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ABSTRACT Stable periodic-frequent itemset mining is essential in big data analytics with many real-world
applications. It involves extracting all itemsets exhibiting stable periodic behaviors in a temporal database.
Most previous studies focused on finding these itemsets in row (temporal) databases and disregarded the
occurrences of these itemsets in columnar databases. Furthermore, the naïve approach of transforming a
columnar database into a row database and then applying the existing algorithms to find interesting itemsets
is not practicable due to computational reasons. With this motivation, this paper proposes a framework to
discover stable periodic-frequent itemsets in columnar databases. Our framework employs a novel depth-first
search algorithm that compresses a given columnar database into a unified dictionary andmines it recursively
to find all stable periodic-frequent itemsets. The dictionary holds the information pertaining to itemsets and
their temporal occurrences in a database. Experimental results on six databases demonstrate that the proposed
algorithm is computationally efficient and scalable.

INDEX TERMS Columnar databases, stable periodic-frequent itemset, itemset mining.

I. INTRODUCTION
Database systems play a crucial role in storing the big
data generated by real-world applications. Depending on the
layout used for storing the data, one can broadly classify
the databases into two types: row databases and columnar
databases.1 Row databases are primarily based on ACID2

properties and organize the data as records by keeping the
data associated with a record next to each other in a storage
device. The popular row databases include MySQL [1] and
Postgres [2]. In contrast, columnar databases are based on
BASE 3 properties and organize data into fields and store

The associate editor coordinating the review of this manuscript and

approving it for publication was Laura Celentano .
1Columnar and row databases are referred as vertical and horizontal

databases, respectively.
2ACID is an acronym for Atomicity, Consistency, Isolation, and Duration.
3BASE is an acronym for Basically Available, Soft state, and Eventually

consistent.

all of the data associated with a field next to each other in
a storage device. The popular columnar databases include
BigQuery [3], HBase [4], and Snowflake [5]. Both row
and columnar databases have their respective advantages
and disadvantages. Henceforth, no universally accepted best
data layout exists for any given application. Selecting a
right database layout is subjective to user and/or application
requirements.

Extracting meaningful information from the data is a cru-
cial task of data mining. Frequent Itemset Mining (FIM) [6],
[7], [8], [9], [10], [11], [12] is a renowned data mining
technique that aims to discover all frequently occurring item-
sets in the data. Numerous algorithms have been presented
in the literature to discover frequent itemsets effectively.
One can broadly classify these approaches into the follow-
ing three types: (i) candidate-generate-and-test algorithms
(e.g., Apriori [8] and Partitioning [13]), (ii) pattern-growth
algorithms (e.g., FP-Growth [14], HMine [15], and [16]),
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and (iii) vertical format algorithms (e.g. ECLAT [17]
and CHARM [18]). The candidate-generate-and-test and
pattern-growth approaches can find frequent itemsets only
in row databases, while vertical format approaches can
find frequent itemsets in both row and columnar databases.
Henceforth, researchers are putting forth efforts to develop
efficient vertical format algorithms. This paper also develops
an efficient vertical format algorithm to discover a class of
frequent itemsets, called stable periodic-frequent itemsets,
in columnar temporal databases.

A temporal database represents a temporally ordered set
of transactions. Crucial information that can empower the
domain experts to gain competitive advantage lies hidden
in this data. Tanbeer et al. [19] described the model of
periodic-frequent itemset to discover regularities in a tempo-
ral database. This model involves discovering all itemsets in
a database that satisfy the user-specified minimum support
(minSup) and maximum periodicity (maxPer) constraints.
The minSup controls the minimum number of transactions
in which a itemset must appear in the database. The maxPer
controls the maximum time interval within which an itemset
must reappear. A classic application of periodic-frequent
itemset mining is market-basket analytics. It involves iden-
tifying the itemsets that the customers regularly purchase in
a supermarket. An example of a periodic-frequent itemset is
as follows:

{Cheese,Wine} [support = 20%, periodicity = 5 hour].

The above itemset provides information that 20% of the
customers have purchased the products ‘Cheese’ and ‘Wine’
at least once every 5 hours. Therefore, supermarket managers
may find this information beneficial for inventory manage-
ment and product placement.

In the literature, the periodic-frequent itemset model was
extended to discover fuzzy periodic-frequent itemset [20],
rare periodic-frequent itemset [21], partial periodic item-
set [22], [23], and high utility periodic-frequent itemset [24].
However, the successful real-world adoption of this model
has been affected by the following obstacle: ‘‘Since maxPer
controls the maximum inter-arrival time of an itemset in a
database, the basic model of periodic-frequent itemset con-
siders any itemset uninteresting if anyone of its inter-arrival
time is more than the user-specified maxPer value
[19], [25]. In other words, the strict restriction that all
periods of a itemset must be within the user-specified maxPer
constraint often prunes all of those interesting itemsets that
have exhibited stable (or partial) periodic behavior in a
database.’’

When confronted with this problem in real-world
applications, researchers introduced the model of stable
periodic-frequent itemset [26] to find all of those interesting
itemset that have exhibited stable periodic behavior in
columnar database. This model provides a function to
find interesting itemsets that have a stable periodic
behavior. A pattern-growth algorithm, called Stable Periodic-
frequent Pattern-growth (SPP-growth), was described to

find stable-periodic itemsets in temporal databases. Unfor-
tunately, this algorithm can discover the interesting itemsets
in row (temporal) databases only. Therefore, whenever we
give a columnar temporal database as an input to the
SPP-growth algorithm, it has to be converted into a row
temporal database to get interesting itemsets. As a result,
the above algorithms will take longer to run and use more
memory because of this conversion overhead. With this
motivation, this paper proposes a generic algorithm to find
stable periodic-frequent itemset in both row and columnar
temporal databases effectively. To the best of our knowledge,
this is the first algorithm that focuses on finding stable
periodic-frequent itemset in columnar temporal database.
It should be noted that existing algorithms find the itemsets
only in row databases.

Discovering stable periodic-frequent itemset in columnar
databases is significant and challenging because of some
reasons as follows:

1) The importance of discovering frequent itemset in
columnar databases was first discussed in the work
of Zaki [27], where the depth-first-search algorithm,
named Equivalence Class Transformation (ECLAT),
was proposed to extract frequent itemset in a columnar
database. However, the ECLAT algorithm cannot be
directly applied to find stable periodic-frequent itemset
in a columnar temporal database. The reason is
ECLAT algorithm completely disregards the temporal
occurrence information of an itemset in the data.

2) Reducing search space (itemset lattice) is a challenging
task in itemset mining. The process of recursively
mining the constructed tree increases the memory and
runtime requirements of the SPP-growth algorithm.

3) One can transform a columnar temporal database into a
row database and then apply those available algorithms
to extract stable periodic-frequent itemset. However,
we should avoid such a transformation process due to
its high computational cost.

Against this backdrop, we have extended the functionality
of ECLAT [27] to mine stable periodic-frequent itemsets by
introducing a new algorithm called Stable Periodic-frequent
Pattern – Equivalence Class Transformation (SPP-ECLAT)
in columnar temporal database. This paper is a substantially
extended version of our conference paper [28] which
reported a preliminary version of SPP-ECLAT. This paper
extends the related work by extensively understanding the
current literature, presenting the complexity analysis of our
algorithm, and performing in-depth experiments studying the
memory, runtime, and scalability of the mining algorithms.
In this paper, we show that SPP-ECLAT outperforms SPP-
growth [26] on both synthetic and real-world databases by a
very large margin.

The key contributions of this paper are summarized as
follows:

1) An efficient and novel SPP-ECLAT algorithm is
proposed to ensure that the discovered stable
periodic-frequent itemsets (SPIs) not only satisfy
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the user-specified minimum support and maximum
periodicity thresholds but are stable itemsets based on
the user-specified maximum lability threshold in any
big columnar temporal databases.

2) In SPP-ECLAT, the observed Lability information is
stored in a unique, compact list-based data structure
called SPP-List. The newly introduced maximum
lability measure considers the periodic behavior of an
itemset as stable when the lability value is low. On the
other hand, if the value is high, it means the itemsets
are unstable. So stable itemset can be found using this
measure, given a limit on the maximum lability.

3) On six synthetic and real-world databases, we compare
the performance of the proposed SPP-ECLAT algo-
rithm against that of the current state-of-the-art SPP-
Growth algorithm. This indicates that the SPP-ECLAT
algorithm outperforms the SPP-Growth algorithm with
respect to runtime requirements andmemory consump-
tion. Furthermore, the scalability of the SPP-ECLAT
algorithm is also shown to demonstrate the efficacy and
productivity of the proposed algorithm on big columnar
databases relative to those of the state-of-the-art
SPP-Growth algorithm.

The rest of the paper is organized as follows. Related
work is presented in Section II. The model of a stable
periodic-frequent itemset is explained in Section III. The
SPP-ECLAT algorithm is then presented in Section IV.
Section V describes the experimental results. The discussion
is given in Section VI. Finally, the conclusion and future work
is given in Section VII.

II. RELATED WORK
In this section, we will review the previous work related to
frequent itemset mining, periodic-frequent itemset mining,
and stable periodic-frequent itemset mining.

A. FREQUENT ITEMSET MINING
Argawal et al. [6] introduced frequent itemset mining to
find interesting relationships among different data items.
An algorithm, called Apriori [6], was also introduced
to discover all frequent itemsets in a row (transactional)
database. This algorithm works in a breadth-first manner
that uses frequent k-itemsets to form candidate (k + 1)-
itemsets, from which frequent (k + 1)-itemsets are obtained.
Many extensions of Apriori have been proposed in the
literature [13], [29]. Essentially, they have the same general
structure, with some additional techniques to optimize certain
steps within the algorithm. Though Apriori can find all
wanted frequent itemset, it has to scan the database several
times to generate a complete set of itemset. Thus, it is
a very time-consuming process. Beside Apriori algorithm,
Argawal et al. [30] proposed two other algorithms called
AprioriTid and AprioriHybrid. The AprioriTid algorithm
reduces the processing time of the support counting proce-
dure by replacing every transaction in the database with a set

of candidate itemsets that appears in that transaction. This
is done repeatedly at every iteration k. It is demonstrated
in [8] that although AprioriTid is much faster in the
later iterations, it performs slower than Apriori in early
iterations. Therefore, the AprioriHybrid algorithm has been
proposed [30], which combines Apriori and AprioriTid.
Basically, the hybrid algorithm uses Apriori for the initial
iterations and then switches to AprioriTid. Even though
the AprioriTID algorithm have utilized a vertical database
representation, this algorithm is based on the breadth-first
search technique.

The first algorithm to generate all frequent itemsets in
a depth-first search manner, called Eclat, is proposed by
Zaki [31]. Eclat is a vertical database layout algorithm. This
algorithm utilizes the TID-list data structure for the mining
task. Eclat applies the depth-first approach to find frequent
itemset and scan the database only two times. In the first
round, it scans the entire database to find all frequent items.
In the second round, the TID-list of the frequent items is
generated. The Eclat algorithm uses common (k−1)-prefixes
to organize frequent k-itemsets into disjoint equivalence
classes. Then the candidate (k + 1) itemsets can be found
by joining two frequent k-itemsets from the same classes.
The main advantage of utilizing TID-list is that, only by
intersecting the TID-lists of the two subsets, the support of
a candidate itemset is simply computed. A simple check on
the received TID-list can tell whether the new itemset is
frequent.

The frequent pattern-growth (FP-growth) algorithm pro-
posed by Han et al. [9] is a tree-based algorithm to discover
frequent itemset in a database. This algorithm uses the divide-
and-conquer method. In this algorithm, frequent itemset
are mined from the fp-tree, and there is no need for a
candidate frequent itemset. In the first step, a list of frequent
itemsets is generated and sorted in their descending support
order. This list is represented as a node structure, containing
the item name, support count, and a pointer to a node
in the tree that has the same prefix. These nodes then
are used to create an fp-tree. The paths from the root to
leaf nodes are arranged in the decreasing order of their
support. Frequent itemset are extracted from the fp-tree
starting from the leaf nodes. To mine frequent itemset(s)
each prefix path subtree is processed recursively. The only
differences between Eclat and FP-growth are the process to
count the support of every candidate itemset and how they
represent the database. In fact, it is difficult to say which
algorithm performs better. Over two decades, many other
FIM algorithms have been proposed, mainly by extending the
Apriori, Eclat, and FP-growth algorithms to find a frequent
itemset. However, frequent itemset mining algorithms are
inapplicable to identify itemset that appear in a temporal
database regularly.

Besides, many studies focus on finding new kinds of item-
set and rules present in a large amount of data. This is espe-
cially important with the emergence of Big data. Over nearly
30 past years, various itemset have been identified, namely
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sequential and time-series itemset [32], [33], [34], high
utility itemset [35], [36], [37], structural itemset [38], [39],
temporal (periodic) itemset [40], [41], [42], [43].

B. PERIODIC-FREQUENT ITEMSET MINING
The target of periodic frequent itemset mining is to identify
how regularly the itemset occur in a temporal database.
In Tanbeer et al. [19], the problem of mining periodic
frequent itemset was first introduced and correspondingly
a model called PF-growth was proposed to tackle this
problem. Compared to the classic FIM which only employs
the minSup constraint, PFIM includes one more parameter
called maxPer . This algorithm performs in two steps.
First, it represents the database by a periodic-frequent
tree (PF-tree), and items in a PF-tree are arranged in the
descending item support order. Second, the algorithm mines
the PF-tree by using FP-growth mining technique to find all
periodic-frequent itemset.

Amphawan et al. [44] proposed an efficient algorithm
called Mining Top-K Periodic-frequent itemset (MTKPP),
which is based on a depth-first search and a vertical database
representation. This algorithm mines periodic-frequent item-
set without using the minSup constraint and provides a
list-based data structure called the top-K list to maintain the
set of k regular itemset with the highest support. MTKPP
algorithm uses this top-K list during the mining process to
generate candidate itemset. Kiran and Reddy [45] introduced
an efficient model that extended multiple minSup’s and
multiple maxPer’s to discover periodic-frequent itemset
consisting of both frequent and rare items. This model used
two different constraints to identify useful itemset, namely
minimum item support and maximum item periodicity. Each
itemset satisfies different minSup and maxPer values based
on the available items in the itemset. That study also proposed
a pattern-growth algorithm using a novel and efficient
tree-based data structure, named a multi-constraint periodic-
frequent tree, to find the complete set of frequent and rare
items.

Amphawan et al. [44] proposed a novel technique called
approximate periodicity to reduce the calculation time
requirements of mining periodic-frequent itemset. This
algorithm splits the transactional timeline into intervals
with different maxPer values. The interval information is
stored only when there exists a itemset in that interval.
The authors also proposed a tree structure, called Interval
Transaction-ids List tree (ITL-tree). The goal of this
technique is to maintain the occurrence information in a
highly compact manner by using interval transaction-ids
list instead of tid-list. Then the approximate periodicity
of each itemset can be found. To generate all periodic-
frequent itemsets, a itemset growth mining technique is
also used by a bottom-up traversal of the ITL-tree based
on minSup and maxPer constraints. An interesting novel
measure was proposed by Kiran and Reddy [46] to extract
periodic-frequent itemset in a transactinonal database, which
is called periodic-ratio. The authors defined that some

itemset which appear almost periodically in the database
can be considered interesting itemset. Therefore, a periodic
interestingness of a frequent itemset is calculated as the
ratio of its periodic occurrences in a database. A itemset
can be defined as a potential itemset if its support is
greater thanminSup and its periodic interestingness is greater
than the user-specified minimum periodic-ratio. Then an
extended periodic-frequent tree was built based on these
potential itemset. Also a pattern-growth algorithm was
proposed to find the complete set of periodic-frequent
itemset. Ravikumar et al. [47] have described an algorithm
named PF- ECLAT, to efficiently discover periodic-frequent
itemsets in a columnar temporal databases. Some other
variations of the above models were also proposed
[44], [48], and [49] to find periodic-frequent itemset.
However, all these algorithms have a drawback that, if only
one of the periods of a itemset exceeds maxPer , this itemset
is discarded. Kiran et al. [40] proposed a model called partial
PFP mining that relaxes the maximum periodicity constraint
by considering that a itemset X is (partial) periodic if its
periodic-frequency is no less than a user-specified threshold.
However, this algorithm cannot be applied to find stable-
periodic-frequent itemset. The reason is that it measures the
periodicity of a itemset by counting the number of times
where the periods of a itemset are less than maxPer without
considering how much these periods deviate from maxPer .
To overcome the drawback of periodic frequent itemset

mining, Fournier-Viger et al. [26] proposed a model to find
stable periodic-frequent itemset in a transactional database.

C. STABLE PERIODIC-FREQUENT ITEMSET MINING
Fournier-Viger et al. [26] introduced a concept called lability,
which is the cumulative sum of the difference between each
period length and maxPer constraint. A novel parameter,
called maximum lability (maxLa), was also used to assess
the stability of a periodic behavior of a itemset in a
database. An algorithm named SPP-growth to mine stable
periodic-frequent itemset was presented with two steps. First,
the database is represented as a stable periodic-frequent
tree (SPP-tree), and then the algorithm mines the SPP-tree
to find all stable periodic-frequent itemset. He et al. [50]
discussed a model to find stable periodic-frequent itemset in
an uncertain database. The authors proposed a Stable Periodic
Frequent Itemset Mining (SPFIM) algorithm on an uncertain
database by considering both the frequency and periodicity
of itemset. That is, an itemset X in an uncertain transaction
database is considered a stable periodic frequent itemset
if the support count and stability value of itemset X meet
the minimum support threshold (minSup) and the stability
threshold (maxLa). Fournier-Viger et al. [51] proposed a
model using the concept of top-K mining to generate stable
periodic-frequent itemset. This study introduced an algorithm
that, rather than using a minSup threshold, the user can
directly specify parameter k , where k represents the number
of itemset that the user wants to find. The output of the
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TABLE 1. Item’s dictionary with their timestamp list.

TABLE 2. Columnar database.

TABLE 3. Item’s dictionary with their timestamp list.

algorithm is the top-Kmost frequent itemset that have a stable
periodic behavior. To the best of our knowledge, up to now,
there have been only three above references related to the
study of finding a Stable Periodic-Frequent Itemset in row
databases.

Because all of the above algorithms find the itemsets in row
databases, whenever we give a columnar temporal database as
an input to the above algorithms, it has to be converted into a
row temporal database to get interesting itemsets. As a result,
the above algorithms will take longer to run and use more
memory because of this conversion overhead. In contrast, the
algorithm proposed in our work is different in that it deals
specifically with columnar databases.

III. MODEL OF STABLE PERIODIC-FREQUENT ITEMSET
Let O = {o1, o2, · · · , on}, n ≥ 1, be a set of objects
(or items). Let Y ⊆ O be an itemset (or a pattern). Let
ta = (ts, X ), a ≥ 1, be a transaction, where ts ∈ R+

represents the timestamp and X is an itemset. Let TDB =

{t1, · · · , td }, d ≥ 1 be a temporal database representing
an ordered set of transactions such that ta.ts ≤ tb.ts, where
1 ≤ a < b ≤ d . Let TSY = {tsYi , · · · , tsYj }, i, j ∈ [1, d],
denote a set of timestamps containing Y in TDB.
Example 1: Assume that we have a set of items I =

{a, b, c, d, e, f }. Table 1 shows a row temporal database
constituting of these items. Without loss of generality, this
database can be viewed as a columnar temporal database
as shown in Table 2. In Table 3, we show the dictionary
storing the items and their temporal occurrence information

in the database. The set of items ‘b’ and ‘c’, i.e., {b, c}
is a itemset. This itemset will be represented as ‘bc’ for
brevity. This itemset is denoted as 2-itemset because it
contains two items. The occurrences of itemset ‘bc’ are at
the timestamps of 1, 2, 3, 6, 8, 9, 10, and 12. Therefore,
we have a list of timestamps containing ‘bc’, i.e., TSbc =

{1, 2, 3, 6, 8, 9, 10, 12}.
Definition 1 (The Support of Y ): The support of Y ,

denoted as sup(Y ), represents the number of transactions
containing Y in TDB. That is, sup(Y ) = |TSY |.
Example 2: The support of ‘bc’, i.e., sup(bc) =

|TSbc| = 8.
Definition 2 (Frequent Itemset Y ): The itemset Y is a

frequent itemset if sup(Y ) ≥ minSup, where minSup is a
minimum support value specified by user.
Example 3: IfminSup = 5, then bc is said to be a frequent

itemset because sup(bc) ≥ minSup.
Definition 3 (Periodicity of Y ): Let tsYm and tsXn , j ≤ m <

n ≤ k , denote two consecutive timestamps in TSY . The
time difference between tsYn and tsYm is given by a period
of Y , denoted by pYz . That is, p

Y
z = tsYn − tsYm. Denoted

PY = (pY1 , pY2 , · · · , pYn ) the set of all periods for
itemset Y . The periodicity of Y , denoted by per(Y ) =

maximum(pY1 , pY2 , · · · , pYn ).
Example 4: All periods of the itemset ‘bc’ are: pbc1 =

1 (= 1 − tsinitial), pbc2 = 1 (= 2 − 1), pbc3 = 1 (= 3 −

2), pbc4 = 3 (= 6 − 3), pbc5 = 2 (= 8 − 6), pbc6 = 1 (=
9 − 8), pbc7 = 1 (= 10 − 9), pbc8 = 2 (= 12 − 10), and
pbc9 = 0 (= tsfinal − 12), where first transaction time stamp is
denoted by tsinitial = 0 and the last transaction’s time stamp
is denoted by, tsfinal = |TDB| = 12. The periodicity of bc,
i.e., per(bc) = maximum(1, 1, 1, 3, 2, 1, 1, 2, 0) = 3.
Definition 4 (Periodic-Frequent Itemset Y ): The frequent

itemset Y be considered as periodic-frequent itemset if
per(Y ) ≤ maxPer , here maxPer is maximum periodicity
value which is specified by user.
Example 5: Let the user-specified maxPer = 3, in this

case the frequent itemset ‘bc’ is called as a periodic-frequent
itemset as per(bc) ≤ maxPer .
Definition 5 (Lability of an Itemset): Let tsYi+1 and ts

Y
i , i ∈

[0, sup(Y )], be two consecutive time stamps where Y occurs
in TDB. We call i-th lability of Y denoted by la(Y , i) =

max(0, la(Y , i − 1) + pYi − maxPer), where la(Y , −1) = 0.
For simplicity, the following short form is used

la(Y , i) = max(0, la(Y , i− 1) + tsYi+1 − tsYi − maxPer)

The following is a list of periods which represent the
lability of an itemset Y : la(Y ) = {la(Y , 0), la(Y , 1), · · · ,

la(Y , sup(Y ))}, and |la(Y )| = |per(Y )| = sup(Y ) + 1.
Example 6: Consider an item a. If maxPer =2, then the

lability of a are: la(a, 0) = max(0, la(p, −1) + pp0 −

maxPer) = max(0, 0 + 2 − 2) = 0, la(a, 1) = max(0, 0 +

1 − 2) = 0, la(a, 2) = max(0, 0 + 2 − 2) = 0, la(a, 3) =

max(0, 0+1−2) = 0, la(a, 4) = max(0, 0+3−2) = 1, and
la(a, 5) = max(0, 1+1−2) = 0. Therefore, the sequence of
labilities of a in the database, i.e., la(a) = {0, 0, 0, 0, 1, 0}.
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Based on Definition 5, the periodic itemset can be
considered as stable (lability is zero) if all its periods are
less than or equal to maxPer . The lability of a period of
a itemset will increase when a period of a itemset larger
than maxPer , and these exceeding values are accumulated
using the measure of lability. The value of lability will be
reduced when periods of a itemset no more than maxPer .
Therefore, according to the periodic characteristic of a
itemset, its lability will vary over time, and each value
exceeding maxPer is accumulated. A periodic behavior is
considered stable when lability value is low while a high
value means an unstable one. So stable itemset can be
found using this measure given a limit on the maximum
lability.
Definition 6 (Stable Periodic-Frequent Itemset): For a

itemset Y , denote la(Y) the set of all i-th lability. The stability
of the itemset is defined by maxLa(Y) = max(la(Y)). itemset
Y is a SPI if sup(Y ) ≥ minSup and maxla(Y ) ≤ maxLa.
Example 7: Given the above example, if the user specified

minSup=4, maxPer =2, and maxLa= 1, the complete set of
SPIs are a: (7,1), b: (8,1), c: (10,0), d : (7,1), bc: (8,1),bca:
(5,1), cd : (6,1), ca: (7,1), where each SPI Y is annotated with
Y : (sup(Y), maxLa(Y)).

Be noted that if maxLa = 0, SPIs are the traditional PFPs.
Therefore, the PFPs is a special case of SPIs.
Definition 7 (Problem Definition): Given a temporal

database (TDB) with minimum support (minSup), maximum
periodicity (maxPer), and maximum lability (maxLa) con-
straints, our objective is to discover the complete set of stable
periodic-frequent itemset having support higher or equal to
minSup and lability lower or equal to maxLa constraints.

IV. THE PROPOSED ALGORITHM: SPP-ECLAT
The itemset lattice represents the search space of stable
periodic-frequent itemset mining. The size of this lattice
is 2n − 1, where n represents the total number of items
in a database. Using the downward closure property (see
Property 1) and the depth-first search technique, the pro-
posed SPP-ECLAT searches this huge lattice and finds the
complete set of SPIs. Briefly, the SPP-ECLAT algorithm
involves the following two steps: (i) find the stable periodic
items (or 1-itemsets) from a database (Section IV-A) and
(ii) discover the complete set of stable periodic k-itemsets,
k > 1, by recursively mining the previously generated stable
periodic itemsets (Section IV-B). We now explain each of
these steps in detail.
Property 1: If A is a stable periodic-frequent itemset, then

∀A ⊂ B and A ̸= ∅, A is also a stable periodic-frequent
itemset.

A. MINING A 1-STABLE PERIODIC-FREQUENT ITEMSET
The proposed algorithm can find stable periodic-frequent
itemsets in both row and columnar databases. The proposed
algorithm achieves this ability by transforming a row and
columnar database into a unified data structure constituting

Algorithm 1 StablePeriodicFrequentItems(Temporal
Database (TDB), Minimum Support (minSup), Maximum
Periodicity (maxPer), Maximum Lability(maxLa):
1: Definition: SPP-list = (Y ,TS-list(Y )) is a dictionary with the temporal occurrence

information of a itemset in a TDB; TSl is a temporary variable of list type to store the
timestamp of the final occurrence of a itemset; la andML are temporary variable of
list type to store the lability and theMaximum Lability of a itemset; last is a term for
the final timestamp; support is a temporary varibale of list type to store the support
of a itemset.

2: Initate tscur = 0
3: for each transaction tcur ∈ TDB do
4: Set tscur = tcur .ts;
5: for each item j ∈ tcur .Y do
6: if j does not exit in SPP-list then
7: SPP-list is updated by inserting j and corresponding timestamp value
8: la[j] = max(0, tscur − maxPer). Set ML[j] = la[j]
9: else
10: Add j’s timestamp in the SPP-list.
11: la[j] = max(0, la[j] + tscur − TSl [j] − maxPer)
12: ML[j] = max(la[j],ML[j])
13: Update TSl [j] = tscur .
14: end if
15: end for
16: last = tscur
17: end for
18: for each item j in SPP-list do
19: la[j] = max(0, la[j] + last − TSl [j] − maxPer)
20: ML[j] = max(la[j],ML[j])
21: s[j] = length(TS-list[j])
22: if s[j] < minSup andML[j] > maxla then
23: Prune j from SPP-list
24: end if
25: end for
26: After the pruning the final list of itemset available in the SPP-list is sorted in

ascending order or descending order of the corresponding itemset’s support . Initiate
pi as Null. Call SPP-ECLAT(SPP-List, pi).

of candidate items and transaction identifiers. This data
structure is called SPP-list.

Denote SPP-list = (Y ,TS-list(Y )) a dictionary with the
temporal occurrence information of a itemset in a TDB; TSl
is a temporary variable of list type to store the timestamp of
the final occurrence of a itemset; la and ML are temporary
variable of list type to store the lability and the Maximum
Lability of a itemset; last is a term for the final timestamp;
support is a temporary varibale of list type to store the support
of a itemset. This part focuses on discovering 1-itemset by
SPP-list. The detailed steps are shown in Algorithm 1, which
works on a row database shown in Table 1. Let minSup =

5 and maxPer = 2 and maxLa = 1.
The 1-itemset are first generated by reading the whole

database transactions at once. Then, the row database is
converted to the columnar database. After reading the 1st

transaction, ‘‘1 : b, c, d, e’’, with tscur = 1 inserts the items
b, c, d and e, in the SPP-list. We have the timestamps of
these items is 1 (= tscur ). Similarly, ML and TSl contents
were updated to 0 and 1, respectively (lines 7 and 8 in
Algorithm 1). Fig. 1(a) shows the generated SPP-list from
the 1st transaction. After reading the 2nd one, ‘‘2 : a, b, c’’,
with tscur = 2 inserts the new items p into the SPP-list by
adding 2 (= tscur ) in their TS-list. At the same instant, the
ML and TSl contents were updated to 0 and 2, respectively.
Besides 2 (= tscur ) was added to the TS-list of existing
items q with ML and TSl contents were updated to 0 and 2,
respectively (lines 10 and 13 in Algorithm 1). The SPP-list
which is generated after reading the 2nd one is shown in
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FIGURE 1. SPP-list generation process. (a) content of the list after reading the 1st transaction, (b) after reading the 2nd one, (c) after reading the 3rd one,
(d) after reading the 4th one, (e) Final content after reading the whole database, and (f) The complete list of 1-stable periodic-frequent itemset.

Fig. 1(b). After reading the 3rd one, ‘‘3 : a, b, c, d’’, updates
the TS-list, ML and TSl values of a, b, c, and d in the
SPP-list. Fig. 1(c) shows the SPP-list which is generated
after reading the 3b,c,d,a one. After reading the 4th one,
‘‘4 : e, f ’’ with tscur = 4, inserts the new items e and
f into the SPP-list by adding 4 (= tscur ) in their TS-list.
Simultaneously, the ML and TSl values as 2 and 4. Fig. 1(d)
shows the SPP-list which is generated after reading the 4th.
We repeat the whole process for the remaining transactions.
Fig. 1(e) depicts the final SPP-list which is generated after
scanning the whole database. The itemset e and f are pruned
(using the Property 1) from the SPP-list as its support value
is no more than the minSup value and ML value is greater
than maxLa (lines 15 to 20 in Algorithm 1). The complete
list of itemset available in the SPP-list are considered as
1-stable periodic-frequent itemset. Those itemset are sorted
in descending order in terms of their support values. Fig. 1(f)
shows the final SPP-list.

B. FINDING ALL INTERESTING ITEMSET FROM SPP-LIST
The detailed procedure for finding stable periodic-frequent
itemset is shown in Algorithm 2. Given the newly generated
SPP-list, the procedure of this algorithm is carried out as
follows. Initially we choose the itemset b, as this is the initial
itemset in the SPP-list (line 2 in Algorithm 2). Fig. 2(a)
shows a record of its support and lability. Since b is a stable
periodic-frequent itemset, we move to its child node bc.

Algorithm 2 SPP-ECLAT(SPP-List, Pi)
1: for each item j in SPP-List do
2: Set Y = j ∪ pi and TSY = TSj ∩ TSpi;
3: Calculate support and lability of X ;
4: if sup(TSY ) ≥ minSup and la(TSY ) ≤ maxla then
5: Add j to pi and Y is considered as stable periodic-frequent itemset;
6: SPP-ECLAT (SPP-list[j+1:], pi);
7: end if
8: end for

TS-list of bc is generated by performing intersection of
TS-lists of b and c, i.e., TSbc = TSb ∩ TSc (lines 2 and 3
in Algorithm 2). This support and lability of bc are
recorded, as shown in Fig. 2(b). We check whether bc
is a stable periodic-frequent itemset or unstable periodic
frequent itemset (line 4 in Algorithm 2). Since bc is stable
periodic-frequent itemset we move it to its child node bcd .
Next, TS-list will be generated by performing the intersection
of TS-lists of bc and d , i.e., TSbcd = TSbc ∩ TSd .
Fig. 2(c)shows a record of support and lability of bcd . Then
bcd is identified as an unstable periodic-frequent itemset
because a lability of bcd is greater than maxLa, the itemset
bcd will be remove from the stable periodic-frequent itemset
list as shown in Fig. 2(c). We repeat the process to find all
stable periodic-frequent itemset for remaining nodes in the
tree. Fig. 2(d) shows the final list of generated stable periodic-
frequent itemset. Since we can reduces the search space and
the computational cost effectively our proposed approach is
efficient.
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FIGURE 2. The complete process of discovering stable periodic-frequent itemset using SPP-ECLAT algorithm.

TABLE 4. Statistics of the databases.

V. EXPERIMENTAL RESULTS
This section evaluates the performance of the SPP-ECLAT
against the state-of-the-art SPP-growth [26] algorithm.
Through experiment results, we will show that the
SPP-ECLAT algorithm is more efficient in memory con-
sumption and runtime than SPP-growth. The scalability of
the SPP-ECLAT algorithm is also shown to demonstrate
the superior efficacy and productivity over the SPP-Growth
algorithm on big columnar temporal databases. The
implementations of these two algorithms are available at
PAMI [52]. Note that the metric for runtime is seconds and
memory is bytes throughout the experimentation.

A. EXPERIMENTAL SETUP
The algorithms, SPP-growth and SPP-ECLAT, were
developed in Python 3.7 and executed on a Gigabyte

R282-z94 rack server machine containing two AMD
EPIC 7542 CPUs and 600 GB RAM. The operating
system of this machine is Ubuntu Server OS 20.04. The
experiments have been conducted on various real-world
databases including T10I4D100K, Retail, T20I6D100K,
BMS-WebView-1, BMS-WebView-2 and Mushrooms. The
characteristics of these databases are shown in the Table 4.
The T10I4D100K and T20I6D100K synthetic databases
are generated according to the properties of market basket
data. The procedure of constructing these databases is
described in [6]. These spare databases have been widely
employed to evaluate various itemset-mining algorithms in
the literature. The BMS-WebView-1 and BMS-WebView-
2 are a real-world sparse databases containing clickstream
data from e-commerce sites. Each transaction is a viewing
session consisting of all the viewed product detail pages
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where each product detail view is an item. These databases
contain very long transactions and they were used in KDD
CUP 2000 competition [53]. The Retail is a real-world
sparse database consisting of basket databases in a retail
supermarket store. The Retail database is provided by
Brijs [54]. The Mushrooms is a real-world dense database
containing different species of gilled mushrooms prepared
from the UCI mushrooms dataset. All of the above databases
have been downloaded from SPMF repository [55].

B. EXPERIMENT 1: EVALUATION OF SPP-GROWTH AND
SPP-ECLAT ALGORITHMS BY VARYING minSup AND
maxLa VALUES
In this experiment, we study the impact ofminSup andmaxLa
constraints on the number of itemsets generated, the runtime
requirements of SPP-Growth and SPP-ECLAT algorithms,
and the memory consumed by SPP-Growth and SPP-ECLAT
algorithms. Please note that the maxPer constraint has been
fixed at a particular value for each database throughout this
experimentation.

First, we have shown the number of SPIs generated
by SPP-Growth and SPP-ECLAT algorithms in Figure 3
by varying the value of maxLa. In detail, Figure 3(a) to
Figure 3(c), shows the number of SPIs generated by both
the algorithms in the T10I4D100K database, respectively, for
different minSup and maxPer values. From Figure 3(d) to
Figure 3(f), shows the number of SPIs generated by both the
algorithms in the Retail database, respectively, for different
minSup and maxPer values. From Figure 3(g) to Figure 3(i),
shows the number of SPIs generated by both the algorithms in
the T20I6D100K database, respectively, for different minSup
and maxPer values. From Figure 3(j) to Figure 3(l), shows
the number of SPIs generated by both the algorithms in the
BMS-WebView1 database, respectively, for different minSup
and maxPer values. From Figure 3(m) to Figure 3(o), shows
the number of SPIs generated by both the algorithms in the
BM-WebView-2 database, respectively, for different minSup
and maxPer values. From Figure 3(p) to Figure 3(r), shows
the number of SPIs generated by both the algorithms in the
Mushrooms database, respectively, for different minSup and
maxPer values. It is to be noted that both algorithms will
generate an equal number of itemsets. Therefore, both the
curves were overlapped throughout the figures. The following
two observations can be drawn from these figures: (i) The
minSup constraint has negative effect on the generation of
SPIs. That is, increase in minSup decreases the number of
SPIs, and vice-versa. It is becausemany itemsets fail to satisfy
the increased minSup value. (ii) The maxLa constraint has
positive effect on the generation of SPIs in the T10I4D100k,
T20I6D100k, Retai, and BMS-WebView1 sparse database.
That is, increase in maxLa increases the number of SPIs,
and vice-versa. It is because higher maxLa values facilitate
the itemsets to have their inter-arrival times further away
from the user-specified maxPer value. (iii) In the dense
Mushrooms database, the maxLa constraint does not affect

the generation of SPIs. It is because, in a dense database,
the mined periodic-frequent itemsets are the ones that appear
regularly in the database, i.e. having a stable behavior.

Next, we have shown the runtime requirements of
SPP-Growth and SPP-ECLAT algorithms in Figure 4 by
varying the value of maxLa. In detail, Figure 4 (a) to
Figure 4(c), shows the runtime requirements of both the
algorithms in the T10I4D100K database, respectively, for
different minSup and maxPer values. Figure 4 presents the
performance comparison of the two algorithms in three cases,
minSup= 0.5% andmaxPer= 0.4% (Figure 4(a)), minSup=

0.8% and maxPer = 0.4% (Figure 4(b)), minSup = 1% and
maxPer= 0.4% (Figure 4(c)). The results in these three cases
all show that SPP-ECLAT is faster than SPP-Growth.

From Figure 4(d) to Figure 4(f), shows the runtime
requirements of both the algorithms in the Retail database,
respectively, for different minSup and maxPer values.
Figure 4 presents the performance comparison of the two
algorithms in three cases, minSup = 0.8% and maxPer =

2% (Figure 4(d)), minSup = 0.9% and maxPer = 2%
(Figure 4(e)), minSup = 1% and maxPer = 2% (Figure 4(f)).
The results in these three cases all show that, in general, SPP-
ECLAT is faster than SPP-Growth.

From Figure 4(g) to Figure 4(i), shows the runtime
requirements of both the algorithms in the T20I6D100K
database, respectively, for different minSup and maxPer
values. The runtime analysis is given in Figure 4 shows the
performance of the two algorithms in three cases, minSup =

3% and maxPer = 4% (Figure 4(g)), minSup = 5% and
maxPer = 4% (Figure 4(h)), minSup = 7% and maxPer =

4% (Figure 4(i)). The results in these three cases all show
that SPP-ECLAT is faster than SPP-Growth.

From Figure 4(j) to Figure 4(l), shows the runtime
requirements of both the algorithms in the BMS-WebView1
database, respectively, for different minSup and maxPer
values. Figure 4 depicts the performance comparison of the
two algorithms in three cases, minSup= 0.5% and maxPer=
5% (Figure 4(j)), minSup = 0.8% and maxPer = 5%
(Figure 4(k)), minSup = 1% and maxPer = 5% (Figure 4(l)).
The results in these three cases all show that SPP-ECLAT is
faster than SPP-Growth.

From Figure 4(m) to Figure 4(o), shows the runtime
requirements of both the algorithms in the BMS-WebView2
database, respectively, for different minSup and maxPer
values. Figure 4 shows the performance comparison of
the two algorithms in three cases, minSup = 0.06%
and maxPer = 5% (Figure 4(m)), minSup = 0.08% and
maxPer= 0.5% (Figure 4(o)), minSup= 0.1% andmaxPer=
0.5% (Figure 4(l)). The results in these three cases show
that SPP-ECLAT is faster than SPP-Growth; however, the
difference in runtime comparison between the two algorithms
is small, it is only around 0.3 seconds on average .

From Figure 4(p) to Figure 4(r), shows the analysis
for the runtime requirements of both the algorithms in
the Mushrooms database, respectively, for different minSup
and maxPer values. Figure 4 presents the performance
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FIGURE 3. Number of stable periodic-frequent itemsets generated in various databases by varying minSup and maxLa values.
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FIGURE 4. Runtime requirements of SPP-Growth and SPP-ECLAT algorithms at different maxLa.
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comparison of the two algorithms in three cases, minSup =

6% and maxPer = 3% (Figure 4(m)), minSup = 7% and
maxPer = 3% (Figure 4(n)), minSup = 8% and maxPer =

3% (Figure 4(o)). The results in these three cases all show
that SPP-Growth requires more time than SPP-ECLAT.

It can be observed that the SPP-ECLAT runs faster
than the SPP-Growth algorithm. The good performance of
SPP-ECLAT is a result of the effectiveness of periodic
calculation and pruning techniques. The following are some
noteworthy findings that can be derived from this figure:
(i) If we increase the maxLa value, then subsequently,
both algorithms’ runtime requirements increase. The primary
reason for this observation is that both the algorithms
will discover many SPIs in any database if the maxLa
value continues to increase. (ii) SPI-ECLAT generates SPIs
much faster than SPP-Growth under any given maxLa in
BMS-WebView-1, Retail, T10I4D100K, and T20I6D100K,
and Mushrooms databases. More importantly, we can also
observe that at high maxLa values, SPP-ECLAT algorithm
generates the SPIs much faster than SPP-Growth algorithm.
The reason is that SPP-ECLAT uses the downward closure
property and the depth-first search technique, so the SPIs
are generated by simply performing intersection of SPP-list.
The process is repeated to find all SPIs. (iii) With the
BMS-WebView-2 dataset, which contains long transactions
and many distinct items, the SPP-ECLAT algorithm takes
more time than the SPP-Growth algorithm. It is because the
SPP-ECLAT algorithm is based on the downward closure
property and the depth-first search technique, so it does not
require scanning the database each time; but to generate all
SPIs, it has to perform the intersection of the SPP-list. So the
long SPP-list requires more time to repeat the intersection
process.

Finally, we have shown the memory consumption details
of SPP-Growth and SPP-ECLAT algorithms in Figure 5
by varying the value of maxLa. In detail, Figure 5(a) to
Figure 5(c), shows the memory consumption of both the
algorithms in the T10I4D100K database, respectively, for
different minSup and maxPer values. Figure 5(a) depicts the
comparison of the two algorithms in three cases, minSup =

0.5% and maxPer = 0.4% (Figure 5(a)), minSup = 0.8% and
maxPer = 0.4% (Figure 5(b)), minSup = 1% and maxPer =

0.4% (Figure 5(c)). The results all show that SPP-ECLAT
consumes less memory than SPP-Growth in all cases. When
maxLa is 0.1%, SPP-ECLAT consumes less memory than
SPP-Growth by 26 MB on average. As maxLa is increased,
the performance gap becomes bigger (up to 62 MB).

From Figure 5(d) to Figure 5(f), shows the memory
consumption of both the algorithms in the Retail database,
respectively, for different minSup and maxPer values. Fig-
ure 5 depicts the performance of the two algorithms in three
cases, minSup = 0.8% and maxPer = 2% (Figure 5(d)),
minSup = 0.9% and maxPer = 2% (Figure 5(e)), minSup =

1% and maxPer = 2% (Figure 5(f)). The results all show
that SPP-ECLAT performs consistently and consumes less
memory than SPP-Growth by 145 MB on average.

From Figure 5(g) to Figure 5(i), shows the memory
consumption of both the algorithms in the T20I6D100K
database, respectively, for different minSup and maxPer
values. Figure 5 presents the performance comparison of the
two algorithms in three cases, minSup = 3% and maxPer =

4% (Figure 5(g)), minSup = 3.5% and maxPer = 4%
(Figure 5(h)), minSup = 4% and maxPer = 4% (Figure 5(i)).
In these cases, SPP-ECLAT consumes less memory than
SPP-Growth by around 130MB on average.

From Figure 5(j) to Figure 5(l), shows the memory
consumption of both the algorithms in the BMS-WebView1
database, respectively, for different minSup and maxPer
values. Figure 5 shows the performance comparison of the
two algorithms in three cases, minSup= 0.5% and maxPer=
5% (Figure 5(j)), minSup = 0.8% and maxPer = 5%
(Figure 5(k)), minSup = 1% and maxPer = 5% (Figure 5(l)).
The gain of SPP-ECLAT in terms of memory here is about
4MB on average.

From Figure 5(m) to Figure 5(o), shows the memory
consumption of both the algorithms in the BMS-WebView2
database, respectively, for different minSup and maxPer
values. Figure 5 shows the performance comparison of
the two algorithms in three cases, minSup = 0.6% and
maxPer = 5% (Figure 5(m)), minSup = 0.8% and maxPer =

5% (Figure 5(n)), minSup = 1% and maxPer = 0.5%
(Figure 5(o)). The results show that the memory consumption
of SPP-ECLAT is around 18MB less than SPP-Growth.

From Figure 5(p) to Figure 5(r), shows the memory
consumption of both the algorithms in the Mushroom
database, respectively, for different minSup and maxPer
values. Figure 5 presents the performance of the two
algorithms in three cases, minSup = 6% and maxPer = 3%
(Figure 5(m)), minSup= 7% andmaxPer= 3% (Figure 5(n)),
minSup= 8% andmaxPer= 3% (Figure 5(o)). In these cases,
SPP-ECLAT consumes less than 58MB on average.

It can be observed that the SPP-ECLAT consumes less
memory than the SPP-Growth algorithm. The following are
some noteworthy findings that can be derived from this
figure: (i) If we increase the maxLa value, then subsequently,
both algorithms’ memory consumption increase. The primary
reason for this observation is that both the algorithms will
discover many SPIs in any database if the maxLa value
continues to increase. (ii) SPP-ECLAT generates SPIs using
a SPP-list structure, which helps reduce the search space on
every database. (iii) With the BMS-WebView-2 dataset, the
processing time of the proposed algorithm is comparable to
the SPP-Growth algorithm; however, it is interesting to note
that the SPP-ECLAT algorithm requires much less memory
than the SPP-Growth algorithm.

C. EXPERIMENT 2: EVALUATION OF SPP-GROWTH AND
SPP-ECLAT ALGORITHMS BY VARYING minSup AND
maxPer
In the previous experiment, we have evaluated the per-
formance of the SPP-Growth and SPP-ECLAT algorithms
by varying minSup and maxLa values. In this experiment,
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FIGURE 5. Memory consumption of SPP-Growth and SPP-ECLAT algorithms at different maxLa.
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we study the impact of minSup and maxLa constraints on the
number of itemsets generated, the runtime requirements of
SPP-Growth and SPP-ECLAT algorithms, and the memory
consumed by SPP-Growth and SPP-ECLAT algorithms.
Please note that the maxLa constraint has been fixed
at a particular value for each database throughout this
experimentation.

First, the number of SPIs generated by SPP-Growth and
SPP-ECLAT algorithms is shown in Figure 6 by varying
the value of maxPer . In detail, Figure 6(a) to Figure 6(c),
shows the number of SPIs generated by the two algorithms in
the T10I4D100K database, respectively, for different minSup
and maxLa values. From Figure 6(d) to Figure 6(f), shows
the number of SPIs generated by the two algorithms in
the Retail database, respectively, for different minSup and
maxLa values. From Figure 6(g) to Figure 6(i), shows the
number of SPIs generated by the two algorithms in the
T20I6D100K database, respectively, for different minSup
and maxLa values. From Figure 6(j) to Figure 6(l), shows
the number of SPIs generated by the two algorithms in the
BMS-WebView-1 database, respectively,for differentminSup
and maxLa values. From Figure 6(m) to Figure 6(o), shows
the number of SPIs generated by the two algorithms in the
BMS-WebView-2 database, respectively,for differentminSup
and maxLa values. From Figure 6(p) to Figure 6(r), shows
the number of SPIs generated by the two algorithms in the
Mushrooms database respectively,for different minSup and
maxLa values. It is to be noted that both algorithms will
generate an equal number of itemsets. Therefore, both the
curves were overlapped throughout the figures. The following
two observations can be drawn from these figures: (i) The
maxPer constraint has positive effect on the generation of
SPIs. That is, increase in maxPer increases the number
of SPIs, and vice-versa. It is because, if we increase the
value of the maxPer , then most of the non-periodic itemsets
have become periodic with an increase in the maximum
inter-arrival time duration. (ii) The minSup constraint has
negative effect on the generation of SPIs. That is, increase
in minSup decreases the number of SPIs, and vice-versa. It is
because many itemsets fail to satisfy the increased minSup
value.

Next, the runtime requirements of SPP-Growth and
SPP-ECLAT algorithms is shown in Figure 7 by varying
the value of maxPer . In detail, Figure 7(a) to Figure 7(c),
shows the runtime requirements of the two algorithms in the
T10I4D100K database, respectively, for differentminSup and
maxLa values. Figure 7 presents the performance comparison
of the two algorithms in three cases, minSup = 0.5% and
maxLa = 0.4% (Figure 7(a)), minSup = 0.8% and maxLa =

0.4% (Figure 7(b)), minSup = 1% and maxLa = 0.4%
(Figure 4(c)). The results in these three cases all show that
SPP-Growth requires more time than SPP-ECLAT.

From Figure 7(d) to Figure 7(f), shows the runtime
requirements of the two algorithms in the Retail database,
respectively, for different minSup and maxLa values.Figure 7
presents the performance comparison of the two algorithms in

three cases, minSup = 0.5% and maxLa = 2% (Figure 7(d)),
minSup = 0.8% and maxLa = 2% (Figure 7(e)), minSup =

1% and maxLa = 2% (Figure 4(f)). The results in these three
cases all show that SPP-Growth requires more time than SPP-
ECLAT. From Figure 7(g) to Figure 7(i), shows the runtime
requirements of the two algorithms in the T20I6D100K
database, respectively, for different minSup and maxLa
values.Figure 7 presents the performance comparison of the
two algorithms in three cases, minSup = 3% and maxLa =

2% (Figure 7(g)), minSup = 3.5% and maxLa = 2%
(Figure 7(h)), minSup = 4% and maxLa = 4% (Figure 4(i)).
The results in these three cases all show that SPP-Growth
requires more time than SPP-ECLAT.

From Figure 7(j) to Figure 7 (l), shows the runtime
requirements of the two algorithms in the BMS-WebView-1
database, respectively,for differentminSup andmaxLa values.
Figure 7 presents the performance comparison of the two
algorithms in three cases, minSup = 0.5% and maxLa = 2%
(Figure 7(j)), minSup= 0.8% andmaxLa= 2% (Figure 7(k)),
minSup = 1% and maxLa = 2% (Figure 4(l)). The results
in these three cases all show that SPP-Growth requires more
time than SPP-ECLAT.

From Figure 7(m) to Figure 7(o), shows the runtime
requirements of the two algorithms in the BMS-WebView-2
database, respectively,for differentminSup andmaxLa values.
Figure 7 presents the performance comparison of the two
algorithms in three cases, minSup = 0.6% and maxLa =

2% (Figure 7(m)), minSup = 0.8% and maxLa = 2%
(Figure 7(n)), minSup = 1% and maxLa = 2% (Figure 4(o)).
The results in these three cases all show that SPP-Growth
requires less time than SPP-ECLAT.

From Figure 7(q) to Figure 7(r), shows the runtime
requirements of the two algorithms in the Mushrooms
database respectively,for differentminSup andmaxLa values.
Figure 7 presents the performance comparison of the two
algorithms in three cases, minSup = 6% and maxLa = 3%
(Figure 7(p)), minSup = 7% and maxLa = 3% (Figure 7(q)),
minSup = 8% and maxLa = 3% (Figure 4(r)). The results in
these three cases show that SPP-Growth requires more time
than SPP-ECLAT.

It can be observed that the SPP-ECLAT runs faster than the
SPP-Growth algorithm in most case. The good performance
of SPP-ECLAT is a result of the effectiveness of periodic
calculation and pruning techniques. The following are some
noteworthy findings that can be derived from this figure:
(i) If we increase the maxPer value, then subsequently,
both algorithms’ runtime requirements increase. The primary
reason for this observation is that both the algorithms
will discover many SPIs in any database if the maxPer
value continues to increase. (ii) SPI-ECLAT generates SPIs
much faster than SPP-Growth under any given maxPer
in BMS-WebView-1, Retail, T10I4D100K, T20I6D100K,
and Mushrooms databases. More importantly, we can also
observe that at high maxPer values, SPP-ECLAT algorithm
generates the SPIs much faster than SPP-Growth algorithm.
The reason is SPP-ECLAT using the downward closure
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FIGURE 6. Number of stable periodic-frequent itemsets generated in various databases by varying minSup and maxPer .
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FIGURE 7. Runtime requirements of SPP-Growth and SPP-ECLAT algorithms at differnt maxPer .
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property and the depth-first search technique, so the SPIs
are generated by simply peforming intersection of SPP-
list. The process is repeated to find all SPIs. (iii) With the
BMS-WebView-2 dataset, which contains long transactions
and many distinct items, SPP-ECLAT algorithm takes more
time than SPP-Growth algorithm. It is because SPP-ECLAT
algorithm is based on the downward closure property and the
depth-first search technique, so it doesn’t require scanning the
database each time, but generating all SPIs it has to perform
the intersection of the SPP-list. So the long SPP-List requires
more time to repeat the intersection process.

Finally, we have shown the memory consumption details
of SPP-Growth and SPP-ECLAT algorithms in Figure 8
by varying the value of maxPer . In detail, Figure 8(a)
to Figure 8(c), shows the memory consumption of both
the algorithms in the T10I4D100K database, respectively,
for different minSup and maxLa values. Figure 8 presents
the performance of the two algorithms in three cases,
minSup = 0.5% and maxLa = 0.4% (Figure 8(a)), minSup =

0.8% and maxLa = 0.4% (Figure 8(b)), minSup = 1%
and maxLa = 0.4% (Figure 8(c)). The results all show
that SPP-ECLAT consumes less memory than SPP-Growth.
In detail, the average memory consumption difference
between the two algorithms is around 120MB. The more
maxLa value increase, the more significant the difference
memory consumption between the two algorithms, from
80MB (when maxLa value is 0.1%) to 170MB (when maxLa
value is 0.4%).

From Figure 8(d) to Figure 8(f), shows the memory
consumption of both the algorithms in the Retail database,
respectively, for differentminSup andmaxLa values. Figure 8
presents the performance of the two algorithms in three
cases, minSup = 0.5% and maxLa = 2% (Figure 8(d)),
minSup = 0.8% and maxLa = 2% (Figure 8(e)), minSup =

1% and maxLa = 2% (Figure 8(f)). The results all show
that SPP-ECLAT consumes less memory than SPP-Growth.
The magnitude of the difference in memory consumption is
around 70MB.

From Figure 8(g) to Figure 8(i), shows the memory
consumption of both the algorithms in the T20I6D100K
database, respectively, for different minSup and maxLa val-
ues. Figure 8 presents the performance of the two algorithms
in three cases, minSup = 3% and maxLa = 2% (Figure 8(g)),
minSup = 3.5% and maxLa = 2% (Figure 8(h)), minSup =

4% and maxLa = 2% (Figure 8(i)). in these cases, SPP-
ECLAT consumes less memory than SPP-Growth by 140MB
on average.

From Figure 8(j) to Figure 8(l), shows the memory
consumption of both the algorithms in the BMS-WebView-1
database, respectively, for different minSup and maxLa
values. Figure 8 presents the performance of the two
algorithms in three cases, minSup = 0.5% and maxLa =

2% (Figure 8(j)), minSup = 0.8% and maxLa = 2%
(Figure 8(k)), minSup = 1% and maxLa = 2% (Figure 8(l)).
The results show that SPP-ECLAT consumes less memory
than SPP-Growth, around 8MB on average.

From Figure 8(m) to Figure 8(o), shows the memory
consumption of both the algorithms in the BMS-WebView-
2 database, respectively, for different minSup and maxLa
values. Figure 8 presents the performance of the two
algorithms in three cases, minSup = 0.6% and maxLa =

2% (Figure 8(m)), minSup = 0.8% and maxLa = 2%
(Figure 8(n)), minSup = 1% and maxLa = 2% (Figure 8(o)).
The results all show that SPP-ECLAT consumes less memory
than SPP-Growth. In detail, the difference in memory
consumption when maxLa = 2% is around 9MB, and when
maxLa is increasing up to 4%, the difference in memory
consumption of the two algorithms is around 10MB

From Figure 8(p) to Figure 8(r), shows the memory con-
sumption of both the algorithms in the Mushrooms database,
respectively, for different minSup and maxLa values.Figure 8
presents the performance of the two algorithms in three cases,
minSup= 6% and maxLa= 3% (Figure 8(p)), minSup= 7%
and maxLa = 3% (Figure 5(q)), minSup = 8% and maxLa =

3% (Figure 5(r)). In these cases, SPP-ECLAT consumes less
than 56MB on average.

It can be observed that the SPP-ECLAT consumes
relatively less memory than the SPP-Growth algorithm.
The following are some noteworthy findings that can be
derived from this figure: (i) If we increase the maxPer value,
then subsequently, both algorithms’ memory consumption
increase. The primary reason for this observation is that both
the algorithms will discover many SPIs in any database if
the maxPer value continues to increase. (ii) SPP-ECLAT
generates SPIs using a SPP-list structure, which helps reduce
the search space on every database. (iii) It should highlight
that in BMS-WebView-2 dataset. The processing time of
the proposed algorithm for this dataset is comparable to the
SPP-Growth algorithm; however, it is interesting to note that
SPP-ECLAT algorithm requires much less memory in the
memory consumption test than the SPP-Growth algorithm.

D. EXPERIMENT 3: SCALABILITY OF THE SPP-GROWTH
AND SPP-ECLAT ALGORITHMS
In this experiment, we have used the Kosarak database,
a sparse real-world database, to perform the scalability
operation. The scalability operation depends on the number
of items and the number of records (e.g., transactions).
Therefore, to analyze the complexity, we need to think
about every operation an algorithm performs and how it
is affected by the number of items and records. Thus, the
sparse dataset has been chosen because when we divide the
database into equal portions, each portion has a different
number of items, so we will see clearly how the algorithm
is doing. This scalability operation is utilized to discover
the efficacy and productivity of the proposed algorithm
on big columnar temporal databases. Therefore, in this
experiment we divide the Kosarak database into five equal
portions, each with 0.2 million transactions. We evaluate
the performance of both the SPP-Growth and SPP-ECLAT
algorithms, where the database size is varied from 200000 to
1000000 transactions. Figure 9 shows the results in terms
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FIGURE 8. Memory consumption of SPP-Growth and SPP-ECLAT algorithms at different maxPer .
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FIGURE 9. Scalability of the SPP-Growth and SPP-ECLAT algorithms.

of the runtimes and memory consumption levels of both
SPP-Growth and SPP-ECLAT algorithms under different
database sizes when maxLa = 0.04 (in %), minSup =

0.01 (in %), and maxPer = 0.05 (in %). Some of the
important observations that can be drawn from this figure
are as follows. (i) If we keep increasing the database size,
then both algorithms’ runtimes and memory requirements
will increase almost linearly. (ii) SPP-ECLAT consumes less
runtime and memory than the SPP-Growth algorithm under
any given database size.

VI. DISCUSSION SECTION
In this section, we have compared the time complexity
analysis of both the algorithms. Let us consider a columnar
temporal database containing ‘p’ number of distinct items and
total number of transactions represented as ‘q’. Let us assume
that all the items in q are interesting, and every item is present
in every transaction; i.e., the generated lists contain q entries
each.

In the literature, SPP-Growth [26] is the only state-of-the-
art algorithm that uses the concept of SPP-list constructions
to generate complete SPIs. The major contributions of
SPP-Growth and its complexities are as follows: First,
the complete database is scanned, and the items in each
transaction are stored as a prefix-tree. In the worst case,
if every item is present in every transaction, then the time
complexity for this operation isO(p∗q). Second, we construct
the SPP-lists with a complexity of O(p ∗ q). After the initial
prefix-tree construction, SPP-Growth recursively performs
a depth-first search to find all the interesting itemsets. The
number of possible itemsets is n = 2p − 1. In real-world
applications, the number of itemsets considered depends on
the database’s characteristics and the algorithms’ parameters.
If minSup, maxPer , or maxLa are increased, fewer itemsets
may be considered due to applying the search space pruning
strategies. Finally, for each considered itemset 0 that extends
an itemset 1, SPP-Growth traverses the node-links of the
SPP-list of 1 to create the conditional pattern base, SPP-list,
and prefix-tree of 0. This construction is done in linear time
as these structures of 1 are traversed once. Therefore, the
overall complexity of SPP-Growth isO(p∗q)+O(p∗q∗n) =

O(p ∗ q ∗ n).
We complete the generation of SPIs using the SPP-ECLAT

with the help of two algorithms. In Algorithm 1, we scan

the complete database once to discover the one-length SPIs
by constructing an SPP-list data structure. In the worst case,
if every item is present in every transaction, then the time
complexity for this operation is O(p ∗ q). In the Algorithm
2, we need to merge the TS-list elements of the two current
length itemsets to generate the higher length itemsets. In the
worst case, if every item is present in every transaction as
the length of the TS-list of every itemset becomes q, then the
time complexity for merging any of the two itemset’s TS-
lists becomes O(q). This algorithm utilizes the Depth-First
Search (DFS) strategy on the itemset lattice. The number
of possible itemsets is n = 2p − 1. Therefore, the time
complexity for generating all the possible interesting itemsets
is O(n ∗ q). The overall time complexity of SPP-ECLAT is
O(q+ n ∗ q) = O(q ∗ n).

In real-world applications, the overall superiority of
SPP-ECLAT ultimately depends on the actual values of
the given parameters, such as p, q, and n. Therefore,
we conducted rigorous experimentation on six real-world
databases to demonstrate that SPP-ECLAT outperforms the
state-of-the-art SPP-Growth algorithm.

VII. CONCLUSION AND FUTURE WORK
This study has proposed an efficient and novel algorithm,
called Stable Periodic-frequent Pattern – Equivalence Class
Transformation(SPP-ECLAT), to discover stable periodic-
frequent itemsets. The output itemsets of the algorithm
not only satisfy the user-specified minimum support and
maximum periodicity thresholds but also are stable itemsets
based on the user-specified maximum lability threshold in
any big columnar temporal databases. The SPP-List structure
of the SPP-ECLAT algorithm plays an important role in
eliminating many itemsets that are not considered to be
candidate itemsets from the huge search space. An in-depth
examination of the proposed SPP-ECLAT approach on six
synthetic and real-world databases revealed that its memory
consumption and runtime are efficient and highly scalable
relative to those of the state-of-the-art SPP-Growth algorithm.

As for the future work, we will study the Lability concept
over different types of itemsets. It is also interesting to work
on discovering stable periodic-frequent itemsets in uncertain
databases. Furthermore, we will focus on identifying SPIs
in static temporal data, and it would be important to
investigate stable itemsets in graphs, data streams, and
symbolic databases in the future.
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