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ABSTRACT To further study the impact of passenger personality on customized bus route selection, this
paper takes into account passengers’ degree of optimism and studies their psychological expectation of bus
arrival time and their tolerance of its untimely arrival. On this foundation, the study obtains the operation
schemes of customized buses under different optimism coefficients. The results show that the operation
schemes and passengers’ choice will always strike a balance under different optimism coefficients, and with
increasing optimism coefficients, the number of buses, operation time, operation cost and travel distance
will all decrease, but the untimely rate of the buses will consequently increase. To solve the proposed model,
the corresponding particle swarm optimization (PSO) algorithm is designed. In view of the former mode,
in which buses can never provide service to the drop-off stations until the boarding stations are completely
serviced, the proposed coding rule can provide service to the boarding stations and the drop-off stations
alternately. Furthermore, based on the local road network and the actual travel demand of passengers in
Lanzhou, China, the paper finds that 0.4 is the optimum value of the optimism coefficient; the operation cost
associated with this value is reduced effectively, and the capacities of buses are fully utilized, with acceptable
delays.

INDEX TERMS Bilevel programming, customized bus, optimistic coefficient, particle swarm optimization,
route optimization, traffic engineering.

I. INTRODUCTION
Buses are an important part of the urban public transportation
system. Under the human-oriented service concept, as a high-
quality service mode of public transportation, customized
buses would be welcomed. Differ from traditional settled
route bus or on-demand transit services, customized buses
achieve breakthroughs in three aspects. Firstly, buses make
fixed stop only in the boarding stations and the drop-off sta-
tions, it effectively avoiding the unfriendly experience caused
by multiple stops during the journey [1]. Secondly, buses can
flexibly adjust the route in the existing road network, this
provides sufficient possible for the operation department to
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reduce operating cost [2]. And finally, the operation schemes
of the buses are generated on demand, it has the double
advantage that neither empty buses nor crowded buses will be
existed [3]. This emergent operationmode shows a prominent
advantage in the period of mobile network information.
As customized buses are an emerging service mode in China,
there is still no unified operating mode; however, this kind of
demand-oriented service mode has been extensively studied.
Liu and Ceder [4] analyzed customized buses in China
for the first time, including network design and timetable
formulation. Lu and Pan [5] studied the service modes
of customized buses in different regions and established
various operation schemes. Parvasi et al. [6] established a
bilevel programming model for the school bus, where the
upper level minimizes the operating cost and the lower level
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minimizes the students’ expenditure. Wang and Ding [7]
established a bilevel programming model for buses in the
microcirculation transportation network of historic districts
and adopted TransCAD to solve it. Tong et al. [8] studied the
route optimization problem of a customized bus under a time-
space framework and decomposed it into a bus allocation
subproblem and a route selection subproblem. Ma et al. [9]
established a route optimization model for emergency buses
and designed a three-segment coding genetic algorithm (GA)
to solve it. Qiu [10] established a bilevel route optimization
model based on the choice of passenger travel mode and
designed the corresponding branch and bound algorithm.

Previous studies have put forward many schemes with
different emphases, but none of them are conducted from
the perspective of passengers. The main manifestations are
as follows. First, these models only considered optimizing
the bus operation schedule but ignored the tolerance of
passengers regarding the occurrence of service within a given
time window. Second, the boarding stations and the drop-
off stations are always considered separately, which means
that the drop-off passengers must be serviced after all the
boarding passengers are aboard, but the actual situation is
that several passengers may be serviced first; after they
disembark, the bus goes to pick up other passengers. Third,
the previousmodels only pursue the theoretical shortest travel
time, but ignore the influence of subjective and objective
factors, such as congestion and different personalities of the
passengers. On the basis of the above, this paper establishes
a bilevel programming model for the customized bus route
optimization problem. The upper level aims to minimize the
total operating cost and takes into account the time tolerance
of the passengers. The lower level adopts a user equilibrium
allocation model to describe the congestion and takes into
account the optimistic and pessimistic characteristics of the
passengers. Meanwhile, it embeds the traffic assignment
algorithm of the lower-level model into a particle swarm
optimization (PSO) algorithm and designs the corresponding
particle coding method to make no distinction between the
boarding and the drop-off stations.

The remainder of this paper is organized as follows.
In Section II, the problem is described, and the model is
constructed. In Section III, the corresponding PSO algorithm
is described. In Section IV, the proposedmodel and algorithm
are discussed, and their effectiveness is verified. Section V
employs the proposed method in a numerical example and
discusses the results. The last section concludes this paper
with a brief summary.

II. PREPARATION PROBLEM DESCRIPTION AND MODEL
ESTABLISHMENT
A. PROBLEM DESCRIPTION
Suppose there is a parking lot and several boarding stations
and drop-off stations in the road network. Customized buses
depart from the parking lot, provide service to each station
and finally return to the parking lot. Each station can be

FIGURE 1. The road network.

serviced by any bus, but can only be serviced once. Each
bus can service multiple stations, but each origin–destination
(OD) station must be serviced by the same bus. As Figure 1
shows, the left is the structure of the road network, the
solid and dashed lines indicate different routes between the
stations, Origin (O) represents the boarding stations and
Destination (D) represents the drop-off stations. On the right
is the operation scheme. A bus departs from the parking
lot. First, it services the boarding station O1 and transits
the passengers to the drop-off station D1. Then, it services
the boarding stations O2 and O3 in turn. After transiting
the passengers to the corresponding drop-off stations, the bus
continues to service the nextOD stationsO4D4, and after that,
it returns to the parking lot.

B. MODEL ESTABLISHMENT
Define a road network G = (M ,N ); the collection of
boarding stations is A1 = { i| i = 1, 2, 3, · · · ,m}, the
collection of drop-off stations is A2 = { j| j = 1, 2, 3, · · · , n},
and the boarding stations and the drop-off stations are in pairs.
Set the parking lot as A3; then, the stations in the network can
be described as M = A1 ∪ A2 ∪ A3, and the road sections
are N = { (i, j)| i ∈ M , j ∈ M}. Assume there is a certain
initial passenger flow qij. The collection of the customized
buses is K = {k| k = 1, 2, 3, · · · , kmax}, where kmax is the
highest numbered customized bus, h(k)ij represents the number
of passengers on the k − th customized bus from station i to
station j, pj represents the number of passengers getting on
or off in station j. If the passengers get on the bus, pj = pj,
and if they get off it, pj = −pj. C is the fixed cost of the
bus, c is the unit mileage cost of operation, dij is the length
between stations (i, j), Q is the passenger capacity of the bus,
x(k)ij = 1 denotes the k− th bus transit from station i to station

j; otherwise, x(k)ij = 0, and y(k)i = 1 denotes the k − th bus

give service to station i; otherwise, y(k)i = 0. The travel time
of the buses is determined by the passenger flows; we have
tij = t0

[
1 + α(qij

/
Qij)β

]
, where t0 is the zero flow time of

the road,Qij is the designed flow of passengers, and both α, β
are impedance coefficients. T lk and T

b
k are the time when the

k − th bus departs from the parking lot and the time when it
returns to it, respectively. Tmax is the longest running time of
the bus, Dmax is the longest running mileage of the bus, T (k)

i
is the actual time of the k− th bus that arrives at station i, and
[Ei,Li] is the passengers’ tolerance time window at station
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i. If the bus arrives outside the time window, corresponding
penalty costs will be incurred, where ϕ and ψ are the penalty
costs per unit time for early and late arrivals, respectively.

1) UPPER LEVEL MODEL
Considering the tolerance of passengers for the untimely
arrival of buses, with the goal of minimizing operating cost,
we can establish the following upper-level programming
model:

minZ =

∑
i,j∈A1∪A2

∑
k∈K

x(k)ij cdij +
∑

i∈A1∪A2,k∈K

Cy(k)i

+

∑
i∈A1∪A2

∑
k∈K

[ϕmax(Ei − T (k)
i , 0)

+ ψ max(T (k)
i − Li, 0)] (1)

s.t.
∑
k

y(k)i = 1; ∀i ∈ A1 ∪ A2, ∀k ∈ K (2)

0 ≤ T (kb)
− T (kl)

≤ Tmax, ∀k ∈ K (3)∑
i,j

x(k)ij dij ≤ Dmax; ∀i, j ∈ A1 ∪ A2, ∀k ∈ K (4)

h(k)ij + pj ≤ Q, ∀i, j ∈ A1 ∪ A2, ∀k ∈ K (5)∑
i,j

∑
k

h(k)ij =

∑
j

∣∣pj∣∣/2, ∀i, j ∈ A1 ∪ A2, ∀k ∈ K

(6)∑
i,j

x(k)ij −

∑
i,j

x(k)ji = 0; ∀i ∈ A1, ∀j ∈ A2, ∀k ∈ K

(7)

x(k)ij ∈ {0, 1} ; ∀i ∈ A1, ∀j ∈ A2, ∀k ∈ K (8)

y(k)i ∈ {0, 1} ; ∀i ∈ A1 ∪ A2, ∀k ∈ K (9)

Among them, (1) is the objective function, which means
minimizing the operating cost of the bus and the waiting cost
of the passengers, (2) means that each station will be serviced
and can only be serviced by one bus, (3) is the transit time
constraints of the bus, (4) is the mileage constraints of the
bus, (5) is the bus capacity constraints, (6) represents the
relationship between the numbers of passengers in the road
sections and at the stations, (7) is the flow balance constraints
of the passengers, and (8) and (9) are the 0-1 constraints.

2) LOWER LEVEL MODEL
Regardless of the influence of two collinear bus lines, assume
that the passengers will consider the fluctuation of travel time
when they pursue the shortest time; that is, the travel time
includes the normal travel time and the fluctuation time. The
fluctuation time obeys a normal distribution and has different
effects on passengers with different optimism levels. The ρ
optimistic value of the travel time is min λij = t (k)ij + ssup,

the ϑ pessimistic value is max λij = t (k)ij − sinf, and t
(k)
ij is

the time impedance of road section (i, j), which is calculated
by the function shown in (10). ssup = σ

(k)
ij θ

−1(ρ) is denoted

as the optimistic fluctuation time, sinf = σ
(k)
ij θ

−1(ϑ) is the

pessimistic fluctuation time, and σ (k)
ij is the variance of the

fluctuation time distribution function, which is calculated by
(11), in which 0 ≤ ξij ≤ 1 refers to the utilization rate of
the capacity under congestion, θ (x) represents the standard
normal distribution function, and ρ, ϑ are given confidence
levels.

t (k)ij = t0

{
1 + α

[(
h(k)ij + qij

)/
Qij

]β}
(10)[

σ
(k)
ij

]2
= α2 (t0)2

[
h(k)ij + qij

]2β

·



1 − ξ
1−2β
ij(

Qij
)2β (

1 − ξij
)
(1 − 2β)

−

 1 − ξ
1−β
ij(

Qij
)β (

1 − ξij
)
(1 − β)

2


(11)

To further establish a compromise between extreme
optimism and extreme pessimism, according to the Hurwicz
optimism coefficient criterion, we assign weights λ and 1−λ

to the optimistic and pessimistic values. The result is shown
in (12):

h = λ
(
t (k)ij + ssup

)
+ (1 − λ)

(
t (k)ij − sinf

)
(12)

λ is the optimism coefficient, and 1 ≥ λ ≥ 0; λ =

0 indicates extremely pessimistic, and λ = 1 indicates
extremely optimistic.

Starting from the parking lot, we assume that there are R =

{ r| r = 1, 2, 3, · · · , l} routes to return to it, fr is the passenger
flows on route r , and δ(r)ij indicates whether route r passes
through road section (i, j); if it does, δmij = 1; otherwise, δmij =

0. By setting the compromise value h in the flow assignment
model, the lower-level model can be obtained:

minZ =

∑
(i,j)

∫ qij

0

 λ (
t (k)ij + ssup

)
+ (1 − λ)

(
t (k)ij − sinf

)  dω,

∀k ∈ K , (i, j) ∈ N (13)

s.t.
∑
r

fr =

∑
j

∣∣pj∣∣/2, ∀j ∈ A1 ∪ A2, ∀r ∈ R (14)

h(k)ij =

∑
r

frδ
(r)
ij , ∀i, j ∈ A1 ∪ A2, ∀r ∈ R (15)

fr ≥ 0, ∀r ∈ R (16)

δ
(r)
ij ∈ {0, 1} , ∀i, j ∈ A1 ∪ A2, ∀r ∈ R (17)

where (13) is the lower-level objective function, which
evaluates integrals of the travel time in each road section, and
its goal is to minimize the sum of the integrals; (14) indicates
that the sum of the passenger flows on all the routes is equal
to the total passenger flows in the network; (15) represents
that the passenger flows on each road section equal the sum
of the passenger flows on the route where the route passes
through the road section; and (16) and (17) are nonnegative
constraints and 0-1 constraints, respectively.
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FIGURE 2. Flowchart of the algorithm.

III. SOLVING ALGORITHM
A. STEPS OF THE ALGORITHM
It has been verified that the customized bus route optimization
problem is an NP-hard problem [11], and heuristic algorithms
are the main methods. We embed the all-or-nothing assign-
ment algorithm into the PSO algorithm. To solve the bilevel
programming model, the algorithm flow chart is shown in
Figure 2.

Step 1: Set the particle swarm size Nmax, learning factors
c1, c2, inertia weight ω and inertia weight decay rate ωd ,
and initialize the particle velocity and position. Set the initial
passenger flows qij, and let gen = 1; then, calculate the
feasible scheme.

Step 2: Feed back the calculation results to the lower level
and adopt the all-or-nothing assignment method to obtain the
new passenger flows.

Step 3: Calculate the particle fitness and update the particle
speed and position according to (18) and (19).

X l+1
= X l + V l+1 (18)

V l+1
= ωV l

+ c1r1
(
Plid − X l

)
+ c2r2

(
Plgd − X l

)
(19)

l represents the algebraic term; X l and V l are the position and
velocity of the lth generation particles, respectively; Plid is
the individual optimal particle; and Plgd is the global optimal
particle.

Step 4: Use the relocate method and the GENE method
to perform a local search on the decoded route, reduce the
solutions that violate the constraints [12], and calculate the
new particle fitness value.

Step 5: Update the positions of the individual optimal and
global optimal particles, compare the fitness of the current
particle with the historical individual optimal fitness and the
global optimal fitness, and replace them with the greater
value.

Step 6: Update the inertia weight ω = ω × ωd . The
decay rate of the inertia weight is used to control the dynamic

TABLE 1. Example of particles.

change of the inertia weight to prevent it from falling into
local optima.

Step 7: If gen is less than the maximum number of
iterations, update algebra gen = gen + 1 and return to Step
2; otherwise, proceed to Step 8.

Step 8: Update the global optimal particle and obtain the
optimal solution.

B. PARTICLE ENCODING AND DECODING
Assume that there are L pairs of ODs, the number of buses
is k, and the particles are constructed as a matrix with 3 rows
and L columns. Xv in the first row adopts a random integer
not greater than k, and it indicates the bus number. Xr in
the second row indicates the service order of the boarding
stations, and its value is represented by a random integer
not greater than L; the higher the value of Xr is, the higher
the service order [13]. Xrr in the third row represents the
service order of the drop-off stations, and its value is also
a random integer but not greater than the corresponding
boarding station Xr . As shown in Table 1, the OD pairs 1-6
and 2-7 are serviced by the second bus, and the service order
of each point is arranged in descending order. We obtain 3-3-
2-0. When the orders are the same, the boarding point will be
serviced first; then, the actual service order is 1→6→2→7,
and the overall scheme is as follows:

Bus 1: 0→3→9→0;
Bus 2: 0→1→6→2→7→0;
Bus 3: 0→4 →10→0.

C. LOCAL SEARCH OPERATION
We adopt the relocate method to conduct local research,
determine the pair of boarding and drop-off stations that have
the largest time penalty cost, remove them and search for
the new insertion points in all the routes [14]. The insertion
principle is that the increased cost is the lowest and the
constraints are met. As shown in Figure 3, the particles in
Table 1 are decoded into 3 routes, and the pairs 1-6 of route
0→1→6→2→7→0 have the highest time penalty cost;
these pairs are removed from the original route, and then
the insertion position with the least increased cost is sought
among the three routes; then, pairs 1-6 are reinserted to obtain
a new route.

If there is no time penalty cost in the routes, the GENE
method is used to ensure the diversity of the particles. Select
two routes randomly, select any pair of boarding stations and
drop-off stations in one route, and then insert them into the
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TABLE 2. Result comparison.

FIGURE 3. Relocate/exchange.

FIGURE 4. GENE.

other route. The insertion principle is that the increased cost is
the lowest and the constraints are met. As shown in Figure 4,
the above two routes are randomly selected, and points 1-6 in
route 2 are randomly selected and then inserted into route 1
to obtain a new route.

IV. VALIDATION OF THE PROPOSED MODEL AND
ALGORITHM
To verify the effectiveness of the model and algorithm,
comparative experiments are carried out by using the
numerical examples in the literature [15], selecting the
parking lot a in the literature and setting the coefficients
ϕ = ψ = ρ = ϑ = 0 and c = 1. We can obtain
the same scenario as in the literature. Each algorithm runs
20 times, and the optimal solution is selected for comparison.
The results are shown in Table 2. Compared with the results
in the literature, the proposed approach provides similar or
better results: the total mileage is reduced by 0.7 km, the
number of buses is reduced by 1, and the average passenger
load factor is increased by 0.3. Due to the iterative feedback
process of the bilevel algorithm, the overall calculation time
is longer, but as Figure 5 shows, the convergence algebra is
less than the three-stage coding genetic algorithm (GA) in
the literature. Further analysis shows that buses service all the
boarding stations first in the literature; after all the passengers
on the boarding stations are collected in the bus, the bus
starts to deliver passengers to the corresponding drop-off
stations. However, according to the coding method proposed
above, boarding stations and drop-off stations can be serviced
in an interspersed manner. Taking bus 2 in Table 2 as an

FIGURE 5. Actual network and stations.

FIGURE 6. The algorithm compares the results.

example, starting from the parking lot, it gives service to
boarding station 4. Although the capacity constraint has not
been reached, the bus chooses to deliver passengers to the
corresponding drop-off station 11; after that, it goes to give
service to the next boarding station 5. Benefiting from the
reasonable allocation, the capacity of one bus is saved.

V. CASE ANALYSIS
Taking the urban road network in Lanzhou, China, as Figure 6
shows, point 0 is the parking lot of customized buses,
points 1-6 are boarding stations, and points 7-12 are the
corresponding drop-off stations. The coordinates of the
stations are shown in Table 3. The number of passengers at
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TABLE 3. Coordinate of the stations.

TABLE 4. OD demand information.

TABLE 5. Results with different optimism coefficients.

each station and their service time windows are shown in
Table 4. Assume the service time at each station is 1 minute,
and the capacity of the customized bus is 40 people/bus. The
operating cost of the bus is 1.8 yuan/km, and the utilization
rate of the road section capacity ξij is 0.9 under congestion
conditions.

Themodel is solved byMATLAB2018a programming. Set
particle swarm size Np = 50, maximum number of iterations
gen = 50, learning factor c1 = 1.5, c2 = 2.0, inertia weight
ω = 1, inertia weight decay rate ωd = 0.9, violation capacity
coefficient Ld = 10, unit penalty cost ϕ = ψ = 100,
impedance coefficient α = 0.15, β = 4, confidence
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ρ = ϑ = 0.95. The optimal solutions under different
optimism coefficients are shown in Table 5.
T0 represents the estimated travel time, where the upper

limit is Tsup (ρ) = max
[
T bk (ρ) − T lk (ρ)

]
, the lower limit

is Tinf (ϑ) = min
[
T bk (ϑ) − T lk (ϑ)

]
, T is the average travel

time, s0sup =
Tsup(ρ)−T

T
× 100% is the optimistic time risk

index, s0inf =
T−Tinf(ϑ)

T
× 100% is the pessimistic time

risk index, and h0 =
h
T

× 100% is the time compromise
index.

According to the calculation results, when λ ≤ 0.2, the
number of deployed buses is 4, which incurs an obvious waste
of transportation capacity. When λ = 0.4, the number of
deployed buses decreases to 3, and the transportation capacity
of the 3 buses is equivalent. When λ ≥ 0.6, the number
of buses remains 3, and the transportation capacity of the
third bus is not exhausted. The overall transportation time and
distance monotonically decrease with increasing optimism
coefficient. In fact, the greater the optimism coefficient is,
the more operation schemes are available, and the operation
department can choose better schemes with fewer buses,
shorter distance, and less time to achieve the purpose of
reducing costs. However, the excessive pursuit of the lowest
cost will cause confusion among riders and lower occupancy
of the buses, which is also undesirable. In the above case, the
scheme with λ = 0.4 is most recommended for the operation
department.

For passengers, when λ = 0, its optimism risk index and
pessimism risk index are the smallest, and with the increase
in λ, the risk borne by passengers will also increase, which
is more likely to cause travel delays; surely, the spending
by passengers will also be reduced accordingly. Because
different risk indices have different evaluation angles, when
the risk index is insufficient to provide a judgment basis for
passengers, we adopt the time compromise index h0. Taking
Table 5 as an example, when λ = 0.4, the optimism risk index
is the smallest, and when λ = 0.2, the pessimism risk index is
the smallest; they are both 0.12. Further comparing the time
compromise index h0, it can be seen that when λ = 0.2, the
corresponding h0 is smaller; therefore, the corresponding bus
operation scheme is more reliable.

In addition, to investigate the specific value of the
optimistic coefficient, we divide travelers into four attributes
namely work, life, back, and entertainment according to their
travel purposes, set the corresponding optimistic coefficients
as 0.2, 0.4, 0.6 and 0.8 respectively, because the proportion of
various travel purposes is completely unknown, we adopt the
decision method based on information entropy [16]. Figure 7
shows the distribution of the travelers with different attributes
on each station, calculate the entropy weight of each attribute,
and then use the weighted summation method, we can obtain
the optimistic coefficient as 0.4937.

In fact, assume that the service frequency is 20min, accord-
ing to their own description of travelers, the distribution of
acceptable time is shown in Figure 8, where the blue area
indicates the acceptable time range, and it accounts 48% of

FIGURE 7. Distribution of the travelers.

FIGURE 8. Distribution of the acceptable time.

the total area. This also reflects that the optimistic coefficient
of 0.4937 selected by the above method is effective.

VI. CONCLUSION
To save transportation capacity resources, this paper proposes
a new coding method that enables customized buses to
provide services to boarding stations and drop-off stations
alternately. On this basis, the relationship between passen-
gers’ optimism and customized buses’ operation scheme
is studied, and it is found that with different levels of
passenger optimism, different Nash equilibria will be reached
between passengers and the operation department; the higher
the passengers’ optimism is, the lower the bus operation
cost. However, with the reduction in bus operation cost,
the probability of delay will also increase, which must be
considered by bus operation departments and passengers.
And it also gives a method to adopt the optimistic coefficient
by a numerical example, which provides reference for actual
operation.

It shows the practical significance that from the perspective
of customized bus operation departments, they can determine
the optimism coefficient according to the lifestyle and
values of passengers in different regions to achieve the
balance between passengers’ optimism and the operation
cost. For example, passengers in an enterprise park have high
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requirements for punctuality and are not very sensitive to
ticket prices; then, the scheme with an optimistic coefficient
of 0.2-0.6 is suitable, whereas passengers in the urban fringe
do not have high requirements for punctuality. The scheme
with an optimism coefficient of 0.4-0.8 can be adopted to
reduce operation costs. From the perspective of passengers,
on the premise of the operation scheme, they should choose
the route with a smaller risk index and compromise index to
obtain more reliable travel.
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