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ABSTRACT Federated learning (FL), as a paradigm for addressing challenges of machine learning (ML)
to be applied in private distributed data provides a novel and promising scheme to promote ML in multiple
independently distributed healthcare institutions. However, the non-IID and unbalanced nature of the data
distribution can decrease its performance, even resulting in the institutions losing motivation to participate
in its training. This paper explored the problem with an in-hospital mortality prediction task under an actual
multi-center ICU electronic health record database that preserves the original non-IID and unbalanced data
distribution. It first analyzed the reason for the performance degradation of baseline FL under this data
scenario, and then proposed a personalized FL (PFL) approach named POLA to tackle the problem. POLA
is a personalized one-shot and two-step FL method capable of generating high-performance personalized
models for each independent participant. The proposed method, POLA was compared with two other
PFL methods in experiments, and the results indicate that it not only effectively improves the prediction
performance of FL but also significantly reduces the communication rounds. Moreover, its generality and
extensibility also make it potential to be extended to other similar cross-silo FL application scenarios.

INDEX TERMS Federated learning, non-IID, personalized, ICU, mortality prediction, electronic health
records.

I. INTRODUCTION
With the promotion of electronic health record (EHR) sys-
tems, a huge amount of EHR data have emerged [1]. The
EHR datasets, which contain exhaustive information such
as patient diagnosis and treatment, underpin the application
of machine learning (ML) in digital health. Moreover, its
rich resources and valuable implicit information have also
made ML one of the hottest technologies in its secondary
analysis [2]. Nevertheless, due to the privacy and sensitivity
of EHR, the application of traditional ML which refers to
centralizing or releasing these data, poses not only legal,
ethical, and regulatory challenges, but also technical ones [3].
Though there are some corresponding solutions to get around
these restrictions, such as removing some key information
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to anonymize the patient data or adding privacy-preserving
algorithms in the transmission process to prevent data leak-
age [4], the above problem has not been fundamentally solved
because they still involve data migration.

Federated learning (FL) [5], [6], which emerged as a
paradigm to address the concern of ML on private distributed
data sources brings promising prospects to further promote
ML in the digital healthcare field [7]. It is a distributed
ML setting that can effectively assist multiple independent
clients, such as mobile phones, IoT devices, and organiza-
tions, to conduct isolated data usage and ML modeling in
accordance with user privacy protection, data security, and
government regulations [8]. For healthcare, FL can imple-
ment ML in independent institutions without sharing any
raw EHR data, which enables common and valuable infor-
mation contained by the isolated data silos to be shared
on the premise of protecting patient privacy and sensitive
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information. In typical EHR applications, FL can help to
find clinically similar patients across institutions to support
medical research and applications [9], develop a general
decentralized framework for prediction of hospitalization
caused by cardiac events [10], as well as predict the mor-
tality rate and stay time of ICU [11], including that under
COVID-19 [12].

However, while FL has been proven to be effective and fea-
sible in EHR from independent institutions, its performance
can be degraded by the non-independently and identically
distributed (non-IID) and unbalanced nature of these EHR
data silos. Specifically, the non-IID feature can result in a
significant reduction of model effectiveness in FL, like pre-
diction accuracy loss of the clients’ local ML models [13],
[14], [15], and this situation can be magnified by the data
unbalance [6]. Furthermore, the skewness of non-IID datasets
(the divergence of IID data) also has a significant impact
on FL performance. It can even be claimed that whether the
validity of FL on non-IID data can be guaranteed depends on
the extent to which the data distribution skew to non-IID [16].
Because when this skewness reaches a certain degree, the
performance of the FL model will be affected, resulting in
an accuracy-loss which increases with the growth of the
skewness [17], [18]. Overall, for the application of FL in a
multi-institution EHR scenario, the data distribution nature of
non-IID and unbalance, especially that with high skewness,
can reduce the model performance, even resulting in locally
independent trained models exhibiting better performance
than the FL-trained model, thus removing the main incentive
of these healthcare organizations to participate in FL and even
making FL meaningless.

To address the challenge outlined above, numerous FL
optimization techniques have emerged, which have been
summarized and divided into global optimization and local
adaptation byD. Ting et al [19]. The local adaptationmethods
are specially proposed to deal with the statistical challenges
in FL, which enables each participant to obtain a personalized
model rather than accept a shared unified model. At present,
personalized federated learning (PFL) incorporating an early
straightforward ‘‘FL training + local adaptation’’ scheme
and various subsequent techniques [20] has become a pop-
ular research branch [21]. As several personalized FL stud-
ies [20], [22] suggest, FL can recover from performance
degradation by personalizing individuals’ local models with
their specific data when confronted with heterogeneous data
environments such as non-IID and unbalanced distributions.

Consistent with the premise of PFL techniques, we argued
that it is no longer applicable to generate a unified func-
tional model for all FL participants in the non-IID and
unbalanced data environment. Consequently, to cope with the
challenge we propose a Personalized One-shot Local Adap-
tation (POLA) FL method after modifying the optimization
problem of the standard FL. The proposed method aims to
improve the performance of in-hospital mortality prediction
in an actual multiple independent ICU center environment.
Moreover, in order to further verify the effectiveness of the

proposed method, we naturally divide the distributed ICU
datasets in two different ways to generate ICU centers with
different non-IID data skewness while preserving the actual
data distribution. Experiments demonstrate that POLA can
effectively enhance the model’s mortality prediction per-
formance in this data environment, as well as significantly
reduce the number of communication rounds of FL training.

The main contributions included in this work are: 1) we
underpinned our research problem by conducting experi-
ments on baseline FL in the data context of this study.
2) we transformed the original global optimization problem
of standard FL into a problem optimized for each individual,
and then proposed a PFL method called POLA to generate
highly personalized models for independent ICU centers.
3) we experimentally compared the POLA with baseline FL
and two other PFL methods to demonstrate that it not only
improves the model performance but also effectively reduces
the communication overhead of FL.

The rest of this paper is organized as follows. Section II
introduces the preliminary knowledge related to baseline
FL, personalized FL, federated knowledge distillation, and
AutoML. Section III presents the detailed designs of our pro-
posed personalized FL scheme. The experimental evaluation
and analysis are presented in Section IV. Finally, the work is
discussed and concluded in Sections V and VI, respectively.

II. PRELIMINARIES
A. BASELINE FEDERATED LEARNING
The prototype and baseline of FL is a distributed ML
algorithm based on mini-batch Stochastic Gradient Descent
(SGD) named FederatedAveraging (FedAvg) [6]. Early opti-
mization strategies for distributed ML generally involve iter-
ative averaging of local models via adapting SGD in the
local training process for optimization [23]. FedAvg is an
adaptation of this kind of strategy under data privacy con-
cerns. It is an orchestration pattern of distributed clients
coordinated by a central server, where the clients both collect
data and perform major computation tasks, and the central
server coordinates the training process by integrating updated
information exchanged with the clients [6].

The optimization objective of FedAvg can be defined as a
global minimization problem below.

min
ω∈R

F(ω),F (ω)
def
=

N∑
i=1

pifi (ω) (1)

where N is the number of clients participating in the FL train-
ing, ω is a vector that contains global model parameters and
fi (ω) is the objective function of the i-th client which is deter-
mined by an arbitrary specific ML model and optimization
algorithm. The optimization problem can thus be interpreted
as figuring out optimal ω that can minimize the average loss
over training models on all clients. pi specifies the relative
impact for the i-th client, which meets the conditions being
1 >pi ≥ 0 and

∑n
i=1 pi = 1. It is generally with two settings,
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pi= 1/n or pi = di/d , where d is the total data amount, di is
that of client i.

To illustrate this method, its specific learning process and
pseudo code are presented in Algorithm 1 [6]. The central
server first establishes and initializes a global sharing model
and then sends it to randomly selected clients. The selected
clients independently and parallelly implement the SGD opti-
mizer with pre-set local iterations and mini-batch data size
on the receiving global model with their own unique data
and then return the updated model or model parameters to
the server. After receiving the information returned by all
participating clients, the server updates the global model by
performing a weighted average of these parameters according
to the data proportions of each client. Again, the clients
perform local training after receiving the updated global
model and return their updated local model parameters to
the server. These steps are repeated until a preset number of
communication rounds is reached.

Algorithm 1 FedAvg Algorithm
Inputs:
- local training data on each client; - unified global model
Outputs:
- unified global model with updated parameters
Initialize:
- total communication rounds R; - local training iterations E;
- local mini-batch data size B; - learning rate η; - parameters
ω of global model
for each communication round r form 1 to R

Server update:
Randomly select N = C × K clients, C ∈ (0, 1], K
is total clients
Send ωr to all selected clients
After all selected clients sending back updated ωi

r do
ωr=

∑N
i=1 piω

i
r

Update ωr+1←ωr
Client update:

for client i from 1 to N :
Initialize the local model parameters ωi

r←ωr
Split local training data into batches of size B
for each iteration e from 1 to E :
for each batch d :

ωi
r=ωi

r−η∇fi(ωi
r , d)//fi is loss function

end for
end for
return ωi

r to server
end for

end for

B. PERSONALIZED FEDERATED LEARNING
The initial intention of FL is to generate a globally unified
model that performs effectively across the majority of par-
ticipating clients. Since this idea has been proven to be lim-
ited in dealing with non-IID and unbalanced data [16], [17],
personalized federated learning (PFL) has emerged as

a compensation. Just as mentioned by Kulkarni et al. [20]
and Tan et al. [21], the performance deterioration caused by
heterogeneous data in FL can be addressed by personalized
solutions.

Recently, research on PFL has set off a boom. There are
numerous PFL strategies that have been developed to address
the problem of the unified global model’s failure to generalize
well in FL while facing a data heterogeneity problem [21].
Since this study involves local adaptation to personalize FL,
we also briefly summarize the related methods as follows:
1) Model fine-tuning. In highly heterogeneous data, perfor-
mance gains can be achieved by simply fine-tuning all or part
of the parameters of the global model obtained from FL train-
ing with private data locally on the client [18], [24]. 2) Local
loss regularization. The client-drift problem caused by data
heterogeneity is alleviated by adding regularization loss in
the local training process to obtain better-performing person-
alized models [25], [26]. 3) Meta-learning. Its representative
mechanism in FL is first to learn a parameterized model (or
meta-learner) through the FL training process by algorithms
like MAML and Reptile, then a specific personalized model
for each client can be fast trained under the guidance of the
meta-learner [27], [28]. 4) Multi-task learning aims to learn
various models for multiple related tasks simultaneously,
which is consistent with the mechanism of local adaptation
for FL [29], [30]. 5) Transfer learning enables knowledge
sharing among related domains to improve a learner’s perfor-
mance. In the FL setting under a heterogeneous data scenario,
it helps the client models complete the local adaptation so as
to get personalized models [31], [22]. 6) Knowledge distilla-
tion (KD) can be associated with FL to distill the knowledge
like classification scores [32] and logit vectors [33] of the
global model to guide the local client models in learning their
personalized models.

Although all these PFL methods can improve the per-
formance of FL on non-IID data problems, the ways in
which they further personalize ML models are different. For
example, model fine-tuning, meta-learning, multi-task learn-
ing, and transfer learning all personalize the parameters of
the global model learned in FL. Local loss regularization
personalizes the loss function of individual models in the
FL learning process. Knowledge distillation can simultane-
ously personalize the structure and parameters of individual
models as well as hyperparameters. This work aims to make
the models as personalized as possible to gain performance
enhancement as much as possible for FL. Therefore, the
KD technique that has the most potential for model person-
alization is employed. In the next section, its related applica-
tions in FL are reviewed.

C. FEDERATED KNOWLEDGE DISTILLATION
KD is a student-teacher learning strategy with weak
model correlation that was proposed and popularized by
Hinton et al. [34]. It is extensively implemented in two
major domains: model compression and knowledge trans-
fer [35]. For model compression, KD can be used to learn a
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lightweight model with decent performance from the trained
cumbersome model to meet the needs of real-time or edge
applications. As to knowledge transfer, KD refers to a
student-teacher learning structure in which the models that
provide and learn knowledge are regarded as teacher and
student, respectively. It enables students to learn from a larger
pre-trained teacher model or an ensemble of teacher models.
Consequently, KD is also regarded as an effective method
that is frequently employed to transfer information from one
network to another in ML.

Based on this knowledge transfer feature, KD has been
applied to FL, and their combination is called federated
knowledge distillation (FKD). In general FKD schemes, the
global sharedmodel is regarded as a teacher to guide the inde-
pendent clients to train their local models [20]. Different from
the standard FL method that directly exchanges models or
parameters between clients and server, FKD allows distillated
model knowledge to be exchanged as information. Thus, the
communication cost during FL training can be significantly
reduced, especially for deep ML models. However, since the
distilled knowledge generally cannot contain as much infor-
mation as the model parameters, FKD methods are usually
accompanied by a decline in model accuracy.

A typical FKD method is federated distillation (FD) [33],
which only exchanges the prediction logit vectors between
server and clients to make the communication overhead
model-independent. Compared with the baseline FL, it sig-
nificantly reduced the training communication overhead but
greatly decreased the model accuracy. Whereafter, a hybrid
FD method (HFD) [36] is proposed as an enhancement of FD
by adding an average covariate vector to the corresponding
logit vectors. However, even though the model accuracy of
HFD is improved compared with FD under the premise of
constant communication cost, it is still lower than that
of baseline FL. Although these approaches can reduce the
communication cost in FL, the sacrifice of model accuracy
is not worth the gain, especially in non-IID data, because
participating individuals may not get any model performance
gain in FL.

To alleviate this problem, some studies introduced public
datasets in FKD. For instance, FedMD [32] pre-downloads
a public dataset on each client to distill a classification
score as exchanged knowledge. Another similar method is
MHAT [37]. Each of its clients also holds a public dataset to
generate the exchanged information. By introducing public
datasets, both methods can reduce the communication cost
while maintaining or improving the model accuracy. How-
ever, appending public datasets to FL is not recommended
because it violates the original FL intention of not sharing
raw data [21]. In addition, if all the clients need to download
the public dataset frequently, there will be a sizable additional
communication burden [15].

In addition to being utilized in FL to decrease
communication overhead, KD can also be used to learn
heterogeneous models for independent clients to deepen their
personalization. This takes advantage of the KD’s weak

model correlation, which means that the teacher and student
models aren’t required to have the unified structure or set
of hyperparameters. This extension in FL denotes that the
local model of each independent individual can be regarded
as a student model that is independent of the teacher model
to learn high personalization according to the distribution
characteristics of its local data. Li Hu et al. [37] conducted
this strategy by generating heterogeneous models for clients
while reducing communication overhead to compensate for
the accuracy loss in FKD.

D. AutoML
This study utilized a heuristic algorithm involving automated
machine learning (AutoML) in the optimization of person-
alized models, which may be confused with existing com-
parable studies. Thus, to show the difference between our
proposed method and the existing ‘‘FL + AutoML’’
approaches, we conducted a retrospective analysis of related
studies as follows.

AutoML is a combination of automation and machine
learning (ML), booming in both academic and industrial
fields in recent years. Its emergence has handed over
the ML processes that require massive human interven-
tions and efforts to the machine itself, such as algorithm
and model selection, further realizing the real ‘machine
learning’ [38].

Recently, more and more researchers have discovered that
AutoML can be combined with FL to address the problem
that the pre-defined unified model is not suitable for non-IID
data distribution as FL has developed. Currently, the most
popular use of AutoML in FL is neural architecture search
(NAS), which is typically used for personalized design and
optimization of clients’ local models. For example, to save
communication resources and accommodate edge devices in
FL, Hangyu Zhu et al. [39] proposed an evolutionary real-
time federated NAS approach that not only optimizes the
performance of deep neural network (DNN), but also reduces
the local payload of independent clients. Besides, a method
named FedNAS [40] and a general framework named MGF-
NAS [41] have also been developed for similar purposes to
automate the model selection process in FL.

By reviewing the existing federated AutoML research,
it can be found that almost all of them focus on the NAS
of DNN models, especially convolutional neural networks
(CNNs). Because the structure of the DNN model has a great
impact on the communication overhead and the performance
of FL, its automatic design and optimization can bring the
most considerable benefits. But since our study does not
involve DNN and is not limited to NAS, we do not compare
it with existing federated NAS methods.

III. PROPOSED METHOD
A. PROBLEM DEFINITION
As can be observed from (1), standard FL is to optimize the
parameters of the unified global model. However, after the
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experimental analysis in Subsection IV-D, it can be found
that this optimization objective is no longer applicable in the
data environment of this study. Therefore, we modified the
optimization problem and expressed it as below:

F (α, θ)
def
=

N∑
i=1

min
αi,θi,∈R

fi (αi, θi (ω)) (2)

where α and θ respectively represent the structure and param-
eters of local client model, ω is consistent with (1), which
represents the parameters of the global model. This definition
demonstrates how we changed the optimization problem of
FL from determining the parameters for a unified global
model into finding the optimal unique model structure and
parameter sets for each independent individual in FL. Fur-
thermore, it can also be seen that the specific parameters θi
of each participant are related to the parameters ω of the
global model, which means that the optimization problem of
this work is not separated from the original FL setting, and
its purpose is to further rebalance the global generalization
experience with the local data knowledge to produce the
optimal personalized models.

B. OVERALL FRAMEWORK
The proposed scheme is a two-step and one-shot PFL, the
overview of which is illustrated in Fig. 1. Two-step here refers
to FL training and local adaptation, where FL training is to
obtain a shared model with adequate global generalization
experiment, and local adaptation is a subsequent step to gen-
erate high-performance personalized models for independent
individuals.
One-shot means the local adaptation only needs to be

performed once for each individual in the entire training
process. This one-shot adaptation process is a KD-based
student-teacher learning, which regards the selected shared
model as the teacher and treats locally independently person-
alized models as students. It enables the independent ICU
centers to parallelly design their own personalized student
models and then makes these student models learn from
both the teacher model and their own datasets to improve
performance by rebalancing global experience and local data
knowledge.

Furthermore, in order to enable the student models to
obtain the most suitable personalization design to opti-
mize their performance, the adaptation step also includes an
optimization process of the personalized model. However,
this process is usually time-consuming and labor-intensive.
To simplify and automate it, a classical heuristic technique -
Genetic Algorithm (GA) is introduced. GA is a classical and
effective evolutionary algorithm that searches for the optimal
solution through selection, crossover, and mutation. In this
study, it can simultaneously provide a wide search space and
optimal solutions for hyperparameters and model structures
that need to be designed automatically. The detailed con-
tent of the proposed method will be described in the next
subsection.

FIGURE 1. The illustration of the proposed scheme.

C. DETAILED DESCRIPTION
Algorithm 2 demonstrates the specific implementations of the
proposed method POLA. As described above, step 1 is to
complete the baseline FL training to obtain the teacher model
required for subsequent local adaptation. The teacher model
is critical to the outcome of the local adaptation. However,
from the validation experiment in Section IV, we can see that
the baseline FL is no longer unable to ensure the performance
of its global model in the multi-center ICU data environment.
If we directly take the global model obtained when training is
completed as the teacher model, POLA’s effectiveness cannot
be guaranteed.

Therefore, in order to obtain a teacher model with sta-
ble performance and sufficient generalization knowledge,
we adjust the baseline FL, the details of which are shown in
Algorithm 3. We first divide the local training dataset of each
center into validation and training data, and then use them for
FL training and the global model’s validation, respectively.
Next, when the global shared model has learned enough gen-
eralization experience at a preset threshold number of training
roundsRw, the average validation error of all participants in
each round is calculated to decide whether the current global
model can be selected as the teacher model. Finally, when the
entire FL training is over, the global model with the minimum
validation error is selected.

Step 2 is performed in parallel on each independent ICU
center, which mainly contains two procedures. Procedure 1
is to coordinate the entire local adaptation process by the
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GA algorithm, which can automatically provide personalized
solutions and evolve to produce the optimal one for each
participant. Procedure 2 is to build and train the personalized
model according to the solutions provided in the Procedure 1,
and then return the results to evaluate.

In Procedure 1, the solution of the model personalization
which involves structure design and hyperparameter selection
and the inverse of model validation error which is returned by
Procedure 2 are treated as chromosome and fitness function
of GA, respectively. Then, GA will do selection, crossover,
and mutation to evolve proper personalized solutions accord-
ing to the fitness. When the evolutionary process is
completed, the best solution will be the final personalized
setting of the student model.

Algorithm 2 A Personalized One-Shot Local Adaptation FL
Method - POLA
Inputs:
- same as Algorithm 1
Outputs:
- personalized model (p-model) with unique structure αi and
parameters θi for each center i
Initialize:
- parameters that Algorithm 3 needs; - scaling factorβ; - local
adaptation epochs El ; - number of evolved generations G and
population size P
Step 1: FL training

Complete the Algorithm 3 to get t-model
Step 2: Local adaptation
Each independent centre i parallelly and locally does:

receive t-model from server
split local data into training data Dit and validating data
Div
Procedure 1: Produce personalizedmodel solutions and
evolve the optimal one
generate the initial parent solutions P0
do Procedure 2 to fit P0
fori=1,2. . . G do
GA-operation Pi:
do Procedure 2 to fit Pi

end for
Save the final personalized model corresponding to
the highest-ranking solution

Procedure 2: Train the personalized model
build p-model with arbitrary structure αi and
hyperparameters via solutions from procedure 1
initialize p-model ’s parameters θi
for each iteration e in El do

for batch dt∈Dit do
θi=θi−ηi1Li

(
θi,αi,β,d t

)
end for

end for
lossval=Li

(
θi,αi,β,Div

)
return lossval

In Procedure 2, each ICU center first independently builds
its own personalized models according to the solutions pro-
vided by Procedure 1. Then the structured personalized mod-
els are initialized based on the teacher model that produced
by Step 1. To make up for the drawback that student model
usually can’t outperform teacher model in KD scheme and
speed up the training process, the initialization is layerwise.
The input and the first hidden layer of the model are initial-
ized directly as the corresponding parameters of the teacher
model, and the remaining layers are initialized randomly. This
is exactly what we need, because the base layer of the neural
network model can contain more general knowledge.

Algorithm 3 Adjusted FedAvg Algorithm
Inputs:
- same as Algorithm 1
Outputs:
- teacher model t-model
Initialize:
- parameters that Algorithm 1 needs; - pre-set threshold
training
round Rw
for r = 1, 2, . . .R do:

Server update:
ωr+1=ServerUpdate(ωr )// in Algorithm 1
receive lossival from centre i in all N centres
ifr >= Rw:
lossval=

∑N
i=1

1
N loss

i
val

if lossval is minimum:
t-model = g-modelr

Center update:
for i = 1, . . .N do:

ωi
r=ClientUpdate(ωr ,Dit )// in Algorithm 1

lossival=lk (ω
i
r ,D

i
v)

return ωi
r ,loss

i
val to server

end for
end for

Next, the initialized models are going to learn from both
the teacher model and the local dataset. It treats the general
experience of the teacher model as soft target and the specific
knowledge in the local raw data as hard target. To make the
local personalized model learn as much knowledge as possi-
ble from the teacher model, we utilize two different methods
to distill the outputs and features of the teacher model, respec-
tively. The outputs distillation is a classical class probability
distillation method [34], which tries to minimize the variance
between the classification probability distributions of teacher
and student. After estimating the classification probability of
a neural network via a SoftMax function as (3) (where zn
represents the n-th category output in M objectives and T is
the temperature factor which is used to control the weights
of each soft target), if we express the last layer’s prediction
outputs of the teacher model and the student model as logit
vectors zt ,andzs respectively, then their divergence loss can
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be represented as ls1 in (4).

p (zn,T ) =
exp(zn

/
T )∑

m exp(zm
/
T )

(3)

ls1 = LR((p(zt ,T ), p(zs,T )) ∗ T 2 (4)

Generally, LR is Kullback-Leibler (KL) divergence loss, but
it can also be set to the Cross Entropy or MSE loss depending
on the actual situation. What is specifically used in this study
is the MSE loss function.

The feature distillation approach is to transfer knowl-
edge from teacher to student by minimizing the divergence
between the joint density probability estimations [42]. It first
expresses the feature space of the teacher model and the
student model as two conditional probability distributions
pn|m ∈ [0, 1], qn|m ∈ [0, 1], and then uses KL loss to calculate
the difference between them, and the training loss function ls2
shown below can be obtained.

ls2 =
M∑
n=1

M∑
m=1,n̸=m

pn|m log(
pn|m
qn|m

) (5)

As for the hard target, it is generally learned by the Cross
Entropy loss function. Since this research is a binary classi-
fication task, a binary cross entropy loss function is adopted,
which is symbolized by lh as follows:

lh = −
M∑
n=1

[ynlogσ (xn)+ (1− yn)log(1− σ (xn))] , σ (xn)

= sigmoid (P (Y = 1 | x)) (6)

Finally, the training loss function L of the student model can
be expressed as the follow:

L = β(ls1 + ls2)
/
2+ (1− β)lh (7)

where βϵ[0, 1] is a scaling factor to balance the local specific
knowledge and global general knowledge. It can be seen
that its value has a crucial effect on the performance of the
personalizedmodel.When it is large, the personalized student
model learnsmore about the teachermodel, and in turn, learns
more about the local data.

IV. EXPERIMENTS AND ANALYSIS
A. DATA PREPROCESSING
The proposed scheme was developed in a multi-center ICU
scenario which is based on an actual and freely available EHR
database named eICU Collaborative Research Database, ver-
sion 2.0 (eICU-CRD v2.0) [43]. This database is generated by
teleICU, an actual project of Philips Healthcare, and collated
by the Laboratory for Computational Physiology (LCP) at
MIT. It comprises de-identified health data from over 200,000
admissions of more than 139 thousand unique ICU patients
involving 335 units at 208 hospitals across the United States
between 2014 and 2015 [44]. The eICU-CRD not only retains
the natural characteristics of independently distributed data
silos but also has abundant data resources that can properly
support actual cross-silo FL application research.

Since the database is an unprocessed raw EHR, in order
to obtain good research results, this study mainly refers to
relevant benchmark research work [45] to do the variable
selecting and preprocessing, which includes the following
key steps.

1) SELECTING THE COHORT
This step is to filter the raw data based on criteria such as age
range, number of records, and invalid key information, which
results in 30,680 unique patients covering 1,164,966 records.

2) SELECTING THE VARIABLES
As shown in Table 1, this mortality prediction task selects
19 feature variables that reflect hospitalization status as inputs
and 1 variable that indicates survival status as an output within
a fixed time window of 48 hours for each patient.

3) VARIABLES PREPROCESSING
This process includes categorical variable encoding by one-
hot encoding (OHE), numerical variable normalization, and
input matrix padding. Finally, an input matrix of size 200∗442
for each unique patient is obtained.

TABLE 1. Experimental variables of eICU-CRD in this work.

B. DATA DISTRIBUTION
The research problem of this study involves not only the non-
IID data but also its skewness. Thus, the data distribution
involving how data is non-IID and how data skews to non-IID
is crucial. Currently, the generation task of non-IID data is
done artificially in most FL-related studies [6], [16], [37],
which generally assign data evenly to each client based on
different category labels and regulate the skewness to non-IID
by the variance of data categories contained in the indepen-
dent clients.

However, due to the lack of practical application support,
this artificial way of generating data distribution not only
fails to account for how real-world data distribution bias
affects FL, but also ignores the unbalanced nature of real-
world distributed datasets. Furthermore, the applicability of
research results depends on how actually the experimental
dataset simulates the distribution that will occur. Therefore,
as mentioned by M. J. Sheller et al. [46], if feasible, an actual
distribution that preserves the natural characteristics of the
data is the best option for FL.

This study generates non-IID data in a natural way, which
completely preserves the original distribution characteristics
of eICU-CRD to simulate independent ICU centers with
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non-IID and unbalanced data. According to different non-
IID skewness requirements, we naturally generate ICU cen-
ters according to hospital and ICU unit type, respectively.
Together with the IID data distribution for comparison, this
study finally includes the following three data distribution
division ways:

1) IID AND EVEN DATA DISTRIBUTION
All datasets from the participating ICU centers are pooled,
shuffled, and then evenly partitioned into the required
number.

2) NON-IID AND UNBALANCED DATA DISTRIBUTION BASED
ON HOSPITALS
The 208 hospitals in the ICU-CRD with varying numbers of
patient cases are naturally treated as independent ICU centers.
Since most of them have only a small number of patient
admission records, we set a threshold at 600 to filter out those
that cannot participate in FL training. Ultimately, 12 hospital-
based ICU centers with a total of 9660 unique patient records
are produced.

3) NON-IID AND UNBALANCED DATA DISTRIBUTION BASED
ON ICU UNIT TYPES
In eICU-CRD, patients with different types of disease are
admitted to corresponding ICU units, which results in greater
variation in their related feature variables among different
unit types.

TABLE 2. ICU unit types of eICU-CRD and their original patient amount.

As shown in Table 2, all 335 ICU units with a total of
30,680 unique patient records are classified into 8 differ-
ent types. Accordingly, we performed another data gener-
ation method according to the ICU unit types to increase
the non-IID skewness of the data distribution. Finally, the
database can be divided to simulate 8 independent unit-type-
based ICU centers.

In addition to the natural generation methods of ICU cen-
ters to participate in FL, we also retained the original patient
amount for each center. Fig. 2 shows the unbalanced amount
distributions under two different non-IID data after cohort
selecting.

C. EXPERIMENTAL SETTINGS
The proposed method is implemented in Python and all
experiments are conducted on a computer with Intel 3.00GHz

FIGURE 2. Patient amount distributions of two different non-IID data
divisions.

i7-9700 16GB CPU and NVIDIA GeForce RTX2060 6G
GPU.

1) MACHINE LEARNING MODEL
The specific ML model we employed in this work is Multi-
layer Perceptron (MLP), which has both unified and person-
alized designs. The unified design is applied in FedAvg with
a fixed structure and pre-set hyperparameters. Specifically,
it adopts a fixed model structure of two hidden layers with
100 nodes each and employs a rectified linear unit (ReLu) as
the activation function. The optimizer is SGD with a momen-
tum of 0.9 and the loss function is a binary cross entropy loss
function.

As to the personalized design, the structure and hyperpa-
rameters of the MLP model are not fixed, and their specific
values are determined by the evolutionary process.We restrict
the structure of the model to two or three hidden layers and
empirically provide the search space of the layer size and
several influential hyperparameters, the detailed settings of
which are shown in Table 3.

TABLE 3. Parameter space settings for the personalized model.

As a result, the chromosome in evolutionary solutions is
finally composed of four hyperparameters and three variables
corresponding to the model structure, which are all real-
encoded. In addition, we set the maximum training epoch
of the personalized model to 20 and added an early stopping
mechanism during the training process to prevent the model
from overfitting. That is, the training will be terminated early
when the validation error does not decrease continuously.
Other than these, the other personalized model settings are
the same as those of the unified design.

2) HYPERPARAMETER SETTINGS
In the first step, we set the proportion of clients participat-
ing in training C to 1.0, mini batch size B to 50, training
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iterations E to 5, learning rate η to 0.01, threshold training
rounds Rw to 5, and the total number of communication
rounds R to 100 (the training stop criterion). In the second
step, we set the distillation temperature T to 10, the partition
ratio of the training data Dt and the verification data Dv
to 4:1.

As mentioned earlier, the scaling factor β has an important
effect on the performance of the proposed method. We sug-
gest its value should depend on the specific data distribu-
tion. When a well-performing teacher model is produced in
slightly non-IID skewed data, the personalizedmodels should
learn more from the teacher model, but when the performance
of the teacher model is degraded by highly non-IID data, the
personalized models should be more biased towards the local
datasets. Accordingly, we set its value in hospital-based and
unit-type-based non-IID data to 0.6 and 0.4, respectively.

As to the evolutionary process, the population size and gen-
erations are set to be 20 and 5, respectively, which depends
on the searching space and is also limited by the exper-
imental conditions. The values of crossover and mutation
operators are empirically set with probabilities of 0.9 and 0.1,
respectively.

3) EVALUATION METRICS
In accordance with [45], this work employed the Area Under
the Receiver Operating Characteristic Curve (AUROC) to
measure the mortality prediction results because the extreme
unbalance of patient survival status has made the simple esti-
mate of percentage accuracy meaningless. AUROC can well
evaluate the performance of the prediction model in the case
of unbalanced data classes and provide a basis for selecting
the best prediction results. Furthermore, in order to truly
reflect the performance of FL in non-IID and unbalanced data
distribution, all our experiments are presented by the average
of independent individual models’ prediction results.

D. RESULTS ANALYSIS
1) THE IMPACT OF DATA DISTRIBUTION ON BASELINE FL
ALGORITHM
In this subsection, we verified the impact of different data
distributions that are described in Subsection B on the perfor-
mance of baseline FL. Fig. 3 shows the mortality prediction
results of FedAvg when the data distributions are IID and
non-IID, as well as that of locally independent training. The
locally independent trainedmodel was treated as a benchmark
to evaluate whether the FL-trained model achieved a perfor-
mance gain for its participants.

The observation results show that different distributions
of the same data have a great impact on the performance of
FL. Compared with the even IID distribution, the naturally
hospital-based and unit-type-based distributions both signif-
icantly degrade the performance of the baseline FL, and as
the difference in data distribution increases, the performance
degradation gets more obvious and even causes FL to fail to
converge.

FIGURE 3. Compare results of FedAvg within 100 communication rounds.

Furthermore, it can be observed in Fig.3 (a) that the per-
formance of FL-trained models in non-IID data distribution
is obviously better than that of the local independent training
models. This indicates that when the data distribution is not
highly skewed to non-IID and unbalanced, the baseline FL
can effectively improve the model performance. Neverthe-
less, in Fig.3 (b), we can see that, with the substantial increase
in the non-IID and unbalanced characteristics of the data
distribution, the baseline FL not only becomes unable to
converge but can also hardly bring performance gains to the
ML models.

These observations confirm the research problem of this
work. That is, the prediction performance of FL can be
degraded by the non-IID and unbalanced nature of data, and
the higher the skewness of non-IID and unbalanced data,
the more significant the performance degradation. In severe
cases, locally independently trained client models can even
outperform the FL-trained models, resulting in FL becoming
meaningless. We argue that the cause of this problem might
be that it is ineffective to obtain a unified working model
for all participants from FL training in the heterogeneous
data environment. In this data context, global collaboration
without considering the unique characteristic of individuals
usually cannot bring performance gains to most participants.
Therefore, locally adapting and personalizing the FL-trained
unified model on the independent client should be a good
choice to tackle this problem.

2) COMPARISON EXPERIMENT
In this section, we compare the proposed method with the
baseline FL and two other PFL methods to show that the
proposed method works. The first comparable PFL method is
a simple base+ personalization layers local fine-tuning (FT)
method [24], which is called FT-FedAvg in this paper. After
receiving the FL global shared model, each independent indi-
vidual freezes the base layer of themodel and then updates the
high-layer parameters with its local data for several epochs
to gain personalization while maintaining the generalization
knowledge in the high-layer parameters. Specifically, we uti-
lize this method to fine-tune the global shared model of
FedAvg for two epochs.

Another comparable PFL method is called pFedme [47]
which personalizes FL by regularizing clients’ loss func-
tions with Moreau Envelopes. Its objective is also to balance

11660 VOLUME 11, 2023



T. Deng et al.: Personalized Federated Learning for In-Hospital Mortality Prediction of Multi-Center ICU

personalization and generalization on each client to gain
performance. To be fair, we selected the optimal parameter
combination for pFedMe according to the data characteristics
of this study. We first set several relevant parameters accord-
ing to the requirements of the original pFedMe: personal
learning rate η = 0.001, computation complexity K = 5,
model additional parameter β = 2, λ = 20. Then we set
the local training epochs to 50 and 80 for the hospital-based
and unit-based data distributions, respectively, according to
the characteristics of the amount of data in this study. This
is because we found through experimental observation that
the local training epochs of pFedMe should be appropriately
increased with the increase of the client’s local data amount,
so as to ensure the convergence speed. In addition, other
FL hyperparameters, such as the number of communication
rounds, the number of participating clients, and the training
data batch size, are consistent with the proposed method.

Fig. 4 shows the average predictionAUROCof the baseline
FL and three PFL methods over 100 communication rounds.
It should be noted that the initial setting of POLA is a
one-shot local adaptation method. That is, the unique teacher
model is found in the preset communication rounds and then
adaptation is performed once to generate local personalized
models. Here, in order to better demonstrate its performance,
we adapt all the teacher models selected within the total of
100 rounds and the global model of the first round to generate
personalizedmodels for all participating ICU centers, thereby
the corresponding curve of which is shown. For example, in a
100-round training, the global models selected for subsequent
adaptation under the unit-type-based data distribution are in
the 1st, 5th, 6th, 8th, 9th, 12th, and 13th rounds, respectively.

Furthermore, in order to present the performance of these
methods in more detail, Table 4 shows the prediction results
in the 5th and 100th communication rounds. The experiment
was independently performed with different random seeds
five times, and their average AUROCs with 95% confidence
intervals are shown.

Besides, in order to observe the experimental results from
the perspective of independent participants, the mortality pre-
diction results of each ICU center’s local model after 100 full
rounds of training are shown in Fig. 5.
We can see from the overall findings shown in Fig. 4 and

Table 4 that our proposed scheme POLA outperforms the
other two PFL methods in both prediction performance and
overall convergence rate under non-IID data distributions that
have different skewness. From the individual perspective pre-
sented in Fig. 5, POLA also achieves acceptable performance,
but its effectiveness varies depending on the distribution of
the data. Compared with the best performing comparison
method, pFedme, POLA significantly makes all unit-type-
based ICU center models achieve performance gains, but
only 58.33% of hospital-based ICU center models obtain
performance enhancement. This indicates that POLA is more
effective in the environment where the amount of independent
dataset is sufficient and the non-IID skewness of the overall
data is high.

FIGURE 4. Overall mortality prediction results of four FL training methods
in two different data distributions.

TABLE 4. The average predicted AUROC of four different FL schemes in
the 5th and 100th communication round. the best results have been
bolded.

FIGURE 5. Individual mortality prediction results of four different FL
training methods in two different data distributions.

FT-FedAvg, a simple adjustment of baseline FL, is greatly
reliant on the global shared model, resulting in highly unsta-
ble performance. Overall, it achieves a certain performance
gain over FedAvg. But from the standpoint of individual
benefits, this improvement has no practical significance at
all. As for pFedme, it can effectively overcome the obstacle
of non-IID and unbalanced data to obtain stable and superior
performance when the entire FL training is completed, but its
convergence speed is too slow. As shown in Table 4, its per-
formance gap with POLA at the 5th round of communication
probably needs at least 30 subsequent training rounds to catch
up, which requires a significant amount of computational and
communication resources.

In conclusion, from the results of the comparative
experiments, it can be seen that POLA not only effectively
overcomes the non-IID and unbalanced data barriers with
different skewness to generate personalized models with
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superior performance for each independent ICU center but
can also significantly reduces the number of communication
rounds in the FL training process, thus saving computational
and communication overhead.

V. DISCUSSIONS
This section discussed several properties of the proposed
method. The first one is compatibility. It can be seen from
the experiment results that the effectiveness of the proposed
method largely depends on the teacher model. This is also
the reason why we need to select a well-performing teacher
model during the FL training process. Intuitively, the bet-
ter the obtained teacher model is, the better the generated
personalized models are. But after experimental observation,
we found that it is not the case. We speculate that this is due
to POLA requires the teacher model not only to include gen-
eralization knowledge but also to be able to fit the parameter
update direction of all student models. Therefore, although
the proposed method seems to be a general FL training +
local adaptation method, it is not compatible with arbitrary
FL approaches.

Another property is extensibility, which involves two
aspects: a) application scenario extension. Although POLA is
especially proposed for predicting the mortality of inpatients
in a multi-center ICU, it can also be applied to similar cross-
silo scenarios. For example, the biomedical fields like disease
incidence rate forecasting or medical image recognition, and
the financial fields like multi-party borrowing detection. b)
ML model extension. Although this study only employs the
MLP model, it can also be extended to the application of
other NN models, especially the DNN models. As model
structure and hyperparameters have a greater impact on the
performance of DNN, which can lead to higher performance
gains. For example, if a lightweight DNN model is trained
in FL and then tuned to more complex personalized models,
considerable performance gain and communication overhead
savings could be achieved.

VI. CONCLUSION
This study aims to enable FL to generate highly personalized
ML models for each participant to tackle the predictive per-
formance degradation in an actual multi-center ICU scenario.
It keeps the natural and complete non-IID and unbalanced
data distribution of the independent ICU centers, making it
more significant for practical healthcare applications.We first
studied the characteristics of the baseline FL in this data
scenario to analyze the reason for its performance degra-
dation. Then, we proposed POLA, a one-shot and two-step
personalized scheme to make the performance of FL recover
from non-IID and unbalanced data. POLA rebalances global
experience and local data knowledge by making a one-shot
adaptation for FL to produce a personalized local model for
each independent ICU center. We experimentally demon-
strate that it cannot only improve the performance of FL
by generating superior-performing and highly personalized

models but also significantly reduce the number of training
communication rounds for FL.
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