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ABSTRACT It is important for humans to remain hydrated, particularly for older adults who are at a
greater risk of dehydration and may forget to drink. Monitoring liquid intake and getting reminders to
drink throughout the day is a useful solution to increase hydration levels. The objective of this paper is
to automatically detect drink events from multiple containers in a simulated home environment using a
vision-based approach. The proposed work compares the use of depth and RGB (red, green, blue) cameras
for this task. In this paper, we compared 2D and 3D Convolutional Neural Networks (CNN) using RGB and
depth cameras. We collected data from nine participants performing drinking, eating and other Activities of
Daily Living (ADL) in a simulated home environment. We found that for the 3D models, the RGB and depth
camera inputs provided very similar F1-scores for both 10-Fold (94.3% vs 93.9%, respectively) and Leave-
One-Subject-Out (LOSO) cross validation (84.2% vs 86.2%, respectively). This is a promising result as depth
cameras also mitigate the challenges to privacy of RGB-based models. The 3D CNN models outperformed
the 2Dmodels, thereby creating amore robust system.Depth cameras are a useful alternative to RGB cameras
with equal performance in identifying drinking events.

INDEX TERMS Artificial neural networks, computer vision, depth cameras, fluid intake monitoring, image
recognition, intake gesture detection, video signal processing.

I. INTRODUCTION
Remaining hydrated is an important factor of being healthy,
especially as we age. Unfortunately, many older adults do not
consume enough liquid to stay hydrated, leading to adverse
consequences such as hospitalization or even death. Several
factors increase the changes of dehydration as we age. Our
sense of thirst diminishes, and we often forget to drink
enough [1], [2]. Other bodily changes such as decreased
water content and reduced kidney function also increase our
likelihood and severity of dehydration as we age [1]. As our
population continues to age, more older adults will wish to
age in their homes independently. Creating tools to monitor
and prevent dehydration in a home environment will become
increasingly useful to prevent hospitalizations.

The associate editor coordinating the review of this manuscript and

approving it for publication was Wenbing Zhao .

Getting reminders to drink throughout the day can be
beneficial to increase overall hydration. Therefore, there is a
need for a system that tracks the amount of liquid consumed
and sends reminders to drink only when needed. The first step
of this process is to detect when a drink occurs, which is the
main objective of this paper.

Other systems have attempted to track hydration using
wearables or sensors in the bottle, however each of these have
their own pitfalls. Wearables must be recharged regularly and
onemust remember to put them on. Sensors in containers also
need recharging, and limit which container you can drink out
of. Having an ambient system that requires no input from the
user is an attractive alternative.

In our previous work, we analyzed if RGB camera data
(i.e. normal cameras) could classify drinking events in a
home environment [3]. This manuscript expands on this by
comparing the use of depth camera data for this task. The
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motivation of this manuscript is to determine if using depth
cameras is a viable option to detect drink intake events.

Depth data are an attractive option compared to normal
cameras, as they have better potential to preserve privacy,
a key factor when deploying cameras in home settings. They
are also influenced less by different lighting conditions.
Instead of capturing an image of the environment, a depth
camera captures the distance of each pixel to the camera and
creates a depth map. Though more privacy preserving, depth
data provide less detailed information and might have noise
in the signals. This paper analyses if using data from depth
cameras and deep learning can accurately detect drinking
events in a simulated home environment, comparing it to
models trained on RGB data.

In this paper, we also compare the use of 2D CNN models
to 3D CNN models. 2D models take in a single image
as the input and attempt to classify each individual frame,
whereas 3D models receive multiple frames as input (i.e
small videos) and classify the entire group of frames at once.
We hypothesized that using 3D inputs with depth images
would have a superior performance, as it is classifyingmotion
of the drink which is easier to see in depth images compared
to classifying drinking in single frames. To the best of our
knowledge, no other papers have used depth videos to detect
drink intake.

II. PREVIOUS WORK
Previous work has investigated multiple ways to detect a
drink event, mainly includingwearables, containers or vision-
based approaches [4]. This section will focus on outlining
the methods that have previously used depth data to classify
drink events, which have all used the Microsoft Kinect to
capture RGB and depth frames. Chua et al. used only the
depth images of a Microsoft Kinect to extract hand grasping
postures using Haar-like features in the frame [5]. This could
detect whether a hand was grasping a cup with an 88%
true positive rate (F1-score of 84.3%) [5]. Tham et al. was
one of the few to exclusively use depth images from a
Kinect with dynamic timewarping to classify drinking among
other activities with an F1-score of 93% [6]. Chang et al.
showed that these two could be combined to first detect
the hand holding the cup, then detect the activity such as
drinking or spoon holding [7]. Due to the common problem
of occlusion with vision based approaches, Cippitell et al.
used a top down orientation with the Kinect placed on the
ceiling to capture a meal intake [8], [9], [10]. Since the
Microsoft Kinect does not function properly with a top-
down orientation, they developed algorithms using a Self-
Organized Map algorithm to track the person’s movements.
They achieved 98.3% accuracy to detect drinking [8]. This
was tested on 35 participants during a meal. However,
the dataset was limited, as it only included images of
mealtime gestures. This work was expanded in [9] to improve
the real-time capabilities which created a more automatic
identification of the first and last frame of a food intake
event. Cunha et al. placed a Kinect in front of 3 elderly users
consuming a meal. Based on the joint coordinates, mealtime
intake events were detected with an average success rate of

FIGURE 1. HomeLab layout at KITE Research Institute. The yellow box
represents the areas in the field of view of the cameras, the red dots
represent the locations of the RGB cameras and the blue dot represents
the depth camera.

89% [11]. Costa et al. extended this study by also adding
Hidden Markov Methods to classify the events [12]. They
found that different methods were better at classifying liquid
than food intake, and left-handed liquid intake proved to be
a challenge [12]. Kassim et al. used a Kinect in front of the
person to determined intake events during a meal to predict
the calories consumed. They achieved an overall accuracy
of 96%, however it was only tested on one subject [13].
Hondori et al. fused a Kinect with a wrist inertial sensor to
detect eating and drinking, however this was only a pilot study
with 1 participant [14].

Of the papers these papers listed, all used classification
of static frames (2D) to detect drinking. Rouast et al.
as well as our previous work using RGB signals shows that
using multiple frames for drink recognition can yield better
results compared to individual frames [3], [15]. Rouast et
al. previously showed this with meal-time events, comparing
multiple 3D deep learning architectures to 2D deep learning
architectures, achieving an accuracy of. This paper builds
upon these by comparing the use of a depth camera to an
RGB camera. To the best of our knowledge, no study has
attempted to detect fluid intake events using deep learning
with multi-frame inputs of depth frames. Therefore, the main
contribution of this manuscript is to show if 3D CNN can
better detect drink intake events with depth cameras than
traditional models used in previous works. This will be
potentially used as a privacy preserving, accurate solution for
ambient drink intake monitoring.

III. METHODS
A. DATA COLLECTION
The experiments were performed in HomeLab, a simulated
home laboratory, at the KITE Research Institute, TRI-UHN
(Figure 1). Ethical approval for the study was obtained from
the KITE-TRI-UHN Research Ethics Board (21-5132) on
August 21, 2021, and participants gave written informed
consent prior to study participation.

Nine subjects, 5 male and 4 female with an average
age of 24±3 (Mean±Standard deviation), performed all
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FIGURE 2. Examples of the drinking events using the depth camera.

FIGURE 3. Architecture of a 2D CNN model, the DenseNet121 which performed well in most hyperparameter combinations.

FIGURE 4. Architecture of the 3D CNN model, proposed by Carreira et al. [16].

experiments. The experiments included a controlled drinking
scenario and other activities. The controlled drinking scenario
had two parts: (1) where the subject drank a small, medium,
or large sip based on their perception and comfort, and (2)
where the subject drank a single or double sip. A double sip
consists of the subject swallowing twice without placing the
container to the ground. In the activity scenario, the subjects
drank as much as they wanted, ate with a spoon, fork and their
hands and performed other activities of daily living around
the space (Table 1). The experiments were performed in a
random order and the order of the containers, the location of
the subject, and the sip size were also all randomized. In each
experiment, the subject drank a total of 12 sips using their

dominant hand from the 12 containers (Table 1). The eating
events were repeated three times each for each subject.

B. DATA EXTRACTION AND PRE-PROCESSING
Videos were collected from an RGB and a depth camera,
simultaneously. The events were labeled by both the subject
and the researcher pressing a button when the vessel touched
the lips of the subject to collect the ground truth. In this paper,
an Intel RealSense L515 Lidar camera was used which has
an embedded RGB camera. This camera has a field of view
of 70◦

×55◦ (±3◦) with frequency of 30 fps. The maximum
resolution is 1024 × 768.
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TABLE 1. List of all activities performed in our study.

For the multi-frame input models, hereafter referred to as
the 3D model, the videos were downsampled to 6fps and
3fps. Videos of 3sec and 10sec were extracted to train the
model. If the timestamp indicated by the ground truth was
within the window of the frames the entire video data was
labeled as a drink event. The two frame rates and window
sizes were evaluated to determine if they had an impact on
the performance of the model. For the single-frame input,
hereafter referred to as the 2D model, the exact frames in
the 10sec videos inputs were used. Only the frames where
the vessel was directly touching the lips of the subject
were labeled as drinks. This allowed us to fairly compare
the 2D and 3D models, as they were analyzing the same
frames.

As the participants were in a simulated home environment,
the background was complex and we had previously found
that sometimes this background confused the model [3].
To mitigate this, for the depth data it was possible to remove
the foreground and background based on the depth values.
Then, the noise including small contours were also removed
based on the size of the connected component after erosion
(Figure 2).

C. NEURAL NETWORK CONFIGURATIONS
In this paper, different CNN models were trained to perform
a binary classification identifying drinking and non-drinking
events. Using either RGB or depth data, a 2D CNN was
used to classify individual frames and 3D CNN was used
to classify multi-frame inputs. We used Transfer Learning
to build both 2D and 3D models. Transfer learning is a
technique in which we use previous architecture already
trained on datasets containing large amounts of data in a
similar application and then transfer this knowledge to the
model with our own dataset. This technique reduces the
amount of data required and, in many cases, increases
the accuracy as compared to models built from scratch.

Multiple parameters and hyperparameters were tested to
find the best combination. This included

• Frame rate: 3 and 6 fps were tested for the 3D models
as the former requires less computation to train and test,
while the later provides more information per input.

• Window size: 3 and 10 second window inputs were
tested for the 3D models. Ten seconds was chosen as the
entire drink fits in one input, while 3 seconds contains
partial drinks.

• Hyperparameters: were adjusted such as batch size and
learning rate

• Number of layers trained: Either all of the layers or only
the top layer (known as feature extraction) were trained

• Sampling method: To overcome the class imbalance,
various methods such as class weights, undersampling
and oversampling were compared

• Pre-trained models: For the 2D models, 8 state-of-
the-art pre-trained models were tested. This includes
DenseNet169, DenseNet121, InceptionResNetV2, Incep-
tionV3, Xception,MobileNetV2, NasNetLarge, ResNet.
These are all commonly used, state-of-the-art models.
The model that most commonly performed the best
amongst the different hyperparameter combinations
is shown in Figure 3. For the 3D data, only one
pretrained architecture was chosen called Inflated 3D
Conv Nets (I3D) proposed by Carreira et al., which is
based on the Inception V1 architecture but with inflated
layers to allow 3D (video) inputs [16]. It achieved a
71.1% accuracy on the Kinetics dataset which includes
400 human activities obtained from YouTube videos.
It outperformed other 3D deep learning models on
benchmark datasets such as ImageNet. We also added
a dropout layer to reduce overfitting. This model’s
architecture can be found in Figure 4.

Additionally, we applied Fine Tuning to the models where
the last 2/3rds of the layers were retrained and refined.
We applied the early stopping mechanism to reduce overfit-
ting.

Out of all the combinations listed above, the model that
yielded the highest F1-score was chosen and is presented
in this paper. F1-score was chosen as the key metric since
the two classes were imbalanced, so it properly displays the
balance between precision and recall.

IV. RESULTS AND DISCUSSION
The best models for each category were the model that
yielded the highest F1-score. We tested both 10-Fold and
Leave-One-Subject-Out (LOSO) cross validation. The 3D
models outperform the 2D models, particularly for LOSO for
both depth and RGB data (Table 2).

LOSO validation is a more conservative approach as it has
less biases and is a more realistic approach to what would
happen in a real-world deployment. The 2D inputs contain the
exact frames as the 3D models in order to properly compare
them. This led to some images that were similar to each other,
as they are close together in time and the participant may have
had little movement between frames. This can introduce bias
into the test data particularly in 10-fold validation; therefore
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TABLE 2. Performance metrics for the top models. the values in the brackets represent the standard deviations for each.

FIGURE 5. Comparison of (a) F1-Score and (b) Accuracy for trained models of different hyperparameter combinations. The 3D data is
shown in orange whereas the 2D is in blue.

it is more appropriate to look at the LOSO validation for the
2D models.

In the 3D models, the depth and RGB inputs had almost
the same results. The depth LOSO results achieved a slightly
higher F1-score (86.2%) compared to RGB (84.2%), but with
a larger standard deviation. This shows that using depth inputs
may be an equally viable solution for this task with multi-
frame inputs. Depth cameras are privacy preserving, as the
individual is not identifiable, making them advantageous.

For both depth and RGB inputs, the 2D models were
inferior to the 3D models. Figure 5 shows the F1-Scores and
Accuracy values of all tested models. This confirms that 3D
models are more robust at identifying these activities for both
RGB and depth inputs. Interestingly, when analyzing the 2D
models, the depth inputs underperformed compared to the
RGB for both 10-Fold and LOSO cross validation (62.3% vs
73.6% F1-score). This is in-line with the previous literature,
which has shown that depth cameras generally performed
worse than RGB cameras. However, our paper shows that

although this is true for the traditional 2D models, using 3D
models trained on depth data creates a model with equivalent
performance to the models trained by RGB frames.

Confusion matrices (Figure 6) indicate that, the 3D model
trained on depth inputs had more false negatives than false
positives for the LOSO validation whereas the 3D model
trained on RGB data provided larger false positive rates.
Please note that, the reason the number of samples varies
across the confusion matrices is that we selected the best
models for each scenario (ex. Number of frames per sample,
type of sampling etc.). In our case, false positives are more
critical as they are predicting that the person drank when
they did not, which could overestimate the amount consumed
and not prompt the user, leading to a dehydration status.
Therefore, considering this criterion, the 3D model trained
on depth is outperforming the model trained on RGB data.
However, in our application, equal amounts of false negatives
and false positives are preferable since throughout multiple
sips, the overall error could balance out. The confusion
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FIGURE 6. Confusion matrices for the 3D models, comparing RGB and depth inputs with 10-Fold and LOSO cross
validation.

FIGURE 7. ROC curves for the best RGB and depth models.

matrices of LOSO validation show that, the 3Dmodel trained
on RGB provided closer amounts of false positives and false
negatives (15.7% vs 9.5%) compared to the model trained by
the depth data (28.2% vs 1.2%). In 2D models, the model
trained on depth are providing more false positives and false
negatives in LOSO compared to the model trained on RGB
data.

The Receiver operating curves (ROC) (Figure 7) and
Precision Recall curves (Figure 8) show that, in all cases,
the 2D models have lower Area Under the Curve (AUC)
and standard deviations compared to the 3D models. All
of the 10-Fold validation models achieve a near perfect
AUC.

A heat map was created using Gradient-weighted Class
Activation Maps and was overlayed on top of the original
images. This uses the gradients of the last convolutional
layer before the output layer to localize where the model is
‘‘looking’’ to make the prediction (Figure 9). In most cases,
the model is looking at the participant. However sometimes
it is looking at other noise in the environment (Figure 9(a))
where, although it was properly classified, the model is
looking at the participant, the ceiling, and the table. The
example frames in Figure 9 (b) and (c) indicate that the model
is properly looking into the participant’s face to detect the
drinking event. Future works should attempt to fully isolate
the person in the frame to improve the model performance.
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FIGURE 8. Precision recall curves for the best RGB and depth models.

FIGURE 9. Gradient class activation maps for 3 different examples of
drink events using depth data.

Despite their improved performance over the 2D models,
the drawback of using 3D models is their high computational
cost to train. When implementing this model, this would also
increase the computational time it takes to make a prediction.
The 2Dmodel took 0.4 s tomake a prediction on an individual
input while the 3D model took 1.3 s. However, the 2D model
needs to perform this prediction on every individual frame
but the 3D model first collects 3 or 10 seconds of data to
input to the model, therefore the longer computational time
is not detrimental. Therefore, either the 2D or 3D models are
practical for implementation in a real-world setting.

TABLE 3. Comparison with the literature using depth.

This work builds on previous works by using videos
instead of images, providing a robust dataset not limited to
meal time events, and compares the use of RGB to depth data
separately. A comparison with the literature can be found in
Table 3.

Even though depth cameras are privacy preserving, there
is still the problem of occlusion - as with all vision-based
approaches. The personmust be visible in the frame, meaning
drinks captured outside the home would not be registered.
The major limitation of this study is that only the drinking
action was detected and the amount of liquid intake was not
measured. Real-time deployment of the final model should
also be investigated further, since the 3D models would have
to cache frames to create the input, before injecting them
into the model. Additionally, adding other features such as
overlaying human pose/joint tracking should be investigated
to determine if tracking the human can improve the model’s
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performance. Fusing both RGB and depth into one input
can also be analyzed to see if it increases the model’s
performance. Finally, future work should test the algorithm
in real time and create a prompting system to remind the user
to drink throughout the day. Since some daily liquid intake
also comes from food intake, it is important to expand this
algorithm to classify food intake events, particularly those
from a spoon.

V. CONCLUSION
Dehydration is a common and potentially consequential
issue when presented in older adults, therefore it is critical
to remind older adults to drink regularly to ensure proper
hydration. The first step of such a prompting system is to
detect when a drink occurs and only remind the user to drink
as needed. This work compares the use of depth cameras and
RGB cameras to classify drinking intake events in the home
environment. We have compared 2D and 3D CNN models.
Overall, we found that the 3D models are more robust and
have higher F1-scores than the 2D models for both depth and
RGB inputs. However, for the 3Dmodels, the depth and RGB
inputs have very similar F1-scores for both 10-fold and LOSO
cross validation. This shows that depth data is a viable option
as it is also privacy preserving. Future work should investigate
fusing the RGB and depth data or overlaying a skeleton pose
tracking as data augmentation. We will also create a real-
time classification and prompting system to remind the user
to drink and track liquid intake events.
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