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ABSTRACT The aim of this article is to implement the Generalized Modified Adomian Decomposition
Method to compute the semi-numerical solution of the linear system of intuitionistic fuzzy initial value
problems. Here, we consider the initial values as generalized trapezoidal intuitionistic fuzzy numbers.
The technique is applied to brine tanks problem and coupled mass spring systems.Theoretically, different
approaches to solving a system of generalized trapezoidal intuitionistic fuzzy differential equations are
discussed in this study under the presumption that the coefficients of the system of the differential equations
are associated to generalized trapezoidal intuitionistic fuzzy numbers. The approximate results are compared
with exact solutions which shows good efficiency. The corresponding graphs at different levels of uncertainty
show the example’s numerical outcomes. The graphical representations further demonstrate the effectiveness
and accuracy of the proposed method in comparison to existing semi-numerical methods in the literature.

INDEX TERMS Fuzzy set, fuzzy number, generalized trapezoidal intuitionistic fuzzy number, system of
fuzzy differential equation, analytical technique, engineering applications.

I. INTRODUCTION
System of differential equation plays a significant role
in modeling and studying many naturally occurring phe-
nomenon such as population models, economic models, fric-
tion model, bacteria culture model, predator-prey model,
weight loss and oil production model, bank account and
drug concentration problem, human immunodeficiency virus
(HIV) model. In classical set theory, the variables or param-
eters are taken as crisp numbers. But in actual case, these
variables or parameters are usually uncertain or vague.
So, these variables may be considered as a fuzzy num-
bers. In other words, to overcome uncertainty we use
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fuzzy numbers. So the system of differential equations are
converted to system of fuzzy differential equations (SFDE).

The concept of fuzzy set theory was firstly introduced by
Zadeh in 1965, as the extension of classical set theory [1].
The concept of fuzzy set theory has been applied to vari-
ous fields of science and engineering to handle vagueness
and uncertainty. In 1987, Kandel and Byatt [2] introduced
the fuzzy differential equations. The fuzzy differential equa-
tions have been applied in numerous daily life problems [3],
[4], [5]. Vasavi et al. [6] discussed fuzzy differential for
cooling problems. Devi and Ganesan used fuzzy differ-
ential equations in modelling electric circuit problem [7].
Ahmad et al. [8] studied a mathematical method to
find the solution of fuzzy integro differential equations.
Sadeghi et al. [9] studied the system of fuzzy differential
equation. Buckley et al find the solution of system of first
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order linear fuzzy differential equations by extension princi-
ple [10]. Hashemi et al. find the series solution of SFDE [11].
In 1986, Atanassov [12] introduced an extension of fuzzy
set theory known as intuitionistic fuzzy set. The intuitionistic
fuzzy set [13] not only provides the information about mem-
bership values but also the non-membership values respec-
tively, and so that the sum of both values is less than one.
Intuitionistic fuzzy differential equations are being studied
widely and being used in various fields of Physics, Chem-
istry, Biology as well as among other fields of science and
engineering. Melliani and Chadli obtained the approximate
and numerical solutions of intuitionistic fuzzy differential
equations with linear differential operators [14], [15].
Gulzar et al. worked on fuzzy algebra [16], [17], [18].
Akin and Bayeg [19], [20] studied a method to find general
solution of second order intuitionistic fuzzy differential equa-
tion and to solve the system of intuitionistic fuzzy differential
equations with intuitionistic fuzzy initial values. Mondal and
Roy [21], [22], [23] studied the generalized intuitionistic
fuzzy Laplace transform method and to solve the system of
differential equations with initial value as triangular intuition-
istic fuzzy number. Saw et al introduced a method for solving
system of linear intuitionistic fuzzy equations [24].

The Adomian Decomposition Method (ADM) which is a
semi analytical method was first presented by Adomian in
1980’s [25], [26]. This method is very efficient in finding
the solutions of differential equations, algebraic equations as
well as integral equations. In this article, we will propose
the Generalized Modified Adomian Decomposition Method
(GMADM) to find the solutions of the system of linear
intuitionistic fuzzy differential equations with initial values
as generalized trapezoidal intuitionistic fuzzy number. This
modification was proposed by Wazwaz [27]. He presented
a reliable modification to the ADM. In this modification
Wazwaz divides the original function into two parts, one part
assigned to the initial term of the series and the other to the
second term. This modification results in a different series
being generated. The efficiency of this method depends only
on the choice of the parts into which the original function is
to be divided.

First order system of fuzzy differential equations is impor-
tant among all the fuzzy differential equations. There are
many approaches to solve the SFDEs. Buckley and Feur-
ing [28] solving the linear system of first order ordinary
differential equations with fuzzy initial conditions by exten-
sion principle using triangular fuzzy number. The geometric
approach is developed by Gasilova et al. [29] and series solu-
tion is developed byHashemi et al. [30].Mondal andRoy [31]
studied strong and weak solution of first order homoge-
neous intuitionistic fuzzy differential equation, subsequently
and studied system of differential equation in literature.
Melliani, et al. [32] discussed the existence and uniqueness
of the solution of the intuitionistic fuzzy differential equation
and its system using the analytical technique. Therefore,
finding an efficient and accurate algorithm for investigating

FIE has been one the hot areas of research in recent time.
To achieve these goals, various methods and procedures were
used to handle differentia equations, using triangular fuzzy
number, for details, see [9], [33].

In this study, motivated by the aforementioned work,
we solve the system of differential equations using a
GMADMand amore generalized fuzzy system of differential
equations, namely a trapezoidal intuitionistic fuzzy system of
intuitionistic differential equations.

The main contributions of this research work are summa-
rized below.

• GMADM is used to solve a system of differential equa-
tions using initial conditions as a Generalized trape-
zoidal intuitionistic fuzzy number.

• In order to solve a system of fuzzy intuitionistic differ-
ential equations that have not before been explored, the
computational complexity of the suggested GMADM is
discussed.

• Applications of system of Generalized trapezoidal intu-
itionistic fuzzy differential equations in mechanical
engineering are taken into consideration in a General-
ized trapezoidal intuitionistic fuzzy environment.

• Computational tools are used to evaluate the effec-
tiveness and applicability of the suggested analytical
scheme.

This paper is organized as follows: In section II, we recall
some basic definitions which we will use in further sec-
tions. In sections III, we introduced our proposed method.
In section IV, the efficiency of this method has been illus-
trated by applications. In the last section, we give conclusions.

II. PRELIMINARIES
In this section, the fundamental definitions of fuzzy set and
intuitionistic fuzzy set are presented.

Definition 1 [34]: Let
◦

U be the largest set under consider-

ation then
⋆
𭟋 be a subset of

◦

U is said to be a fuzzy set if it is
defined as:

µ ⋆
𭟋
(û) =

◦

U −→ [0, 1],

defines the degree of membership of an element û ϵ
◦

U to the

set
⋆
𭟋 which is a subset of

◦

U .

Definition 2 [34]: α-cut of a fuzzy set
⋆
𭟋 is a crisp set

⋆
𭟋α

which is defined as:

⋆
𭟋α = {(û p µ ⋆

𭟋
(û) ≥ α : û ϵ

◦

U}.

Definition 3 [23]: If
⋆
𭟋 is a fuzzy set then height of a

fuzzy set is denoted by h(
⋆
𭟋) and is defined as the largest

membership function obtained by any element in that set i.e.,

h(
⋆
𭟋) = supµ

⋆
𭟋(û).
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Definition 4 [19]: Let
◦

U be a nonempty finite set of real

numbers, then an intuitionistic fuzzy set
⋆

I on
◦

U is:
⋆

I = {(û, µ⋆
I
(û), υ⋆

I
(û)) : û ϵ

◦

U},

where the functions,

µ⋆
I
(û) =

◦

U −→ [0, 1],

υ⋆
I
(û) =

◦

U −→ [0, 1],

define the degree of membership and degree of non-

membership respectively, of an element û ϵ
◦

U to the set
⋆

I

which is a subset of
◦

U , and for every û ϵ
◦

U , the

0 ≤ µ⋆
I
(û) + υ⋆

I
(û) ≤ 1,

condition must be satisfied.
Definition 5 [23]: An intuitionistic fuzzy set

⋆

I is said to

be normal if there exists an û0 ϵ
◦

U , such that µ⋆
I
(û0) = 1 so

υ⋆
I
(û0) = 0.

Definition 6 [23]: An intuitionistic fuzzy set
⋆

I is said to
be convex set for the membership function if it satisfy the
following condition:

µ⋆
I
(û)(ηû+ (1 − η)ŝ) ≥ min(µ⋆

I
(û), µ⋆

I
(ŝ));

∀û, ŝ ϵ
◦

U , η ϵ[0, 1].

Definition 7 [23]: An intuitionistic fuzzy set
⋆

I is said to be
concave set for the non-membership function if it satisfy the
following condition:

υ⋆
I
(û)(ηû+ (1 − η)ŝ) ≥ max(υ⋆

I
(û), υ⋆

I
(ŝ));

∀û, ŝ ϵ
◦

U , η ϵ[0, 1].

A. GENERALIZED INTUITIONISTIC FUZZY NUMBER
Definition 8 [35]: A generalized intuitionistic fuzzy

number
⋆

T = <(
⋆
s1,

⋆
s2,

⋆
s3,

⋆
s4; νA); (

⋆
t1,

⋆
t2,

⋆
t3,

⋆
t4; νB) >

is said to be generalized trapezoidal intuitionistic fuzzy num-
ber (GTIFN) (as shown in Figure 1) if its membership and
non-membership functions are defined as follows:

µ ⋆
T
(û) =


νA(

û−
⋆
s1

⋆
s2−

⋆
s1
),

⋆
s1 ≤ û ≤

⋆
s2,

νA,
⋆
s2 ≤ û ≤

⋆
s3,

νA(
⋆
s4−û
⋆
s4−

⋆
s3
),

⋆
s3 ≤ û ≤

⋆
s4,

0, otherwise,

. . .

υ ⋆
T
(û) =



(
⋆
t2−û)+νB(û−

⋆
t1)

⋆
t2−

⋆
t1

,
⋆
t1 ≤ û ≤

⋆
t2,

νB,
⋆
t2 ≤ û ≤

⋆
t3,

(û−
⋆
t3)+νB(

⋆
t4−û)

⋆
t4−

⋆
t3

,
⋆
t3 ≤ û ≤

⋆
t4,

1, otherwise,

FIGURE 1. Generalized trapezoidal intuitionistic fuzzy number.

where
⋆
t1 ≤

⋆
s1 ≤

⋆
t2 ≤

⋆
s2 ≤

⋆
s3 ≤

⋆
t3 ≤

⋆
s4 ≤

⋆
t4, 0 ≤ νA,

νB ≤ 1 and 0 < νA + νB ≤ 1.
Definition 9 [36], [37]: (α, β)−cut set of a generalized

trapezoidal intuitionistic fuzzy number
⋆

T = <(
⋆
s1,

⋆
s2,

⋆
s3,

⋆
s4; νA);(

⋆
t1,

⋆
t2,

⋆
t3,

⋆
t4; νB)> is a crisp subset of

◦

U which is
defined as:

⋆

T (α, β)

= {(û, µ ⋆
T
(û), υ ⋆

T
(û)) : û ϵU , µ ⋆

T
(û) ≥ α, υ ⋆

T
(û) ≥ β}

= {[
⋆

T 1(α),
⋆

T 2(α)]; [
⋆

T 1(β),
⋆

T 2(β)]},

where α + β < 1, α ϵ[0, vA] and β ϵ[vB, 1].
Figure 1: Shows membership and non-membership func-

tion of generalized trapezoidal intuitionistic fuzzy number.

B. ARITHMETIC OPERATIONS ON GTIFNs
Definition 10 [37], [38]: Let

⋆

T 1 = <(
⋆
s1,

⋆
s2,

⋆
s3,

⋆
s4; νA1 );

(
⋆
t1,

⋆
t2,

⋆
t3,

⋆
t4; νA2 ) > and

⋆

T 2 = <(
⋆
u1,

⋆
u2,

⋆
u3,

⋆
u4; νB1 ); (

⋆
v1,

⋆
v2,

⋆
v3,

⋆
v4; ν ⋆

t2
) > be two GTIFNs and ϖ be a real number. Then

•

⋆

T 1 +
⋆

T 2 = <(
⋆
s1 +

⋆
u1,

⋆
s2 +

⋆
u2,

⋆
s3 +

⋆
u3,

⋆
s4

+
⋆
u4;min{vA1 , vB1});

(
⋆
t1 +

⋆
v1,

⋆
t2 +

⋆
v2,

⋆
t3 +

⋆
v3,

⋆
t4

+
⋆
v4;max{vA2 , vB2})>.

•

⋆

T 1 −
⋆

T 2 = <(
⋆
s1 −

⋆
u4,

⋆
s2 −

⋆
u3,

⋆
s3 −

⋆
u2,

⋆
s4

−
⋆
u1;min{vA1 , vB1});

(
⋆
t1 −

⋆
v4,

⋆
t2 −

⋆
v3,

⋆
t3 −

⋆
v2,

⋆
t4

−
⋆
v1;max{vA2 , vB2})>.
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•

⋆

T 1 ×
⋆

T 2 = <(
⋆
s1

⋆
u1,

⋆
s2

⋆
u2,

⋆
s3

⋆
u3,

⋆
s4

⋆
u4;min{vA1 , vB1});

(
⋆
t1

⋆
v1,

⋆
t2

⋆
v2,

⋆
t3

⋆
v3,

⋆
t4

⋆
v4;max{vA2 , vB2})>,

where
⋆

T 1 > 0,
⋆

T 2 > 0.
•

⋆

T 1 ×
⋆

T 2 = <(
⋆
s1

⋆
u4,

⋆
s2

⋆
u3,

⋆
s3

⋆
u2,

⋆
s4

⋆
u1;min{vA1 , vB1});

(
⋆
t1

⋆
v4,

⋆
t2

⋆
v3,

⋆
t3

⋆
v2,

⋆
t4

⋆
v1;max{vA2 , vB2})>,

where
⋆

T 1 < 0,
⋆

T 2 > 0.
•

⋆

T 1 ×
⋆

T 2 = <(
⋆
s4

⋆
u4,

⋆
s3

⋆
u3,

⋆
s2

⋆
u2, a1

⋆
u1;min{vA1 , vB1});

(
⋆
t4

⋆
v4,

⋆
t3

⋆
v3,

⋆
t2

⋆
v2,

⋆
t1

⋆
v1;max{vA2 , vB2})>,

where
⋆

T 1 < 0,
⋆

T 2 < 0.
•

⋆

T 1 ÷
⋆

T 2 = <(
⋆
s1
⋆
u4

,

⋆
s2
⋆
u3

,

⋆
s3
⋆
u2

,

⋆
s4
⋆
u1

;min{vA1 , vB1});

(

⋆
t1
⋆
v4

,

⋆
t2
⋆
v3

,

⋆
t3
⋆
v2

,

⋆
t4
⋆
v4

;max{vA2 , vB2})>,

where
⋆

T 2 > 0.
•

ϖ
⋆

T 1 = <(ϖ
⋆
s1, ϖ

⋆
s2, ϖ

⋆
s3, ϖ

⋆
s4;min{vA1 , vB1});

(ϖ
⋆
t1, ϖ

⋆
t2, ϖ

⋆
t3, ϖ

⋆
t4;max{vA2 , vB2})>,

where ϖ > 0.
•

ϖ
⋆

T 1 = <(ϖ
⋆
s4, ϖ

⋆
s3, ϖ

⋆
s2, ϖ

⋆
s1;min{vA1 , vB1});

(ϖ
⋆
t4, ϖ

⋆
t3, ϖ

⋆
t4, ϖb5;max{vA2 , vB2})>,

where ϖ < 0.

III. THE GENERALIZED MODIFIED ADOMIAN
DECOMPOSITION METHOD
Let us consider the system of intuitionistic fuzzy differential
equations with linear differential operator as follows:

✠
L

⋆
x(t) +

✠
R

⋆
x(t) +

✠
R

⋆
y(t) + N (t,

⋆
x(t),

⋆
y(t)) =

⋆
g(t),

✠
L

⋆
y(t) +

✠
R

⋆
x(t) +

✠
R

⋆
y(t) + N (t,

⋆
x(t),

⋆
y(t)) =

⋆

h(t),

 (1)

where
✠
L is the highest order linear differential operator,

✠
R is the remaining part of the linear differential operator,
N may be linear or nonlinear function of t ,

⋆
x(t) and

⋆
y(t),

⋆
g(t) and

⋆

h(t) are non-homogeneous terms. Here, in this case
we take N as a linear function of

⋆
x(t),

⋆
y(t) and t.Taking

(α, β)-cut of (1), we get, (2), as shown at the bottom of
the page.

From (2), we obtain the following equations:

✠
L

⋆
x1(t, α) +

✠
R

⋆
x1(t, α) +

✠
R

⋆
y1(t, α)+

N1(t,
⋆
x1(t, α),

⋆
y1(t, α)) =

⋆
g1(t, α),

✠
L

⋆
y1(t, α) +

✠
R

⋆
x1(t, α) +

✠
R

⋆
y1(t, α)+

N1(t,
⋆
x1(t, α),

⋆
y1(t, α)) =

⋆

h1(t, α).


(3)

✠
L

⋆
x2(t, α) +

✠
R

⋆
x2(t, α) +

✠
R

⋆
y2(t, α)+

N2(t,
⋆
x2(t, α),

⋆
y2(t, α)) =

⋆
g2(t, α),

✠
L

⋆
y2(t, α) +

✠
R

⋆
x2(t, α) +

✠
R

⋆
y2(t, α)+

N2(t,
⋆
x2(t, α),

⋆
y2(t, α)) =

⋆

h2(t, α).


(4)

✠
L

⋆
x1(t, β) +

✠
R

⋆
x1(t, β) +

✠
R

⋆
y1(t, β)+

N1(t,
⋆
x1(t, β),

⋆
y1(t, β)) =

⋆
g1(t, β),

✠
L

⋆
y1(t, β) +

✠
R

⋆
x1(t, β) +

✠
R

⋆
y1(t, β)+

N1(t,
⋆
x1(t, β),

⋆
y1(t, β)) =

⋆

h1(t, β).


(5)

✠
L ([

⋆
x1(t, α),

⋆
x2(t, α)]; [

⋆
x1(t, β),

⋆
x2(t, β)]) +

✠
R([

⋆
x1(t, α),

⋆
x2(t, α)];

[
⋆
x1(t, β),

⋆
x2(t, β)]) +

✠
R([

⋆
y1(t, α),

⋆
y2(t, α)]; [

⋆
y1(t, β),

⋆
y2(t, β)])

+([N1(t,
⋆
x1(t, α),

⋆
y1(t, α)),N2(t,

⋆
x2(t, α),

⋆
y2(t, α))];

[N1(t,
⋆
x1(t, β),

⋆
y1(t, β)),N2(t,

⋆
x2(t, β),

⋆
y2(t, β))])

= ([
⋆
g1(t, α),

⋆
g2(t, α)]; [

⋆
g1(t, β),

⋆
g2(t, β)]),

✠
L ([

⋆
y1(t, α),

⋆
y2(t, α)]; [

⋆
y1(t, β),

⋆
y2(t, β)]) +

✠
R([

⋆
x1(t, α),

⋆
x2(t, α)];

[
⋆
x1(t, β),

⋆
x2(t, β)]) +

✠
R([

⋆
y1(t, α),

⋆
y2(t, α)]; [

⋆
y1(t, β),

⋆
y2(t, β)])

+([N1(t,
⋆
x1(t, α),

⋆
y1(t, α)),N2(t,

⋆
x2(t, α),

⋆
y2(t, α))];

[N1(t,
⋆
x1(t, β),

⋆
y1(t, β)),N2(t,

⋆
x2(t, β),

⋆
y2(t, β))])

= ([
⋆

h1(t, α),
⋆

h2(t, α)]; [
⋆

h1(t, β),
⋆

h2(t, β)]).



(2)
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✠
L

⋆
x2(t, β) +

✠
R

⋆
x2(t, β) +

✠
R

⋆
y2(t, β)+

N1(t,
⋆
x2(t, β),

⋆
y2(t, β)) =

⋆
g2(t, β),

✠
L

⋆
y2(t, β) +

✠
R

⋆
x2(t, β) +

✠
R

⋆
y2(t, β)+

N1(t,
⋆
x2(t, β),

⋆
y2(t, β)) =

⋆

h2(t, β).


(6)

Applying the
✠
L

−1

operator on both sides of (3), (4), (5) and
(6), we get;

⋆
x1(t, α) = 91(t, α) −

✠
L

−1

(
✠
R

⋆
x1(t, α)) −

✠
L

−1

(
✠
R

⋆
y1(t, α))

−
✠
L

−1

(N1(t,
⋆
x1(t, α),

⋆
y1(t, α)) +

✠
L

−1

(
⋆
g1(t, α)),

⋆
y1(t, α) = 81(t, α) −

✠
L

−1

(
✠
R

⋆
x1(t, α)) −

✠
L

−1

(
✠
R

⋆
y1(t, α))

−
✠
L

−1

(N1(t,
⋆
y1(t, α))) +

✠
L

−1

(
⋆

h1(t, α)).


(7)

⋆
x2(t, α) = 92(t, α) −

✠
L

−1

(
✠
R

⋆
x2(t, α)) −

✠
L

−1

(
✠
R

⋆
y2(t, α))

−
✠
L

−1

(N2(t,
✠
L

−1

(
⋆
x2(t, α)),

⋆
y2(t, α))) +

✠
L

−1

(
⋆
g2(t, α)),

⋆
y2(t, α) = 82(t, α) −

✠
L

−1

(
✠
R

⋆
x2(t, α)) −

✠
L

−1

(
✠
R

⋆
y2(t, α))

−
✠
L

−1

(N2(t,
✠
L

−1

(
⋆
x2(t, α)),

⋆
y2(t, α))) +

✠
L

−1

(
⋆

h2(t, α)),


(8)

⋆
x1(t, β) = 91(t, β) −

✠
L

−1

(
✠
R

⋆
x1(t, β)) −

✠
L

−1

(
✠
R

⋆
y1(t, β))

−
✠
L

−1

(N1(t,
⋆
x1(t, β),

⋆
y1(t, β))) +

✠
L

−1

(
⋆
g1(t, β)),

⋆
y1(t, β) = 81(t, β) −

✠
L

−1

(
✠
R

⋆
x1(t, β)) −

✠
L

−1

(
✠
R

⋆
y1(t, β))

−
✠
L

−1

(N1(t,
⋆
x1(t, β),

⋆
y1(t, β))) +

✠
L

−1

(
⋆

h1(t, β)),


(9)

⋆
x2(t, β) = 92(t, β) −

✠
L

−1

(
✠
R

⋆
x2(t, β)) −

✠
L

−1

(
✠
R

⋆
y2(t, β))

−
✠
L

−1

(N2(t,
⋆
x2(t, β),

⋆
y2(t, β))) +

✠
L

−1

(
⋆
g2(t, β)),

⋆
y2(t, β) = 82(t, β) −

✠
L

−1

(
✠
R

⋆
x2(t, β)) −

✠
L

−1

(
✠
R

⋆
y2(t, β))

−
✠
L

−1

(N2(t,
⋆
x2(t, β),

⋆
y2(t, β))) +

✠
L

−1

(
⋆

h2(t, β)),


(10)

where,

9i(t, α) =
✠
L9i(t, α) = 0, i = 1, 2

8i(t, α) =
✠
L8i(t, α) = 0, i = 1, 2


9i(t, β) =

✠
L9i(t, β) = 0, i = 1, 2

8i(t, β) =
✠
L8i(t, β) = 0, i = 1, 2



the above functions are found by using the initial conditions.
Now by using the GMADM the solutions of the (7), (8), (9)
and (10 ), can be expressed in the form of an infinite series
for the unknown functions as follows:

⋆
x1(t, α) =

∞∑
n=0

⋆
x1n (t, α),

⋆
y1(t, α) =

∞∑
n=0

⋆
y1n (t, α),

 (11)

⋆
x2(t, α) =

∞∑
n=0

⋆
x2n (t, α),

⋆
y2(t, α) =

∞∑
n=0

⋆
y2n (t, α),

 (12)

⋆
x1(t, β) =

∞∑
n=0

⋆
x1n (t, β),

⋆
y1(t, β) =

∞∑
n=0

⋆
y1n (t, β),

 (13)

⋆
x2(t, β) =

∞∑
n=0

⋆
x2n (t, β),

⋆
y2(t, β) =

∞∑
n=0

⋆
y2n (t, β),

 (14)

Using (11), (12), (13) and (14), into (7), (8), (9) and (10),
we have:

∞∑
n=0

⋆
x1n (t, α) = 91(t, α) −

✠
L

−1

(
✠
R

∞∑
n=0

⋆
x1n (t, α))

−
✠
L

−1

(
✠
R

∞∑
n=0

⋆
y1n (t, α)) −

✠
L

−1

(N1(t,
∞∑
n=0

⋆
x1n (t, α),

∞∑
n=0

⋆
y1n (t, α))) +

✠
L

−1

(
⋆
g1(t, α)),

∞∑
n=0

⋆
y1n (t, α) = 81(t, α) −

✠
L

−1

(
✠
R

∞∑
n=0

⋆
x1n (t, α))

−
✠
L

−1

(
✠
R

∞∑
n=0

⋆
y1n (t, α)) −

✠
L

−1

(N1(t,
∞∑
n=0

⋆
x1n (t, α),

∞∑
n=0

⋆
y1n (t, α))) +

✠
L

−1

(
⋆

h1(t, α)),



(15)

∞∑
n=0

⋆
x2n (t, α) = 92(t, α) −

✠
L

−1

(
✠
R

∞∑
n=0

⋆
x2n (t, α))

−
✠
L

−1

(
✠
R

∞∑
n=0

⋆
y2n (t, α)) −

✠
L

−1

(N2(t,
∞∑
n=0

⋆
x2n (t, α),

∞∑
n=0

⋆
y2n (t, α))) +

✠
L

−1

(
⋆
g2(t, α)),

∞∑
n=0

⋆
y2n (t, α) = 82(t, α) −

✠
L

−1

(
✠
R

∞∑
n=0

⋆
x2n (t, α))

−
✠
L

−1

(
✠
R

∞∑
n=0

⋆
y2n (t, α)) −

✠
L

−1

(N1(t,
∞∑
n=0

⋆
x2n (t, α),

∞∑
n=0

⋆
y2n (t, α))) +

✠
L

−1

(
⋆

h2(t, α)),



(16)
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∞∑
n=0

⋆
x1n (t, β) = 91(t, β) −

✠
L

−1

(
✠
R

∞∑
n=0

⋆
x1n (t, β))

−
✠
L

−1

(
✠
R

∞∑
n=0

⋆
y1n (t, β)) −

✠
L

−1

(N1(t,
∞∑
n=0

⋆
x1n (t, β),

∞∑
n=0

⋆
y1n (t, β))) +

✠
L

−1

(
⋆
g1(t, β)),

∞∑
n=0

⋆
y1n (t, β) = 81(t, β) −

✠
L

−1

(
✠
R

∞∑
n=0

⋆
x1n (t, β))

−
✠
L

−1

(
✠
R

∞∑
n=0

⋆
y1n (t, β)) −

✠
L

−1

(N1(t,
∞∑
n=0

⋆
x1n (t, β),

∞∑
n=0

⋆
y1n (t, β))) +

✠
L

−1

(
⋆

h1(t, β)),



(17)

∞∑
n=0

⋆
x2n (t, β) = 92(t, β) −

✠
L

−1

(
✠
R

∞∑
n=0

⋆
x2n (t, β))

−
✠
L

−1

(
✠
R

∞∑
n=0

⋆
y2n (t, β)) −

✠
L

−1

(N2(t,
∞∑
n=0

⋆
x2n (t, β),

∞∑
n=0

⋆
y2n (t, β))) +

✠
L

−1

(
⋆
g2(t, β)),

∞∑
n=0

⋆
y2n (t, β) = 82(t, β) −

✠
L

−1

(
✠
R

∞∑
n=0

⋆
x2n (t, β))

−
✠
L

−1

(
✠
R

∞∑
n=0

⋆
y2n (t, β)) −

✠
L

−1

(N1(t,
∞∑
n=0

⋆
x2n (t, β),

∞∑
n=0

⋆
y2n (t, β))) +

✠
L

−1

(
⋆

h2(t, β)).



(18)

According to the GMADM the recursive relation for the (15),
(16),( 17) and (18), is as follows:

⋆
x10 (t, α) = 91(t, α),
⋆
y10 (t, α) = 81(t, α),

⋆
x11 (t, α) =

✠
L

−1

(
⋆
g1(t, α)) −

✠
L

−1

(
✠
R

⋆
x10 (t, α))

−
✠
L

−1

(
✠
R

⋆
y10 (t, α)) −

✠
L

−1

(N1(t,
⋆
x10 (t, α),

⋆
y10 (t, α))),

⋆
y
11
(t, α) =

✠
L

−1

(
⋆

h1(t, α)) −
✠
L

−1

(
✠
R

⋆
x10 (t, α))

−
✠
L

−1

(
✠
R

⋆
y10 (t, α)) −

✠
L

−1

(N1(t,
⋆
x10 (t, α),

⋆
y10 (t, α))),

⋆
x1k+1

(t, α) = −
✠
L

−1

(
✠
R

⋆
x1k (t, α)) −

✠
L

−1

(
✠
R

⋆
y1k (t, α))

−
✠
L

−1

(N1(t,
⋆
x1k (t, α),

⋆
y1k (t, α))), k ≥ 1,

⋆
y
1k+1

(t, α) = −
✠
L

−1

(
✠
R

⋆
x1k (t, α)) −

✠
L

−1

(
✠
R

⋆
y1k (t, α))

−
✠
L

−1

(N1(t,
⋆
x1k (t, α),

⋆
y1k (t, α))), k ≥ 1,


(19)

⋆
x20 (t, α) = 92(t, α),
⋆
y20 (t, α) = 82(t, α),

⋆
x21 (t, α) =

✠
L

−1

(
⋆
g2(t, α)) −

✠
L

−1

(
✠
R

⋆
x20 (t, α))

−
✠
L

−1

(
✠
R

⋆
y20 (t, α)) −

✠
L

−1

(N2(t,
⋆
x20 (t, α),

⋆
y20 (t, α))),

⋆
y
21
(t, α) =

✠
L

−1

(
⋆

h2(t, α)) −
✠
L

−1

(
✠
R

⋆
x20 (t, α))

−
✠
L

−1

(
✠
R

⋆
y20 (t, α)) −

✠
L

−1

(N2(t,
⋆
x20 (t, α),

⋆
y20 (t, α))),

⋆
x2k+1

(t, α) = −
✠
L

−1

(
✠
R

⋆
x2k (t, α)) −

✠
L

−1

(
✠
R

⋆
y2k (t, α))

−
✠
L

−1

(N2(t,
⋆
x2k (t, α),

⋆
y2k (t, α))), k ≥ 1,

⋆
y
2k+1

(t, α) = −
✠
L

−1

(
✠
R

⋆
x2k (t, α)) −

✠
L

−1

(
✠
R

⋆
y2k (t, α))

−
✠
L

−1

(N2(t,
⋆
x2k (t, α),

⋆
y2k (t, α))), k ≥ 1,


(20)

⋆
x10 (t, β) = 91(t, β),
⋆
y10 (t, β) = 81(t, β),

⋆
x11 (t, β) =

✠
L

−1

(
⋆
g1(t, β)) −

✠
L

−1

(
✠
R

⋆
x10 (t, β))

−
✠
L

−1

(
✠
R

⋆
y10 (t, β)) −

✠
L

−1

(N1(t,
⋆
x10 (t, β),

⋆
y10 (t, β))),

⋆
y
11
(t, β) =

✠
L

−1

(
⋆

h1(t, β)) −
✠
L

−1

(
✠
R

⋆
x10 (t, β))

−
✠
L

−1

(
✠
R

⋆
y10 (t, β)) −

✠
L

−1

(N1(t,
⋆
x10 (t, β),

⋆
y10 (t, β))),

⋆
x1k+1

(t, β) = −
✠
L

−1

(
✠
R

⋆
x1k (t, β)) −

✠
L

−1

(
✠
R

⋆
y1k (t, β))

−
✠
L

−1

(N1(t,
⋆
x1k (t, β),

⋆
y1k (t, β))), k ≥ 1,

⋆
y
1k+1

(t, β) = −
✠
L

−1

(
✠
R

⋆
x1k (t, β)) −

✠
L

−1

(
✠
R

⋆
y1k (t, β))

−
✠
L

−1

(N1(t,
⋆
x1k (t, β),

⋆
y1k (t, β))), k ≥ 1,


(21)

⋆
x20 (t, β) = 92(t, β),
⋆
y20 (t, β) = 82(t, β),

⋆
x21 (t, β) =

✠
L

−1

(
⋆
g2(t, β)) −

✠
L

−1

(
✠
R

⋆
x20 (t, β))

−
✠
L

−1

(
✠
R

⋆
y20 (t, β)) −

✠
L

−1

(N2(t,
⋆
x20 (t, β),

⋆
y20 (t, β))),

⋆
y
21
(t, β) =

✠
L

−1

(
⋆

h2(t, β)) −
✠
L

−1

(
✠
R

⋆
x20 (t, β))

−
✠
L

−1

(
✠
R

⋆
y20 (t, β)) −

✠
L

−1

(N2(t,
⋆
x20 (t, β),

⋆
y20 (t, β))),

⋆
x2k+1

(t, β) = −
✠
L

−1

(
✠
R

⋆
x2k (t, β)) −

✠
L

−1

(
✠
R

⋆
y2k (t, β))

−
✠
L

−1

(N2(t,
⋆
x2k (t, β),

⋆
y2k (t, β))), k ≥ 1,

⋆
y
2k+1

(t, β) = −
✠
L

−1

(
✠
R

⋆
x2k (t, β)) −

✠
L

−1

(
✠
R

⋆
y2k (t, β))

−
✠
L

−1

(N2(t,
⋆
x2k (t, β),

⋆
y2k (t, β))), k ≥ 1.


(22)
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The nth term approximation to the solution is defined as
follows:

ϕ1n(t, α) =

n−1∑
i=0

⋆
x1i (t, α),

φ1n(t, α) =

n−1∑
i=0

⋆
y1i (t, α),


ϕ2n(t, α) =

n−1∑
i=0

⋆
x2i (t, α),

φ2n(t, α) =

n−1∑
i=0

⋆
y2i (t, α),


ϕ1n(t, β) =

n−1∑
i=0

⋆
x1i (t, β),

φ1n(t, β) =

n−1∑
i=0

⋆
y1i (t, β),


ϕ2n(t, β) =

n−1∑
i=0

⋆
x2i (t, β),

φ1n(t, β) =

n−1∑
i=0

⋆
y1i (t, β).


Hence,

{lim
n→∞

(φ1n(t, α)) , lim
n→∞

φ1n(t, α)} = {
⋆
x1 (t, α),

⋆
y
1
(t, α)},

{lim
n→∞

(φ2n(t, α)) , lim
n→∞

φ2n(t, α)} = {
⋆
x2 (t, α),

⋆
y2(t, α)},

{lim
n→∞

(φ1n(t, β)) , lim
n→∞

φ1n(t, β)} = {
⋆
x1(t, β),

⋆
y
1
(t, β)},

{lim
n→∞

(φ2n(t, β)) , lim
n→∞

φ2n(t, β)} = {
⋆
x2(t, β),

⋆
y2(t, β)}.

Raza et al. [39], Ray [40], Zo’bi et al. [41], and many oth-
ers discuss the convergence of the ADM or Decomposition
method and GMADM.

A. STABILITY OF GMADM
When the solution produced by a technique is unaffected
by small changes in the inputs and parameters and when
it is expected that changes in the parameters carried on by
impacts in equations and conditions, the method is said to
be stable. By giving examples and analyzing the stability
of the GMADM in this study, we suggested contrasting the
GMADM with other existing methods i.e., ADM and Taylor
series method (TSM).

B. APPLICATIONS
Example 1 Brine Tanks Problem [42], [43]: Two tanks A

and B are connected by pipes. Tank A contains 100 gal of
brine and tank B contains 200 gal of brine. Through one pipe
solution is pumped from first tank to the second at 30 gal/min.
Through the other solution is pumped at the rate of 10 gal/min
from the second tank to the first, and the brine in tank B flows
out at 20 gal/min. If

⋆
x (t) and

⋆
y(t) denotes the amount of salt in

tanks A and B respectively, then what will be the salt content
in each tank at any time t . It is to be noted that at time t = 0

there is <(98, 99, 100, 101, 0.7); (97, 99, 100, 102; 0.2)>
lb salt in tank A and <(50, 51, 52, 53; 0.7); (49, 51, 52,
54; 0.2)> lb in tank B.
The system of intuitionistic fuzzy differential equation

related to above problem is as follows:

d
∗
⋆
x(t, α)
dt

=

⋆
y
20

−
3

⋆
x
10

,

d
⋆
y(t, α)
dt

=
3

⋆
x
10

−
3

⋆
y

20
. (23)

with initial conditions,{
⋆
x(0)=< (98, 99, 100, 101, 0.7); (97, 99, 100, 102; 0.2)>,

⋆
y(0)=< (50, 51, 52, 53; 0.7); (49, 51, 52, 54; 0.2)>.

(24)

By taking (α, β)-cut of (24) and (24), we obtain the follow-
ing equations: d

⋆
x(t,α)
dt =

⋆
y
20 −

3
⋆
x
10 ,

⋆
x1(0, α) = 1.429α + 98,

d
⋆
y(t,α)
dt =

3
⋆
x
10 −

3
⋆
y

20 ,
⋆
y1(0, α) = 1.429α + 50,

(25) d
⋆
x(t,α)
dt =

⋆
y
20 −

3
⋆
x
10 ,

⋆
x2(0, α) = −1.429α + 101,

d
⋆
y(t,α)
dt =

3
⋆
x
10 −

3
⋆
y

20 ,
⋆
y2(0, α) = −1.429α + 53,

(26) d
⋆
x(t,β)
dt =

⋆
y
20 −

3
⋆
x
10 ,

⋆
x1(0, β) = −2.5β + 99,

d
⋆
y(t,β)
dt =

3
⋆
x
10 −

3
⋆
y

20 ,
⋆
y1(0, β) = −2.5β + 51,

(27) d
⋆
x(t,β)
dt =

⋆
y
20 −

⋆
x
20 ,

⋆
x2(0, β) = −2.5β + 99.5,

d
⋆
y(t,β)
dt =

⋆
x
20 −

⋆
y
20 ,

⋆
y2(0, β) = 2.5β − 51.5.

(28)

Here
✠
L =

d
dt and by taking

✠
L

−1

(.) =

t∫
0

(.) dt on both sides of

(25), (26), (27) and (28), and using the initial conditions we
obtain;

⋆
x1(t, α) =

∫ t
0 (−0.30

⋆
x1(u, α) + 0.05

⋆
y1(u, α))du

+1.429α + 98,
⋆
y1(t, α) =

∫ t
0 (−0.150

⋆
y1(u, α) + 0.30

⋆
x1(u, α))du

+1.429α + 50,

(29)


⋆
x2(t, α) =

∫ t
0 (−0.30

⋆
x2(u, α) + 0.05

⋆
y2(u, α))du

−1.429α + 101,
⋆
y2(t, α) =

∫ t
0 (−0.15

⋆
y2(u, α) + 0.30

⋆
x2(u, α))du

−1.429α + 53,

(30)


⋆
x1(t, β) =

∫ t
0 (−0.30

⋆
x1(u, β) + 0.05

⋆
y1(u, β))du

+99 − 2.5β,
⋆
y1(t, β) =

∫ t
0 (−0.15

⋆
y1(u, β) + 0.30

⋆
x1(u, β))du

+51 − 2.5β,

(31)


⋆
x2(t, β) =

∫ t
0 (−0.05

⋆
x2(u, β) + 0.05

⋆
y2(u, β))du

+2.5β + 99.5,
⋆
y2(t, β) =

∫ t
0 (−0.05

⋆
y2(u, β) + 0.05

⋆
x2(u, β))du

+0.25β + 0.65.

(32)
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Now by using GMADM the solution of (29), (30), (31) and
(32), can be expressed as;

⋆
x10 (t, α) = 1.429α + 98,
⋆
y10 (t, α) = 1.429α + 50,

⋆
x11 (t, α) = −0.357250αt − 26.90t,
⋆
y11 (t, α) = 0.214350αt + 21.90t,
⋆
x1k+1 (t, α) =

∫ t
0 (−0.30

⋆
x1k (u, α)

+0.05
⋆
y1k (u, α))du, k ≥ 1,

⋆
y1k+1

(t, α) =
∫ t
0 (−0.15

⋆
y1k (u, α)

+0.30
⋆
x1k (u, α))du, k ≥ 1.

(33)



⋆
x20 (t, α) = −1.429α + 101,
⋆
y20 (t, α) = −1.429α + 50,

⋆
x21 (t, α) = 0.357250αt − 27.650t,

⋆
y21 (t, α) = −0.214350αt + 22.350t,

⋆
x2k+1 (t, α) =

∫ t
0 (−0.30

⋆
x2k (u, α)

+0.05
⋆
y2k (u, α))du, k ≥ 1,

⋆
y2k+1

(t, α) =
∫ t
0 (−0.15

⋆
y2k (u, α)

+0.30
⋆
x2k (u, α))du, k ≥ 1.

(34)



⋆
x10 (t, β) = 99 − 2.5β,
⋆
y10 (t, β) = 51 − 2.5β,

⋆
x11 (t, β) = −27.150t + 0.6250βt,
⋆
y11 (t, β) = 22.050t − 0.3750βt,
⋆
x1k+1 (t, β) =

∫ t
0 (−0.30

⋆
x1k (u, β)

+0.05
⋆
y1k (u, β))du, k ≥ 1,

⋆
y1k+1

(t, β) =
∫ t
0 (−0.15

⋆
y1k (u, β)

+0.30
⋆
x1k (u, β))du, k ≥ 1.

(35)



⋆
x20 (t, β) = 2.5β + 99.5,
⋆
y20 (t, β) = 2.5β + 51.5,

⋆
x21 (t, β) = −0.6250βt − 27.2750t,
⋆
y21 (t, β) = 0.3750βt + 22.1250t,
⋆
x2k+1 (t, β) =

∫ t
0 (−0.30

⋆
x2k (u, β)

+0.05
⋆
y2k (u, β))du, k ≥ 1,

⋆
y2k+1

(t, β) =
∫ t
0 (−0.15

⋆
y2k (u, β)

+0.30
⋆
x2k (u, β))du, k ≥ 1.

(36)

By solving (33), (34), (35) and (36), we get the approxi-
mate solution after four iterations as follows:

(
⋆
x1(t, α),

⋆
y1(t, α))

= (1.429α + 98 − 0.357250αt − 26.90t

+ 0.0589462500t2α + 4.582500000t2

− 0.007055687500αt3 − 0.5528750000t3

+ 0.0006463992188αt4 + 0.05074218750t4,

1.429α + 50 + 0.2143500000αt + 21.90000000t

− 0.06966375000αt2 − 5.677500000t2

+ 0.009377812500αt3 + 0.7421250000t3

− 0.0008808445312αt4 − 0.06929531250t4),

(
⋆
x2(t, α),

⋆
y2(t, α))

= (−1.429α + 101 + 0.357250αt − 27.650t

− 0.05894625000αt2 + 4.706250000t2

+ 0.007055687499αt3 − 0.5676874999t3

− 0.0006463992188αt4 + 0.05209921875t4,

− 1.429α + 53 − 0.2143500000αt + 22.35000000t

+ 0.06966375000αt2 − 5.823750000t2

− 0.009377812500αt3 + 0.7618125000t3

+ 0.0008808445312αt4 − 0.07114453125t4),

(
⋆
x1(t, β),

⋆
y1(t, β))

= (99 − 2.5β − 27.150t + 0.6250βt

+ 4.623750t2 − 0.1031250000βt2

− 0.5578125000t3 + 0.01234375000βt3

+ 0.05119453125t4 − 0.001130859375βt4

, 51 − 2.5β + 22.050t − 0.3750βt

− 5.726250000t2 + 0.1218750000βt2

+ 0.7486875000t3 − 0.01640625000βt3

− 0.06991171875t4 + 0.001541015625βt4),

(
⋆
x2(t, β),

⋆
y2(t, β))

= (2.5β + 99.5 − 0.6250βt − 27.2750t

+ 0.1031250βt2 + 4.644375000t2

− 0.01234375000βt3 − 0.5602812500t3

+ 0.001130859375βt4 + 0.05142070312t4,

2.5β + 51.5 + 0.3750βt + 22.1250t

− 0.1218750000βt2 − 5.750625000t2

+ 0.01640625000βt3 + 0.7519687500t3

− 0.001541015625βt4 − 0.07021992188t4).

In Table 1,
⋆
x1(t, α)

⋆
, x2(t, α),

⋆
y1(t, α) and

⋆
y2(t, α) repre-

sents approximate solution of the membership functions of
the Example1 for α ϵ [0, 0.7] and

⋆
x1(t, β),

⋆
x2(t, β),

⋆
y1(t, β)

and
⋆
y2(t, β) represents approximate solution of non-

membership function of the Example1 for β ϵ [0.2, 1.0].
The following is the mathematical and exact solution

to Example 1 using the classical method, as shown in
Figure 2(a,b) and Table 2:

(
⋆
x1(t, α),

⋆
y1(t, α))

= (−
1

34000
(−17 +

√
17)(92000 + 1429α

− 6000
√
17)e

1
40 (−9+

√
17)t

+
1

34000
(17 +

√
17)(92000 + 1429α

+ 6000
√
17)e−

1
40 (9+

√
17)t ,
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TABLE 1. Illustrates the approximation to the generalized trapezoidal intuitionistic fuzzy initial value problem from Example 1 for t=1.

TABLE 2. Illustrates the exact solution to the generalized trapezoidal intuitionistic fuzzy initial value problem from Example 3 for t=1.

TABLE 3. Illustrates the approximate solution iterations in column 2,
residual error in column 3, and CPU time required by the numerical
technique GMADM to determine the approximate solution of the system
of generalized fuzzy intuitionistic differential equations used in
Example 1 in column 4. Whenever the error of all methods is taken into
account, we can conclude that the GMADM has a better convergence
behavior and is more stable than the ADM and TSM, respectively.

−
1

68000
(−17 +

√
17)(92000 + 1429α

− 6000
√
17)e

1
40 (−9+

√
17)t

×
√
17 −

1
68000

(17 +
√
17)(92000

+ 1429α + 6000
√
17)e−

1
40 (9+

√
17)t

×
√
17 −

3
68000

(−17 +
√
17)(92000 + 1429α

− 6000
√
17)e

1
40 (−9+

√
17)t

+
3

68000
(17 +

√
17)(92000 + 1429α

+ 6000
√
17)e−

1
40 (9+

√
17)t ),

(
⋆
x2(t, α),

⋆
y2(t, α))

= (
1

66000
(−33 +

√
33)(−98000 + 1429α

+ 3000
√
33)e

1
40 (−9+

√
33)t

−
1

66000
(33 +

√
33)(−98000 + 1429α

− 3000
√
33)e−

1
40 (9+

√
33)t ,

1
132000

(−33 +
√
33)(−98000 + 1429α

+ 3000
√
33)e

1
40 (−9+

√
33)t

√
33

+
1

132000
(33 +

√
33)(−98000 + 1429α

− 3000
√
33)e−

1
40 (9+

√
33)t

√
33

+
1

44000
(−33 +

√
33)(−98000 + 1429α

+ 3000
√
33)e

1
40 (−9+

√
33)t

−
1

44000
(33 +

√
33)(−98000 + 1429α

− 3000
√
33)e−

1
40 (9+

√
33)t ),

(
⋆
x1(t, β),

⋆
y1(t, β))

= (
1
132

(−33 +
√
33)(−192 + 5β + 6

√
33)e

1
40 (−9+

√
33)t

−
1
132

(33 +
√
33)(−192 + 5β − 6

√
33)e−

1
40 (9+

√
33)t ,

1
264

(−33 +
√
33)(−192 + 5β + 6

√
33)e

1
40 (−9+

√
33)t

√
33

+
1
264

(33 +
√
33)(−192+5β−6

√
33)e−

1
40 (9+

√
33)t

√
33

+
1
88

(−33+
√
33)(−192+5β+6

√
33)e

1
40 (−9+

√
33)t

√
33

−
1
88

(33 +
√
33)(−192 + 5β − 6

√
33)e−

1
40 (9+

√
33)t ),

(
⋆
x2(t, β),

⋆
y2(t, β))

= (−
1
132

(−33 +
√
33)(193 + 5β − 6

√
33)e

1
40 (−9+

√
33)t

+
1
132

(33 +
√
33)(193 + 5β + 6

√
33)e−

1
40 (9+

√
33)t ,

−
1
264

(−33 +
√
33)(193 + 5β−6

√
33)e

1
40 (−9+

√
33)t

√
33

−
1
264

(33 +
√
33)(193 + 5β+6

√
33)e−

1
40 (9+

√
33)t

√
33

−
1
88

(−33 +
√
33)(193 + 5β − 6

√
33)e

1
40 (−9+

√
33)t

+
1
88

(33 +
√
33)(193 + 5β + 6

√
33)e−

1
40 (9+

√
33)t ).
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Table 2,
⋆
x1(t, α)

⋆
, x2(t, α),

⋆
y1(t, α) and

⋆
y2(t, α) represents

exact solution of the membership functions of the Exam-
ple1 for α ϵ [0, 0.7] and

⋆
x1(t, β),

⋆
x2(t, β),

⋆
y1(t, β) and

⋆
y2(t, β)

represents exact solution of non-membership function of the
Example1 for β ϵ [0.2, 1.0].
Example 2 Coupled Oscillators: Consider a mechanical

system [44], [45], [46], [47] constituting of two massesm1 =

1Kg and m2 = 1Kg that are free to slide over a friction less
horizontal surface. The masses are attached to one another,
and to two rigid walls, with the help of three springs. The
spring constants for this system are k1 = 1Nm−1, k2 =

2Nm−1 and k3 = 1Nm−1. The instantaneous state of the
system is conveniently specified by the

⋆
x(t) and

⋆
y(t) respec-

tively. Thus, the equations of motions of two masses are as
follows: m d2

⋆
x(t)
dt2

= −k1
⋆
x − k2(

⋆
x −

⋆
y),

m d2
⋆
y(t)
dt2

= −k3
⋆
y− k2(

⋆
y−

⋆
x).

(37)

Using the given data, we get; d2
⋆
x(t)
dt2

= 2
⋆
y− 3

⋆
x,

d2
⋆
y(t)
dt2

= 2
⋆
x − 3

⋆
y,

(38)

with initial conditions,

⋆
x(0) = <(2, 4, 8, 15; 0.6); (1, 4, 8, 18; 0.3)>,
⋆
x

′

(0) = <(2, 5, 8, 10; 0.6)(1, 5, 8, 12; 0.3)>,
⋆
y(0) = <(8, 9, 10, 11; 0.6)(7, 9, 10, 12; 0.3)>,
⋆
y
′

(0) = <(11, 12, 13, 14; 0.6); (10, 12, 13, 15; 0.3)>.

(39)

By taking (α, β)-cut of (38), (39), we get the following
equations:

d2
⋆
x(t, α)
dt2

= 2
⋆
y− 3

⋆
x,

⋆
x1(0, α) = 3.33α + 2,

⋆
x

′

1 (0, α) = 5α + 2,

d2
⋆
⋆
y(t, α)
dt2

= 2
⋆
x − 3

⋆
y,

⋆
y1(0, α) = 1.67α + 8,

⋆
y
′

1 (0, α) = 1.67α + 11,
(40)

d2
⋆
x(t, α)
dt2

= 2
⋆
y− 3

⋆
x,

⋆
x2(0, α) = 15 − 11.67α,

⋆
x

′

2 (0, α) = 10 − 3.33α,

d2
⋆
y(t, α)
dt2

= 2
⋆
x − 3

⋆
y,

⋆
y2(0, α) = −1.67α + 11,

⋆
y
′

2 (0, α) = −1.67α + 14,
(41)

FIGURE 2. Exact solution of (
⋆
x1k

,
⋆
y1k

) of generalized trapezoidal
intuitionistic fuzzy number.

FIGURE 3. Exact solution of (
⋆
x2k

,
⋆
y2k

) of generalized trapezoidal
intuitionistic fuzzy number.



d2
⋆
x(t, β)
dt2

= 2
⋆
y− 3

⋆
x,

⋆
x1(0, β) = −4.29β + 5.29,

⋆
x

′

1 (0, β) = 6.71 − 0.85β,

d2
⋆
y(t, β)
dt2

= 2
⋆
x − 3

⋆
y,

⋆
y1(0, β) = 9 − 2.86β,

⋆
y
′

1 (0, β) = 12 − 2.86β,

(42)

d2
⋆
x(t, β)
dt2

= 2
⋆
y− 3

⋆
x,

⋆
x2(0, β) = 3.71 + 14.29β,

⋆
x

′

1 (0, β) = 6.29 + 5.71β,

d2
⋆
y(t, β)
dt2

= 2
⋆
x − 3

⋆
y,

⋆
y2(0, β) == 9.14 + 2.86β,

⋆
y
′

1 (0, β) = 12.14 + 2.86β.

(43)

Here
✠
L =

d2

dt2
and by taking

✠
L

−1

(.) =

t∫
0

t∫
0

(.) dtdt on

both sides of (40), (41), (42) and (40), and using the initial
conditions we obtain;

⋆
x1(t, α) =

∫ t
0 (3

⋆
x1(u, α)(−t + u) + 2

⋆
y1(u, α)(t − u))du

+2 + 5αt + 3.33α + 2t,
⋆
y1(t, α) =

∫ t
0 (2

⋆
x1(u, α)(t − u) + 3

⋆
y1(u, α)(−t + u))du

+8 + 1.67αt + 1.67α + 11t,
(44)

Figure 2-3: Shows exact solution of the system of general-
ized trapezoidal intuitionistic fuzzy initial value problem used
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FIGURE 4. Exact solution of (
⋆
x1k

(t, α),
⋆
y1k

(t, α)) of generalized
trapezoidal intuitionistic fuzzy number.

FIGURE 5. Exact solution of (
⋆
x2k

(t, α),
⋆
y2k

(t, α)) of generalized
trapezoidal intuitionistic fuzzy number.

in example 1.
⋆
x2(t, α) =

∫ t
0 (3

⋆
x2(u, α)(−t + u) + 2

⋆
y2(u, α)(t − u))du

+15 − 3.33αt − 11.67α + 10t,
⋆
y2(t, α) =

∫ t
0 (2

⋆
x2(u, α)(t − u) + 3

⋆
y2(u, α)(−t + u))du

+11 − 1.67αt − 1.67α + 14t,
(45)

⋆
x1(t, β) =

∫ t
0 (3

⋆
x1(u, β)(−t + u) + 2

⋆
y1(u, β)(t − u))du

+5.29 − 0.85βt + 6.71t − 4.29β,
⋆
y1(t, β) =

∫ t
0 (2

⋆
x1(u, β)(t − u) + 3

⋆
y1(u, β)(−t + u))du

+9 − 2.86βt − 2.86β + 12t,
(46)

⋆
x2(t, β) =

∫ t
0 (3

⋆
x2(u, β)(−t + u) + 2

⋆
y2(u, β)(t − u))du

+3.71 + 5.71βt + 6.29t + 14.29β,
⋆
y2(t, β) =

∫ t
0 (2

⋆
x2(u, β)(t − u) + 3

⋆
y2(u, β)(−t + u))du

+9.14 + 2.86βt + 12.14t + 2.86β.

(47)

Figures 3-7: Displays the membership and non-
membership functions, as well as the exact and approximate

FIGURE 6. Exact solution of (
⋆
x1k

(t, β),
⋆
y1k

(t, β)) of generalized
trapezoidal intuitionistic fuzzy number.

FIGURE 7. Exact solution of (
⋆
x2k

(t, β),
⋆
y2k

(t, β)) of generalized
trapezoidal intuitionistic fuzzy number.

solutions, for the generalized trapezoidal intuitionistic fuzzy
initial value problem used in example 2.

Now by using GMADM the solution of (44), (45), (46)
and (47), can be expressed as;

⋆
x10 (t, α) = 2 + t(5α + 2) + 3.33α,

⋆
y10 (t, α) = 8 + t(1.67α + 11) + 1.67α,

⋆
x11 (t, α) = −1.943333334αt3 + 2.666666667t3

+ 5.00000000t2 − 3.325000000αt2,
⋆
y11 (t, α) = 2.498333334αt3 − 4.166666668t3

− 8.00000000t2 + 4.155000000αt2,

⋆
x1k+1(t, α) =

∫ t

0
(3

⋆
x1k (u, α)(−t + u)

+ 2
⋆
y1k (u, α)(t − u))du, k ≥ 1,

⋆
y1k+1

(t, α) =

∫ t

0
(2

⋆
x1k (u, α)(t − u)

+ 3
⋆
y1k (u, α)(−t + u))du, k ≥ 1.

(48)
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

⋆
x20 (t, α) = 15 + t(−3.33α + 10) − 11.67α,
⋆
y20 (t, α) = 11 + t(−1.67α + 14) − 1.67α,
⋆
x21 (t, α) = 1.108333334αt3 − 0.3333333334t3

− 11.50000000t2 + 15.83500000αt2,
⋆
y21 (t, α) = −1.385000000αt3 − 0.3333333334t3

+ 13.50000000t2 − 20.83500000αt2,
⋆
x2k+1(t, α) =

∫ t

0
(3

⋆
x2k (u, α)(−t + u)

+ 2
⋆
y2k (u, α)(t − u))du, k ≥ 1,

⋆
y2k+1

(t, α) =

∫ t

0
(2

⋆
x2k (u, α)(t − u)

+ 3
⋆
y2k (u, α)(−t + u))du, k ≥ 1.

(49)

⋆
x10 (t, β) = 5.29 + t(−0.85β + 6.71) − 4.29β,
⋆
y10 (t, β) = 9 + t(−2.86β + 12) − 2.86β,
⋆
x11 (t, β) = −0.528333333βt3 + 0.645000000t3

+ 1.06500000t2 + 3.575000000βt2,
⋆
y11 (t, β) = 0.863333334βt3 − 1.526666667t3

− 2.92000000t2 − 4.290000000βt2,
⋆
x1k+1 (t, β) =

∫ t

0
(2

⋆
x1k (u, β)(t − u)

+ 3
⋆
y1k (u, β)(−t + u))du, k ≥ 1,

⋆
y1k+1

(t, β) =

∫ t

0
(2

⋆
x1k (u, β)(t − u)

+ 3
⋆
y1k (u, β)(−t + u))du, k ≥ 1.

(50)

⋆
x20 (t, β) = 3.71 + t(5.71β + 6.29) + 14.29β,
⋆
y20 (t, β) = 9.14 + t(2.86β + 12.14) + 2.86β,
⋆
x21 (t, β) = −1.901666667βt3 + 0.901666667t3

+ 3.57500000t2 − 18.57500000βt2,
⋆
y21 (t, β) = 2.376666667βt3 − 1.876666667t3

− 6.29000000t2 + 24.29000000βt2,
⋆
x2k+1 (t, β) =

∫ t

0
(3

⋆
x2k (u, β)(−t + u)

+ 2
⋆
y2k (u, β)(t − u))du, k ≥ 1,

⋆
y2k+1

(t, β) =

∫ t

0
(2

⋆
x2k (u, β)(t − u)

+ 3
⋆
y2k (u, β)(−t + u))du, k ≥ 1.

(51)
By solving (48), (49), (50) and (51), we get the approxi-

mate solution after four iterations as follows:

(
⋆
x1(t, α),

⋆
y1(t, α))

= (2 + 5αt + 2t + 3.33α − 1.943333334αt3

+ 2.666666667t3 + 5.00000000t2 − 3.325000000αt2

+ 0.541333334αt5 − 0.816666667t5 − 2.583333330t4

+ 1.523749999αt4 − 0.0750198413αt7

+ 0.1134920635t7

+ 0.502777777t6 − 0.295513888αt6

+ 0.00607264110αt9

− 0.00918761024t9 − 0.0523313492t8

+ 0.0307552083αt8,

8 + 1.67αt + 11t + 1.67α + 2.498333334αt3

− 4.166666668t3

− 8.00000000t2 + 4.155000000αt2 − 0.763416667αt5

+ 1.158333334t5 + 3.66666667t4 − 2.147083332αt4

+ 0.1060853175αt7−0.1605158731t7−0.711111110t6

+ 0.417874999αt6 − 0.00858799053αt9

+ 0.0129932761t9

+ 0.0740079365t8 − 0.0434942956αt8),

(
⋆
x2(t, α),

⋆
y2(t, α))

= (15 − 3.33αt + 10t − 11.67α + 1.108333334αt3

− 0.3333333334t3 − 11.50000000t2 + 15.83500000αt2

− 0.304750000αt5 + 0.01666666662t5 + 5.12500000t4

− 7.43125000αt4 + 0.0422162699αt7

− 0.00198412699t7

− 0.993055554t7 + 1.442263887αt6

− 0.00341724537αt9

+ 0.000159832452t9 + 0.1033482144t8

− 0.150104911αt8,

11 − 1.67αt + 14t − 1.67α − 1.385000000αt3

− 0.3333333334t3 + 13.50000000t2 − 20.83500000αt2

+ 0.429416667αt5 − 0.01666666682t5 − 7.20833333t4

+ 10.48708333αt4 − 0.0596964286αt7

+ 0.00277777778t7

+ 1.404166665t6 − 2.03954167αt6+0.00483269953αt9

− 0.000225970018t9 − 0.146155754t8

+ 0.212280011αt8),

(
⋆
x1(t, β),

⋆
y1(t, β))

= (5.29 − 85βt + 6.71t − 4.29β − 0.528333333βt3

+ 0.645000000t3 + 1.06500000t2 + 3.575000000βt2

+ 0.1655833334βt5−0.2494166672t5 − 0.752916666t4

− 1.608749999βt4 − 0.0230257937βt7

+ 0.0348630952t7

+ 0.1476249998t6 + 0.311819444βt6

+ 0.00186405974βt9

− 0.00282277888t9 − 0.0153687996t8

− 0.0324516369βt8,

9 − 2.86βt + 12t − 2.86β + 0.863333334βt3

− 1.526666667t3
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− 2.92000000t2 − 4.290000000βt2 − 0.2351666672βt5

+ 0.358000000t5 + 1.085000000t4 + 2.264166666βt4

+ 0.0325674603βt7 − 0.0493253968t7 − 0.208888889t6

− 0.440916666βt6 − 0.00263618827βt9

+ 0.00399206349t9

+ 0.0217351191t8 + 0.0458933532βt8),

(
⋆
x2(t, β),

⋆
y2(t, β))

= (3.71 + 5.71βt + 6.29t + 14.29β − 1.901666667βt3

+ 0.901666667t3 + 3.57500000t2 − 18.57500000βt2

+ 0.522916667βt5 − 0.322916667t5 − 1.942083333t4

+ 8.69208333βt4−0.0724384921βt7+0.0450575397t7

+ 0.378486111t6 − 1.686819440βt6

+ 0.00586361883βt9

− 0.00364801036t9 − 0.0393960814t8

+ 0.175556795βt8,

9.14 + 2.86βt + 12.14t + 2.86β + 2.376666667βt3

− 1.876666667t3 − 6.29000000t2 + 24.29000000βt2

− 0.736833334βt5 + 0.461833333t5 + 2.764166670t4

− 12.26416666βt4 + 0.1024325397βt7

− 0.0637420635t7

− 0.535361111t6 + 2.38536111βt6

− 0.00829238317βt9

+ 0.00515911596t9 + 0.0557147819t8

− 0.248274306βt8),

In Table 3,
⋆
x1(t, α),

⋆
x2(t, α),

⋆
y1(t, α) and

⋆
y2(t, α) represents

analytical solution of the membership functions of the
Example1 for α ϵ [0, 0.6] and

⋆
x1(t, β),

⋆
x2(t, β),

⋆
y1(t, β) and

⋆
y2(t, β) represents analytical solution of non-membership
function of the Example2 for β ϵ [0.3, 1.0] .
The following is the mathematical and exact solution

to Example 2 using the classical method, as shown in
Figure 4(a-d) and Table 4:

(
⋆
x1(t, α),

⋆
y1(t, α))

= ((
667
200

α +
13
2
)sin(t) + (5 +

5
2
α)cos(t)

+
9

1000

√
5(−100 + 37α)

× sin(
√
5t)+(−3 +

83
100

α)cos(
√
5t), (

667
200

α +
13
2
)sin(t)

+ (5 +
5
2
α)cos(t) −

9
1000

√
5(−100 + 37α)sin(

√
5t)

− (−3 +
83
100

α)cos(
√
5t)),

(
⋆
x2(t, α),

⋆
y2(t, α))

= (−
1

500

√
5(200 + 83α)sin(

√
5t) + (2 − 5α)cos(

√
5t)

+ (−
5
2
α + 12)sin(t) + (13 −

667
100

α)cos(t),

1
500

√
5(200 + 83α)

× sin(
√
5t) − (2 − 5α)cos(

√
5t) + (−

5
2
α + 12)sin(t)

+ (13 −
667
100

α)cos(t)),

(
⋆
x1(t, β),

⋆
y1(t, β))

= (
1

1000

√
5(−529 + 201β)sin(

√
5t)

+ (−
371
200

−
143
200

β)cos(
√
5t)

+ (−
371
200

β +
1871
200

)sin(t) + (
1429
200

−
143
40

β)cos(t),

−
1

1000

√
5

× (−529 + 201β)sin(
√
5t) − (−

371
200

−
143
200

β)cos(
√
5t)

+ (−
371
200

β +
1871
200

)sin(t) + (
1429
200

−
143
40

β)cos(t)),

(
⋆
x2(t, β),

⋆
y2(t, β))

= ((
857
200

β +
1843
200

)sin(t) + (
257
40

+
343
40

β)cos(t) +
3
200

√
5

× (−39 + 19β)sin(
√
5t) + (−

543
200

+
1143
200

β)cos(
√
5t),

(
857
200

β +
1843
200

)sin(t) + (
257
40

+
343
40

β)cos(t)

−
3
200

√
5(−39 + 19β)sin(

√
5t)

− (−
543
200

+
1143
200

β)cos(
√
5t)).

In Table 4,
⋆
x1(t, α),

⋆
x2(t, α),

⋆
y1(t, α) and

⋆
y2(t, α) represents

exact solution of the membership functions of the Example2
for α ϵ [0, 0.6] and

⋆
x1(t, α),

⋆
x2(t, α),

⋆
y1(t, α) and

⋆
y2(t, α) rep-

resents exact solution of non-membership function of the
Example2 for β ϵ [0.3, 1.0] .
Example 3: Consider the first order non-homogenous sys-

tem of intuitionistic fuzzy differential equation as follows:

d
⋆
x
dt = 2

⋆
x(t) + 3

⋆
y(t) − 7,

d
⋆
y
dt = −

⋆
x(t) − 2

⋆
y(t) + 5.

 (52)
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TABLE 4. Illustrates the approximation to the generalized trapezoidal intuitionistic fuzzy initial value problem from Example 2 for t=1.

TABLE 5. Illustrates the exact solution to the generalized trapezoidal intuitionistic fuzzy initial value problem from Example 2 for t=1.

TABLE 6. Illustrates the approximate solution iterations in column 2,
residual error in column 3, and CPU time required by the numerical
technique GMADM to determine the approximate solution of the system
of generalized fuzzy intuitionistic differential equations used in Example
2 in column 4. Whenever the error of all methods is taken into account,
we can conclude that the GMADM has a better convergence behavior and
is more stable than the ADM and TSM, respectively.

with initial conditions

⋆
x(0) = <(2, 4, 8, 15; 0.6); (1, 4, 8, 18; 0.3)>,
⋆
y(0) = <(2, 5, 8, 10; 0.6)(1, 5, 8, 12; 0.3)>.

}
(53)

By taking (α, β)-cuts of (52) and (53), we get,

d
⋆
x1(t,α)
dt = 2

⋆
x1(t, α) + 3

⋆
y
1
(t, α) − 7,

⋆
x1(0, α) = 3.33α + 2,

d
⋆
y1(t,α)
dt = −

⋆
x1(t, α) − 2

⋆
y
1
(t, α) + 5,

⋆
y1(0, α) = 5α + 2,

 (54)

d
⋆
x2(t,α)
dt = 2

⋆
x2(t, α) + 3

⋆
y2(t, α) − 7,

⋆
x2(0, α) = −11.67α + 15,

d
⋆
y2(t,α)
dt = −

⋆
x2(t, α) − 2

⋆
y2(t, α) + 5,

⋆
y2(0, α) = −3.33α + 10,

 (55)

d
⋆
x1(t,β)
dt = 2

⋆
x1(t, β) + 3

⋆
y
1
(t, β) − 7,

⋆
x1(0, β) = −4.29β + 5.29,

d
⋆
y1(t,β)
dt = −

⋆
x1(t, β) − 2

⋆
y
1
(t, β) + 5,

⋆
y1(0, β) = −0.85β + 6.71,

 (56)

d
⋆
x2(t,β)
dt = 2

⋆
x2(t, β) + 3

⋆
y2(t, β) − 7,

⋆
x2(0, β) = 14.29β + 3.71,

d
⋆
y2(t,β)
dt = −

⋆
x2(t, β) − 2

⋆
y2(t, β) + 5,

⋆
y2(0, β) = 5.71β + 6.29.

 (57)

Here
✠
L =

d
dt and by taking

✠
L

−1

(.) =

t∫
0

(.) dt on both sides of

(54), (55), (56) and (57), and using the initial conditions we
obtain;

⋆
x1(t, α) =

t∫
0

(2
⋆
x1(u, α) + 3

⋆
y1(u, α))du

+3.33α + 2 − 7t,

⋆
y1(t, α) =

t∫
0

(−
⋆
x1(u, α) − 2

⋆
y1(u, α))

+5α + 2 + 5t,

(58)



⋆
x2(t, α) =

t∫
0

(2
⋆
x2(u, α) + 3

⋆
y2(u, α))du

−11.67α + 15 − 7t,

⋆
y2(t, α) =

t∫
0

(−
⋆
x2(u, α) − 2

⋆
y2(u, α))

−3.33α + 10 + 5t,

(59)



⋆
x1(t, β) =

t∫
0

(2
⋆
x1(u, β) + 3

⋆
y1(u, β))du

+5.29 − 4.29β − 7t,

⋆
y1(t, β) =

t∫
0

(−
⋆
x1(u, β) − 2

⋆
y1(u, β))

+6.71 − 0.85β + 5t,

(60)



⋆
x2(t, β) =

t∫
0

(2
⋆
x2(u, β) + 3

⋆
y2(u, β))du

+14.29β + 3.71 − 7t,

⋆
y2(t, β) =

t∫
0

(−
⋆
x2(u, β) − 2

⋆
y2(u, β)) + 5.71β

+6.29 + 5t.

(61)
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Now by using GMADM we get;

⋆
x10 (t, α) = 3.33α + 2,
⋆
y10 (t, α) = 5α + 2,
⋆
x11 (t, α) = 21.66000000αt + 3t,
⋆
y11 (t, α) = −13.33000000αt − t,

⋆
x1k+1 (t, α) =

t∫
0

(2
⋆
x1k (u, α) + 3

⋆
y1k (u, α))du, k ≥ 1,

⋆
y1k+1

(t, α) =

t∫
0

(−
⋆
x1k (u, α) − 2

⋆
y1k (u, α))du, k ≥ 1.

(62)

⋆
x20 (t, α) = −11.67α + 15,
⋆
y20 (t, α) = −3.33α + 10,
⋆
x21 (t, α) = −33.33000000αt + 53t,
⋆
y21 (t, α) = 18.33000000αt − 30t,

⋆
x2k+1 (t, α) =

t∫
0

(2
⋆
x2k (u, α) + 3

⋆
y2k (u, α))du, k ≥ 1,

⋆
y2k+1

(t, α) =

t∫
0

(−
⋆
x2k (u, α) − 2

⋆
y2k (u, α))du, k ≥ 1,

(63)

⋆
x10 (t, β) = 5.29 − 4.29β,
⋆
y10 (t, β) = 6.71 − 0.85β,
⋆
x11 (t, β) = 23.71000000t − 11.13000000βt,
⋆
y11 (t, β) = −13.71000000t + 5.990000000βt,

⋆
x1k+1 (t, β) =

t∫
0

(2
⋆
x1k (u, α) + 3

⋆
y1k (u, α))du, k ≥ 1,

⋆
y1k+1

(t, β) =

t∫
0

(−
⋆
x1k (u, α) − 2

⋆
y1k (u, α))du, k ≥ 1.

(64)

⋆
x20 (t, β) = 3.71 + 14.29β,
⋆
y20 (t, β) = 6.29 + 5.71β,
⋆
x21 (t, β) = 19.29000000t + 45.71000000βt,
⋆
y21 (t, β) = −11.29000000t − 25.71000000βt,

⋆
x2k+1 (t, β) =

t∫
0

(2
⋆
x2k (u, α) + 3

⋆
y2k (u, α))du, k ≥ 1,

⋆
y2k+1

(t, β) =

t∫
0

(−
⋆
x2k (u, α) − 2

⋆
y2k (u, α))du, k ≥ 1.

(65)

FIGURE 8. Exact solution of (
⋆
x1k

(t, α),
⋆
y1k

(t, α)) of generalized
trapezoidal intuitionistic fuzzy number.

FIGURE 9. Exact solution of (
⋆
x2k

(t, α),
⋆
y2k

(t, α)) of generalized
trapezoidal intuitionistic fuzzy number.

FIGURE 10. Exact solution of (
⋆
x1k

(t, β),
⋆
y1k

(t, β)) of generalized
trapezoidal intuitionistic fuzzy number.

Figures 8-11: Displays the membership and non-
membership functions, as well as the exact and approximative
solutions, for the generalised trapezoidal intuitionistic fuzzy
initial value problem used in example 3.
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FIGURE 11. Exact solution of (
⋆
x2k

(t, β),
⋆
y2k

(t, β)) of generalized
trapezoidal intuitionistic fuzzy number.

By solving the (62), (63), (64) and (65), we get the approx-
imate solution after three iteration as follows:

(
⋆
x1(t, α),

⋆
y1(t, α))

= (3.33α + 2 + 3t + 21.66000000αt + 1.500000000t2

+ 1.665000000αt2+0.5000000000t3+3.610000000αt3

+ 0.1250000000t4 + 0.1387500007αt4, 5α + 2 − t

− 13.33000000αt + 2.500000000αt2 − 0.5000000000t2

− 0.1666666666t3 − 2.221666666αt3

− 0.04166666670t4

+ 0.2083333329αt4),

(
⋆
x2(t, α),

⋆
y2(t, α))

= (−11.67α + 15 + 53t − 33.33000000αt+8.000000000t2

− 5.835000000αt2+8.833333330t3−5.554999998αt3

+ 0.6666666650t4 − 0.4862499990αt4,

− 3.33α + 10 − 30t

+ 18.33000000αt − 1.665000000αt2 + 3.50000000t2

− 5.000000000t3 + 3.055000000αt3 + 0.2916666675t4

− .1387500006αt4),

(
⋆
x1(t, β),

⋆
y1(t, β))

= (−4.29β + 5.29 + 23.71000000t − 11.13000000βt

+ 3.145000000t2 − 2.145000000βt2 + 3.951666665t3

− 1.854999999βt3 + 0.2620833332t4

− 0.1787499999βt4,

− 0.85β + 6.71 − 13.71000000t + 5.990000000βt

− 0.4250000000βt2 + 1.855000000t2 − 2.284999999t3

+ 0.9983333329βt3 + 0.1545833333t4

− 0.03541666665βt4),

(
⋆
x2(t, β),

⋆
y2(t, β))

= (14.29β + 3.71 + 19.29000000t + 45.71000000βt

+ 2.355000000t2 + 7.145000000βt2 + 3.214999999t3

+ 7.618333330βt3 + 0.1962499999t4

+ 0.5954166665βt4,

5.71β + 6.29 − 11.29000000t − 25.71000000βt

+ 2.855000000βt2 + 1.645000000t2 − 1.881666666t3

− 4.284999998βt3 + 0.1370833333t4

+ 0.2379166666βt4).

The following is the mathematical and exact solution
to Example 3 using the classical method, as shown in
Figure 4(a-d) and Table 6:

{
⋆
x1(t, α) = −

1833
200

αe−t + (3 +
2499
200

α)et − 1,

⋆
y1(t, α) =

1833
200

αe−t −
1
3
(3 +

2499
200

α)et + 3},

{
⋆
x2(t, α) = (

69
2

−
45
2

α)et + (−
37
2

+
1083
100

α)e−t − 1,

⋆
y2(t, α) = −(−

37
2

+
1083
100

α)e−t

−
1
3
(
69
2

−
45
2

α)et + 3},

{
⋆
x1(t, β) = (−

871
100

+
171
50

β)e−t + (15 −
771
100

β)et − 1,

⋆
y1(t, β) = −(−

871
100

+
171
50

β)e−t

−
1
3
(15 −

771
100

β)et } + 3,

{
⋆
x2(t, β) = (12 + 30β)et + (−

729
100

−
1571
100

β)e−t − 1,

⋆
y2(t, β) = −(−

729
100

−
1571
100

β)e−t

−
1
3
(12 + 30β)et + 3},

IV. RESULTS AND DISCUSSION
We discuss how the computing efficiency, stability, and resid-
ual error robustness of the proposed modified technique,
GMADM, outperforms the ADM and TSM approaches.

• Tables 1 to 9 illustrate how GMADM, a recently created
approach, is more reliable and consistent than ADM
and TSM. While solving a system of fuzzy intuitionis-
tic differential equations, it is observed that GMADM
converges more quickly and accurately than ADM and
TSM.

• Tables 3, 6, and 9 clearly demonstrate that GMADM
is superior to ADM and TSM in terms of iterations,
residual error, and CPU time.

• Figures 2-11 compare the numerical simulation of our
recently modified family GMADM to a precise solution
of the generalized trapezoidal intuitionistic fuzzy initial
value problem used in Example 1-3 respectively.

• Figures 2-3, 4-11 illustrate the precise and approxi-
mate solutions for the membership and non-membership
functions of the generalized trapezoidal intuitionistic
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TABLE 7. Illustrates the approximation to the generalized trapezoidal intuitionistic fuzzy initial value problem from Example 3 for t=1.

TABLE 8. Illustrates the exact solution to the generalized trapezoidal intuitionistic fuzzy initial value problem from Example 3 for t=1.

TABLE 9. Illustrates the approximate solution iterations in column 2,
residual error in column 3, and CPU time required by the numerical
technique GMADM to determine the approximate solution of the system
of generalized fuzzy intuitionistic differential equations used in Example
3 in column 4. Whenever the error of all methods is taken into account,
we can conclude that the GMADM has a better convergence behavior and
is more stable than the ADM and TSM, respectively.

fuzzy system of initial value problems used in
example 1-3, respectively.

• The numerical results obtained in Tables 1-2,4-6,7-8,
and Figures 1-11 clearly demonstrate that the exact and
approximate solutions are matched up to 30 decimal
places using GMADM, 7 decimal places using ADM,
and 9 decimal places using TSM. The numerical simu-
lation of our methods demonstrates unequivocally how
much superior our method is to ADM and TSM.

V. CONCLUSION
In this work, Generalized Modified Adomian Decomposition
Method have been utilized for computing the approximate
solution of the linear system of generalized trapezoidal intu-
itionistic fuzzy initial value problems. We used the ini-
tial conditions as generalized trapezoidal intuitionistic fuzzy
numbers. We have applied this procedure to brine tank prob-
lems and coupled oscillators. Moreover, by comparing the
approximate results with exact solution, we have shown that
this method is more reliable. Future studies will therefore
focus on the solution of systems of higher order generalized
tripezodial intuitionistic fuzzy system of differential equa-
tions as well as a system of nonlinear first order differen-
tial equations and their application [48], [49], [50], [51],
[52], [53] in a more generalized fuzzy environment utilizing
GMADM.
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