative
images based on the discriminator learning of image features.
However, the comparison is made across comparable feature
domains, which could not provide a thorough evaluation of
the InfoGAN architecture [26]. The recommended InfoGAN
architecture, which is further described in this paper, is an
InfoGAN with a deeper learning discriminator model. Its
practical applicability is examined, aiming for generality
across a range of image types, image contents, and feature
domains.

The ‘‘Transformer’’ is a neural network that extracts intrin-
sic features through self-attention. In [27], DeepViT has been
introduced. Unlike CNNs, it stacks more convolutional layers
and saturates quickly, when grown to be deeper. Further-
more, it has been found that the self-attention mechanism
fails to acquire useful ideas for representation learning in
higher layers of ViTs, preventing the model from achiev-
ing the required performance boost. Hence, re-attention is
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given as a simple yet efficient way for re-generating attention
maps to improve their variety at different levels with little
computing and memory cost. However, the Principal Vision
Transformer (PViT) is data-hungry, because the self-attention
layer of ViT lacks localized inductive bias. Image pixels
are thought to be locally related with feature translation-
invariant correlation maps. So, in [28], Shifted Patch Tok-
enization (SPT) and Locality Self-Attention (LSA) have
been established as broad and effective add-on modules that
may be used for a range of ViTs with ease. Hence, in this
paper, a proposed architecture is described in Section (IV).
It depends on this concept for building a complete image
retrieval system. It is trained, examined, and assessed over
different types of images and feature domains. Besides,
a comparison is established with other state-of-the-art
approaches.

Certainly, several applications benefit from CNNs. The
authors of [29] thoroughly surveyed the relationship between
ConvNet and various pre-trained learning models and their
optimization algorithms. Besides, they performed experi-
ments on the face and skin detection datasets to strengthen
their survey, highlighting the fitness of pre-trained learning
for optimized ConvNet. Convolution-Sparse Filter Learning
(CSFL), a novel approach for unsupervised learning, has been
presented by the authors in [30] as a way to extract detailed
and distinct features from an image. In this approach, the
first CNN layer is initialized using the features retrieved by
the CSFL method, and the CNN then uses these features
in a feed-forward fashion to learn high-level features for
classification. The output layer of the CNN is the linear
regression classifier (softmax classifier), which provides the
likelihood of an image class. The authors of [31] used the
Modified Resilient back-Propagation (MRPROP) method to
increase convergence and effectiveness of CNN training.
The global best notion for weight update criteria is com-
bined with a tolerance band, which prevents network over-
training, to enable the CNN training algorithm to optimize
weights more quickly and precisely. In [32], the authors
discussed the impact of CNN as one of the most preva-
lent deep learning models for extracting features for image
classification. However, the work of [29], [30], [31], and
[32] mainly depends on CNN, which has certain drawbacks,
since it can only provide image predictions if the compared
images are precisely aligned. It lacks encoding for image pos-
ture and orientation. Transformers outperform CNN designs,
because they entirely avoid recursion by processing sentences
and learning word associations using multi-head attention
mechanisms and positional embeddings. Thus, this paper
introduces an image-retrieval system based on ViT and high-
lights its achievements compared to CNN models. With the
accomplishment of a fast retrieval procedure based on image
features with high retrieval accuracy, this paper is a step
forward in dealing with various sorts of images over different
domains.

In [33], the authors highlighted the importance of CBIR
systems. They introduced a CBIR system based on the Deep
Search and Rescue (DNN-SAR) algorithm for retrieving
relevant images. Their proposed system includes various
steps such as pre-processing, multiple feature extraction,
feature fusion, clustering, and classification. They used
multiple-feature extraction for the fusion of different features
into a single vector. Then, clustering is performed using the
adaptive Sunflower Optimization (SFO) algorithm. However,
this worthwhile effort includes a number of processing steps,
such as classification before retrieval, which will affect the
pace of retrieval, especially with the explosive growth of
online multimedia content.

In [34], the authors introduced a CBIR system using a
dense angle descriptor and Dictionary Learning (DL). They
proposed a dense angle-based Histogram of Gradients (HoG)
descriptor to address image rotation. Their proposed method-
ology depends on estimating angles across multiple scales
and a bag of visual features at different scales. Such algorithm
aims to find a frame, where training data allows a sparse
representation. Actually, such algorithm could be inadequate
for large-scale datasets, as processing enumeration will be
introduced. As in the bag of visual features, images are treated
as words, and then similarity matching is then applied. As a
result, the retrieval process will take longer time.

Several deep-learning-driven algorithms for identifying
and creating sketches have been investigated in [35]. Swire,
a method for querying massive libraries of design exam-
ples with sketches, is the first of two unique technologies
introduced. The second is Sketchforme, a system that cre-
ates sketched scenes from natural language descriptions pro-
vided by the user. In [36], the CUFS dataset was intro-
duced. It has 606 faces commonly used to recognize and
synthesize face renderings due to the rarity of large-scale
sketched-real datasets and face image datasets. This neces-
sitates the creation of a large-scale dataset of sketched-real
facial images. As a result, a new dataset is developed in
this study to expand the original CUFS. The use of several
augmentation techniques creates a novel one. The perfor-
mance of the introduced retrieval systems is also evaluated in
this research through training using the supplied dataset and
user testing of interactive use cases. Our evaluation reveals
that these technologies might successfully support interactive
applications and provide new avenues for human-computer
interaction in the fields of art, education, design, and other
areas.

It is worth noting that there are several strategies for gen-
erating image sets, as seen in [37], where the authors con-
structed the FB5K image dataset using Facebook crawling.
They introduced a cross-media retrieval system based on
Optical Character Recognition (OCR) with the incorporation
of high-level semantic information. However, this valuable
work of web crawling will be inconvenient for the proposed
facial image retrieval in this research. This is due to several
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issues. First, the main goal is to create a large-scale image
dataset with various groupings of images for each individual.
Second, it is hard to find groups of images for the same person
of these sorts (i.e., in real and sketched forms) of images.
Third, developing and examining retrieval systems is required
to learn and return similar images at different positions and
scenes. Thus, augmentation is utilized to generate the pro-
posed ESRIR dataset.

III. PROBLEM DEFINITION
Generally, a new sort of search, image search, has been
developed recently to meet users’ goals and it might be used
instead of or in addition to the more usual language-based
image retrieval (e.g., Google image search). In addition, sev-
eral query types are accessible, including query by example
image, query by sketch map, query by color map, query by
context map, etc. In the computer graphics industry, recent
applications such as CBIR and SBIR that are feature-based
are used for these types of search. For real-to-real image
matching, various challenges from quantum standpoint, qual-
ity, and type of images perspectives confront any image
search engine or retrieval approach. In addition, the quality
of the query image heavily influences the visual cues that
differentiate objects and shapes inside images. To satisfy
the user’s subjective requirements, a compromise is made
between the demands of the system and the query quality
employed.

Sketches are free-hand drawings without color or
substance. Sketched-to-real matching, or Sketch2Photo,
is widely used in various applications as an image synthesis
approach. It is also good in sketch-based image retrieval.
Sketched-real retrieval is one of the most difficult issues to
tackle. The issue is that images from two different domains
must be compared, and it is difficult to distinguish them
from other types of imagery. This is attributed to the fact
that differentiating objects, features, and humans in sketched
representations and recognizing their counterparts in real
images is difficult due to changes in information type and size
within images. Retrieving human faces increases the distress
of sketched-real image similarity matching challenges as
faces have different parts to be recognized. Hence, objects or
humans’ peculiar feature separation from all derived image
features is a noteworthy difficulty with these sorts of images.

Any retrieval system must address three aspects: average
retrieval accuracy, retrieval speed, and memory cost. The
content of images increases the complexity of these systems.
Due to the large number of image features, the retrieval sys-
tem capacity to match images quickly will be affected. This
draws attention to the necessity for efficient and appropriate
representation of image content. In addition, as the volume
of multimedia data grows, feature extraction algorithms face
a problem in meeting the demands of these systems. Thus,
object features must be bundled into convenient dimension
descriptors to speed up image matching. This isolates the
most object discriminative features, independent of image
redundancy, to distinguish humans or objects within images.

As a result, the ability and robustness of extractionmethods
to properly describe picture contents with adequate descrip-
tors to boost performance accuracy is the main engine of the
entire process. Deep Learning (DL) networks are frequently
used to extract features and reduce the data dimensional-
ity. CNN is the most widely-used DL algorithm. It uses
convolutional layers and pooling layers for processing of
shift-invariant inputs such as images. Hence, it is a type
of deep neural network that is frequently used to evaluate
visual images. Instead of manually implementing the feature
extraction, CNN performs it in the training phase. The CNN
feature extractor is made up of many types of neural networks
that determine the weights throughout the training phase.

The CBIR may be thought of as an unsupervised learn-
ing method based on DL. Autoencoders are unsupervised
neural network models that learn how to recover data after
compression, while summarizing its general features in fewer
parameters. An autoencoder is similar to PCA in terms of
dimensionality reduction, but it is more powerful and smarter.
As shorter descriptors are required in any retrieval system,
autoencoders could be applied in such systems where no class
labels are used in training. For such systems, the autoen-
coder is used to construct the feature vector for each image
in the dataset. The feature vector will be the latent-space
representation derived by the autoencoder. Then, at the time
of search, the distance between the latent-space vectors is
calculated. The smaller the distance, the more relevant or
visually comparable the two images are.

Because the important downstream tasks are unknown at
training time, unsupervised learning is inappropriate. How-
ever, a disentangled representation that explicitly expresses
the salient features of a data instance should be useful for the
relevant but unknown tasks. For example, each of the follow-
ing attributes may be assigned a separate set of dimensions in
a useable disentangled representation for a dataset of faces:
facial expression, eye color, hairstyle, presence or absence of
glasses, and connected person’s identity. Natural tasks that
require knowledge of the data prominent qualities, such as
face identification and object recognition, can benefit from
a disentangled representation. Generative modeling drives a
substantial portion of the unsupervised learning research. It is
motivated by the belief that synthesizing or creating observed
data entails some level of understanding. It is hoped that a
good generative model will learn a disentangled represen-
tation automatically, even though perfect generative models
with arbitrarily-bad representations are easy to construct.
InfoGAN could be deployed for facial image retrieval. It is
an adversarial generative network that maximizes the mutual
information between observation and selection of latent
variables.

Recurrent Neural Networks (RNNs) handle sequential or
time series data using recurrent cells. They are sequential
in processing. Therefore, the previously calculated hidden
states of the first pixel are required to encode the second pixel
in the image patch. The transformer is a brand-new type of
neural network with a lot of potential for AI applications.
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Thus, it is used for image-retrieval systems, primarily using
the self-attention process to extract intrinsic features. In the
domain of machine translation, transformers were invented to
avoid recursion and allow parallel computation to decrease
the training time and performance losses due to lengthy
dependencies.

To begin with, a transformer is non-sequential, meaning
that it processes data rather than pixels one by one, avoid-
ing long-dependence concerns. Transformers compute sim-
ilarity scores between pixels in an image patch using the
newly-introduced unit ‘‘Self Attention’’. Furthermore, to pre-
vent a recurrence, positional embeddings are added. The idea
is to encode information about a token location in an image
patch using fixed or learned weights.

This paper introduces image retrieval systems based on the
computed descriptors from three different learning feature
extraction algorithms. It is required to differentiate between
them and easily select the convenient one to reduce the gap
between the performance of these systems and the require-
ments of retrieval applications. These introduced systems
depend on convolutional autoencoders, InfoGANs, and ViT,
respectively. Efficiency has been proven through training and
detailed assessment of the systems on various datasets and
from various perspectives. This is conducted through the
measurement of similarity matching and retrieval between
calculated descriptors by each system. Several experimental
cases are included in this paper, each of which works on
a distinct dataset and an aspect of performance evaluation.
Image retrieval performance is compared to those of CNN
models as the benchmarks for feature extraction algorithms.

IV. PROPOSED MODELS
This paper presents three architectures to retrieve similar
images from a group of images based on the spatial distance
between their derived features. The following is a description
of the three architectures.

A. 1st MODEL: IMAGE RETRIEVAL BASED ON
CONVOLUTIONAL AUTOENCODER
In machine learning, an autoencoder is an unsupervised
learning tool for which the input and output values are the
same, intending to transform the input into output. It is
used to compress data to save storage and reduce process-
ing time by eliminating unnecessary variables, displaying
high-dimensional data, and removing noise from the original
data [38], [39], [40]. It is based primarily on using neu-
ral networks to implement compression and decompression
functions. Instead of being carried out by humans, these
functions are data-specific, lossy, and automatically learned
from examples.

The proposed architecture, shown in Figure 1, reveals that
the CNN power can be used to boost the performance of a
simple autoencoder for image retrieval. As the figure shows,
the encoder and decoder components of the convolutional
autoencoder are essential. The encoder is made up of several
diminishingly concealed layers. The latent vector, which is

used as a feature descriptor for the image, is reached through
these layers. As a result, the encoder aspires to learn an
image hidden and condensed depiction as an image feature
representation. The decoder reconstructs the images using the
feature descriptors provided by the encoder. It works in the
opposite direction of the encoder. These attributes are then
combined with the nearest-neighbor algorithm to determine
comparable, and similar images.

The advantage of this process is that image features
can be efficiently represented in low-dimensional vectors.
Furthermore, comparing image features is preferred to
comparing images in their raw form. The convolutional
encoder must emphasize certain constraints, and the decoder
must produce the input image shape. Besides, it must
be trained across all image categories for high retrieval
accuracy.

B. 2nd MODEL: IMAGE RETRIEVAL BASED ON
INFORMATION MAXIMIZING GANs (InfoGANs)
The GAN is a training architecture for deep convolutional
models that generate synthetic images. InfoGAN is a GAN
extension that introduces control variables, such as style,
thickness, and type. It comprises three sub-models, as shown
in Figure 2. The generator model oversees generated images
during training, and the discriminator model learns to cat-
egorize images as real (from the training dataset) or fake.
The third model is an auxiliary model, which can fore-
cast continuous control variables using a Gaussian distri-
bution. Thus, the two models (i.e., the generator and dis-
criminator models) compete in a zero-sum game to find
a balance between the generator ability to create con-
vincing images and the discriminator ability to recognize
them, which is critical for the training process conver-
gence. The third model, the auxiliary model that predicts
the control variables, is created by including control vari-
ables. This model is then trained using a mutual infor-
mation loss function to control which image the model
generates.

The generator model takes random points as input from
the latent space, gives those points a unique meaning through
training, and thenmaps the points to different output synthetic
pictures. While the generator model structures the latent
space, there is no control over the resulting image. The latent
space may be examined, and the generated images may be
compared to comprehend the mapping that the generator
model has learned. Alternatively, the generation process can
be conditioned, for example, by using a class label, so that
images of a given kind can be generated on demand. This
refers to the Conditional Generative Adversarial Network
(CGAN). Another option is to give the generator control
variables as well as the latent space points as input (noise).
Control variables can be used to teach the generator to impact
certain aspects of the generated images. The InfoGAN has
been introduced in [26]. The generator receives control vari-
ables as well as noise as input, and the model is trained
using a mutual information loss function. The use of a new
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FIGURE 1. First model: Image retrieval using convolutional autoencoder.

model referred to as the ‘‘auxiliary model’’ is used to train the
generator via mutual information. For interpreting an input
image, the new model uses the same weights as those of
the discriminator model, but instead of predicting whether
the image is real or false, the auxiliary model predicts the
control codes used to create the image. Thus, both models
are used to update the generator model. The first enhances
the likelihood of generating images that deceive the discrimi-
nator model, and the second improves the mutual information
between the control codes used to produce an image and the
control codes predicted by the auxiliary model. Due to the
mutual information loss, the generator model is regularized,
so that the control codes may effectively govern the image
generation process and capture themain aspects of the created
images.

Once the InfoGAN has been trained, the discriminator
may be used to search for images that are similar to one
another. The notion is that the network learns meaningful
features from images based on mutual knowledge, such as
the Physiognomy of individuals in a picture, as Figure 2
shows. Thus, the network gives a sufficient and good feature
representation for images. Moreover, indexing is carried out
to investigate the output features. Finally, image similarity is
estimated using a spatial distance measure between derived
features.

C. 3rd MODEL: IMAGE RETRIEVAL BASED ON VISION
TRANSFORMER
Attention is a phrase used to describe the relationships
between pairs of input tokens. The cost grows exponentially
as the quantity of tokens increases. Transformers measure
these relationships depending on pixels as the basic unit of
image analysis. Although transformer architecture has estab-
lished the de facto standard for natural language processing,
its applications in computer vision are still limited. It consid-
ers an input image as a series of patches, like how a Natural
Language Processing (NLP) transformer generates a series
of word embeddings. The transformer takes a list of words
as input and uses them for categorization, translation, and
other NLP tasks [35]. On the other hand, in vision, attention
is used either in combination with convolutional networks
or to replace components of convolutional networks, while
maintaining their general structure. The suggested design
guarantees, however, that the use of CNNs is not required,
and that a pure transformer applied directly to a sequence of
image patches may get outstanding results on image retrieval
tasks.

Because the self-attention layer of the ViT lacks localized
inductive bias, the major ViT difficulty is data hunger. Those
image pixels are locally connected and have translation-
invariant correlation maps. Therefore, ViTs require addi-

20452 VOLUME 11, 2023



E. S. Sabry et al.: Image Retrieval Using Convolutional Autoencoder, InfoGAN, and Vision Transformer Unsupervised Models

FIGURE 2. Second model: Image retrieval based on InfoGANs.

FIGURE 3. Third model: Image retrieval using ViT.

tional information. CNNs, on the other hand, examine images
through spatial sliding windows, allowing them to achieve
greater outcomes with fewer datasets. As a result, the only
way to outperform state-of-the-art CNN models is to pretrain
a ViT on a large dataset and then fine-tune it on medium-
sized datasets. The suggested architecture depends on ViT,
which was introduced for small datasets. The engaged ViTs
overcame the absence of localized inductive bias and are
trained from the beginning, even on small datasets. Shifted
Patch Tokenization (SPT) and Locality Self-Attention (LSA)
have been introduced as general and effective add-on mod-

ules that may be simply applied on a variety of ViTs [28].
For retrieval tasks based on ViT, the proposed architecture
depends on ViT descriptor for image representation through
the features learned by ViT itself, unlike the work intro-
duced in [41]. Thus, image representation is implemented
with ViT through SPT implementation and then encoding
of patches. After that, the most important step is imple-
menting LSA. Then, images are indexed according to the
feature descriptions, and a search is performed according
to the spatial distance between such features, as Figure 3
shows.

VOLUME 11, 2023 20453



E. S. Sabry et al.: Image Retrieval Using Convolutional Autoencoder, InfoGAN, and Vision Transformer Unsupervised Models

V. IMAGE RETRIEVAL PERFORMANCE CRITERIA
Several ways of assessing the performance of a system
have been developed in the literature. Because Information
Retrieval (IR) has been used to solve many problems, the
relationship between CBIR and IR is evident. Despite the
differences across the fields, many of IR solutions may be
applied to CBIR. This section gives a discussion of the per-
formance indicators and methods for building a standard test
suite for CBIR. One of the most critical and time-consuming
duties is determining which images are relevant and which
are not for a specific query. This depends mainly on similarity
matching as the core engine of the whole procedure.

Finding the best correspondence q points of an image to
previously extracted N points of interest of another image [4]
is a frequent definition. The spatial distance between descrip-
tors created from images using the deployed feature extrac-
tion algorithm is measured. The effectiveness with which a
region descriptor represents a scene region is determined by
its strength. This is demonstrated by comparing matching
scores. The matched regions are the descriptor space closest
neighbors. The matching is performed after the descriptor
computations by applying the extraction algorithm. Then,
spatial distance is measured between the descriptors. Finally,
two metrics are computed to determine how well regions are
matched: recall and precision. They are two terms that are
often used, interchangeably. Precision and recall are numeri-
cal values that vary from 0 to 1. The most common evaluation
metrics used in image retrieval are precision and recall (see
Eqs. (1), (2)), usually presented as a precision versus recall
graph (PR graph) [42], [43]. Another indication is the error
rate, which is used as a standard metric in object and image
recognition (see Eq. (5)).

Recall

=
True Positive

True Positive+ False Negative

=
Number of relevant images retrieved

Total number of relevant images in the collection
(1)

Precision

=
True Positive

True Positive+ False Positive
(2)

Error Rate

=
Number of relevant images retrieved
Total number of images retrieved

(3)

The precision and recall metrics can bemerged into a single
result known as an F-score, which defines their harmonic
mean (see Eq. (4)). The F-score is a single factor of record-
matching accuracy that incorporates precision and recall mea-
surements. As a result, it accounts for both false positive and
false negative errors.

F-score = 2
Precision.Recall
Precision+ Recall

(4)

Another metric is retrieval efficiency, which determines
whether the number of images retrieved is less than or equal

to the number of relevant images (see Eq. (5)). If the number
of images retrieved is less than or equal to the number of
relevant images, this value is the precision; otherwise, it is the
recall of a query. This definition may be confusing, because
it combines two standard measurements [44], [45], [46].

Retrieval Efficiency =


NR
NT

, if NT > NR

NR
NTR

, Otherwise
(5)

whereNR is the number of relevant retrieved images,NT is the
total number of retrieved images, and NTR is the total number
of relevant images.

Another statistical metric employed in object retrieval
measurements is the correct and incorrect detection. The
number of correct and incorrect classifications is tracked.
These values are like error rate and precision, when divided
by the number of recovered images [47]. Thus, for evaluating
the model efficiency in extracting features with good spa-
tial and discriminating attributes from images and retrieving
them, recall, 1-precision, and F-score are computed in each
case. In addition, the computation of other defined metrics
leads to the same conclusion. Computational efficiency is also
included. It refers to the time cost of visual feature extraction,
indexing, and image querying. This, in turn, contributes to the
retrieval system efficiency [3].

VI. DATASETS
Six datasets are used for the training of all involved models.
First, we present our generated dataset named ESRIR, which
depends on the Chinese University of Hong Kong (CUHK)
CUFS dataset [36]. The 606 faces in the original CUFS
dataset are widely used to recognize and synthesize face
drawings. There are 188 students in CUHK. An artist made
a sketch for each student based on a photo taken in normal
lighting conditions, in a frontal position, and with a neutral
expression, as seen in Figure 4. ESRIR is used to bridge
the huge domain gap between a facial drawing and a photo.
After scraping the original CUFS from the web, ESRIR is
created. It is generated through the repetition of images by
applying scaling and normalization, only. Besides, augmen-
tation is applied on other images, as rotation is performed
on images randomly. In addition, images are randomly trans-
lated vertically or horizontally using width and height shifts.
In addition, trimming transformations, zooming, and horizon-
tal flipping are used. Finally, the filling produces new pixels
that may arise following a rotation or a width/height shifting.
As shown in Figure 5, the resulting extended CUFS contains
53,000 sketches and 53,000 images. Very abstract human face
sketches, as opposed to the typical semi-photorealistic ones
seen in existing datasets, are purposefully sourced to reduce
the domain gap.

The second used dataset is the CUHK Face Sketch FERET
(CUFSF) dataset, which is also used for face sketch synthesis
and face sketch recognition research [48]. It includes 1,194
face images with lighting variations and sketches with shape
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FIGURE 4. Original CUFS samples.

FIGURE 5. ESRIR samples.

exaggeration drawn by an artist when viewing the images.
It must be noted that the comparison on this dataset is per-
formed between the sketched photos and their cropped ones
as sketched-sketched retrieval. The aim of this is to examine
models in cropped cases.

The third dataset is Labeled Faces in theWild home (LFW)
[49]. It is a public benchmark for face verification collected
from the web, also known as pair matching, consisting of
21,174 facial images. The aim behind the usage of such a
dataset is to examine models for real-real retrieval under
poor lighting, extreme poses, strong occlusions, and low-
resolution circumstances.

The fourth dataset was introduced for Zero-Shot Sketch-
Based Image Retrieval (ZS-SBIR). It is entitled QuickDraw-
Extended [50]. It consists of 330,000 sketches and 204,000
images spanning 110 categories. This dataset is used to exam-
ine models for sketched-real object image retrieval.

The fifth dataset is 256_Object Categories [51], a col-
lection of 256 item categories with 30607 images in total.
To achieve this, a set of item categories was chosen. Samples
were taken from Google images, and any images that do not
fit the category were manually removed.

The last dataset is the Flickr Logos 27 [52], col-
lected from the Flickr group. It comprises around 4,000

classes in total, corresponding to 27 logo classes/brands
(30 images for each class). It also includes a distractor set
of 4207 logo images/classes, the majority of which feature
clean logos. Every image in the distractor set has its own logo
class.

VII. EXPERIMENTAL SETUP
This research introduces an assessment of image retrieval
performance using features obtained from several mod-
els applied to different types of images. The introduced
assessment is divided into multiple test cases, each assess-
ing retrieval performance for a distinct model based on a
specific image type. As shown in Figure 6, this section
gives an explanation of the overall procedural flow fol-
lowed throughout the simulation tests. The first four predeter-
mined datasets in section (VI), named ESRIR, CUFSF, LFW,
and QuickDraw-Extended, are utilized in the experiments
offered. The following are the steps of experiments for each
dataset:

1. Each dataset is split into training, test, and validation sets.
2. Using the training set from each dataset, the CNN mod-

els (Inception, Mobilenet, Resnet, VGG16, VGG19, and
Xception) are independently trained.
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FIGURE 6. General flow diagram for involved test case scenarios.

3. In addition, the three predefined image retrieval models
in Section (IV) are applied and trained on each image in
the training set of the four datasets. Generally, either CNN
models or the three proposed image retrieval systems are
trained by the training set of each of the four datasets.

4. After each model has been trained using all four datasets,
each trained model is saved.

5. Each model independently encodes a group of randomly-
selected query images from the split test set. As a result,
each dataset consists of a set of training images used to
train the models as well as a set of reference query images
encoded by each model.

6. The descriptor of each image is calculated, and it rep-
resents the contents of the image as a set of significant
features and vectors.

7. The indexing of all images is complete.
8. The spatial distance between the extracted features for

each encoded query image and those taught by each
trained model is then measured for similarity matching.
For each query-train pair, the spatial distance is measured
using the distancemetric to determine the closest neighbor
match in the feature space. Finally, thematched images are
retrieved.

9. The correct and false matches are counted at the
conclusion.

10. Finally, the matching performance is assessed through
the computation of recall, 1-precision, and F-score values
using Eqs. 1, 2, and 4. This strategy allows to compare
all features (regions) from each training image with those
from the query image.
It must be noted that the performance levels of these CNN

models are compared to those of the architecture models
proposed in Section (IV), as illustrated in Section (VIII).

The last two predefined datasets, named 256_Object Cat-
egories and Flickr Logos 27, are used to train the three
proposed models in Section (IV), as shown in Figure 6. Fol-
lowing the same procedure, each dataset is split into training,
testing, and validation sets. The three models are trained and
stored individually by the training set of each dataset. Then,
a group of randomly-selected query images from the split
test set is encoded separately by each model. Image indexing
is performed to retrieve the relevant images. Next, spatial
distance is measured for similarity matching between each
query image encoded features and the others learned by each
model. The whole set of features of each training image are
compared to the features of the corresponding query image,
in each case.

The calculated query image descriptor is matched with its
counterparts (i.e., query-train pair). The distance metric is
used to identify the nearest neighbor match in the feature
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FIGURE 7. Training and validation losses for (a) Inception, (b) Mobilenet, (c) Resnet, (d) VGG16, (e) VGG19, and (f) Xception applied to ESRIR.

space. The closest matched images are returned (the num-
ber of correct matches), and the number of falsely-matched
images is estimated. Finally, the matching performance is
evaluated using Eqs. 1, 2, and 4 to compute recall, 1-
precision, and F-score values. It is important to note that the
Loss/Accuracy curve is constructed for each model trained
on each of the six preset datasets in Section (VI) to provide a
comprehensive evaluation of all models involved.

VIII. TRAINING AND EVALUATION MODELS
When creating and configuring DL models, many decisions
must be made. Many of these choices may be made by emu-
lating the structure of other networks and using heuristics.
In addition, themost effectivemethod is to conduct small tests
and scientifically assess possibilities using real data. Thus,
this section illustrates performance evaluation comparisons
for the three proposedmodels over all used datasets. Learning
curves are a common machine learning diagnostic tool for
assessing model learning performance. They may be used
to detect learning issues during training, such as underfit

or overfit models. The train learning curve is such a curve
that is calculated from the training dataset. It indicates how
effectively the model is learning, as shown in Figures 7-15.
These graphs show the curve, when using the ESRIR, CUFSF,
LFW, and QuickDraw-Extended datasets to train models.

• For the ESRIR dataset, Figure 7 shows the loss curve
obtained after training of CNN networks (i.e., Inception,
Mobilenet, Resnet, VGG16, VGG19, and Xception)
using the ESRIR dataset. Figures 11.a, 12.a, and 13.a
are the loss curves obtained after training of the three
proposed systems based on convolutional autoencoder,
InfoGAN, and ViT, respectively.

• For CUFSF dataset, the loss curves produced after train-
ing of CNN networks on the CUFSF dataset are shown
in Figure 8. These CNN networks include Inception,
Mobilenet, Resnet, VGG16, VGG19, and Xception.
The loss curves for each of the three suggested sys-
tems, which are based on the convolutional autoencoder,
InfoGAN, and ViT, are shown in Figures 11.b, 12.b,
and 13.b, respectively.
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FIGURE 8. Training and validation losses for (a) Inception, (b) Mobilenet, (c) Resnet, (d) VGG16, (e) VGG19, and (f) Xception applied to
CUFSF dataset.

• For LFW dataset, Figure 9 displays the loss curves
created after CNN networks (i.e., Inception, Mobilenet,
Resnet, VGG16, VGG19, and Xception) were trained
on the LFW dataset. The loss curves created after
training of the three proposed models are displayed in
Figures 11.c, 12.c, and 13.c, respectively.

• For QuickDraw-Extended dataset, after CNN networks
(such as Inception,Mobilenet, Resnet, VGG16, VGG19,
andXception) were trained on the QuickDraw-Extended
dataset, the resulting loss curves are shown in Figure 10.
Figures 11.d, 12.d, and 13.d, respectively, show the
training loss curves for the three proposed models after
training.

Thus, the loss curves shown in Figures 7-10 and those
shown in Figures 11-15 are used to assess the performance
of the CNN models that were used for comparison with the
models suggested in Section (IV).

For efficient performance evaluation of these models, it is
worth noting that the learning algorithm aims to get a good fit.
That is shown by a training and validation loss that gets down
to the point of stability with a small gap between the two final
loss values. The model goodness of fit describes how well it
matches a collection of data. In most cases, the goodness of
fit indicators describe the difference between observed and
model-predicted values.

- Figure 7 shows a significant disparity between these
losses when training of the CNN models using the
ESRIR dataset, particularly for Mobilenet and Resnet
models.

- Figures 8, 9, and 10 show how the rest of the four
datasets can be used to reach the same result.

Hence, when evaluating trained CNNs, almost all models
have an unsatisfactory fit, as shown in the figures. More
precisely, CNN models such as Mobilenet and Resnet suffer
from underfitting because of a huge difference in training and
validation loss curves.

The introduced convolutional autoencoder has a good
fit for the ESRIR and CUFSF datasets, as shown in
Figures 11.a, and 12.b. For the other two datasets, it has
unsatisfactory results to some extent, as shown by the differ-
ence between the resulting training and validation loss curves,
as Figures 11.c, and 12.a, and 11.d show.

As mentioned, Figures 12 and 13 show the learning
curves for the proposed systems using InfoGAN and ViT,
respectively. By evaluating their curves over the four used
datasets, the proposed models virtually achieve a satisfactory
fit, as shown in the figures.

Training loss and validation loss over time are two of
the most commonly-utilized measurement combinations.
According to the definition of the validation loss, it is the
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FIGURE 9. Training and validation losses for (a) Inception, (b) Mobilenet, (c) Resnet, (d) VGG16, (e) VGG19, and (f) Xception applied to
LFW dataset.

loss estimated on the validation set when the data is separated
into train, validation, and test sets using cross-validation. The
training loss refers to how well the model fits the training
data, whereas the validation loss refers to how well the model
fits new data. As a result, the trained model performance
could be easily predicted.

• For 256 Object Categories dataset, Figures 14.a, 14.b,
and 14.c show the learning curve in the case of training
of convolutional autoencoder, InfoGAN, and ViT mod-
els, respectively.

• For Flickr Logos 27 dataset, Figure 15.a, 15.b, and 15.c
show the learning curves in the case of training of
convolutional autoencoder, InfoGAN, and ViT models,
respectively.

For the 256 Object Categories dataset, the InfoGANmodel
is more suitable for the new data than the others, as shown in
Figure 14.c. The comparison of both training and validation
losses for each model demonstrates this idea. The learning
curve for InfoGAN in Figure 14.c is compared to those of its
alternatives, the convolutional autoencoder and ViT, shown
in Figures 14.a and 14.b. Because the losses do not reach a
point of stability, there is a slight gap between the two final
loss values.

For the Flickr Logos 27 dataset, it is found that ViT
has the best performance among its counterparts, as its loss
reaches the stability point faster, as shown in Figure 15.b

compared to Figures 15.a and 15.c. It is worth noting that
the 256 Object Categories and Flickr Logos 27 datasets were
already discussed with CNN. Hence, retraining of them is
not necessary.

The training performance of the proposed models will be
assessed, as illustrated in the problem definition. It is critical
to train and index extracted features to accelerate learning
and similarity matching. This verifies the retrieval system
scalability across large datasets. As a consequence, Table 1
shows the overall training and indexing times of the models.
In he following sections, some ideas based on the findings are
introduced.

A. TRAINING COMPLEXITY FOR THE PROPOSED
CONVOLUTIONAL AUTOENCODER SYSTEM
It contains 22,030,337 training parameters, as shown in
Table 1. The following items could be concluded:

1) TRAINING PARAMETERS
Compared to CNN models, the autoencoder has more
training parameters, which are 1.01, 6.82, 1.5, 1.1, and
1.06 times of those of InceptionV3, Mobilenet, VGG16,
VGG19, and Xception, respectively. Moreover, those
parameters are around 1.071 times fewer than those of
Resnet50.
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FIGURE 10. Training and validation losses for (a) Inception, (b) Mobilenet, (c) Resnet, (d) VGG16, (e) VGG19, and (f) Xception applied to
QuickDraw-Extended dataset.

2) TIME COMPLEXITY
- When applied on the ESRIR dataset, the proposed convo-
lutional autoencoder has lower training and indexing times
by about 20.92, 3.755, 16, 19.1, 23.11, and 17.54 times
compared to those of InceptionV3, Mobilenet, Resnet50,
VGG16, VGG19, and Xception, respectively.

- When applied on the CUFSF dataset, it has lower training
and indexing times by about 2.7, 1.5, 5.41, 8, 9.73, and
4.97 times compared to those of InceptionV3, Mobilenet,
Resnet50, VGG16, VGG19, and Xception, respectively.

- Similarly, when applied on the LFW dataset, it has lower
training and indexing times by about 2.94, 1.75, 6.77,
10.06, 10.86, and 5.452 times compared to those of Incep-
tionV3, Mobilenet, Resnet50, VGG16, VGG19, and Xcep-
tion, respectively.

- In addition, when applied on the QuickDraw-Extended
dataset, it has lower training and indexing times by
about 13.35, 9.6, 31.934, 48.214, 95.16, and 26.493 times
compared to those of InceptionV3, Mobilenet, Resnet50,
VGG16, VGG19, and Xception, respectively.

B. TRAINING COMPLEXITY FOR THE PROPOSED InfoGAN
SYSTEM
The suggested InfoGAN contains 145139414 training param-
eters, as shown in Table 1. When compared to CNN models,
the following conclusions may be drawn.

1) TRAINING PARAMETERS
In comparison to InceptionV3, Mobilenet, Resnet50,
VGG16, VGG19, and Xception, the suggested InfoGAN has
more training parameters by about 6.7, 44, 6.2, 9.9, 7.2, and
6.9 times, respectively.

2) TIME COMPLEXITY
- When applied on ESRIR dataset, it has lower training
and indexing times by about 42.7, 7.67, 31.834, 39.16,
47.197, 35.82 times compared to those of InceptionV3,
Mobilenet, Resnet50, VGG16, VGG19, and Xception,
respectively.

- For CUFSF dataset, it has lower training and indexing
times by about 1.45, and 1.78 times compared to those
of VGG16, and VGG19, respectively. But it has higher
times compared to InceptionV3, Mobilenet, Resnet50,
and Xception by about 2, 3.6, 1.01, and 1.1 times,
respectively.

- For LFW, it has lower training and indexing times
by about 1.5, 2.19, 2.37, and 1.19 times compared to
those of Resnet50, VGG16, VGG19, and Xception,
respectively. But it has higher times compared to those of
InceptionV3 and Mobilenet by about 1.6 and 2.6 times,
respectively.

- For QuickDraw-Extended dataset, it has lower training
and indexing times by about 3.26, 2.344, 7.78, 11.76,
23.2, and 6.46 times compared to those of InceptionV3,
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FIGURE 11. Training and validation losses for convolutional autoEncoder applied on (a) ESRIR, (b) CUFSF, (c) LFW, and
(d) QuickDraw-Extended datasets.

Mobilenet, Resnet50, VGG16, VGG19, and Xception,
respectively.

C. TRAINING COMPLEXITY FOR THE PROPOSED CBIR
SYSTEM BASED ON ViT MODEL
As indicated in Table 1, the proposed ViT model has approx-
imately 84,730,372 training parameters. Therefore, in com-
parison to CNN models, the following notes may be con-
cluded:

1) TRAINING PARAMETERS
Compared to InceptionV3, Mobilenet, Resnet50, VGG16,
VGG19, and Xception, the ViT model has higher training
parameters of around 4, 26, 4, 5.7, 4.23, and 4.062 times,
respectively.

2) TIME COMPLEXITY
- When applied on ESRIR dataset and in comparison to
InceptionV3, Resnet50, VGG16, VGG19, and Xcep-
tion, it reduces training and indexing times by 1.76,
1.31, 1.61, 2, and 1.48 times, respectively. Compared to
Mobilenet, on the other hand, it has a 3.17-fold increase.

- For CUFSF dataset, compared to InceptionV3,
Mobilenet, Resnet50, VGG16, VGG19, and Xception,

the ViT model increases training and indexing times
by around 5.14, 9.15, 2.5, 1.72, 1.42, and 2.77 times,
respectively.

- When applied to the LFW dataset, the ViT model has
higher training and indexing times by about 7.97, 13.4,
3.5, 2.3, 2.16, and 4.3 times compared to those of
InceptionV3, Mobilenet, Resnet50, VGG16, VGG19,
and Xception, respectively.

- When trained by the QuickDraw-Extended dataset,
it has lower training and indexing times by about 1.25,
3, 4.16, 8.92, and 2.5 times compared to those of
InceptionV3, Resnet50, VGG16, VGG19, and Xcep-
tion, respectively. Compared to Mobilenet, it has about
1.11 times increase.

Overall, the significant note is the requirement of power-
ful processing capabilities, especially with the expansion of
dataset size. As a result, cloud computing may be beneficial
in such situations. Google cloud offers a variety of cloud ser-
vices, such as Google storage and processing. Google gives a
cloud Tensor Processing Unit (TPU) in a single pod. The TPU
and bespoke high-speed network provide over 100 petaflops
of performance. In addition, a high-performance Graphics
Processing Unit (GPU) is a specialized processor that was
created to speed up the rendering of visuals. The GPUs can

VOLUME 11, 2023 20461



E. S. Sabry et al.: Image Retrieval Using Convolutional Autoencoder, InfoGAN, and Vision Transformer Unsupervised Models

FIGURE 12. Training loss for InfoGAN applied on (a) ESRIR, (b) CUFSF, (c) LFW, and (d) QuickDraw-Extended datasets.

handle a large amount of data at once, making them ideal for
machine learning, video editing, and gaming. However, the
GPU is used in most situations to speed up processing, so that
the amount of training data can be handled. It is simple to use
because of the little line of codes.

Furthermore, according to the procedure hierarchy of the
three proposed models in Section (VII), each CNN model
is used and trained on the ESRIR, CUFSF, LFW, and
QuickDraw-Extended datasets. After training, indexing, and
spatial distance measurement of query image features, the
returned images are all dark and unclear. Hence, in these
types of images, CNN models cannot learn to distinguish
significant features, which is the key engine for the whole
retrieval process.

IX. TEST CASES AND FINDINGS
In this section, performance assessment for three different
proposed image-retrieval systems applied on various types
of images is involved. Each experimental scenario entails a
comparison of different models in terms of various image
types matching and retrieval for large-scale datasets. It is

important to note that ten query images are chosen randomly
from all test instances for each dataset to retrieve their similar-
ities from the dataset using each suggested retrieval system.
Because datasets lack comparable images to the query ones,
the assessment on CUFSF and LFW datasets will only cover
image retrieval not performance metrics computation. After
retrieval of images for each randomly-chosen query, True
Positive (TP), False Negative (FN), and False Positive (FP)
rates are identified in each test case. In other words, the
images that are relevant and irrelevant are counted and used
to determine the retrieval system performance metrics.

A. 1st TEST CASE ON THE ESRIR Dataset
• Retrieved images of proposed models:

Figures 16, 17, and 18 show samples of the resulting
images from the introduced CBIR systems based on con-
volutional autoencoder, InfoGAN, and ViT retrieval mod-
els, respectively. These figures show the retrieved images
compared to the query image based on the spatial distance
measurement between the features generated by each model.
The number of relevant retrieved images using the InfoGAN
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FIGURE 13. Training and validation Losses for ViT applied on (a) ESRIR, (b) CUFSF, (c) LFW, and (d) QuickDraw-Extended datasets.

FIGURE 14. Training and validation losses for (a) convolutional autoencoder, (b) ViT, and (c) InfoGAN applied on 256_Object categories.

model is higher than the number of non-relevant ones,
as shown in the figures. It is also worth noting that there are
few images that are similar, but not like the query image. This
implies that when information is retrieved, the highly com-
parable features are detected and endowed by the InfoGAN
model. The ViT is found in the second stage with a slight

change in the quantity of relevant and non-related images for
the query image comparison. In contrast to InfoGAN, ViT has
a lower quantity of enrolled comparable images within the
retrieved images. Because the number of relevant retrieved
images is limited, the convolutional encoder is in the final
stage.
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FIGURE 15. Training loss for (a) convolutional autoencoder, (b) ViT, and (c) InfoGAN applied on Flickr Logos 27 dataset.

FIGURE 16. Resulting retrieved images based on a convolutional autoencoder image retrieval system.

FIGURE 17. Resulting retrieved images based on the InfoGAN image retrieval system.

Retrieval performance computation and assessment for the
proposed models:

Following the retrieval of images by the three suggested
image retrieval systems, Figure 19 displays the computed
recall/precision values based on the results. The figure gives
the calculated recall/precision for the retrieval process with
each query image (i.e., over the 10 query samples) for the
ESRIR dataset.

• For the 1st retrieval system based on convolu-
tional autoencoder, Figure 19.a shows the computed
recall/precision values after training and retrieval of
images. The total computed recall and precision scores
are 0.98 and 0.89, respectively.

• For the 2nd retrieval system based on InfoGAN,
Figure 19.b shows the obtained recall/precision values
after training and retrieval of images. The overall com-
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FIGURE 18. Resulting retrieved images based on the ViT image retrieval system.

FIGURE 19. Recall/precision on ESRIR dataset with (a) convolutional autoencoder, (b) InfoGAN, and (c) ViT retrieval systems.

FIGURE 20. F-score on ESRIR dataset with the 1st model (convolutional autoencoder), 2nd model (InfoGAN), and 3rd model (ViT)
retrieval systems.

puted recall and precision values are 1.363 and 1.192,
respectively.

• For the 3rd retrieval system based on ViT, Figure 19.c
shows the computed recall/precision values after train-
ing and retrieval of images. The overall recall and preci-
sion values are 1.26 and 1.12, respectively.

Figure 20 shows the computed F-score value for each
applied query image across the three models. The following

notes could be concluded for the ESRIR dataset (over the ten
query images):

• The 1st retrieval system based on the convolutional
autoencoder has an F-score of 0.93 on all ten images.

• The 2nd retrieval system based on InfoGAN receives an
F-score of around 1.272 on all ten images.

• The 3rd retrieval system based on ViT has an F-score of
around 1.183 on all ten images.
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FIGURE 21. Resulting retrieved images with the convolutional autoencoder image retrieval system on CUFS dataset.

FIGURE 22. Resulting retrieved images with the InfoGAN image retrieval system on CUFSF dataset.

FIGURE 23. Resulting retrieved images with the ViT image retrieval system on CUFSF dataset.

B. 2nd AND 3rd TEST CASES ON THE CUFSF AND LFW
DATASES

Retrieved images with the proposed models:
For the CUFSF dataset, Figures 21, 22, and 23 give

examples of the recovered images produced by the convo-
lutional autoencoder, InfoGAN, and ViT retrieval systems,

respectively. By comparing the figures, it can be seen that
the ViT image retrieval system takes the top place, while
InfoGAN advances to the next level with a slight difference.
The convolutional encoder system is the last in the line.
This attributed to the quantity of retrieved facial images with
common features like dark hair, dark eyes, etc.
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FIGURE 24. Resulting retrieved images with convolutional autoencoder image retrieval system on LFW dataset.

FIGURE 25. Resulting retrieved images with InfoGAN image retrieval system on LFW dataset.

FIGURE 26. Resulting retrieved images with ViT image retrieval system on LFW dataset.

For the LFW dataset, examples of recovered images cre-
ated by the convolutional autoencoder, InfoGAN, and ViT

retrieval systems are shown in Figures 24, 25, and 26,
respectively. On such a dataset, learning is performed to
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FIGURE 27. Resulting retrieved images with the convolutional autoencoder image retrieval system.

FIGURE 28. Resulting retrieved images with the InfoGAN image retrieval system.

FIGURE 29. Resulting retrieved images wih the ViT image retrieval system.

predict which system is more crucial than the others; yet all
three systems return most images with similar features. For
example, with the InfoGAN system, the retrieved images are
of people with a wide forehead compared to the query images.
In comparison to the query images, the retrieved images
from the ViT retrieval system are of people with lengthy
faces.

C. 4th TEST CASE ON THE QuickDraw-EXTENDED DATASET
• Retrieved images of the proposed models:

Figures 27, 28, and 29 show examples of the recovered
images produced by the convolutional autoencoder, Info-
GAN, and ViT retrieval systems on the QuickDraw-Extended
dataset. On such a dataset, CBIR system based on ViT defeats
others as the number of relevant doodled images retrieved
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FIGURE 30. Recall/precision on QuickDraw-Extended dataset with (a) convolutional autoencoder, (b) InfoGAN, and (c) ViT retrieval
systems.

FIGURE 31. F- score on QuickDraw-Extended dataset with the 1st model (convolutional autoencoder), 2nd model (InfoGAN),
and 3rd model (ViT) retrieval systems.

FIGURE 32. Resulting retrieved images from 256_Object Categories dataset with the convolutional autoencoder image retrieval system.

is higher than the number of non-relevant ones, as shown in
the figures. However, the retrieved images lack some similar
images. This is implied by the various retrieved doodlings.
Secondly, both convolutional autoencoder and InfoGAN sys-
tems are ranked. It is important to highlight that this sort of
dataset is complicated to handle, since matching and retrieval
are built between real images and doodled images, which

are difficult to distinguish by eyesight, much less machine
learning.

• Retrieval performance computation and assessment for
the proposed models:

Same to same, the computed recall/precision values
obtained by the three suggested image retrieval sys-
tems after recovering images are shown in Figure 30.
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FIGURE 33. Resulting retrieved images from 256_Object Categories dataset with the InfoGAN image retrieval system.

FIGURE 34. Resulting retrieved images from 256_Object Categories datset with the ViT image retrieval system.

FIGURE 35. Resulting retrieved images from Flickr Logos 27 dataset with the convolutional autoencoder image retrieval system.

For the QuickDraw-Extended dataset, Figure 30 shows
the computed recall/precision for the retrieved images
versus each query image (i.e., over the 10 query
samples).

• For the 1st retrieval system based on convolu-
tional autoencoder, Figure 30.a shows the computed
recall/precision values. The total recall and precision
values are 0.67, and 0.62, respectively.

• For the 2nd retrieval system based on InfoGAN,
Figure 30.b displays the calculated recall/precision

values. The total recall and precision values are 0.549,
and 0.519, respectively.

• For the 3rd retrieval system based on ViT, Figure 30.c
displays the calculated recall/precision values. The
total recall and precision values are 0.98, and 0.88,
respectively.

The computed F-score value for each query image used
with the three models is shown in Figure 31. Then, for the
QuickDraw-Extended dataset, the following conclusion is
obtained:
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FIGURE 36. Resulting retrieved images from Flickr Logos 27 with the InfoGAN image retrieval system.

FIGURE 37. Resulting retrieved images from Flickr Logos 27 datset with the ViT image retrieval system.

FIGURE 38. Recall/precision on 256_Object Categories dataset with the (a) convolutional autoencoder, (b) InfoGAN, and (c) ViT retrieving systems.

• For the 1st retrieval system based on the the convolu-
tional autoencoder, about 0.64 F-score is achieved with
the ten images.

• For the 2nd retrieval system based on InfoGAN,
about 0.534 F-score is achieved with the entire ten
images.

• For the 3rd retrieval system based on ViT, an F-score of
about 0.81 is obtained with the ten images.

D. 5th AND 6th TEST CASES ON THE 256_OBJECT
CATEGORIES AND FLICKR LOGOS DATASETS

Retrieved images with the proposed models:
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FIGURE 39. F- score on 256_Object Categories dataset with the 1st model (convolutional autoencoder), 2nd model (InfoGAN), and 3rd model
(ViT) retrieval systems.

FIGURE 40. Recall/precision on Flickr Logos 27 dataset with the (a) convolutional autoencoder, (b) InfoGAN, and (c) ViT retrieval systems.

FIGURE 41. F- score on Flickr Logos 27 dataset with the 1st model (convolutional autoencoder), 2nd model (InfoGAN), and 3rd model (ViT)
retrieval systems.

• For the 256_Object Categories dataset, Figures 32, 33,
and 34 show examples of recovered images created
by the convolutional autoencoder, InfoGAN, and ViT

retrieval systems. The figures show that ViT and Info-
GAN are very close in the query number of relevant and
non-relevant images. At the same time, the convolutional
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TABLE 1. Training parameters for all tested models.

autoencoder comes at the end of the line. For simplicity,
retrieval on such a dataset is assessed over the random
selection for the query images, not for each category of
the 256.

• For the Flickr Logos 27 dataset, Figures 35, 36, and 37
show examples of the recovered images by the convolu-
tional autoencoder, InfoGAN, andViT retrieval systems.
The figures show that ViT surpasses other systems on
these types of images.
Retrieval performance computation and assessment for
the proposed models:

• For the 256 Object Categories dataset (for ten query
images), Figure 38 shows the computed values attained
by the three image retrieval systems on the 10 query
samples. Figure 39 shows the computed F-score value
for each used query image with the three models.

Computed recall/precision values:

– For the convolutional autoencoder retrieval system, the
total recall and precision values are 0.22 and 0.21,
respectively.

– For the InfoGAN retrieval system, the total recall and
precision values are 0.55 and 0.52, respectively.

– For the ViT retrieval system, the total recall and preci-
sion values are 0.597 and 0.558, respectively.

F-score value:
– The convolutional autoencoder retrieval system achi-

eves an F-score of about 0.22 on the entire ten images.
– The InfoGAN retrieval system achieves an F-score of

about 0.533 on the entire ten images.
– The ViT retrieval system achieves an F-score of about

0.497 on the entire ten images.
• On the Flickr Logos 27 dataset (for ten query
images), similarly, Figure 40 shows the calculated
recall/precision over the entire 10 query images. Fig-
ure 41 displays the computed F-score values for the same
samples.

Computed recall/precision values:
– By applying the convolutional autoencoder retrieval sys-

tem, the total recall and precision values are 0.57 and
0.54, respectively.

– For the InfoGAN case, the total recall and precision val-
ues are 0.79 and 0.73, respectively. Besides, it achieves
an F-score of about 1.462 for all 10 images.

– For the ViT retrieval system, the total recall and pre-
cision values are 1.381 and 1.21, respectively. Besides,
it achieves an F-score of about 1.147 over all ten images.

F-score value:
– The convolutional autoencoder retrieval system achieves

an F-score of about 0.56 over the ten images.
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– The InfoGAN retrieval system achieves an F-score of
about 1.462 for all 10 images.

– The ViT retrieval system achieves an F-score of about
1.147 over all 10 images.

X. RESULT DISCUSSION
The F-score is defined as the harmonic mean of precision and
recall for image retrieval system performance assessment.
Higher F-scores are, in fact, necessary for improved perfor-
mance. These scores can vary from 0 to 1, with 1 indicating
a model that flawlessly classifies each observation into the
correct class and 0 indicating a model that cannot classify
any observation into the correct class. It is a better metric
than accuracy. Both of those metrics use class predictions as
input by comparing such scores to correctness. On the other
hand, the F-score balances precision and recall for the positive
class, whereas accuracy looks at properly identified positive
and negative observations. As a result, F-score may be the
greatest discriminating statistic tool for making appropriate
judgments on retrieval system performance. Furthermore,
the recall/precision should allow a strong assessment for
such retrieval system performance. According to the acquired
findings:
– The InfoGAN retrieval system outperforms other cor-

responding systems in obtaining similar images when
comparing facial sketches to real images, as shown from
the results on the ESRIR dataset. Therefore, the second
rank goes to the ViT retrieval system and the last to the
convolutional encoder. However, there is a slight differ-
ence between the CBIR systems based on InfoGAN and
ViT models.

– On the QuickDraw-Extended dataset, it is found that
the ViT retrieval system outperforms the other systems.
InfoGAN and convolutional autoencoder systems come
after with slight differences.

– The ViT and InfoGAN retrieval systems are close to
each other in performance on the 256_Object Categories
dataset. However, there is a slight difference between the
ViT and InfoGAN systems. Convolutional autoencoder
comes in the second rank.

– In the Flickr Logos 27 case, the ViT retrieval system
outperforms the other systems. InfoGAN comes in the
second place with a significant performance gap. Again,
the convolutional autoencoder is at the bottom of the list.

XI. CONCLUSION AND FUTURE RESEARCH DIRECTIONS
This article might serve as the basis for a broad range of appli-
cations that employ features to classify and retrieve objects in
images. According to the findings, the key engine of the entire
process is the capacity of extraction methods to adequately
characterize image content with suitable feature descriptors
to increase performance accuracy. Aiming for model general-
ity, experiments demonstrate various retrieval process hurdles
that significantly influence the retrieval accuracy for faces
and objects in different images. The ESRIR dataset, which
includes 53,000 face sketches and 53,000 real facial images,

has been presented to the community in order to increase
the scale of facial sketched-real image retrieval. Besides,
three different image retrieval systems have been proposed
in this paper based on convolutional autoencoder, InfoGAN,
and ViT. The proposed models have been trained with six
different datasets, including the introduced ESRIR dataset.
According to the findings, InfoGAN and ViT retrieval sys-
tems are more successful in differentiating freehand facial
sketch drawings and objects on CUFSF, and the 256_Object
Categories datasets. Besides, their outstanding performance
on ESRIR dataset is independent of the applied augmentation
and visual scene transformations. On the ESRIR dataset, the
ViT system achieves about a 1.183 F-score value, whereas
the InfoGAN system reaches around a 1.272 F-score. The
ViT retrieval system outperforms the other ones on the too-
challenging QuickDraw-Extended dataset. The ViT system
successfully retrieved images for the 10 query images from
the QuickDraw-Extended dataset with an F-score of around
0.81.

The use of other distance metrics in place of the Euclidian
distance utilized in this article for convolutional autoencoder,
InfoGAN, and ViT instances, is one of the additions to
this paper. As an alternative, combined feature extraction
algorithms, such as capsule networks, might be employed
in conjunction with the ones recommended in this article
to investigate and benefit from their efficacy and results.
Additionally, several artificial intelligence methods might be
investigated on different other datasets.
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