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ABSTRACT State-of-the-art deep learning-based Head Pose Estimation (HPE) techniques have reached
spectacular performance on High-Resolution (HR) face images. However, they still fail to achieve expected
performance on low-resolution images at large scales. This work presents an end-to-end HPE framework
assisted by a Face Super-Resolution (FSR) algorithm. The proposed FSR model is specifically guided to
enhance the HPE performance rather than considering FSR as an independent task. To this end, we utilized
a Multi-Stage Generative Adversarial Network (MSGAN) which benefit from a pose-aware adversarial loss
and head pose estimation feedback to generate super-resolved images that are properly aligned for HPE.
Also, we propose a degradation strategy rather than simple down-sampling approach to mimic the diverse
properties of real-world Low-Resolution (LR) images. We evaluate the performance of our proposed method
on both synthetic and real-world LR datasets and show the superiority of our approach in both visual and
HPE metrics on the AFLW2000, BIWI, and WiderFace Datasets.

INDEX TERMS Head pose estimation (HPE), face super-resolution (FSR), multi-stage generative
adversarial networks (MSGAN), low-resolution (LR) face images.

I. INTRODUCTION
Single image Head Pose Estimation (HPE) plays a significant
role in applications such as 3D face modeling, gaze direction
detection, driver monitoring safety systems, surveillance face
recognition, and face frontalization [1], [2], [3], [4], [5].
Existing HPEmethods can be divided into 1) landmark-based
and 2) landmark-free approaches. The landmark-based meth-
ods rely on accurate landmarks localization and use mean
human head models to solve a 2D to 3D correspondence
problem [6], [7]. Since accurate landmark localization is
hard to achieve for unconstrained images, landmark-based
approaches have severe limitations when used in real-world
settings [8]. In the landmark-free approaches, the primary
measure is to use a deep learning method to extract global
representation from the input image [8], [9], [10]. These
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FIGURE 1. Top: the samples from the 300WLP dataset (tarining dataset).
Bottom: instances in the WiderFace dataset (evaluation dataset).

approaches leverage Convolutional Neural Networks (CNNs)
to directly regress head Euler angles of a given face image [1],
[9], [10], [11]. Despite the remarkable performance improve-
ment made by landmark-free methods [9], [11], HPE
in the real world (unconstrained) scenarios is far from
optimal [9], [11].

One of the main reasons for the performance gap
between constrained and unconstrained HPE is the lack of
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in-the-wild variations in the available training datasets,
i.e., few low-quality images are present in the training
datasets [12], [13]. Consequently, the network fails to explore
these under-represented samples since they are less frequent,
see Fig. 1 [14]. Generally, face image quality reflects the
understandable nuisance factors in the face image such as
pose-angle, illumination, distortion, and resolution [15], [16].
However, task-related image quality is the key to boosting
the deep model performance [17]. For instance, head pose
angle is regarded as an undesirable quality factor for a face
recognition network [18], [19]. However, estimating head
pose angle is the goal of a HPE algorithm and it is not
considered as an undesirable factor of an input image.

Among the image characteristics that can affect image
quality, the resolution is one of the primary challenges in
HPE [9]. It is known that Low-Resolution (LR) synthetic data
can mimic real-world LR images and increase the resolution
diversity of the training dataset [9], [20], [21]. Therefore,
training HPE module with synthetic LR data may narrow
the performance gap between the high and low-resolution
HPE [9], [11]. However, using synthesized LR samples, i.e.,
data augmentation during training of an HPE module, is a
trade-off between positive gain from more diverse train-
ing instances and adverse effects of overfitting [12], [13].
The authors in [9] show that when the resolution variation
increases, the performance on the original High-Resolution
(HR) samples drops. Consequently, the model which is not
trained with the augmentation achieves better performance
on the HR samples by a considerable margin. Hence, the cost
of improving performance on the LR data is the reduction of
performance on HR samples, which is not desired.

Another possible approach to address the LR HPE is to
utilize Super-Resolution (SR) techniques to retrieve the HR
face images from their corresponding LR pairs [22], [23].
Among image generation models, the Generative Adversarial
Networks (GANs) have shown incredible performance in
producing images with high-frequency details, especially for
tasks involving image-to-image translation such as SR [20],
[24], [25], [26], [27]. However, the State-of-the-Art (SOTA)
Face Super Resolution (FSR) methods did not consider face
images with a wide range of pose variations, which is the
most important aspect in designing anHPEmodule [22], [23],
[26], [28]. Consequently, these methods failed to produce
satisfactory results for the off-angle faces and added unde-
sirable artifacts to the synthesized images, which severely
lowered the HPE model performance [29]. Moreover, the
majority of existing methods have investigated FSR up to ×4
upscaling factor because extremely LR images, e.g., 8×8 and
16×16 pixels, do not retain as much identity-related
information as their corresponding HR images [30], [31],
[32], [33], [34], [35].

In this work, we develop a guided FSR framework which
is specifically designed to enhance the HPE module perfor-
mance on extremely LR images, see Fig. 2. To this end,
we seek to improve both visual and task-related quality of LR
images. The former is achieved using reconstruction losses

FIGURE 2. Overview of the proposed approach. Task-related (head pose
adversarial, representation alignment, classification, and regression
losses) and visual quality (reconstruction losses) feedbacks are used to
guide the generator toward producing authentic SRd images.

and to satisfy the latter, we reduce the gap between the
representation of Super-resolved (SRd) and HR images in
terms of both angular and magnitude of HPE embedding.
Furthermore, the pose-aware adversarial domain adapta-
tion [36], [37] forces the generator to produces SRd output
images that the HPE model cannot decipher from their real
HR pairs. Moreover, to expilicitly supervise the HPE perfor-
mance we use both classification and head pose regression
losses.

We explore the effects of the input resolution on the repre-
sentations obtained from the HPE module from the perspec-
tive of the magnitude, and the dimension spanned by the HPE
embedding feature vectors. To the best of our knowledge, our
proposed joint FSR and HPE is the first study which focuses
on HPE for extreme LR images using a large upscaling
factor. Our contributions in this paper can be summarized as
follows:

1) We explore the effect of the image quality (resolution)
on the features extracted from the penultimate layer of
the HPE model and propose to use task-related quality
measure to guide the FSR module to produce authentic
and task-related high quality SRd images.

2) We introduce a novel pose-aware domain adaptation
approach to ensure resolution-agnostic HPE.

3) We emperically show the dimension collaps in the
embedding of current SOTA HPE models.

4) We introduce a practical degradation model which imi-
tates the real-world LR images.

The rest of this paper is organized in the following man-
ner. In Section II, we provide a literature review related to
FSR, HPE and using SR to boost the downstream tasks.
In Section III, we present our model and network architecture
in detail. In Section IV, we describe the training details
and datasets, and then present extensive experimental results,
evaluations, and ablations studies to validate the effectiveness
of the proposed approach. Finally, we conclude the paper
in Section V.
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FIGURE 3. The architecture of the proposed Multi-Stage Generative Adversarial Network (MSGAN) for ×16 SR. We adopt Residual-in-Residual Dense
Block (RRDB) from [20]. The first half of the network performs ×4 upsampling, and the other half performs the remaining ×4 upsampling.

FIGURE 4. RRDB which combines multi-level residual network and dense
connections.

II. RELATED WORK
A. HEAD POSE ESTIMATION
Approaches for HPE can be categorized into landmark-based
methods, and landmark-free methods [6], [7], [8], [9], [10].
In landmark-based, first, key landmarks are localized, then
pose estimation is performed by solving a 2D to 3D corre-
spondences problem [6]. Despite the satisfactory results in
constrained benchmarks, landmark-based approaches fail to
maintain their performance in uncontrolled settings such as
complete profile or LR face images [9]. The main reason
for this lack of robustness is the strict reliance on the accu-
rate landmark localization [8]. To address this issue, a large
area of research has been dedicated to the landmark-free
approaches [1], [9], [10]. Consequently, the landmark-free
methods, mainly based on deep learning approaches, have
achieved a significant performance improvement [1], [9],
[10]. These approaches utilize CNNs to estimate head pose
directly from image intensities [6], [7], [11], [38], [39].

Studies demonstrated that simultaneously learning related
tasks yields better results than the training individual net-
works for each task (i.e., multi-tasking) [40], [41], [42], [43],
[43]. Kummar et al. [41], intend to learn the global and

local features simultaneously via using heatmap-CNN for
face detection, andHPE [41]. Ranjan et al. use a CNN to learn
HPE, gender classification, face detection, and landmark
localization [43]. Recently, different studies use multiple
HPE loss functions to train a HPE module, e.g., classification
and regression [9]. Liu et al. [38] used a CNN to estimate the
three angles of the head pose, but they used solely artificial
datasets to train their models, which caused issues when the
model was tested in real-world senario.

Patacchiola and Cangelosi [39] assessed the performance
of several architectures in combination with an adaptive gra-
dient learning. Ruiz et al. [9] improved the performance
of their HPE model by employing both the Mean Squared
Error (MSE) and cross-entropy losses. In FSA-Net [11],
authors improved the HPE performance with an architecture
based on regression and feature aggregation. Despite the
significant improvement, mentioned methods fail to preserve
their performance in the LR scenarios [9]. Among the SOTA
methods, [9] has relative superior performance because of the
down-sampling augmentation during the training. However,
it obtains this robustness at the cost of losing performance
on the original HR input images [9]. Moreover, according to
the our investigation in Table 1, the performance of SOTA
methods for LR face images (8×8 and 16×16) significantly
drops.

B. FACE SUPER RESOLUTION (FSR)
FSR (also known as face hallucination) is a technique for
creating a HR face image from a LR source [44]. FSR can be
divided into classical and deep learning-based methods [45],
[46], [47], [48], [49], [50]. In the classical method, LR images
are SRd using global face statistical models [45], [46] or local
patch-based representation methods [47], [48]. Although
these methods can achieve impressive performances, most of
them still suffer from the two drawbacks. First, they usually
rely on the complex optimization methods to recover the HR
images [51]. Second, they need manually tuned parameters to
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obtain a good SR performance, making them inflexible [52].
Several papers provide a thorough review of traditional FSR
techniques [22], [53].

Among the deep learning methods, GANs have received
special attention [20], [24], [25]. The GAN framework is
based on two competing networks. A generator network,
G, and a discriminator network, D. In the GAN-based SR,
the generator map LR input, ILR, to its corresponding HR
pair, IHR. The trainable parameters of the generator are θg.
On the other hand, the discriminator, D(.; θd ), discriminates
between the HR and SRd output of the generator using a
binary classification. Consequently, G and D are playing a
min-max game, and the loss function to train G and D can be
formulated as follows:

ladv = min
G

max
D

{E
[
logD(IHR)

]
+ E

[
log (1 − D(G(ILR)))

]
}.

(1)

Since many HR pairs exist for a LR face image, FSR is
an inherently ill-posed inverse problem [54]. Therefore, prior
information is the key to boosting the quality of the SRd
image and GANs training stability [11], [32]. Various FSR
studies have explored the benefits of prior facial informa-
tion in FSR [11], [30], [32], [55], [56]. In ProgFSR [32],
a new facial attention loss is developed via multiplication
of the heatmap and the differences between SRd and HR
images to focus on restoring face traits in more detail.
Chen et al. [30] improved the reconstruction model per-
formance by exploiting the prior geometric information
extracted from the face images. SuperFAN [56] first SRd
the LR images, then employed a prior estimation network
to extract the heatmaps of SR and HR images, and constrain
the heatmaps of the corresponding SR and HR images to be
close. Despite the remarkable achievements, face images in
the various poses, which are crucial for creating aHPEmodel,
were not taken into the account by current FSR approaches.
Most methods focus on producing visually acceptable output,
not the output, which further improves the downstream task.
Also, there are a limited number of studies deal with extreme
LR input images, such as upscaling factors of ×8 [30], [32]
and ×16 [33], [34].

C. SUPER-RESOLUTION TO BOOST DOWNSTREAM TASKS
SR has been shown to be a good preprocessing tool for LR
input images in the various vision tasks. Shermeyer et al. [57]
fine-tuned a pre-trained SR model to quantify its effect on
object detection performance in the multi-resolution satel-
lite pictures. Similarly, the proposed network in [58] jointly
optimized the detection and SR modules to generate the SRd
images. In [59], the effect of SR on the small-scale pedes-
trian detection has been extensively studied. Also, in Super-
Fan [56], joint training improved face SR by incorporating the
facial landmark information in a GAN-based SR algorithm.
Furthermore, Wu et al. [60] proposed joint face hallucination
and recognition in which SR and a face recognition network
are optimized iteratively. These works have motivated us to

FIGURE 5. Showing the pose aware adversarial training. Dr is responsible
to distinguish between the HPE representation of the HR and SRd output
of the generator.

utilize SR framework to develop a resolution-agnostic HPE
module. Our work focus on reducing the effects of resolution
variation on the HPE for extremely LR and degraded images.
To this end, we force the FSR to improve both visual and
task-related quality of images

III. PROPOSED FRAMEWORK
In this section, we first begin by introducing our multi-stage
generator. Then, we further explain the integration of our SR
framework with the HPE module. The proposed generator
produces the SRd version of an extremely LR input image
in a way that is visually convincing and efficiently aligned to
improve the HPE module performance. To this end, we inte-
grate three HPE model feedbacks into our GAN framework:
1) Pose-Aware adversarial training, 2) head pose estimation
criterion, and 3) aligning the SRd and HR representation of
the HPE model in both angular and Euclidean space.

A. MULTI-STAGE GAN (MSGAN)
Our main goal is to map an extremely LR input face image
to its corresponding HR counterpart, which will explicitly
boosts the performance of HPE. To handle the information
gap between the LR and HR data, one can stack more convo-
lutional layers in the encoder-decoder architecture [20], [61].
However, more layers of continuous convolutions result in the
loss of information which may be essential for synthesizing
the SRd image [20], [62]. Therefore, we decompose the SR
problem into multiple stages. Then the network can restore
the HR information iteratively [63], [64], [65], [66]. The
network learns the HR image distribution at different scales
using a coarse-to-fine SR framework in our architecture.With
the multi-stage framework, adversarial training is applied in
the each stage:

l iadv = min
Gi

max
Di

{
E

[
logDi(I iHR)

]
+ E

[
log 1 − Di(G(I iLR))

]}
,

(2)

where i ∈ {1, 2, 3, 4} refers to each stage and Di/Gi refers
to the discriminator/generator at each stage. We adopt the
architecture of widely-used (SR network) ESRGAN [20] as
our generator, i.e., a deep network with several residual-in-
residual dense blocks (RRDB). We also double the original
×4 ESRGAN architecture to have enough network capac-
ity for performing SR with a scale factor of ×8 and ×16,
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see Fig. 3. For our discriminator, we use a convolutional
‘‘PatchGAN’’ classifier [67]. Specifically, in conventional
discriminators, the decision of being fake/real is made based
on the whole input image (one output). However, here in
PatchGan discriminator, the decision is made locally. There-
fore, instead of one single output, the final output of the
discriminator is a feature map indicating which part of the
input image is real or fake. The discriminator of the proposed
method consists of five consecutive modules of convolution-
BatchNorm-ReLu [68]. Formore details, please refer to IV-B.

B. HEAD POSE RELATED LOSSES
1) POSE-AWARE ADVERSARIAL TRAINING
Every softmax-based classification framework can be
regarded as the stack of non-linear feature extractor lay-
ers (backbone) together with a softmax classification layer.
The weight of the softmax layer are the centeroids of the
classes [18]. Both the backbone and classifier will be trained
end-to-end using a back-propagation algorithm. The goal is
to increase the similarity between the output of the backbone
(feature representation) and its corresponding softmax class
centeroid and decrease the similarity with other class cen-
teroids [12]. Given a fixed HPE module, the ideal scenario
is to have identical SRd and HR feature representations from
the HPE backbone (resolution-agnostic backbone).

To improve the similarity between the HR and SRd feature
pair, we adopt the idea of adversarial domain adaptation,
which aims at making the representations of two different
versions of the same image as similar as possible [37]. To this
end, we aim to fool a discriminator, which will be trained to
distinguish between the SRd andHR representations obtained
from the HPE backbone, as shown in Fig. 5. This mimics
the adversarial policy used in the GANs as presented in sec-
tion II-C [37]. However, the GAN discriminator distinguishes
between the SRd and HR images, which is irrelevant to the
downstream task. Here, to achieve the goal of resolution-
agnostic HPE, we introduce an adversarial regularization
strategy, Eq. 3, to guide the SR synthesis process so that the
FSR module generates samples specified for the resolution-
agnostic HPE:

lpa = min
G

max
Dr

{E
[
logDr (f (IHR))

]
+ E

[
log (1 − Dr (f (G4(ILR))))

]
}, (3)

where f is the backbone of the HPE model and Dr is dis-
criminating between f (IHR) and f (G4(ILR)). At the same time,
G4 (SR generator) tries to generate SRd images suitable for
accurate HPE. Applying adversarial training on the represen-
tation obtained from the HPE model aligns with our final
goal of having resolution-agnostic HPE. In this context, if the
features of the HR and SR images are not distinguishable,
we can achieve results similar to the HR images from the SR
counterparts.

Considering Eq. 2 and Eq. 3, we are explicitly guiding
our SR model to produce visually appealing SRd images
which can improve the performance of the HPE model on the

FIGURE 6. Distribution of the l2 norm of features obtained from the
penultimate layer of the HPE module for (a) LR (16 × 16), (b) LR (8 × 8)
with their corresponding super-resolved and ground truth HR l2 norms
for the AFLW2000 dataset.

LR images. Eq. 3 aims tomake the representations of SRd and
HR images obtained from the HPE model indistinguishable.
However, it does not explicitly impose the HPE accuracy
error loss. To further impose the low HPE error, we leverage
the HPE loss, as it was used in [9], and the representation
learning criterion, which we elaborate on in the next two
sections.

2) HPE LOSS
Assume that the Euler angle’s range is [a, b] and is divided
into n bins. Then, the Ground Truth (GT) Euler angels, θGT ,
fall into one of the bins. Therefore, we can define a one-hot
label for each GT and calculate the cross entropy loss Lce.
Also, from the softmax probabilities (output), the correspond-
ing predicted head pose angle can be calculated. Eq. 4 shows
how to compute the predicted Euler angle (yaw, pitch, and
roll) given the softmax output, θ .

θ̂ = a+
b− a
n

∑
i=1,...,n

(i− 1)θi, (4)

where θi denotes the output of the softmax layer for ith bin and
θ̂ is the predicted angle. From Eq. 4, a regression loss (Lmse =

(θ̂ − θGT )) is added to derive the fine-grained prediction. The
following (estimation loss) is the total pose estimation loss
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FIGURE 7. Distribution of the l2 norm of features obtained from
MagFace [15] for (a) LR (16 × 16), (b) LR (8 × 8) with their corresponding
super-resolved and ground truth HR l2 norms for the AFLW2000 dataset.

for each Euler angle:

Lest = Lce + βmseLmse, (5)

where βmse is the regression coefficient. Note that three final
losses for three Euler angles need to be calculated.

3) REPRESENTATION ALIGNMENT
It is widely accepted that representation learned via Soft-
max has an angular distribution [18]. Also, face recognition
literature empirically shows that the l2 norm of the feature
reflects the quality of the input image [12], [13], [15]. Fig. 6
shows the effect of input resolution on the l2 norm of features
obtained from the HPE backbone. Fig. 6 shows that L2 norm
of features of the HPE backbone is severely affected by input
resolution. Therefore, considering the angular distribution of
the Softmax representations, it is essential to consider the
alignment of HR and SRd features in both 1) the angular
space and 2) the l2 norm space. The inner product between
the normalized representations from the HR and SRd images
can provide the angular similarity. In this regard, we define
similarity loss, Lsim, in the angular space as:

Lsim = 1 −
f (IHR)

||f (IHR)||
·

f (G4(ILR))
||f (G4(ILR))||

, (6)

FIGURE 8. Visualization of some degraded samples based on proposed
degradation method. Column (a) shows the HR images, (b), (c), and
(d) are the different degraded images correspond to each HR sample.

where f (.) represent the feature vector obtained from the
penultimate layer of HPE model, and ||.|| is the L2 norm
operator.

For adding the norm regularization, we first normalized the
feature norm by the batch statistics, µ and σ :

|̂|f (.)|| =
||f (.)|| − (µ)

σ
. (7)

To relax µ and σ from the batch size, we calculate them in an
exponential moving average over the training iterations:

σ = ασt + (1 − α)σt−1, (8)

µ = αµt + (1 − α)µt−1. (9)

Then we define the square root of the difference between
̂||f (IHR)|| and ̂||f (G(ILR)|| as the norm regularization loss:

Lm = | ̂||f (G4(ILR))|| − ̂||f (IHR)|||
2
. (10)

With the mapping of the norm of the feature to the area
between [−1,1], Eq. 7, the distribution of the feature norm,
|̂|f (.)||, is made roughly unit Gaussian. It is known that around
68% of the unit Gaussian distribution lies between −1 and 1.
We can scale the σ to map most values to fall between
−1 and 1. To this end, we replace the σ with 0.33 ∗ σ [12].
This is done to make the value of angular and magnitude loss
comparable.
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Finally, the loss function for guiding the SR network
toward increasing the performance ofHPEmodel is as follow:

Lp = λpaLpa + λestLest + λsimLsim + λmLm. (11)

In a softmax-based classifier, representations’ angular align-
ment is crucial for correctly classifying. Consequently,
we separately optimize the angle and magnitude of repre-
sentations. Aligning the magnitude of HPE embedding forces
the generator to increase the task-related quality of its output.
Without this constraint, the generator only focuses on improv-
ing the visual quality of the output.

C. RECONSTRUCTION LOSSES
Due to the importance of identity preservation, the global
face shape and local attributes in FSR need to be handled
cautiously. To this end, three loss functions opt-in training:
1) the L1 reconstruction loss, 2) Learned Perceptual Image
Patch Similarity (LPIPS) [69], and 3) identity preservation
loss.

1) L1 LOSS
The L1 loss function is chosen for the reconstruction rather
than L2 since L1 encourages less blurring [67]:

Ll1(Gi(ILR), IHR) =
1
whc

∑
i,j,k

|(Gi(ILR))i,j,k − (IHR)i,j,k |,

(12)

where the height, width, and channel number are represented
by h,w, and c, respectively.

2) PERCEPTUAL LOSS
Most of the widely used perceptual losses are based on
VGG. However, the VGG-based perceptual loss [70] does
not produce precise results for large upscaling factor SR [69].
Also, the VGG network was designed to classify images, and
it might not be the ideal solution for the SR quality crite-
ria objective. LPIPS, which measures the distance between
two images in a deep feature space, is more in line with
human judgment. Hence, the LPIPS is used as the perceptual
loss [71]:

Llpips(G4(ILR), IHR) =

∑
k

τ k (φk (G4(ILR)) − φk (IHR)),

(13)

where τ transforms the deep embedding to the LPIPS score
and φ is the feature extractor. The score is computed and
averaged for k layers.

3) IDENTITY PRESERVATION
Adversarial learning of GANs, Eq. 2, encourages the
generator to characterize the attribute in the HR data.
However, it does not ensure that the identity information
is preserved on the generated SRd output [17]. Moreover,
aligning the representation of the HPE backbone by Eq. 10

FIGURE 9. a) Yaw, b) pitch, and c) roll prediction error distribution on the
AFLW2000 dataset. Comparison between our method and HopeNet when
using the LR (8×8) and HR (128×128) images as inputs.

will encourage the generator to mix the identity-related infor-
mation between different subjects. Hence, the cosine simi-
larity between the feature vector of the SRd and HR pair
obtained from a pre-trained face recognitionmodule is used to
enforce identity preservation. This identity preservation loss,
Lip, is defined as:

Lip(G4(ILR), IHR) = 1 −
φ2(G4(ILR))

||φ2(G4(ILR))||2
·

φ2(IHR)
||φ2(IHR)||2

,

(14)

where φ2 is the face recognition model.
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FIGURE 10. Comparison of pose estimation on the the WiderFace dataset
between our method (first row) and HopeNet (second row). The blue axis
points toward the front of the face, the green pointing downward, and
the red pointing to the side. Since there is no head pose label for the
WiderFace dataset, we demonstrate the labeled samples in the third row,
showing that our approach’s prediction is more authentic than the
original Hopenet.

By considering the input size of 8×8 and generating
images in 4 stages, the overall reconstruction loss in the each
stage i = 1, . . . , 4 is a combination of the aforementioned
losses:

Lrec(i) = λadvL iadv + λl1L il1 + λlpipsL ilpips + λipL iip, (15)

where λ(.) coefficients are the regularization parameters.
Therefore, the final training loss for all the stages can be
defined as:

Lcompound =

∑
i=1,...,4

[
αiLrec(i)

]
+ γp ∗ Lp, (16)

where αi are the regularization parameters for reconstruction
loss at each stage and γp indicates the weight associated with
the pose estimation loss compared to the reconstruction loss.
Note that Lp is being applied to the final SRd output.

IV. EXPERIMENTS
A. DATASETS
We employ 300W-LP [6] and CelebA [72] as our train-
ing datasets, which contain 60,000 and 500,000 samples,
respectively. For evaluation, we use the AFLW2000 [73],
BIWI [74], and WiderFace [75] datasets. The AFLW2000
contains 2,000 in-the-wild samples with large variations
in pose, illumination, expression, and occlusions. The
BIWI [74] consists of videos of participants in indoor envi-
ronment (15,000 images from 20 subjects). The Wider-
Face [75] is a challenging face detection dataset containing
face images with high degree of variability in pose, occlusion,
and degradation.

B. ARCHITECTURE
The Residual-in-Residual Dense Block (RRDB), used in
the generator architecture (see Figures 3 and 4) connects
all layers within a residual block to enhance the network’s
capacity [78]. A residual scaling in Fig. 4 is the process
of multiplying a parameter β from the range [0, 1] to the
residual which prevents instability [20]. As shown in the

Fig. 3, in the case of ×16 upscaling factor, the first half of
the network performs ×4 upsampling (using two successive
PixelShuffle(×2)) and the other half performs the remaining
×4 upsampling. Likewise, in the case of ×8, the first half
of the network performs ×2 upsampling, and the other half
performs the remaining ×4 upsampling.

Our multi-stage generator provides outputs from the sev-
eral intermediatory layers of the network rather than just the
final layer [79]. In the case of×16 SR, we enforce constraints
on our network at four different image resolutions 16×16,
32×32, 64×64 and 128×128 (see Fig. 3). Di ∈ {1, 2, 3, 4}
are patch-based discriminators that progressively contribute
to the generator learning finer details in every scale. We uti-
lize stage-specific patch-based discriminators at multiple SR
stages to further push the texture of generated images toward
being indistinguishable from IHR [67]. Other important issues
about the training of GANs are exploding and vanishing
gradients [80]. The former causes the training instability [81],
[82]. The latter leads either to the bad local minima or stalled
training before convergence [81]. Hence, we employ spectral
normalization (SN) in each layer of discriminators to stabilize
our adversarial training [82]. Furthermore, Dr is a multilayer
perceptron with two hidden layers of size 256, followed by
a batch normalization and leaky Relu activation function.
At the top of these hidden layers is a single neuron with a
Sigmoid activation function.

C. IMAGE DEGRADATION
While the bicubic degradation is rarely suitable for mim-
icking the real-world LR images, we employ a practical
degradation model to synthesize training pairs. Primarily,
HR images are degraded by applying downsampling, Gaus-
sian blur, and noise [83]. To further reduce the gap between
real/synthesized LR, we adopt the motion blur kernels gener-
ated by applying sub-pixel interpolation to the random trajec-
tory vectors [84]. The order of thementioned steps is shuffled,
leading to expanding the degradation space to imitate diverse
real-world LR images.

Generally, we can state that blur, downsampling, and noise
are the three key factors contributing to the degradation of
real images. The proposed degradation framework can be
mathematically modeled by:

ILR = (IHR ⊗ K ) ↓s +n, (17)

where ILR is obtained by convolving the IHR with a
point spread function K (Gaussian or motion blur kernel),
followed by a downsampling operation ↓s with scale
factor s and addition of white Gaussian noise n with stan-
dard deviation σ . Toward a more practical model, blurri-
ness is achieved by two convolutions with Gaussian kernel
and motion blur kernel. Downsampling includes bilinear,
bicubic, and nearest neighbor interpolations operators. The
noise is modeled by additive white Gaussian noise (AWGN).
Moreover, instead of using the blur/downsampling/noise-
addition pipeline, we randomly shuffle the order of applying
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FIGURE 11. Comparison of pose estimation for GT, LR, and SRd images. The pose predictions are plotted over the images of AFLW2000.
The blue axis points toward the front of the face, the green pointing downward, and the red pointing to the side. Below each image,
we stated (yaw, pitch, roll) values. The first row is the ground truth pose; the second row corresponds to the pose estimated by HopeNet
on LR (8×8) images and the third row shows the pose estimated for LR (8×8) images using our proposed method.

FIGURE 12. Qualitative SR comparison on the AFLW2000 dataset. Left part: (a) HR (128×128), b) LR (8×8), c) bicubic interpolation, d) ExtremeSR [69],
e) MGBPv2 [76], and f) ours for the upsampling rate of ×16. Right part: a) HR (128×128), b) LR (16×16), c) bicubic interpolation, d) ProgFSR [32], e)
SPARNet [77] and f) ours for the upsampling rate of ×8. Please zoom in to have a better detailed view of the images.

degradation components [85]. Consequently, we can generate
various LR images corresponding to each HR image with
a wide range of degradations. Fig. 8 shows three different
degraded version of each HR sample which are generated
during the training.

D. IMPLEMENTATION DETAILS
In degradation process, we randomly apply different
downsampling techniques on the IHR, including bilinear,
nearest neighbor, and bicubic interpolations. Regarding
blur setting, as we mentioned in section IV-C we use
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Gaussian and motion blur functions with arbitrary ker-
nel parameters to expand degradation space. The size of
Gaussian blur kernel is uniformly sampled from {(7 × 7),
(9 × 9), . . . , (21 × 21)}. Also, the Gaussian kernel width
is uniformly sampled from [0.1, 2.8]. We used the method
proposed in [84] to generate the motion blur effect. The
standard deviation of Gaussian noise is uniformly sampled
from {1/255, 2/255, . . . , 25/255}. The probability of apply-
ing blur and noise degradation steps on an HR image is 0.5.

The training process is divided into two stages; train-
ing the stand-alone generator using L1 reconstruction loss
and then training the multi-stage GAN model using the
loss function given by Eq. 16. We utilize the pre-trained
HopeNet model [9] as the HPE sub-network. We employ
the MTCNN [86] to detect faces instead of the Dockerface
detector recommended by Hopenet [87], which improves the
predicted pose angles compared to the original paper [9].
We fine-tune the pre-trained FaceNet model [88] on our
training dataset and use it as an identity feature extractor
for identity-preserving loss. blProposed framework benefits
from the relative influence of different loss functions, which
is guided by the regularization parameters: λpa = 0.1, λest =

1.0, λsim = 0.2, λm = 0.01, βmse = 0.01, λadv = 0.01,
λl1 = 1.0, λlpips = 0.001, λip = 0.1, γp = 1.0, α1 = 0.001,
α2 = 0.005, α3 = 0.01, and α4 = 1, which are obtained
empirically. For our qualitative comparisons, we report both
umsampling factors of ×8 and ×16, from 16×16 and 8×8
pixels, to 128×128 pixels.

E. EVALUATION METRICS
1) PEAK SIGNAL-TO-NOISE RATIO (PSNR)
PSNR is a quality metric based on the Mean Squared Error
(MSE) of pixels for each channel between the GT and gener-
ated SRd image [89]:

MSE =
1
whc

∑
i,j,k

((G(ILR))i,j,k − (IHR)i,j,k )2, (18a)

PSNR = 10 log10(
M2

MSE
), (18b)

where the height, width, channel number and maximum
possible pixel value are represented by h,w, c, and M ,
respectively.

2) STRUCTURAL SIMILARITY
Structural Similarity Index Measure (SSIM) examines the
homogeneity and phase coherence of the gradient magnitude
on the original and reconstructed images to quantifies image
quality degradation. The structure, brightness, and contrast of
the photos are used to determine how similar they are [89]:

SSIM (SR,HR) =
(2µSRµHR + C1) + (2σSR,HR + C2)

(µ2
SR + µ2

HR + C1)(σ 2
SR + σ 2

HR + C2)
,

(19)

where (µSR, µHR) and (σSR, σHR), and σSR,HR denote the
average, standard deviation, and correlation of intensity value

TABLE 1. The comparison between the prediction error of the SOTA HPE
methods on LR (8 × 8 and 16 × 16) and HR input images (128 × 128):
ErrorLR − ErrorHR . The results are reported for the AFLW2000 dataset.

FIGURE 13. Results produced by our model, FISR [92], BSRGAN [83] and
SRGAN [25] on real-world low-resolution faces images (16×16) from the
WiderFace dataset [75]. Our proposed method generates superior
reconstruction over the existing methods for different degraded images.

of the generated and original image, respectively. C1 and C2
are constants for avoiding instability.

3) PERCEPTUALLY-LEARNED METRIC
A weighted Euclidian distance between deep features of HR
and SRd images provides the LPIPS similarity score [71].
It is shown that the LIPIPS effectively reflect the human
perceptual similarity [71]. We chose the LPIPS configuration
based on the AlexNet network with the weights learned from
the BAPPS dataset [71]. The lower LPIPS score indicates that
the two images are more similar.

4) MEAN ABSOLUTE ERROR (MAE)
To measure the head position estimation error, we employ the
MAEmetric. MAE is obtained as the average error values for
the yaw, roll, and pitch and is expressed in degrees (◦).

F. RESULTS
In Table 1, we show the differences between the HR
(128 × 128), and LR (8 × 8, 16×16) HPE error for SOTA
methods. According to our investigation in Table 1, the esti-
mation error for LR face images is significantly high. The
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results show that the proposed method can reduce the perfor-
mance gap between the HR and LR HPE errors.

Table 2 shows the proposed method performance com-
pared to the SOTA algorithms. This table presents a perfor-
mance comparison from both aspects of the HPE error and the
qualitative measure of generated SRd images. To have fair
comparison, we fine-tuned Super-FAN [56], ProgFSR [32],
FSRNet [30], SRGAN [25], SPARNet [77], MGBPv2 [76]
and ExtremeSR [76] on our training datasets. Then, the best
results before or after fine-tune are reported. Considering
the HPE performance, we report the MAE on all three head
angles, i. e., yaw, pitch, and roll. From the HPE aspect, the
proposedmethod outperforms the other competitors by a con-
siderable margin for both ×16 and ×8 upscaling factors on
the AFLW2000 and BIWI datasets. Moreover, Fig. 9 shows
the prediction error distributions on the AFLW2000 dataset.
This diagram shows that our framework effectively reduces
the error resulting from the LR input images.

Fig. 11 visually compares the performance of the proposed
approach, and HopeNet [9] on the AFLW2000 dataset. The
GT pose of corresponding HR input images is plotted for
better comparison. Our framework fills the gap between high
and low-resolution HPE by boosting the performance of the
HPE model on LR images. To further investigate the effi-
ciency of the proposed algorithm on the real LR images,
we compare the performance of our methodwith HopeNet [9]
on theWiderFace dataset in Fig. 10. Since there is no GT head
pose label for the WiderFace dataset, we visually compare
the results on the yaw angle with samples of the training
dataset, which are visually similar to the presented sample of
WiderFace. From Fig. 10, we can observe that the proposed
approach estimates the head pose more accurately than the
HopeNet [9].Moreover, considering the arrows on the images
that show the front, downward, and side of the faces, our pro-
posed method clearly produces results that are more reliable
by human inference.

Fig. 12 investigates the visual quality of our SRd images
and compares them with the output of other SOTA algo-
rithms. The first observation from Fig. 12 is that the proposed
method effectively generates images that preserve the texture
and identity despite the low-resolution inputs. In compari-
son with other methods, fewer undesired artifacts are pro-
duced, and at the same time, realistic details are added to
the SRd image. In the case of frontal faces, ProgFSR [32]
shows comparable performance to ours. However, in the off-
angle scenarios, failure of ProgFSR is apparent; take the fifth
row as an example. Our method generates superior recon-
struction over other methods, specifically in off-angle face
images. Moreover, considering the quantitative measures in
Table 2, in ×16 upsampling SR, our method outperforms
other studies, and for ×8 upsampling SR achieves the best
LPIPS scores. In order to assess the performance of our
SR method on the real world images with the resolution
of 16 ×16, we provide some visual result (Fig. 13) on the
extremely degraded LR face images from the Widerface
dataset [75] and compare them with ISR [92], BSRGAN [83]

FIGURE 14. Singular value spectrum of embedding spaces. The
representations were obtained from pre-trained HopeNet on 4,000
randomly selected samples of the BIWI dataset. Each feature vector has
2,048 dimensions. The singular value spectrum represents each
dimension’s relative contribution to the module’s final output.

and SRGAN [25]. It should be noted that there are no corre-
sponding ground-truth HR images for WiderFace testset.

G. ABLATION STUDY
1) REPRESENTATION ANALYSIS
Our goal is to establish a resolution-agnostic HPE frame-
work. In our method, the parameters of HPE module are
fixed, so we are sure that the performance of the original
HR data is maintained. Therefore, we attempted to make the
HR and SRd features as similar as possible using the SR
sub-network. So far, we have shown the effectiveness of our
framework from the quantitative perspective of HPE error and
SRmetrics. In this section, we show that the proposedmethod
effectively aligns the HR and SRd representations obtained
by the HPE embeddings.

Figures 6 and 7 show the distribution of the magni-
tude of the feature representations obtained from the HPE
backbone [9] and MagFace [15] for HR, LR and our SRd
face images. The magnitudes of the feature embeddings of
the HPE network in Fig. 6 reflects the resolution or qual-
ity of the input sample to some extent ((a) 16 × 16 and
(b) 8 × 8) [13], [15]. Also, Fig. 6 shows the efficacy of
our method in reducing the gap between the HR and SRd
representations and increasing the task-related quality of
images. Moreover, Magface is widely used to measure image
quality [15]. In Fig. 7, we demonstrate the quality mea-
sure obtained from the MagFace (magnitude of its feature).
Reducing the gap between the LR and HR feature magnitude
of MagFace via applying our proposed method shows that
our approach improves the HPE performance and, at the same
time, produces visually acceptable outputs.

To further show the effect of LR input on the HPE module,
we investigate the dimension collapse in the HPE module.
We evaluate the dimensionality of the HPE backbone by col-
lecting the representation vector of 4,000 randomly selected
samples from the BIWI dataset, Z ∈ R2048×4000. HPEmodule
embedding has 2,048 dimensions [9]. Then, we compute the
covariance matrix, C ∈ R2048×2048 of the embedding:

C =
1
N

N∑
i=1

(zi − z̄)(zi − z̄)T , (20)
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TABLE 2. HPE and visual quality comparison of the proposed approach with the SOTA methods on the AFLW2000 and BIWI datasets (original HR image is
128×128). For qualitative results, see Figure 4.

TABLE 3. Comparison for using the prior information about the image
resolution, or Quality Estimator (QE) to determine whether FSR module
should be used or not. The result of HPE module on LR images are shown
in row ∈ [2 : 6]. The results are showing the performance for AFLW2000
dataset.

where N = 4, 000 is the number of samples. Fig. 14 shows
the singular value decomposition of C in logarithmic scale
and sorted order. Extremely small numbers shows no contri-
bution of those dimensions in the final objective [93]. Fig. 14
shows that more than half of the dimensions collapsed when
the input is in size of 8×8 and 16×16. This phenomenon can
be investigated in future works, such as employing regulariza-
tion methods (e.g., dropout) during training of HPE network
to force the model to use all of the dimensions efficiently.
Also, the final classifier’s centroids distribution can be further
analyzed to alleviate the phenomenon. Another observation
is that our SR framework efficiently reduces the gap between
singular values of feature vectors from LR and HR input. The
severe drop in the 8 × 8 is in line with Fig. 6, in which the
norm of features drastically changes for 8 × 8 input.

2) MODEL SELECTION
So far, we have shown our proposed framework’s capacity to
boost the HPE performance using an FSR subnetwork. One
major challenge in the real-world application would be decid-
ing whether the FSR is necessary. The soft attention mecha-
nism is not applicable; therefore, we used a hard-selection
method [94]. To this end, we use the HopeNet feature to

FIGURE 15. Cosine similarity between 500 randomly selected pairs of
AFLW2000 dataset. The representation obtained from [88].

determine whether the input should be fed to FSR subnet-
work first or not. We used the HopeNet and trained a binary
classifier to decide whether the input image should be SRd.
We trained the classifier on augmented 300W-LP. The aug-
mented dataset has both original and down-sampled images.
Table 3 compare the results in different scenarios.

In Table 3, we show the performance with and with-
out using the proposed Model Selection (MS) strategy.Also,
we report the results of HPE without using the FSR mod-
ule to present better the performance gained by the whole
framework. The table shows the result in three different set-
tings with LR input. We show the HPE performance in the
first setting without using the FSR module. In the second
setting, we use the prior information (GT) about the data
resolution to decide whether to use the FSR module or not.
In the other setting, we use the quality classifier to determine
whether the image needs to go through the SR network. The
automatic quality classification results in negligible perfor-
mance degeneration from Table 3. However, comparing the
results obtained from our framework with the results of the
HPE model on the LR input images, we still have better
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TABLE 4. Ablation analysis: MAE (of yaw, pitch and roll), PSNR, SSIM and LPIPS for ×8 and ×16 upscaling factors across different models on the
AFLW2000 dataset. MSGANlpa is MSGAN when it is utilized with lpa.

TABLE 5. Verification results on the LFW dataset using FaceNet.

performance by a considerablemargin. In this manner, we can
boost the performance on the LR images andmaintain the low
prediction error on the HR input.

3) PREVENTING IDENTITY MIXING
In the task of HPE, identity-related information is irrelevant,
and the network tries to ignore any identity information.
Therefore, reducing the HPE error and increasing the sim-
ilarity between HR and LR representations obtained from
the HPE backbone leads the generator toward mixing the
identities. To alleviate this, we utilize an identity preserving
loss described in section III-C3. To validate, we experiment
on the WiderFace dataset. To this end, 500 negative, i. e.,
presenting different identities, pairs (1000 images) are ran-
domly selected. We apply two versions of our method, with
and without lip, on these images and then calculate the cosine
similarity score for each pair. Fig. 15 clearly shows that with-
out using the identity preservation loss function, the generator
tends to mix the identities of different subjects.

Furthermore, we provide the face verification results in
Table 5 on the LFW dataset [95] using FaceNet [88] in
terms of the Area Under the Curve (AUC). Training the FSR
network to boost HPE performance, can result in identity
mixing; however, the proposed method could maintain the
identity characteristics and increase the face verification per-
formance for both ×8 and ×16 upscaling factor.

4) CONTRIBUTION OF LOSSES
On the AFLW2000 dataset, we provide ablation experiments
to study the followings: stand-alone generator just using Ll1,
Multi Stage GAN (MSGAN) model after adding Ll1 at other
stages and adding other reconstruction losses to the GAN
model (L iadv + L il1 + Llpips + Lip), MSGANLpa which adds
(Lpa) to the previous step, and finally joint MSGAN model
that integrates head pose related losses (Lest + Lsim + Lm).
GAN-based methods underperform in terms of MSE due to
the introduction of adversarial losses, which tend to allow
the models to achieve the perceptually better SR results but

result in the more reconstruction errors. Detailed loss con-
figurations are shown in the Table 4. Based on these results,
our proposed models provide decent results which are almost
comparable to the original HR images.

V. CONCLUSION
To address the challenge of HPE in the LR face images,
we proposed a method that jointly optimizes SR and HPE.
We demonstrated that our network significantly increase the
pose estimation accuracy for the LR face images. We showed
remarkable improvements in SR for extremely LR face
images by using head pose related losses. Our proposed
network has two important components. First, we employ
the reconstruction loss (including: GAN adversarial losses,
L1 loss, perceptual loss, and identity preserving loss) in
our MSGAN to add structural and identity details to the
SRd images. Secondly, the total loss integrates the head
pose related losses with reconstruction loss to guide the SR
sub-network to generate the SRd images conducive to rec-
ognizing poses. To validate the effectiveness of the proposed
approach, we presented extensive experimental results, eval-
uations, and ablation studies.
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