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ABSTRACT The problem of uncertainty forecasting for complex dynamical systems in the framework
of particle methods can be effectively addressed through the solution methodology known as adaptive
Monte Carlo (AMC). Monte Carlo (MC) methods involve discretizing the initial probability density function
(pdf) followed by forward propagation of particles through system dynamics to obtain an approximate
particle representation of the evolved state uncertainty. While simple to implement, MC faces questions
surrounding transient statistical consistency and rate of convergence. AMC (adopted here) addresses these
issues on-the-fly using defined bounds on estimation accuracy alongside ensemble enrichment routines.
This paper presents several improvements in the ensemble enrichment module of AMC. The AMC platform
is re-engineered to include the novel implementation of a parallel global stochastic optimization routine
in conjunction with additional module enhancements that work together towards the goal of efficient
forecasting. Moreover, the efficacy of algorithms utilized within every submodule of AMC are detailed
and improved upon under the framework of arithmetic minimization and parallelization. Each submodule is
profiled to determine computational bottlenecks, optimized or replaced with more efficient methods such as
simulated annealing (SA), and parallelized ultimately leading to a clock time reduction of 200− 400% for
benchmark entry descent and landing, Lorenz-96, and Lotka-Volterra models.

INDEX TERMS Adaptive Monte Carlo, arithmetic minimization, parallel algorithms, nonconvex
optimization, simulated annealing, uncertainty quantification.

I. INTRODUCTION
Numerical simulations have served as an important tool
for a wide variety of disciplines, including engineering,
mathematics, physics, biology, and economics, among others.
Simulations have become the preferred alternative to expen-
sive experimentation as well as when real-life systems are
too difficult to study analytically. Advances in simulation
methodologies, software availability, sensitivity analysis, and
stochastic optimization have combined to make numerical
simulations one of the most widely accepted and used tools in
system analysis and operations research [1]. Simulations are
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an appropriate tool when simple mathematical formulations
are untenable due to complex system dynamics, analytical
techniques do not apply or are too cumbersome, the
interaction among system variables play an important role,
one wishes to gain insight into system behavior under
novel circumstances, and/or expanded or compressed system
timelines are of interest. However, without proper care,
simulations can be inexact with implementation variability
pertaining to the intrinsic randomness of nature, data
and parameter uncertainty, model uncertainty: including
necessary simplifications, numerical inaccuracies, and oth-
ers [2]. Consequently, the reliability of model outcomes and
predictive analysis of uncertainties propagated throughout
numerical simulations is highly important. There are several
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ways to ascertain the validity of a model, e.g., reexamining
the problem formulation, checking the mathematical consis-
tency of expressions, varying input parameters to studymodel
behavior, and comparing simulation outputs to historical
data. Once a model has been constructed, analytical or
numerical solution methods can be implemented to obtain
exact or approximate solutions to the system at hand [1]. This
paper focuses on a numerical solution method called Monte
Carlo simulations (MCS) or stochastic computer simulations
towards the goal of predictive uncertainty quantification
(UQ). UQ can be defined as the process of characterizing
the uncertainties of one’s lack of knowledge pertinent to
physical reality. More specifically, the forward propagation
of uncertainty that forecasts model output by propagating
random initial conditions through a stochastic dynamic
system is the central problem studied in this paper.

The Fokker-Planck equation (FPE) (see Sec.(II)), captures
the evolution of the state-pdf (uncertainty) of nonlinear
dynamical systems perturbed by white noise. Its solution is
often sought in the fields of structural mechanics, fluids,
chemical processes, control theory, and prognostics, among
others. Closed-form analytical solutions to the FPE only
exist for a handful of systems. For the case involving a
linear system with Gaussian initial uncertainty, the solution
to the FPE can be found by solving the corresponding
matrix Riccati differential equation. Traditional discretization
techniques such as the finite difference method or finite
element method exist with more general applicability.
Unfortunately, the curse of dimensionality limits the use of
such methods in providing accurate solutions of the FPE
for relatively high dimensional systems [3]. For reference,
a nonlinear dynamic system with six states can be thought
of as ‘‘high dimensional’’ for the FPE [4]. Approaches such
as the partition of unity finite element method (PUFEM),
particle-PUFEM and tensor decomposition have also been
implemented in an effort to curtail the exponential growth
in the number of unknowns associated with the curse of
dimensionality. For specifics on these algorithms and their
implementations, please see [5], [6], [7], [8], [9], [10], [11],
[12], and [13].

An alternative numerical approximation to solving the FPE
is offered by theMC suite of algorithms. MC algorithms have
been implemented for a wide class of dynamic systems due
to their simplicity, flexibility, parallelizability, and provable
asympotic convergence. MC creates a particle representation
of the evolved state-uncertainty, which can in turn be
utilized in computing desired statistics or approximating the
state-pdf. Discretization in MC is achieved by randomly
drawing a ‘‘sufficiently large’’ number of samples from
the underlying probability space. Each particle is forward
propagated through the system dynamics, which results in
a new ensemble at future time t . Similar to initial time t0,
desired statistics or the state-pdf can be computed utilizing
the propagated ensemble. It is known that MC estimation
converges at a rate O(n−1/2) where n is the ensemble
size and is notably independent of the dimension of the
problem. Because of this, MC is capable of circumventing

the curse of dimensionality that plagues common numerical
solutions of the FPEmentioned previously. It should be noted
improving the computational complexity of MC is an active
area of research and significant savings have been achieved
using multilevel (ML) methods, multi-fidelity (MF) models,
or polynomial maps [14], [15], [16], [17], [18], [19], [20],
[21]. That is, the computational benefits associated with
substituting sample propagation with polynomial evaluations
allows one to rapidly propagate an ensemble of particles [15].
Multilevel methods utilize coarsened discretizations of the
governing equations to restrict low-fidelity models whereas
multi-fidelity methods generalizes the types of permit-
ted models [14], [16]. In essence, MLMC and MFMC
determine closed form expressions for resource allocation
that significantly improve the performance of traditional
MC. Another generalized approach known as approximate
control variates further unifies the MLMC and MFMC based
methods that also shows significant improvements through
the optimization of resource allocations [20].

In traditional MC, the size of the ensemble (n) remains
fixed as it propagates through the state-space. It has been
shown in [22] that a fixed sized ensemble does not represent
the underlying state-pdf with equal accuracy at all times.
In other words, while the initial ensemble may represent
the initial state-pdf with desired accuracy, the propagated
ensemble may be an under- or, even over-sampling of the true
instantaneous state-pdf at different times. This translates to
the difficult and yet unsolved problem of determining a-priori
how large a ‘‘sufficiently large’’ initial ensemble must be
to represent the state-pdf with desired accuracy at all times.
To address the aforementioned, this paper utilizes an adaptive
MC platform developed in [23]. The AMC platform is built
on a closed-loop architecture towards the goal of controlling
the transient forecasting performance and associated com-
putational cost. AMC quantifies its forecasting performance
in terms of the estimation of application specific quantities
of interest (QoIs) as defined in Sec.(III-A). The platform
allows the user to prescribe upper and lower bounds on QoI
forecasting error at the front end. When the QoI forecasting
error exceeds the user-prescribed upper bound, an ensemble
enhancer scheme is activated that adds appropriately chosen
new particles to the ensemble [23]. When the QoI forecasting
error is measured to be less than the user-prescribed lower
bound, AMC executes an ensemble thinner scheme that
identifies particles in the current ensemble to be halted in
the interest of reducing computational load. Selection of
particles for ensemble thinning is made on the basis of
particles’ relative current state-pdf value. On the other hand,
the theoretical basis for ensemble enhancement lies in the
Koksma-Hlawka inequality (Sec.(III-A)), which allows QoI
error to be held within bounds by identifying new particles
that minimize the discrepancy of the initial ensemble with
respect to the initial state-pdf. While it lies at the heart of
the enhancement routine, the optimization of discrepancy is
difficult due to challenges linked to high-dimensionality and
non-convexity. As a result, [23] did not directly perform the
optimization of discrepancy to identify new particles and
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instead employed indirect means to reduce initial ensemble
discrepancy. This was done through a routine known as
admissible intervals by sampling subsections of the domain
that enforce space-filling and non-collapsing criteria [24].
The current paper restructures the AMC ensemble enhancer
by devising a novel parallelized stochastic global optimiza-
tion method for the discrepancy function, based on SA.
This allows ensemble enhancement to be better adapted to
the Koksma-Hlawka inequality, while also achieving notable
improvements to computational efficiency as a result of the
parallelized implementation.

A. CONTRIBUTIONS/SIGNIFICANCE OF WORK
This paper makes two main contributions to the AMC
platform for uncertainty forecasting. First, it addresses the
‘‘indirect discrepancy minimization’’ issue of the existing
AMC platform [23]. As mentioned above, the existing AMC
platformmerely employs efficient sampling techniques based
on space-filling and non-collapsing criteria to indirectly
achieve a reduction in discrepancy. In this paper, a novel par-
allelized global stochastic optimization approach is devised
that tackles the problem of high-dimensionality and non-
convexity in the minimization of discrepancy. The global
optimization scheme is based on SA, which in its native form,
is a sequential algorithm. This paper develops a parallelized
version of SA that leverages the exploration history of parent
CPUs to determine optimal candidates of the U0+ ith ensem-
ble as defined by successive new discrepancy cost functions.
That is, for m available computational processors parallel
SA determines m additional particles to join U0 through the
direct optimization of distinct discrepancy cost functions on
each parallel CPU. This is accomplished by children CPUs
utilizing near optimal estimates of candidate particles up to
the U0 + (i − 1)th ensemble, which are continually updated
throughout SA temperature cycles. The result is the addition
of m particles under the same clock time as sequential SA
(substantially quicker than admissible intervals) with no
notable degradation in the quality of the overall ensemble.

Second, this paper investigates computational bottlenecks
within the existing AMC platform, examines the architecture
of each algorithm, implements arithmetic minimization and
parallelization where possible, and benchmarks the improve-
ments against complex high dimensional dynamic systems.
It is shown through numerical studies that these architectural
changes lead to a 200−400% improvement in computational
efficiency in non-trivial uncertainty forecasting problems up
to N = 30 dimensional space. This is accomplished through
minimizing the number of arithmetic operations required
in sub-modules, restructuring AMC to reduce memory
overhead, and exploiting efficient mathematical libraries.
That is, while modules such as the ensemble enhancer
are restructured via parallel SA, the memory overhead
and computational burden of underlying operations in each
module of AMC are also profiled for further refinement and
improvement.

Ultimately, this manuscript highlights deficiencies in
the current state-of-the-art AMC platform and restructures

modules to directly address the optimization of discrepancy,
which in conjunction with arithmetic minimization and par-
allelization substantially reduces the computational burden
of AMC. The significance of implementing an optimized,
parallel architecture for the AMC platform is in providing
trustworthy, actionable, and timely intelligence to decision
making entities. The ability to achieve timely forecasts with
user-prescribed accuracy is crucial for applications with
very low margin for error, e.g., prediction of probability of
collision in space, prescriptive maintenance of high value
assets, etc. The rest of the paper is organized as follows:
in Sec.(II) the general uncertainty forecasting problem as
well as pertinent dynamic systems are introduced. The AMC
platform is discussed in Sec.(III). Specific modules and
components are also analyzed and re-engineered in Sec.(IV).
Discussions connected to parallelization are detailed in
Sec.(V). Numerical results for the entry, descent, and
landing, Lorenz-96, and Lotka-Volterra systems are shown in
Sec.(VI). Finally, conclusions are drawn in Sec.(VII).

II. PROBLEM STATEMENT
This paper concerns the application of the AMC platform
to the nonlinear dynamic system with initial condition
uncertainty and random excitation given by the following
stochastic differential equation (SDE) [25]:

dx = f(t, x)dt + g(t, x)dB(t), x0 ∼W0(x) (1)

where x ∈ RN denotes the system state and x0 the initial
condition with associated pdfW0. The ‘‘process noise’’ term,
dB(t), is anM -dimensional Brownian motion term with zero
mean and correlation function Qδ(t1 − t2). The nonlinear
vector function f(t, x) : [0,∞) × RN

→ RN corresponds
to the deterministic part of the system and g(t, x) : [0,∞) ×
RN
→ RN×M is a nonlinear matrix noise-influence function.

For stochastic systems given in (1), the corresponding FPE
governing the time propagation of the state-pdfW(t) is given
by:

∂

∂t
W(t, x) = LFP [W(t, x)], x0 ∼W(t0, x)

=

− N∑
i=1

∂

∂xi
D(1)
i (·)+

N∑
i=1

N∑
j=1

∂2

∂xi∂xj
D2
ij(·)


D(1)(t, x) = f(t, x), D(2)(t, x) =

1
2
g(t, x)Qg⊤(t, x) (2)

where D(1) and D(2) are known as the drift coefficient vector
and diffusion coefficient matrix, respectively. For the current
article, the focus is on the case where process noise is absent,
thereby reducing (1) to:

dx = f(t, x)dt, x0 ∼W0(t0, x) (3)

and the time evolution of the state-pdfW0(t0, x) shown in (3)
is given by the stochastic Liouville equation:

∂

∂t
W(t, x) = L[W(t, x)] = −

N∑
i=1

(
fi
∂W
∂xi
+W

∂fi
∂xi

)
(4)
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where L(·) is the stochastic Liouville operator. Since the
solution of (4) must be a valid pdf the following conditions
are also needed: limx→∞W(t, x) = 0 and

∫
RN W(t, x)dx =

1,∀ t ∈ [0,∞). In MCS, realizations of initial uncertainty
are generated via random sampling {xi0}

n
i=1 ∼ W0, where

n denotes the total number of particles in the ensemble.
Each particle is forward propagated in time through system
dynamics to obtain an approximate representation of the
evolved state-pdf. That is, {8t (xi0)}

n
i=1 ∝ Wt (x) where 8t (·)

is the system dynamics map that maps initial conditions to
the current state. For noise driven dynamic systems, (1), the
map 8t is related to the strong form solution of the SDE,
given in the form of an Itô integral [25]. For dynamics systems
with no process noise, (3) 8t is the state-transition function
x(t) = 8t (x0) [26]. While MCS holds for general nonlinear
systems (f), this paper will consider three representative
system models that capture nonlinearity and dimensionality
related complexities, namely, entry, descent, and landing (5),
the Lorenz-96 system (6), and the Lotka-Volterra (7) system.

A. ENTRY, DESCENT, AND LANDING
The Vihn’s equations are simplified hypersonic entry,
descent, and landing (EDL) dynamics under the assumptions
of purely longitudinal dynamics and a nonrotating spherical
planet with zero-bank angle flight [27]. Given in nondimen-
sional form, the governing equations are as follows:

ḣ = V sin γ (5a)

V̇ = −
ρR0
2Bc

V 2
−
gR0
v2c

sin γ (5b)

γ̇ =
ρR0
2Bc

CL
CD

V +
gR0
v2c

cos γ

(
V

1+ h
−

1
V

)
(5c)

where nondimensionalized altitude, nondimensionalized
planet-relative speed, and flight-path angle correspond to the
three states (h,V , γ ). In this paper, the central object will be
assumed to be Mars, whereby R0 = 3.397 × 106 m. The
ballistic coefficient (Bc) in (5) is set at Bc = 72.8 kg/m2,
the lift-to-drag ratio (CL/CD) = 0.3, g = 3.721 m/s2,
and vc =

√
µ/Ro where µ = 4.282837 × 1013 m3/s2.

The dynamics defined in (5) provide AMC with a relatively
complex low-dimensional use case for parallelization within
AMC. That is, for strict error control scenarios, (5) is
expected to trigger AMC ensemble adaptations throughout
the simulation’s duration. Utilizing (5) here also provides the
parallel AMC platform with comparison points found in [28]
and [23] for baselines before moving to higher dimensional
systems defined by the Lorenz-96 and Lotka-Volterra models
in the succeeding sections.

B. LORENZ-96 MODEL
The Lorenz-96model is a high dimensional forced dissipative
system with quadratic nonlinear terms and expands upon
Lorenz’s simpler 3D models, such as Lorenz-63 and Lorenz-
84. The state variables (xk in (6)) can be interpreted as
an atmospheric quantity such as temperature, pressure or
vorticity, measured along a circle of constant latitude [29].

That is, the latitude circle is divided into N equal sectors,
with a distinct xk variable for each sector such that the index
k = 1, . . . ,N indicates the longitude and thereby describes
waves in the atmosphere [30].

ẋk (t) = −xk−2(t)xk−1(t)+ xk−1(t)xk+1(t)− xk (t)+ F (6)

The value of (6) lies in the ease of implementation for
simulation purposes while at the same time potentially
exhibiting complex dynamics for suitable choices ofN andF .
Typical state-space sizes (N ) found throughout literature are:
4, 8, 36, and 40, with applications in chaotic attractors, model
error, predictability, and data assimilation [29], [31], [32],
[33]. For F > 0 the equilibrium xF = (F, . . . ,F) exhibits
several Hopf or Hopf-Hopf bifurcations for N ≥ 4. More
so, the first Hopf bifurcation is always super critical, which
implies the birth of a stable periodic attractor [30]. For F < 0,
the dynamics of (6) are influenced by symmetry, meaning
bifurcation points depend on the state-space dimension N .
For odd dimensions, the first bifurcation of the equilibrium
xF is a supercritical Hopf bifurcation. In even dimensions,
symmetry causes the occurrence of a pitchfork bifurcation
for the equilibrium xF and the resulting stable equilibria
can exhibit a pitchfork bifurcation again [30]. For F = 0,
the equilibrium xF is stable in any dimension. It should
also be noted that stable equilibria in (6) eventually lose
stability through a supercritical Hopf bifurcation for both
F > 0 and F < 0 giving birth to a periodic orbit [30].
Further bifurcations of the stable periodic orbit can also be
observed, which may result in the birth of a chaotic attractor.
Scenarios visualizing 2 of the 4 dimensions for a 4D Lorenz-
96 system are shown in Fig.(1). As the forcing parameter
(F) increases from 0.5, the Lorenz-96 system bifurcates,
branches, and eventually evolves into chaos when F = 12.5.
As such, identical QoIs related to the chaotic Lorenz-96
attractor are inherently more difficult to estimate than those
exhibiting more stable behavior. Restated, a chaotic Lorenz-
96 system with identical QoIs and accuracy thresholds to
that of a more stable attractor will require a larger particle
ensemble within AMC. This phenomenon is reinforced in
Sec.(VI). Additional scenarios that explore the state-space
dimension N , the forcing parameter F of (6), performance
improvements gained through parallelization, as well as
complexities associated with the system dynamics and QoI
are analyzed in Sec.(VI).

C. COMPETITIVE LOTKA-VOLTERRA MODEL
Equation(7) below models the interaction of species and was
introduced independently by Volterra in 1931 and by Lotka
in 1925:

dxi
dt
= rixi

1−
N∑
j=1

αijxj

 (7)

where xi denotes the population size of the ith species relative
to its carrying capacityKi (uniform), ri the inherent per-capita
growth rate, and αij are intraspecific (if i = j) or interspecific
(if i ̸= j) interaction coefficients. In this paper, we set αij ≥

12122 VOLUME 11, 2023



A. W. VanFossen, M. Kumar: Efficient AMC Uncertainty Forecasting for High Dimensional Nonlinear Dynamic Systems

FIGURE 1. Lorenz-96 Route to Chaos.

0, which corresponds to each species competing with one
another. More so, the intraspecific competition terms are set
to unity (αii = 1 for all i = 1, . . . ,N ) due to xi being
expressed in terms of the carrying capacity. The condition
ri > 0 will also be invoked to ensure that all solutions
with non-negative initial conditions remain bounded and
asymptotically approach the region 0 ≤ xi ≤ 1 [34].
The Lotka-Volterra model is usually a starting point for
natural processes that exhibit aperiodic fluctuations and is
of interest here because (7) can easily be extended to a
high-dimensional system by increasing N . Equation(7) also
offers a juxtaposition to Lorenz-96 in which high dimensional
systems can be explored along with their behavior as strange
attractors or as they evolve into chaos. Specifically, for
three or fewer interacting species (7) cannot have chaotic
solutions [35], [36]. However, for five or more species
any of the above described types of dynamic behavior can
occur, which will be the focus of this paper [37]. As the
computational burden of the AMC platform depends on the
complexities associated with the system dynamics as well
the QoI, it is important to study both (7) and the Lorenz-96
system (6) when highlighting potential performance gains.

III. ADAPTIVE MONTE CARLO
This section describes the existing form of the AMC
uncertainty forecasting platform as developed in [23].
Traditional MC methods utilize known system dynamics to
create a particle (ensemble) representation of time-varying
state uncertainty. In turn, the ensemble is employed to
compute desired statistics, e.g., various moments of the state.
To begin, a finite set of initial realizations of the state
are obtained by sampling the initial state-pdf, as indicated
in (3), forming the initial ensemble. Each realization is
forward propagated through the system dynamics to obtain
the representation of the evolved state-pdf. In traditional MC,
the size of the ensemble remains time invariant, whereby
it is inevitable that the accuracy with which the propagated
ensemble captures the true instantaneous state-pdf varies

throughout the propagation process [38]. In other words, it is
possible for the MC ensemble to be under- or over-sampled
in varying degrees, which leads to lack of trust in the
underlying simulations. Figure(2) presents a flowchart of
an AMC simulation platform, which was first presented
in [23]. The AMC platform improves traditional MC by
creating an adaptive framework that allows for the addition
and removal of particles from the MC ensemble, determined
by the forecasting accuracy of application specific QoIs.

To enable adaptive ensemble control, the user is required
to define appropriate QoIs. For each QoI, the user must
also specify upper and lower error thresholds that represent
performance bounds within which the simulation platform
must operate: see the green shaded boxes in Fig.(2). The
QoIs, along with their error thresholds serve as metrics to
quantify the transient performance of the simulation (see
Sec.(III-A)). The AMC platform defines adaptation rules in
the form of an ensemble enhancer and ensemble thinner (see
blocks labeled 4 and 5 in Fig.(2)) to maintain simulation
performance within the user prescribed bounds at all times.
When the performance of the current ensemble exceeds the
upper error threshold, new optimal particles are introduced to
the initial ensemble at t0 and forward propagated to join the
current ensemble at tn [38]. The ensemble enhancer, (Block
4 in Fig.(2)) is continually executed until the measured QoI
error falls back below the prescribed upper bound, EU∗t .
On the other hand, depending on the variation of St

(where St = h ◦ 8t with h = f (x) and 8t : the state-
transition map), the measured accuracy of QoIs may exceed
the requirements set by the user in terms of its lower error
bound. If this happens, particles are selected for removal
based on their current significance (weight) at time tn via the
ensemble thinner module (Block 5) and are halted for future
propagation. Particles with lower weights are considered for
removal with greater probabilities, where the weight of each
particle is assumed to be the current value of the state-pdf
evaluated at the particle’s location. For the SDE given by (3),
the time evolution of the state-pdf (Wt ) is governed by the
corresponding SLE (4) that can be numerically integrated
or solved with alternative approaches, detailed in [38]. The
ensemble enrichment sub-modules (enhancer and thinner)
together allow us to control the transient performance of the
MC estimation [38]. Section.(III-A) details the theoretical
basis for ensemble enhancements, and Sec.(III-B) details
the current ensemble enhancer architecture. For an in-depth
discussion on the other state-of-the-art AMCmodules, please
refer to [23].

A. QUANTITIES OF INTEREST
The AMC platform performs ensemble adaptations based on
the difference between its measured forecasting accuracy and
stipulated error bounds. QoIs are used to characterize the
transient performance of MCS as it relates toWt . Each QoI
is application specific and can be defined as anything from a
simple state mean to the instantaneous heat flux on a vehicle,
for example. In general, QoIs are defined as the expected
value of a function of the state, h(xt ), where xt is the current
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FIGURE 2. Adaptive Monte Carlo Simulations.

state with density functionW(xt ) ≡Wt [23]:

h(xt ) = EWt [h(xt )]︸ ︷︷ ︸
Quantity of Interest: QoI

=

∫
�t

h(xt )Wtdxt (8)

In the above expression, �t is the state-space at time t .
Prior to executing the AMC platform, its user must decide
what application specific quantities (h(xt)) must be forecast
within prescribed bounds, and, what those prescribed bounds
need to be to achieve a trustworthy forecast. While this is
a nontrivial task, the relationship between the QoI and the
MC approximation error developed in [23] allows AMC to
be implemented in a wide variety of scenarios (see Sec.(VI)).
Continuing under the assumption that the state-transitionmap
8t (x0) = xt is injective and continuously differentiable, (8)
can also be expressed in terms of the initial state-pdf:

EWt [h(xt )] =
∫

�t

h(xt )Wtdxt

=

∫
�0

h[8t (x0)]︸ ︷︷ ︸
St (x0)

W0dx0 = EWo [St (x0)] (9)

where �0 is the state-space at time t0. St (·) ≜ (h ◦ 8t )(·) =
h[8t (·)] is an integrable composite function and h(·) is
application dependent. For the complete derivation of (9),
see [23]. QoIs form the basis of ensemble adaptations in
the AMC platform through the so-called Koksma-Hlawka
inequality given below in a modified form [23], [39]:

|ϵn| = |f − f̃n| =

∣∣∣∣∣
∫

�t

f (xt )dxt −
1
n

n∑
i=1

f (xti)

∣∣∣∣∣
≤ D({xit }ni=1)V (f )

|ϵn| = |h− h̃n| =

∣∣∣∣∣
∫

�0

h[8t (x0)]dx0 −
1
n

n∑
i=1

h[8t (xi0)])

∣∣∣∣∣
≤ D({xi0}

n
i=1)V (St ) (10)

where V (f ) is the total variation of the function f(·), the
samples x0 are drawn from a uniform distribution over
�0, f ≜ St = (h ◦ 8t )(x0) = h[8t (x0)], and h̃n
is the sample-based approximation of h (with h(xt ) =
EWt [h(xt )] defined in (8)). That is, (10) develops the
relationship between discrepancy with respect to the initial
state-pdf (which is known) and the upper bound on the MC
approximation error. The left hand side of (10) represents
the departure of the AMC forecast from the true QoI value.

As such, computationally efficient and easily estimated QoIs
significantly reduce an unavoidable bottleneck in AMC and
notably improve overall simulation run time. On the right
hand side, V (St ) is the variation of the composite function
St , and D({xi0}

n
i=1) denotes the discrepancy of the ensemble

at the initial time t0. The function V (St ) is not ‘‘controllable’’
and intractable for many high dimensional systems, but the
discrepancy function, D({xi0}

n
i=1) is, since the initial state

distribution is known. As a result, the product of terms on
the right hand side of (10) can be controlled by performing
an optimization of the discrepancy function.

B. ENSEMBLE ENHANCER
The redesign of the ensemble enhancer (module 4 in Fig.(2))
is the main focus of the present paper. The theoretical
basis of particle addition in the AMC platform is the
Koksma-Hlawka inequality (see Sec.(III-A)). That is, QoI
forecasting error can be reduced by adding new particles
that minimize ensemble discrepancy at the initial time.
As mentioned before, this optimization problem is difficult,
on account of high dimensionality and non-convexity of the
discrepancy function. In the existing AMC platform, the
actual optimization problem is never solved and new particles
are introduced through an indirect reduction of discrepancy
achieved by efficient sampling following the non-collapsing
and space-filling properties. To introduce the ensemble
enhancer sub-module within the current AMC platform, first
assume that the current particle ensemble at time t can be
represented by Ppt with p particles. Let the corresponding
initial ensemble at time t0 be Ppt0 ∼ U[0, 1)N since a
uniform ensemble can be transformed into any target state-
pdf. Without loss of generality, assume the propagated mean
is the tracked QoI which allows the current MC estimation
error (standard deviation of the MC estimation error) to be
estimated via bootstrapping and denoted by Ept = E(Ppt ).
Now, if the estimation error is greater than the user-prescribed
threshold (EPt > EU∗t ), the ensemble enhancer is activated
and new particles are introduced until the MC accuracy
falls back within the defined thresholds [23]. It should be
noted that all particles are added at time t0 to Ppt0 and
then forward propagated to join the current ensemble at
time t . For a complete description on the development of
the ensemble enhancer please refer to [23]. The original
ensemble enhancer within the AMC platform indirectly
reduces discrepancy through a two-layered approach that
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sequentially enforces criteria defined by the space-filling and
non-collapsing properties of the ensemble to select particles
for addition to Ppt0 . A space-filling sample design leads to
particles that fill out the domain of interest as homogeneously
as possible [40]. Examples of some space-filling designs
are Latin hypercubes, fractional designs, and orthogonal
arrays [41], [42], [43]. There also exists several measures for
quantifying this property, which include, but are not limited
to, distance, entropy, and discrepancy. For the AMC platform,
the discrepancy measure was chosen due to the relationship
between the QoI (i.e., h(xt ) = E[h(xt )]) and discrepancy
given in Sec.(III-A) by the Koksma-Hlawka inequality.
Discrepancy, D({xi0}

n
i=1), can be numerically computed via

the formula given for centered L2 discrepancy in terms of
an ensemble P = {x1, . . . , xn} with respect to a uniform
distribution:

DCL2 (P) =

∑
u̸=0

∫
Cu

∣∣∣∣#(Pu, JXu )n
− Vol(Jxu )

∣∣∣∣q dx


1/q

(11)

where u is a nonempty subset of coordinate indices, |u| is
the number of elements in u, Cu is a unit cube in the |u|
dimensional space, JX is an N -dimensional hypercuboidal
volume, Pu is the projection of P to Cu, and JXu is the
projection of JX onto Cu [26]. A more numerically tractable
version of D(P) was derived by Hickernell and is given by
(14) in Sec.(IV-A). The non-collapsing property assures that
for every point xi, (i = 1, . . . , n), in a sampling design
P, the coordinate of point xji, (j = 1, . . . ,N ), is strictly
unique. That is, when a sampling design is projected onto
a lower dimensional space, randomly chosen particles must
not be superimposed [38]. This property can be defined as the
minimum projected distance of points from one another [24]:

||P||−∞ = min
xi,xj∈P

min
1≤k≤N

|xki − x
k
j | = min

xi,xj∈P
||xi − xj||−∞

(12)

where ||x||−∞ is taken as the minus infinity norm. Equa-
tion(12) states each particle in the sampling design should
have a unique coordinate along each dimension to avoid
computational inefficiencies associated with essentially iden-
tical particles. The non-collapsing property is treated as
the ‘‘gatekeeper’’ in the admissible intervals algorithm
shown in Alg.(1). Looking again at (11), it becomes
apparent why this criteria is important. Identical particles
contribute in an identical way to (11). However, the ensemble
size n increases regardless of if the particle is repeated,
which also corresponds to an increase in computational
load.

This two-layered routine is detailed in Alg.(1) with com-
putational bottlenecks highlighted in red. The highlighted
steps revolve around identifying and adequately exploring
admissible intervals, which ensure the fulfillment of the
non-collapsing property stated above. To do this, one must
project the initial ensemble, Pt0 , onto each dimension and
identify admissible intervals satisfying the projective distance

Algorithm 1 Ensemble Enhancer: Efficient Sampling
1: Estimate performance of the current ensemble Pnt ; that is,
Ent via bootstrapping.

2: (Initialization): Project the existing initial ensemble Ppt0
onto each dimension of the state space.

3: (Identification): Identify admissible intervals along each
dimension k that satisfy the projective distance threshold
Qk
q = {∀x

k,c
j ∈ Qk

q : minxki ∈P
p
t0
|xki − xk,cj | ≥ dmin}

where xki is the kth coordinate of xi ∈ Ppt0 and dmin is
the minimum allowable projective distance.

4: (Intersection): Determine regions of intersection of
admissible intervals along all dimensions (∩q,kQk

q) and
generate a candidate set in the regions of overlap QUt0 ∈
∩q,kQk

q
5: (Cost): Compute and rank the cost of candidates within
QUt0 to determine the optimal candidate to be included in
the initial ensemble.

6: Forward propagate to the next time instant t+ when
EL∗t ≤ Ent ≤ EU

∗

t

threshold function:

Qk
q =

{
∀ xk,cj ∈ Qk

q : min
xki ∈Pt0

∣∣∣xki − xk,cj

∣∣∣ > dmin

}
(13)

where xki is the k th coordinate of Xi ∈ Pt0 , k = 1, . . . ,N ,
and dmin is the minimum allowable distance defined as
dmin =

α
p+1 [23]. α is a tuning parameter that controls

the significance of the projective distance criterion [24].
Invoking (13) means that all candidates within an admissible
interval Qk

q are at a greater distance than dmin in each
dimension from the current samples. It should be noted that
candidates within admissible intervals do not necessarily
satisfy (13) between each other. More so, the number of
admissible intervals grows exponentially with the number
of samples and one must assure each interval is adequately
filled with candidate points. Appropriate filling is crucial
in identifying the candidate corresponding to the global
minimum of discrepancy to be included in the new ensemble
and thereby in controlling the variability of the QoI seen
in (10). As such, lines 3-4 of Alg.(1) increasingly become
a bottleneck as the AMC ensemble grows in size, which is a
direct consequence of complex system dynamics as well as
strict performance requirements related to the QoI. It should
be noted that even if admissible intervals were feasible as
both n (ensemble size) and N (dimensional space) increase,
this approach still circumvents the direct optimization of
discrepancy (11) within the ensemble enhancer.

IV. RE-ENGINEERING AMC
Before redesigning the AMC platform, MATLAB®’s code
profiler was utilized to determine potential bottlenecks within
the individual modules slated for restructuring, arithmetic
minimization, or parallelization. Profiling is a way to
determine the time it takes to execute an application and
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identify where MATLAB® spends most of its time to
later be evaluated for possible performance improvements.
The goal being the efficiency of algorithms not the coding
language itself. Bottlenecks can be defined as areas within the
AMC platform that cause congestion and starve subsequent
sub-modules of data or where insufficient computational
resources are available to handle the load which can also
result in performance issues. Once a bottleneck is found, the
corresponding component has to be fine-tuned in order to
address the root cause. If insufficient computational resources
are available, the CPU will reach its peak capacity early in
the AMC execution timeline. Once at 100% capacity, the
remaining sub-modules will have to queue until resources
become available. Inadequate memory, network capacity,
or heap size can also cause bottlenecks in a similar fashion.
Another type of bottleneck is when a specific component or
sub-module cannot provide data as quickly as needed by the
rest of the application. That is, while the CPU is not at peak
capacity a computation or component within AMC delays the
execution of the rest of the platform due to data requirements
from the bottlenecked component. In either case, a high
resource consuming or non-distributable computation within
AMC is likely the cause of any notable bottleneck and can
be partially alleviated via arithmetic minimization and par-
allelization, which are discussed in Sec.(IV-A) and Sec.(V),
respectively.

To conduct code profiling, a Lorenz-96 sample scenario
was executed with the original AMC architecture and
an upper accuracy bound of EU∗t = 0.1 to determine
the percentage of consumed computation time of major
components within AMC. In Fig.(3), a flame graph shows
a visual representation of the time spent on individual
components of the AMC platform. MATLAB® functions
are in gray whereas user-defined functions are in blue. The
functions in the flame graph are shown in hierarchical order
with parent functions appearing lower on the graph and child
higher. The width of the bar labeled profile summary depicts
the entire AMC platform runtime. The width of the individual
bars above profile summary represent runtimes for individual
modules and functions within MATLAB®. It should be
noted that the profiler itself consumes some time, which is
included in the results. For the ensemble enhancer routine,
the computation time was further assessed to determine
the exact line(s) of code contributing to the bottlenecks
shown in Fig.(3). These bottlenecks can be tied directly back
to the core of the admissible intervals routine within the
ensemble enhancer and the discrepancy cost function. This
analysis led to the arithmetic minimization of the discrepancy
cost function and restructuring the ensemble enhancer
to accommodate not only SA but also a novel parallel
routine discussed in Sec.(IV-A), Sec.(IV-B), and Sec.(V-B),
respectively.

A. DISCREPANCY COST FUNCTION
Discrepancy, (11), provides a means to control the variability
of the quality of the estimation caused by the dependency

FIGURE 3. AMC Flame Graph.

on the variation function V (St ) seen in the Koksma-Hlawka
inequality. It is at the heart of the ensemble enhancer and is
shown to consume 46.7% of the run time depicted in Fig.(3).
A more numerically tractable version ofD(P) is (14) and was
derived by Hickernell [44]:

D2
CL2 (P)

=

(
13
12

)N

−
2
n

n∑
k=1

N∏
i=1

(
1+

1
2
|xki − 0.5| −

1
2
|xki − 0.5|2

)

+
1
n2
·

n∑
k=1

n∑
l=1

N∏
i=1

[
1+

1
2
|xki − 0.5|

+
1
2
|xli − 0.5| −

1
2
|xki − xli|

]
(14)

where N is the dimension of the state space, and n is
the current number of samples plus additional candidates.
Examining (14), one should take special note of the
dependency on the size of the state-space N as well as
the ensemble size n especially under second term’s double
summation. This term is the mathematical representation of
the bottleneck discussed below and will appear regardless
of the ensemble enhancer executing the admissible intervals
routine or SA introduced in Sec.(IV-B) due to numerous
evaluations of (14).

The ensemble within the AMC platform is unique in
that the current ensemble at t0 is identical to the previous
ensemble aside from the newly added optimal particle(s).
This means that the outer summations in the first and second
terms of (14) can be determined on a rolling basis, which
eliminates the need for repeated computational effort. Even
so, looking at the left hand side of Fig.(4) the computation
time of (14) as implemented in the AMC platform shows a
near linear increase in time as the ensemble grows and almost
an increase of an order of magnitude for higher dimensional
cases across a certain ensemble size threshold. That is, for
the 6D Lorenz-96 case the computational cost for a single
iteration of (14) jumps by an order of magnitude around
2.2 × 104 particles. This phenomenon can also be observed
for a generic set of dynamic equations since (14) operates
on Ppt0 ∼ U[0, 1)N as opposed to the initial target state-pdf
(W0). This observation is important when either high levels of
accuracy are required by the user or the propagation of system
dynamics is complex as both can lead to large ensemble
sizes and thereby an increase in computational cost. More
so, discrepancy is at the core of the ensemble enhancement
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FIGURE 4. Equation(14) Clock Time in Increasing Dimensions.

routine and is regularly computed during each admissible
intervals or SA cycle, which highlights the effect of this
increased cost.

The second portion of (14) involves minimizing the
number of arithmetic operations as well as the examination of
built-in MATLAB® mathematical functions such as absolute
value, addition, and multiplication. The right hand side of
Fig.(4) shows the difference between the pre- and post-
arithmetic minimization of the discrepancy cost function
that is valid for most computational languages. The updated
algorithm minimizes the number of arithmetic operations by
reordering the computation sequence as well as defining a
common variable to be utilized in both portions of (14).
It should also be noted that MATLAB® primarily oper-
ates along columns, meaning basic mathematical functions
operating on large arrays are inherently quicker along the
primary dimension. In general, one should take special
note of the complexities involved in implementing standard
mathematical libraries across any computational language to
take advantage of efficient procedures and circumvent any
notable pitfalls. In the context of the AMC platform and
MATLAB®, the array passed to (14) should be an N × n
matrix where N represents size of the state space, n the
ensemble size, and n≫ N in general.

B. ENSEMBLE ENHANCER: SA
The exponential growth of admissible intervals across
increasing state-space dimensions (N ) as well as ensemble
size (n) is depicted in Fig.(5) and leaves the original ensemble
enhancement routine impractical for large ensembles and
high dimensional spaces. The figure pictorially represents
(13) as k = 1 → N alongside larger ensembles. Examining
the upper right side, one should note the difficulty in
adequately filling out each interval with a candidate set
as required for ranking in line 5 of Alg.(1). That is, for
a sufficiently large ensemble size it is infeasible to check
every available admissible interval to a identify the global
minimum. A simple solution would be to rank the admissible
intervals themselves based on the largest distance of each
dimension and only place the candidate set within intervals
that meet the specified minimum threshold. However, as can
be seen from the upper left of Fig.(5) one can still incorrectly
identify the global minimum (denoted in magenta) for a given
ensemble when the number of intervals is limited in this
manner. While different selection processes can be utilized
in identifying the best admissible intervals, one can also look

FIGURE 5. Increase of Admissible Intervals.

towards replacing this routine and solving the optimization
problem defined by (15) directly:

xp+1∗ = arg min
x∈RN

[
D2
CL2 (P

(p+1)
t0 )

]
(15)

where D2
CL2

is (14) and xp+1∗ denotes the next optimal

candidate to be included in Ppt0 thereby defining the P(p+1)t0
ensemble.

To alleviate the computational burden of Alg.(1), Alg.(1)
was replaced with Alg.(2) in [28], which utilizes a stochastic
optimization routine known as SA to solve (15). SA is a class
of gradient-free randomized algorithms that search for the
global minimum of a cost function, in this case discrepancy
for a given ensemble size n, by gradually reducing the
magnitude of the random perturbations with respect to the
current state. Algorithm(2) details the basics of SA whereby
discrepancy (14) is directly optimized within the ensemble
enhancer for every particle addition. For current purposes,
we optimized (via brute force) the cooling rate to be set at
γ = 0.3 and the standard deviation of the proposal density
at σ = 0.1. Figure(6) illustrates the time history of the
cost function (discrepancy (14)) for a randomly generated
ensemble alongside SA’s exploration history. The darker
diamonds on the right side of Fig.(6) reflect a larger number
of iterations spent idled in position. It should be noted that SA
does not identically match the true global minimum (6.146×
10−5) mainly due to SA’s convergence properties associated
with specific cooling schedules [45], [46]. While important
to recognize, the essence and success of SA is in its ability
to accept an increase in the cost function (shown in Fig.(6))
with probability < 1 thereby avoiding entrapment in local
troughs, not necessarily in its ability to quickly converge to
the global minimum with absolute certainty [47]. To balance
convergence and computational efficiency, the parameters
γ = 0.3 and σ = 0.1 were tuned for adequate exploration of
the domain [0, 1)N at higher temperatures (Tmax = 35). Since
k in line 9 of Alg.(2) is also a tuning parameter associated
with the acceptance criteria, it was chosen to normalize δ as
|δ| < 1 × 10−5 for sufficiently large ensembles. Without
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FIGURE 6. SA Cost and Exploration History.

normalization, exp(−δ/kT ) ≈ 1 as T → 0 meaning the
probability of acceptance is ≈ 1 irrespective of temperature.
Requiring normalization, setting Tmax = 35, γ = 0.3, and
σ = 0.1 results in sufficient domain exploration in the early
stages of Alg.(2), which can be seen in Fig.(6). The cycles
per temperature were also optimized to be ncyc = 200 and
the cooling schedule was slightly modified as follows to help
with computational efficiency:

T =

{
γT , if T > 0.5
max(T − 0.05, Tmin), otherwise

(16)

where Tmin = 0 (i.e. only cost reductions are accepted with
certainty during the last cycle of Alg.(2)).

The authors note that this combination of tuning parame-
ters is atypical for traditional simulated annealing and is more
in line with a philosophy known as simulated quenching.
In particular, the quenching schedule and tuned number
of iterations per particle in Alg.(2) may appear quick as
compared to traditional annealing. However, an avenue of
compensation is provided by reformulating Alg.(2) for par-
allelization and leveraging intermediate solution exchange,
which is detailed later in Sec.(V). Broadly speaking,
quenching potentially trades computational efficiency at the
cost of the necessary and sufficient conditions required
for convergence to the global minimum [48]. With proper
tuning, SQ has still seen success in a wide array of practical
applications [49].

As is, SA has no concept of the non-collapsing property
defined previously in the two-layered approach while it
searches for the candidate corresponding to the global
minimum of the discrepancy cost function. That is, SA may
violate the non-collapsing property when choosing optimal
candidates in terms of discrepancy alone. However, SA rep-
resents significant computational savings and reliability as
compared to admissible intervals since it is not required to
fill all areas of interest with candidates. SA simply employs
a randomized search algorithm in relation to its current
chain position. This alleviates the need for ranking individual
candidates to determine the global minimum done by Alg.(1).
The computational time savings provided by Alg.(2) are
also improved upon through the arithmetic minimization of
the discrepancy cost function detailed Sec.(IV-A). The new
ensemble enhancer (see Fig.(2)) is further restructured in
Sec.(V) via a novel parallelization algorithm utilized to solve
a sequence of optimization problems and continually reduce
the computational burden of AMC. That is, Sec.(V) details

Algorithm 2 Ensemble Enhancer: SA
1: Estimate performance of the current ensemble Pnt ; that is,
Ent via bootstrapping.

2: (Initialization): Set an initial temperature T = Tmax and
a starting point for the search x0 = xcurr ∈ �. Determine
L(xcurr)

3: (Transition Proposal): Sample candidate xnew ∈ �

from a proposal density q(x), e.g. q(x) = N (xcurr, σ ).
Determine L(xnew) and compute the change in cost δ =

L(xnew)− L(xcurr)
4: (Acceptance): There are two cases
5: if δ < 0 [Cost Reduction] then
6: Accept the candidate xnew, i.e. xcurr ← xnew and

L(xcurr)← L(xnew)
7: else if δ ≥ 0 [Cost Increase] then
8: Draw u ∼ U[0, 1]
9: if u ≤ exp(−δ/kT ) then

10: Accept the candidate xnew, i.e. xcurr ← xnew and
L(xcurr)← L(xnew). (Metropolis Acceptance)

11: else
12: xcurr does not change
13: end if
14: end if
15: (End Chain for Current T): Continue to evolve changes

(steps (2-11)) until resources (cylces) for the current
temperature is exhausted.

16: (Cooling): Reduce T according to the prescribed cooling
schedule, e.g T ← γT and return to chain evolution
(steps 2-11).

17: (End): Terminate optimization if the temperature is
reduced below a threshold value (T < Tmin) or if the
max computational limit is reached. Return x∗ = xcurr.

18: Forward propagate to the next time instant t+ when
EL∗t ≤ Ent ≤ EU

∗

t

the exploitation of SA’s cost function history to include m
additional particles in parallel under the same clock time as
sequential SA utilizing near optimal estimates of candidate
particles up to the U0 + (i− 1)th ensemble.

V. PARALLELIZATION
Parallelization can be defined as the process of taking a
serial code application that runs on a single CPU and
spreading the workload across multiple cores towards the
goal of significantly reducing simulation time. Transitioning
the AMC platform from serial to parallel requires non-trivial
code rewriting detailed in Sec.(IV-A) and Sec.(V-B). When
designing an algorithm in parallel, it is useful to consider
various approaches in order to analyze competing perfor-
mance gains. Broadly speaking, parallel programming should
focus on the following properties: performance, productivity,
and portability. That is, in parallel programming it should be
predictable to achieve good performance, scalable, maintain-
able, efficient, and functional across multiple platforms [50].
While the minimization of the total amount of computational
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work is an inherent goal of parallelization, communication
or access to memory may also frequently constrain perfor-
mance. In the context of the AMC platform, communication
between CPU cores is an important consideration in the
design of parallel SA detailed in Sec.(V-B). One should also
take special note of the longest chain of tasks that must
be performed sequentially within the AMC platform, which
leads to an additional constraint on parallel performance [50].
Examining Fig.(3), the longest chain of serial tasks in AMC
is contained in the ensemble enhancer routine in which (14) is
minimized via SA to determine globally optimal candidates.
That is, each CPU core evaluates (14) a predetermined
number of times to search for the global minimum of the
cost function. As detailed in Sec.(IV-B), SA depends on
the current cost function realization and temperature values,
meaning evaluations of (14) per particle addition are not the
main focus of parallelization here. Instead, multiple instances
of the restructured ensemble enhancer routine are parallelized
to add m particles concurrently, the details of which are in
Sec.(V-B).

For AMC, parallelization focused on data parallelism and
functional decomposition. Data parallelism is any kind of
parallelism that grows with the data set whereas functional
decomposition runs different program functions in parallel.
Section (V-B) details the specifics of the novel parallel SA
routine and can be classified as the main focus for functional
decomposition in AMC. At best, functional decomposition
improves performance by a constant factor depending on
the number of subfunctions, similar execution time, and
overhead [51]. However, functional decomposition can pro-
vide additional parallelism tomeet performance requirements
given easily accessible computational resources. AMC also
employs data parallelism to scale past a constant factor
improvement when performing accuracy estimation. It should
be noted that the serial performance of modules in the
AMC platform, like those discussed in Sec.(IV-A), cannot
be neglected as inefficient implementations will remain in
parallel. That is, even within a parallel thread, computations
and tasks are ultimately carried out by serial code [51].

A. STATE OF THE ART: PARALLEL SA
As described in [28], SA offers an alternative approach to
the original architecture of the ensemble enhancer within
AMC. SA has been utilized to study the traveling salesman
problem, in circuit design, the design of decision trees,
in data analysis, imaging and neural networks, as well as in
areas of biology, physics, finance, and the military, among
others [52], [53], [54], [55], [56], [57], [58], [59], [60], [61].
As SA is inherently sequential, significant research has been
conducted to not only increase its serial efficiency, but also
to parallelize the algorithm while maintaining convergence
properties or, at the very least, induce minimal errors in
the algorithm. Enhancements on the sequential side include:
quenching, mean-field annealing, simulated tempering, fast
annealing, generalized SA, threshold SA, thermodynamic
SA, and information guided SA [47], [61], [62], [63],
[64], [65], [66], [67], [68]. Simulated quenching (SQ) can

FIGURE 7. Parallel SA Taxonomy.

be thought of as a greedy algorithm trading computational
efficiency at the detriment of SA convergence properties.
However, with proper tuning, SQ has seen success in a wide
array of applications [49]. In [62], mean-field annealing relies
on the mean values of variables being a good approximation
to the optimal stochastic state for quasi-quadratic energy
functions. Simulated tempering attempts to maintain the
equilibrium of a system while seeking alternative minima
thereby lowering the effective cost [63]. Szu et al. [64]
developed fast SA by leveraging Cauchy distributions
which led to faster exploration and convergence. Hoff-
mann et al. [67] prove that threshold accepting is the best
possible strategy for SA for a wide range of objective
functions. Thermodynamic SA develops an optimal operating
strategy for minimizing entropy [68]. In [47], information
guided SA leverages information gathered during the ran-
domized exploration stage to use as feedback for driving
the optimization procedure. While the above developments
are noteworthy in the field of SA, none attempt to leverage
parallel processing to further increase the efficiency of
SA.

Figure(7) categorizes parallel SA into several differ-
ent categories and sub-categories namely: problem depen-
dent/independent, asynchronous and synchronous, as well
as clustered, intermittent, and highly coupled [69]. Problem
dependent parallelization can be thought of as partitioning
the problem across several processors and communicating
only when dependencies necessitate it (e.g., near subdo-
main boundaries). Problem independent parallelization can
take on various different meanings as seen in Fig.(7).
In asynchronous, independent SA chains are instantiated
with differing initial conditions, executed for a predetermined
number of runs, and ranked to then report the best solution.
For synchronous SA, transmission, clustered, intermittent,
and highly coupled differ only in the frequency of solution
exchange and worker responsibilities thereby contributing
to a higher or lower amount of communication overhead.
Additionally, literature such as [70] classifies parallel SA
algorithms as either Single Markov Chain SA (SMCSA) or
Multiple Markov Chains SA (MMCSA). SMCSA can be
thought of as a version of highly coupled or transmission SA
whereas MMCSA would be classified under asynchronous,
intermittent, or clustered SA. It should be noted that hybrid
parallel algorithms have also been developed that utilized
both SMCSA andMMCSA throughout the different stages of
SA. In fact, [71] details a solution methodology that exploits
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both SMCSA and MMCSA dependent on the acceptance
ratio of generated candidate solutions. An example of
asynchronous SA is the implementation of MaxMove pertur-
bations described in [69] to report the best solution amongst
all workers. Onbaşoğlu et al. [69] also develop versions
of SA for the additional categories listed in Fig.(7) and
perform extensive benchmarking against 106 test functions
for consistency and comparison against other state-of-the-art
SA algorithms [72].

More recent developments in parallel SA include: simplex
method, adaptive resampling interval, parallel stretched
SA, greedy, and coupled [73], [74], [75], [76], [77]. The
simplex method in [73] is a hybrid algorithm where SA is
applied to each simplex thereby producing tentative solutions.
The adaptive resampling strategy allows each processor to
independently choose (probabilistically) a target state during
resampling and subsequently carry on annealing [74]. In [75],
parallel stretched SA allows for increased resolution of the
search domains while bounding search time. The greedy
algorithm discussed in [76] implements a memorization
technique to conduct parallel local searches with multiple
local search instances sharing intermediate solutions. New
asynchronous/synchronous parallel coupled SA algorithms
are also proposed in [77] where each parallel thread
is responsible for assessing its cost before entering a
barrier stage (synchronous) or entering a critical section
asynchronously.

B. PARALLEL SA FOR DEPENDENT COSTS
While the strategies listed in Sec.(V-A) can be leveraged
for the optimization of a single instance of discrepancy,
the AMC platform requires the global optimal solution
to (14) for each additional particle to be included in the
ensemble. Therefore in AMC, the parallelization of (14)
(discrepancy) for increasing ensemble sizes is chosen as
opposed to parallelizing lines 3 − 13 of Alg.(2) with
the notion that the strategies developed above can be
incorporated alongside the technique here as the AMC
platform continues to evolve. In terms of classification, the
parallel SA algorithm developed here should be considered
Single Markov Chain Quenching due to the modified cooling
schedule and each processor being responsible for a single
instance of discrepancy. Restated, a sequence of optimization
problems will be parallelized across m cores by leveraging
SA since (14) is uniquely defined for every additional particle
incorporated into the ensemble. Each CPU is currently
responsible for the addition of one new particle (dependent
on all parent CPUs) with batch addition per core planned
for future work. That is, each CPU is tasked with solving
consecutive cost functions defined by (17) (and visualized in
Fig.(8)):

xp+m∗ = arg min
x∈RN

[
D2
CL2 (P

(p+m)
t0 )

]
(17)

where m = 1, . . . , i, i the number of available CPUs, D2
CL2

is (14), and P(p+m)t0 defines an optimal ensemble of p + m
particles dependent on all previous solutions up to m − 1.

One should note the difference between (15) in Sec.(IV-B)
and (17) is in the p + 1 and p + m superscripts high-
lighting the requirement of solving successive and unique
cost functions for every particle added sequentially or in
parallel.

In parallel, each child CPU is able to leverage the
exploration history of its parents’ to determine the optimal
candidate of theU0+ ith ensemble. Throughout the execution
timeline of parallel SA, children CPUs utilize temporary
near optimal estimates of candidate particles up to the U0 +

(i − 1)th ensemble, which are continually updated at the top
of each temperature cycle thereby perturbing all children
cost functions. The higher the number of parallel CPUs,
the higher number of temporary values children CPUs are
utilizing to optimize their own cost function. While the
architecture of Fig.(8) is straightforward, a few integration
items must be addressed, namely: (1) SA’s stochastic nature,
(2) resychronization of parallel CPUs, (3) initialization of SA,
and (4) adequate exploration of the domain. Firstly, since SA
is stochastic in nature the temperature cycles of each parent
and child CPUmay not exhibit the same computational effort
even if they are beginning from identical temperatures. That
is, CPU1 and CPU2 may complete the cycle corresponding to
T = 35 (for example) asynchronously. This can be traced
back to line 2 as well as lines 4-11 in Alg.(2). The AMC
platform implements a resynchronization step at the end of
each temperature cycle to avoid extreme delays of the SA
executation timeline pertaining to children CPUs. In essence,
AMC forces all CPUs to wait for the completion of a specific
temperature cycle before proceeding to line 13 in Alg.(2).
This approach was chosen to avoid scenarios in which
children CPU timelines were delayed by a significant amount
such that SAwas nearly operating in a sequential fashion with
stale parent updates as opposed to parallel. Another design
choice the AMC platform makes is the serial computation
of the first temperature cycle for all CPUs. As stated in [28]
and depicted in Fig.(6), the magnitude of the cost function
perturbation inherited by the children CPUs is designed to
settle as the execution timeline progresses. By computing
the first temperature cycle in serial, the child CPUs are
able to adequately explore the domain space of their new
cost functions at the highest temperature given the current
best estimate from their parents. Alternative approaches to
this include: reheating the child temperature based upon the
corresponding parent temperature of the inherited candidate
or increasing the temperature cycle iteration number in
a similar fashion. Regardless of the approach, the goal
remains to explore the domain space of the perturbed cost
function, especially when the perturbations are large. When
SA cools, exploration of the entire domain becomes less
important as the cost function related to Ti and Ti−1 is nearly
identical. Even though parallel SA alleviates a significant
computational burden within the ensemble enhancer, data
communication and resynchronization of each CPU in
parallel does introduce noteworthy clock time overhead
in comparison to serial computations, which should be
considered [28], [78].
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FIGURE 8. Parallel SA for Dependent Cost Functions.

C. CHALLENGES OF PARALLEL SA
The architecture of parallelization in AMC depends on
multiple processors communicating via shared memory in
MATLAB®. It should be noted that parallelization introduces
additional overhead to launch and synchronize tasks, thereby
increasing both the work and span of the simulation albeit
still notably quicker than serial SA and substantially faster
than admissible intervals. As such, there is a tension between
decomposing tasks for load balancing while still keeping
them large enough such that the cost of synchronization
is negligible and arithmetic intensity is maximized [51].
In AMC, the main sub-module that requires balancing
in parallel is SA. The core of parallel SA discussed in
Sec.(V-B) is the optimization of (14), namely, the discrepancy
cost function. As shown in Fig.(4), the computation of
discrepancy is dependent on the state dimension (N ) as well
as the ensemble size (n), even after arithmetic minimization.
To implement parallel SA, the immediate parent CPU
ensemble needs to be transmitted to the child CPU, which is
depicted in Fig.(8). As the state dimension and ensemble size
grow, this becomes a communication bottleneck in shared
memory. That is, passing an ensemble of size n = 104 versus
n = 102 particles requires significantly more computation
time. This is compounded by the fact that discrepancy is
minimized at each pass of the ensemble enhancement routine.
To circumvent this, the current true MC particle ensemble
lives as a static variable on each core with local ensemble
updates being performed during the SA execution timeline
shown in Fig.(8).

Global ensemble updates occur after each group of CPUs
have completed their respective SA routines. If a large
number of CPU cores are available to the AMC platform,
one should also take note of the potential degradation in the
quality of the ensemble, which is quantified via (14). This
phenomenon can be traced to the difference between local and
global updates of the particle ensemble. During parallel SA,
child CPUs depend upon near optimal estimates of the U0 +

(i − 1)th ensemble as each iteration of parallel SA executes
synchronously. The child CPU executes its optimization

routinewith the parent’s near optimal estimate until an update
is received. When an update is received, the child’s cost
function changes and the routine continues. It should be noted
that these updates are the local updates discussed above.
When a batch of CPUs complete their execution timelines,
a global update is performed on the particle ensemble.
This is equivalent to updating the particle ensemble with
each optimal particle as determined by SA. The difference
between running 100 CPUs in parallel versus 25 CPUs
across 4 iterations is in the global updates of the particle
ensemble as well as the computation time. The former
would be expected to execute quicker whereas the latter
may better maintain the quality of the overall ensemble.
Depending on the computation time and internal AMC
performance requirements, the tradeoff between ensemble
quality and simulation time can be tuned on a case-by-base
basis. It should also be noted that an order of magnitude
change in discrepancy does not correspond to a significant
difference in ensemble sizes for the use cases analyzed
in [28] and [78]. That is, even though parallel SA may
slightly degrade overall ensemble quality as measured by
discrepancy, the accuracy of the QoI is largely unaffected
and, correspondingly, an increase in the ensemble size has
not been observed.

D. PARALLEL SA EFFECTS ON DISCREPANCY
To further illustrate the discussion above, an example entry,
descent, and landing scenario utilizing the dynamics defined
in Sec.(II-A) and an upper accuracy bound of EU∗t =

0.2 W/cm2 on the QoI (heat flux to be defined in Sec.(VI-
A)) was executed in parallel for 1, 4, 8, 18, and 52 CPU
cores as well as a basic random sampling Monte Carlo (BRS-
MC) simulation for comparison. The results pertaining to the
degradation of the ensemble’s discrepancy are highlighted
in Fig.(9). Each core in parallel SA is required to leverage
near optimal estimates of particles up to the U0 + (i − 1)th

ensemble. Again, the higher the number of parallel CPUs,
the higher number of temporary values children CPUs are
utilizing to optimize their own cost function. More so, child
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cost function perturbations occur as updates are passed down
from their parent(s). The more parents a child has, the higher
the chance a perturbation occurs (see Fig.(8)). Since the
temporary values passed from parent to child are nearly
optimal, parallel computing is expected to slightly degrade
the overall ensemble’s discrepancy with respect to sequential
annealing, as can be observed in Fig.(9). As the number of
cores increase from 1 to 52, one can note the degradation
(increase) in discrepancy for a given ensemble size. However,
this degradation is always below that of the BRS-MC
simulation that utilized 153, 500 particles tomeet an accuracy
threshold of EU∗t at all times. The ending ensemble sizes for
parallel SA are as follows: 148895, 149451, 147615, 150261,
and 149047 particles which correspond to 1, 4, 8, 18, and
52 parallel CPUs and are notably below that of the number
of particles required by BRS-MC.

Examining Fig.(9), one can see the discrepancy of parallel
SA for CPUs 4 and 8 is distinctly closer to sequential
annealing and less noisy than the others, which further
reinforces the trade-off between ensemble quality and
computation time. This also supports the analysis done
in [28] and [78] that stated an order of magnitude change
in discrepancy did not correspond to a significant difference
in ensemble sizes for the cases analyzed. It is interesting
to note that parallel SA with 8 CPUs meets the required
accuracy threshold with the fewest number of particles (and
clock time as will be reported in Sec.(VI)) in conjunction with
minimal discrepancy degradation. At face value, one would
expect the architecture with the lowest discrepancy for a
given ensemble size to meet the accuracy threshold quickest.
However, adaptations within AMC are initiated when the
QoI, which in this example scenario is a function of the state,
exceeds the upper threshold not when discrepancy exceeds a
certain bound. The phenomenon observed is associated with
the relationship embedded between D({Xi

0}
n
i=1) and V (St ) as

shown in the Koksma-Hlawka inequality (Sec.(III-A)). That
is, there are scenarios in which an ensemble with a slightly
degraded discrepancy will meet EU∗t with fewer particles than
the ensemble with the optimal under the assumption that both
are below the would be enforced upper bound of the Koksma-
Hlawka inequality. While determining the exact upper bound
given by the Koksma-Hlawka inequality is worthwhile and
can be computed for simple one dimensional systems, V (St )
is typically application dependent and complex or intractable
for higher dimensions and therefore out of scope for the cur-
rent article. In general, proposed parallel architectures should
maintain closeness to the optimal discrepancy (sequential
SA), which will ultimately lead to similar ensemble sizes that
are consistently below that of BRS-MC. This result can be
further observed in Sec.(VI) for numerous scenarios.

VI. RESULTS
This section details the results of entry, descent, and landing,
high dimensional Lorenz-96, and Lotka-Volterra use cases
as they relate to the re-engineered AMC platform. The
results in the succeeding sections were generated using a
Dell Precision 3240 Compact Workstation with an Intel(R)

FIGURE 9. Parallel SA Effects on Discrepancy.

Xeon(R) W-1290 CPU @ 3.20GHz and 32.0GB of RAM.
All code minimization, optimization, and parallelization
results discussed above were implemented within the AMC
platform. That being said, an entry, descent, and landing use
case is first introduced in Sec.(VI-A) and analyzed under
the context of overall simulation time and ensemble quality.
This is then followed by high dimensional Lorenz-96 and
Lotka-Volterra models to examine AMC performance as the
ensemble sizes and dimension of the state-space increase.

A. ENTRY, DESCENT, AND LANDING
Consider Vinh’s equations introduced in Sec.(II-A) (5),
detailing simplified hypersonic entry, descent, and landing
(EDL) dynamics [27]. The dynamics are assumed to be
purely longitudinal for a nonrotating spherical planet with
zero bank-angle flight. The central object is assumed to be
Mars, where R0 = 3.397× 106 m and µ = 4.282837× 1013

m3/s2. An exponential model described as follows is used to
determine the density of the Martian atmosphere:

ρ = ρ0 exp
(
h2 − hR0

h1

)
(18)

where ρ0 = 0.0019 kg/m3, h2 = 9× 104 m, and h1 = 9.8×
103 m. The following initial conditions are assumed [79]:
h0 = 8 × 104 m, V0 = 3.5 kg/m, and γ0 = −2◦.
The initial states are assumed to have Gaussian uncertainty
about their respective nominals with 10% variance for each
state variable. The length and time variables were also
nondimensionalized utilizing Mars’ mean equatorial radius
as the reference length (R0) and the period of circular orbit at
R0 (t0 = R0/vc where vc =

√
µ/Ro).

In hypersonic EDL, accurate prediction of the heating
sustained by a vehicle during flight can aid in the design of
its thermal protection system [80]. As such, the instantaneous
heat flux at a point on the entry vehicle is of interest and can
be defined as:

Q̇(h,V ) =
1
4
Cf v3cρV

3S =
Cf ρ0v3cS

4
exp

(
h2 − hR0

h1

)
V 3

(19)
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FIGURE 10. Entry, Descent, and Landing: QoI.

where S = 5m2 andCf = 1.0 to simulate a spacecraft similar
to the Mars Science Laboratory mission [80]. Therefore, the
expected heating rate during propagation can be defined as
the QoI within the AMC platform as:

h(xt ) = EWt [Q̇(h,V )]︸ ︷︷ ︸
Quantity of Interest: QoI

=
Cf ρ0v3cS

4

∫
�t

exp
(
h2 − hR0

h1

)
V 3Wtdxt (20)

The lower and upper estimation error bounds in approxi-
mating the QoI were set to be EL∗t = 0 W/cm2 (ensemble
thinner turned off) and EU∗t = 1W/cm2. The nondimensional
forward propagation time is taken to be t̃0 = 0 to t̃f = 0.5,
corresponding to approximately 8 minutes of real time [23].

The left hand side of Fig.(10) depicts the time evolution
of (20) as the spacecraft descends through the Martian
atmosphere. Underlayed are specific particle instances of the
QoI corresponding to the associated uncertainty. During the
middle stages of the flight, the spacecraft experiences the
most severe heating (beginning around t = 2 − 4 min.) and
thereby triggers the ensemble adaptations shown on the right
hand side. That is, QoI estimation error is shown using black
diamonds when the measured error is within the prescribed
bounds and blue circles when ensemble adaptations are
required. The purple error curve on the right hand side
of Fig.(10) shows the evolution of a BRS-MC simulation
implemented to meet the prescribed accuracy bounds of the
AMC platform. To do this, batches of 500 particles were
added to the existing MC ensemble, propagated forward in
time, and analyzed in the performance evaluator (module 3
in Fig.(2)) of the AMC platform. If the performance
bounds were violated, the parallel BRS-MC simulation was
reinitialized with an additional set of 500 particles until
the performance thresholds were met at all times. This
leads to the parallel BRS-MC ensemble outperforming the
AMC platform’s error in the early stages due to a larger
overall ensemble prior to the adaptations performed by AMC.
However, parallel BRS-MC comes with no guarantees since
there is no true performance control in this approach and no
mechanisms available to know a-priori how many particles
would prove ‘‘sufficient’’ for the entire simulation [23].
The computational cost of performance guarantees comes in
the form of executing the ensemble enhancer (module 4 in
Fig.(2)) with associated simulation times shown in Fig.(11)
alongside the parallel BRS-MC simulation.

FIGURE 11. Entry, Descent, and Landing: Simulation Time, Ensemble Size,
and Discrepancy.

As described in Fig.(11), the computation time breakdown
for the AMC is shown on the left hand side along with
baselines for the parallel BRS-MC simulation with 100 and
500 batch particle additions utilizing the optimal number
of parallel cores for components outside of the ensemble
enhancer (ie: 8 cores here pertaining to the minimum clock
time of modules 2 and 3 in Fig.(2)). It should be noted
that a parallel BRS-MC simulation with the exact number
of particles needed as determined by AMC is not shown
as this number is not known a-priori. The author notes
that including this simulation would by-pass checking EU∗t
and the need for the ensemble enhancer as AMC would
had to have already been utilized prior in determining the
ensemble size with sufficiently accurate results found as well.
A simulation with a significantly large number of particles
(several orders of magnitude above those shown in Fig.(11))
can be executed. However, the quality of the ensemble
will follow a similar trend to that of the traditional MC
baseline shown in Fig.(11) with the computational burden
placed solely on the propagator (module 3 in Fig.(2)). That
is, the quality of a large traditional MC ensemble will be
significantly degraded as compared to AMC. This means
a larger ensemble at more distant future time steps will
eventually be required to meet the accuracy bounds that
would have been prescribed by AMC. It should be noted
that the difficulty in accurately estimating a prescribed QoI
also plays a role in determining the ensemble size (refer
back to the Koksma-Klawka inequality). As such, comparing
a parallel BRS-MC simulation with a given ensemble
size determined a-priori by AMC or a substantially larger
ensemble would simply be comparing the computational
trade-off of propagating a large ensemble through the same
dynamic system AMC is utilizing with that of other modules
within the platform. There is little insight to gain here as the
propagator (module 3 in Fig.(2)) is fixed for both AMC and
BRS-MC.

For the parallel BRS-MC simulation with 100 and
500 batch particle additions, computation time varies from
a maximum of 30.28 min. to a minimum of 12.38 min.
Without the performance guarantee provided by the AMC
platform, the parallel BRS-MC simulation was required
to restart at each violation of EU∗t , which significantly
slowed down the overall simulation time. As the number
of parallel CPU cores is swept from 1 − 10 cores (with
1 CPU denoting sequential SA), the AMC simulation time
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reaches a minimum of 9.02 min. at 8 cores with the largest
fraction of time being consumed by the ensemble enhancer
routine. Correspondingly, the parallel AMC platform with 8
CPU cores outperforms the large batch size parallel BRS-
MC simulation, meaning the performance guarantee CPU
‘‘cost’’ is negligible when compared to parallel BRS-MC.
The right hand side of Fig.(11) shows the evolution of
(14) (discrepancy) of the AMC platform’s ensemble in dark
blue and the reference sequential SA (cyan) alongside the
would-be discrepancy of the parallel BRS-MC ensemble.
As discrepancy is a measure of non-uniformity for the sample
set, one can conclude the AMC platform’s ensemble better
represents the uncertainty associated for the given EDL
dynamics (5) and for a given ensemble size even though
each ensemble meets the required accuracy thresholds. The
right hand side of Fig.(11) also depicts the time evolution
of the ensemble size related to the AMC platform. As can
be seen, the ensemble increases from an initial size of
1475 particles to 1485 at 2.39 min., 3665 at 3.19 min., and
finally to 6045 particles for the remainder of the simulation.
This ensemble size increase directly corresponds to violating
EU∗t = 1 W/cm2 at 2.39 min., 3.19 min., and 3.98 min.
as shown in Fig.(10).

B. LORENZ-96 MODEL
As defined in Sec.(II-B), the Lorenz-96 system contains
K state-space variables (x1, . . . , xk ) whose dynamics are
governed by (6) such that the variables x1, . . . , xk identify
with the state of some unspecified and nondimensionalized
scalar atmospheric quantity (e.g. wind velocity, moisture) in
K sectors of a latitude circle [29]. The dynamics for x1 require
definitions for x0 and x−1, which are given as x0 = xK and
x−1 = xK−1. xK also necessitates the definition for xK+1
given as xK+1 = x1 which leads to the following boundary
states for x1 and xK :

ẋ1(t) = −xK−1(t)xK (t)+ xK (t)x2(t)− x1(t)+ F

ẋK (t) = −xK−2(t)xK−1(t)+ xK−1(t)x1(t)− xK (t)+ F

(21)

The linear terms in (6) and (21) represent internal dissipation,
whereas the quadratic terms simulate advection [23]. As dis-
cussed in Sec.(II-B), for small values of F , the system has
a steady-state solution: x1 = . . . = xk = F . For larger
values of F , solutions can exhibit periodicity, bifurcations,
and even chaos for state-spaces N ≥ 4. For our case,
solutions corresponding to (N ,F) = (4, 9) [branch point],
(N ,F) = (10, 4) [period doubling], and (N ,F) = (30, 7)
[chaos] are explored with various levels of parallelization.
It should be noted that the integration accuracy thresholds for
chaotic systems were set several orders of magnitude lower
than the estimation accuracy of the QoI to avoid numerical
inconsistencies throughout estimation timeline. Time has also
been normalized so that one unit represents 5 days in the
Lorenz-96 system. The QoI is set to be the mean value of
the state (h(xt = E[xt ]), which results in the cumulative
root-mean-square error triggering ensemble adaptations.

FIGURE 12. Lorenz-96 4D: QoI.

The initial uncertainty is defined asW0 ∼ N (µ0, 60) where
µ0 = [1, 1, 1, . . . , 1, 1] ∈ RK and 60 = 1K (identity matrix
of size K ×K ). For each case, the lower and upper estimation
error bounds were set to EL∗t = 0 (ensemble thinner turned
off) and EU∗t = 0.035 for consistency across the increasing
state-space dimension.

Similar to Fig.(10), Fig.(12) shows the time history of the
QoI (mean value of the state) on the left hand side along
with required ensembles adaptations to meet the prescribed
error bounds on the right. As time progresses, the state mean
varies from ≈ 1 unit to a maximum of 4.1 units at 80 hrs.
with instances of the state uncertainty underlayed in gray. The
evolution of the QoI estimation error for both the traditional
parallel BRS-MC simulation and AMC is once again shown
on the right hand side of Fig.(12). As (N ,F) = (4, 9) is
the second branch point for the Lorenz-96 model in 4D,
the state mean becomes an increasingly difficult quantity
to track throughout the forecast. This can be visualized via
the blue circles in Fig.(12), which denote required AMC
ensemble adaptations starting at t = 40 hrs. to tf = 120 hrs.
Correspondingly, the parallel BRS-MC error evolution is
also shown on the right hand side of the figure, which was
determined in an identical way to the EDL simulation. That
is, the parallel BRS-MC simulation was restarted with an
additional batch of particles any time the prescribed EU∗t
was violated. It should be noted that AMC enriches the
ensemble at every time instance from t = 40 to tf =
120 hrs, meaning the parallel BRS-MC simulation has to be
reinitialized numerous times to eventually meet the required
accuracy bounds at tf . In terms of simulation time, this should
be thought of as a near worst-case scenario for BRS-MC. That
is, comparing Fig.(10) to Fig.(12), one can see that having to
restart the parallel BRS-MC simulation to meet EU∗t subsided
after t = 4 min. in EDL, whereas it continued until tf for
Lorenz-96 in 4D. The overall simulation times for parallel
BRS-MC and AMC are further visualized in Fig.(13).

The computational time breakdown for the 4D Lorenz-96
model as it relates to the AMCplatform and parallel BRS-MC
simulation (utilizing the optimal number of cores) is shown
on the left hand side of Fig.(13). The overall simulation
time for parallel BRS-MC with 500 and 100 batch particle
additions are shown by the dashed green and purple lines.
For the AMC platform, the number of parallel cores is swept
from 1 − 10 cores, with the overall minimum simulation
time (tmin = 41.91 min.) occurring at 8 CPU cores.
More so, module 3 and module 4 in AMC (Fig.(2)) have
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FIGURE 13. Lorenz-96 4D: Simulation Time, Ensemble Size, and
Discrepancy.

FIGURE 14. Lorenz-96: Parallelization Comparison.

been parallelized with the overall minimum simulation time
occurring at the minimums of each individual component.
Like EDL, there is significant time savings for the larger
batch parallel BRS-MC simulation. The right hand side of
Fig.(13) depicts the evolution of (14) (discrepancy) for the
4D Lorenz-96 model alongside the would-be discrepancy
of parallel BRS-MC and time evolution of the AMC
ensemble size shown via the black axis. Consistent with
the EDL scenario, the discrepancy of the parallel BRS-MC
simulation is several orders of magnitude above AMC. This
is an expected result as module 3 (ensemble enhancer)
purposefully minimizes (14) through the execution of SA
whereas parallel BRS-MC circumvents this through an
alternate sampling routine. The exponential growth of the
ensemble size from 825 to 14801 particles over time (shown
in black) corresponds to the violations of EU∗t in Fig.(12).
Upon violating EU∗t , the ensemble enhancer is triggered for
enrichment and performance is reevaluated which ultimately
contributes to the overall simulation times shown on the left
of Fig.(13).

Additional analysis of the AMC simulation time associated
with the Lorenz-96 model is shown in Fig.(14). Overall run
times for (N ,F) = (4, 9) [branch point], (N ,F) = (10, 4)
[period doubling], and (N ,F) = (30, 7) [chaos] are shown
minimized on the left hand side. Run times vary from a
maximum of 91.07 min. (4D), 3.19 min. (10D), 188.42 min.
(30D) with the disparity in simulation time being largely
attributed to the ease of estimating the QoI given EU∗t =

0.035 versus system behavior. That is, the error on h(xt ) =
E[xt ] is significantly easier to control in the 10D period
doubling simulation as opposed to the branch point or chaotic

systems. The right hand side of Fig.(14) normalizes the
simulation times for each of the 4D, 10D, and 30D parallel
AMC Lorenz-96 cases to determine the fraction of time
consumed by each module. Regardless of the number of
cores, the ensemble enhancer routine consumes 60−80%+ of
the overall run time for each simulation. As the dimension of
the state-space increases in Lorenz-96 model, the clock time
fraction for ensemble enrichment increases alongside it. This
can be partially attributed to the phenomena shown in Fig.(4)
with discussions in Sec.(IV-A). That is, the strict error bound
of EU∗t = 0.035 for a chaotic Lorenz-96 in 30D, quickly
pushes the ensemble size over the computational time jump
shown in the figures, thereby inherently costing more clock
time for the same EU∗t bound of a lower dimensional system.
In fact, the ending ensemble sizes of the optimal AMC
platform for Lorenz-96 in 4D, 10D, and 30D are: 14815,
1505, and 7175, reinforcing the observations of Fig.(4) that
higher dimensional systems experience a clock time increase
when minimizing (14) due to a combination of ensemble and
state-space sizes.

An increase in overall simulation time can also be observed
for each scenario when moving from 8 (4 in 30D) cores to
10 (8 in 30D). Referring back to Sec.(V-C), parallel SA and
task decomposition are balanced through a resynchronization
step. That is, the ensemble enhancer is decomposed across
CPU cores to balance the computational load as much
as possible. However, it is possible that CPU1 completes
its temperature cycle quicker than CPU2 within SA. This
can be traced back to the transition proposal on line 3 of
Alg.(2), where candidate particles are sampled from a
proposal density (e.g. if the sampled candidate is outside the
domain of (14) (discrepancy) resampling is required). The
resynchronization step shown in Fig.(8), forces SA to remain
in parallel at the start of each temperature cycle, but this may
lead to additional core idling as the number of parallel CPUs
is increased. Combining this observation with that discussed
above in relation to higher dimenensional systems, one can
observe the optimal number of utilized CPUs is 8 (lower
dimensional systems) or 4 when EU∗t = 0.035, with 4 and
8 CPUs completing within 4 mins. (∼ 80 min. total clock
time) of each other for Lorenz-96 in 30D.

C. COMPETITIVE LOTKA-VOLTERRA MODEL
Introduced in Sec.(II-C), the Lotka-Volterra dynamics also
require definitions for both aij and ri. For this article, we set
aij ≥ 0, which corresponds with species competition and we
invoke ri > 0 to ensure that all solutions with non-negative
initial conditions remain bounded. The lower dimensional
(4D) Lokta-Volterra case is based off the chaotic system
determined by Vano et. al. and repeated below [34]:

ri =


1

0.72
1.53
1.27

 , aij =


1 1.09 1.52 0
0 1 0.44 1.36

2.33 0 1 0.47
1.21 0.51 0.35 1


(22)
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FIGURE 15. Lotka-Volterra: Parallelization Comparison.

The higher dimensional Lotka-Volterra systems (10D and
30D) build off (22) by randomly generating additional
aij and ri values while still invoking the aij ≥ 0 and
ri > 0 constraints. Once again, it should be noted that
the integration accuracy thresholds for chaotic systems were
set several orders of magnitude lower than the estimation
accuracy of the QoI. Similar to the Lorenz-96 test cases, the
QoI for Lotka-Volterra is set to be the mean value of the state,
h(xt ) = E[xt ]. The initial uncertainty is defined as W0 ∼

N (µ0, 60) where µ0 = [µ01, µ02, µ03, . . . , µ0k−1, µ0k ] ∈
RK and 60 = 0.01 ∗ 1K (identity matrix of size K × K ).
For the 4D case, µ0 = [0.1, 0.35, 0.25, 0.4]. For each case,
the lower and upper estimation error bounds were set to
EL∗t = 0 (ensemble thinner turned off) and EU∗t = 0.004 for
consistency across the increasing state-space dimension.

Consistent with the EDL and Lorenz-96 studies, the run
times for the 4D, 10D, and 30D Lotka-Volterra systems are
shown minimized on the left hand side of Fig.(15). Run
times range from a maximum of 12.83 min. (4D), 13.21 min.
(10D), and 5.01 min. (30D) with 1 CPU to a minimum of
5.78 min. (4D), 5.09 min. (10D), and 1.96 min. (30D) with
8 CPUs. It should be noted that maximum and minimum
parallel BRS-MC simulation times for 30D Lotka-Volterra
were also determined to be 4.5min. (100 batch) and 1.92min.
(500 batch) with the latter being nearly identical AMC in
30D.

The right hand side of Fig.(15) once again normalizes the
simulation times for each of the 4D, 10D, and 30D parallel
AMC Lotka-Volterra cases to determine the fraction of time
consumed by each module. In slight contrast to Lorenz-
96, the ensemble enhancer for Lotka-Volterra consumes
approximately 50−60% of the overall simulation clock time.
While still significant, this means the ensemble enhancer
in Lotka-Volterra did not experience the computational time
jump in computing discrepancy for high dimensional systems
or large ensemble sizes. In fact, the ending ensemble sizes
for the 4D, 10D, and 30D Lotka-Volterra systems are:
4435, 3525, and 1275, which are all well below the time
jumps depicted in Sec.(IV-A). It should be noted that the
integration of the system dynamics consumed a substantial
fraction of clock time for Lotka-Volterra when compared to

Lorenz-96. As this is a characteristic of the inherit system, the
time fraction cannot be significantly reduced. Parallelization
routines and alternative numerical integration schemes may
be able to be implemented. However, the difficulty in
integrating the system dynamics is a characteristic of the
governing equations themselves. In general, the overall
minimum simulation time for Lotka-Volterra occurs at 8
CPUs in all scenarios. This also corresponds to the minimum
clock times for the ensemble enhancer as well as the accuracy
estimation routines in each case.

VII. CONCLUSION
The AMC platform was re-engineered to include the novel
implementation of a parallel global stochastic optimiza-
tion routine alongside additional module enhancements
such as arithmetic minimization. The optimization and
parallelization of a sequence of cost functions within the
ensemble enhancer of the AMC platform significantly
reduced the overall simulation time required to generate
timely, trustworthy, and accurate forecasts for low and high
dimensional systems alike. It has been shown that the
parallel AMC platform consumes 248.7% less clock time
for EDL, 403.42% for 4D Lorenz-96, and and 229.47%
for 30D Lotka-Volterra when compared to BRS-MC with
100 batch particle additions with similar savings in 10D
and 30D (4D for Lotka-Volterra). It was observed that the
ensemble enhancer consumes a significant fraction of the
total simulation time regardless of the system dynamics or
state space dimension. While this is an expected result as to
meet the required accuracy bounds, it should be noted that
the ensemble enhancer consumes a larger time fraction for
high-dimensional systems with considerable ensemble sizes.
This is mainly due to the computational time jump associated
with optimizing discrepancy in high dimensional spaces with
large ensembles. More so, the optimal number of parallel
CPU cores for most scenarios was found to be 8 due to the
balancing of task decomposition and the resynchronization
of parallel SA. Moving forward, alternatives to SA such as
the momentum method and Nesterov’s accelerated gradient,
among other various global optimization techniques will be
explored to minimize resynchronization while potentially
reducing the overall computational effort. The addition of
m particles per CPU as opposed to a single particle is also
a worthwhile avenue of exploration. The implementation of
single precision can save significant clock time and will be
introduced as the AMC platform continues to be restructured
and evolved for efficient forecasting. Pertinent studies related
to the efficacy and efficiency of the performance evaluator are
also planned for future development.
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