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ABSTRACT Aiming at the problem of a large number of small dense objects in high-altitude shooting
and complex background noise interference in the captured scenes, an improved object detection algorithm
for YOLOv5 UAV capture scenes is proposed. A Feature Enhancement Block (FEBlock) is first proposed
to generate adaptive weights for different receptive field features by convolution, assigning major weights
to shallow feature maps to improve small object feature extraction ability. The FEBlock is then integrated
into Spatial Pyramid Pooling (SPP) to generate Enhanced Spatial Pyramid Pooling (ESPP), which performs
feature enhancement for the result of each maximum pooling; and creates new features containing multi-
scale contextual information with better feature characterization capability by weighting fused contextual
features. Secondly, the Self-Characteristic Expansion Plate (SCEP) is proposed, which achieves the fusion
and expansion of feature information through compression, non-linear mapping, and expansion with its own
module, further improving the network’s capacity for feature extraction and generating a new spatial pyramid
pooling (ESPP-S) by splicing with ESPP. Finally, a shallower feature map is added as a detection layer to
the YOLOv5 network model’s large, medium, and small detection layers to improve the network’s detection
performance for medium and long-range objects. Experiments were conducted on the VisDrone2021 dataset,
and the results showed that the improvedYOLOv5model improvedmAP0.5 by 4.6%,mAP0.5:0.95 by 2.9%,
and precision by 2.7%. The mAP0.5 of the model trained at the input resolution of 1024 × 1024 reached
56.8%. The experiments show that the improved YOLOv5 model can improve object detection accuracy for
UAV capture scenes.

INDEX TERMS Feature enhancement, small object detection, UAV, YOLOv5.

I. INTRODUCTION
As UAV technology continues to evolve, camera-equipped
UAVs or general-purpose drones have been rapidly deployed
for various applications, including agriculture, aerial photog-
raphy, public safety, ecological protection, and more. There-
fore, the requirements for an intuitive understanding of visual
data collected from these platforms are getting higher and
higher. Object detection technology based on deep learning is
more and more closely applied to UAVs. However, the high
altitude at which UAVs fly, the large number of small-sized
objects in the captured images, and the complex background
noise interference between small dense objects lead to a
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significant decrease in detection accuracy [1]. This makes
it difficult to detect objects in UAV capture scenes, so it
is important to design a method to improve the detection
accuracy of small objects in images.

Deep learning techniques have advanced quickly in
recent years, and numerous Convolutional Neural Network
(CNN)-based object detection algorithms have been proposed
and used to detect objects in UAV images. Two main types of
object detection algorithms exist two-stage-based and single-
stage-basedmethods. Object detection based on the two-stage
method is also known as the candidate region-based method.
Firstly, the candidate box is extracted according to the image,
and then the detection point result is obtained by secondary
correction based on the candidate region. The detection accu-
racy is high, but the detection speed is slow. The first work
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of this kind of algorithm is RCNN (Region CNN) [2], then
Fast-RCNN (Fast Region-Based CNN) [3] and Faster-RCNN
(Faster Region-Based CNN) [4] improved it in turn. Due to its
excellent performance, Faster-RCNN is still a very competi-
tive algorithm in the field of object detection. Subsequently,
algorithms such as FPN (Feature Pyramid Network) [5] and
Mask RCNN [6] have proposed improvements to address the
shortcomings of Faster RCNN, which further enriches the
components of Faster-RCNN and enhances its performance.
Compared to two-stage object detection algorithms, single-
stage object a priori algorithms generate detection results
by computing directly on the image, with fast detection low
speed but lower detection accuracy. The pioneer of this type
of algorithm is YOLO (You Only Look Once) [7]. Subse-
quently, SSD (Single Shot MultiBox Detector) [8] and Reti-
nanet [9] improved it in turn, and the subsequent improved
versions YOLOv2 [10], YOLOv3 [11], YOLOv4 [12] and
YOLOv5 based on YOLO. Although the prediction accuracy
is less than the two-stage object detection algorithm, YOLO
can detect UAV images due to its all-around performance.

More specifically, scholars have extensively researched
object detection for UAV capture scenes. The literature [13]
combines the Spatial Attention Module (SAM) with Channel
AttentionModule (CAM), improves the fully connected layer
after feature compression in CAM, and changes the connec-
tion structure of SAM and CAM, thus proposing a spatial-
channel attention module (SCAM) and using it on YOLOv5
to improve spatial dimensional feature capture, which not
only reduces the computational effort but also improves
to some extent the accuracy. The literature [14] proposed
TPH-YOLOv5, which added a prediction head to YOLOv5
and applied a Transformer Encoder Block to the head
part to form Transformer Prediction Heads (TPH), which
improved the detection of high-density occluded objects in
UAV images. In literature [15], a Scale Selection Pyramid
Network (SSPNet) for minutiae detection was proposed by
using the Context Attention Module (CAM), Scale Enhance-
ment Module (SEM), and Scale Selection Module (SSM) to
suppress the gradient computation inconsistency problem in
FPN by controlling the data flow of adjacent layers. To solve
the problem of false detection and missed detection caused
by occlusion conditions, literature [16] improved the general-
ization ability of the detection network through data cleaning
and enhancement, and set a priori anchor frame, and adjusted
the confidence loss function of the detection layer based on
IoU (Intersection over Union) to reconstruct the network. The
literature [17] uses a bidirectional feature pyramid network
for necking and introduces a SimAM attention module to
fuse features effectively. The literature [18] proposes a new
detection network, DCLANet, to crop and locally attend to
dense small people in UAV images to solve the problem that
the network cannot focus on small objects. In summary, deep
learning methods have high application value in UAV image
object detection, and a lot of results have been achieved.
However, further research is still needed to improve detection
accuracy.

To further improve the object detection accuracy of UAV
capture scenes and solve the problem of poor detection effect
caused by too dense between small size object and object.
In this paper, the Feature Enhancement Block (FEBlock) and
the Self-Characteristic Expansion Plate (SCEP) are designed
and introduced into the original Spatial Pyramid Pooling
(SPP) [19] module of YOLOv5. The FEBlock is first embed-
ded into the SPP, and then continues to fuse and expand
the feature information through the SCEP module. A spa-
tial pyramid pooling module ESPP-S with enhanced feature
representation is proposed. In addition, a shallower feature
map is added as a small object detection layer to improve the
detection performance of the network for medium and long-
range objects.

• The Feature Enhancement Block (FEBlock) is designed
to enhance the receptive field and enable efficient fusion
of different receptive field features. The FEBlock is also
embedded in the SPP module to generate the Enhanced
Spatial Pyramid Pooling (ESPP) module, which has
stronger feature characterization capability than the
original SPP module.

• The Self-Characteristic Expansion Plate (SCEP) is
designed to realize the fusion and expansion of feature
information. The ESPPmodule is spliced with the SCEP
module, and the ESPP-S module is proposed, which can
improve the small object detection ability.

• Based on the large, medium, and small detection layers
of the YOLOv5 network model, a shallower feature map
is added as the detection layer according to the dataset’s
characteristics to improve the detection performance of
the network for medium and long-distance objects.

II. SMALL OBJECT DETECTION FOR UAV CAPTURE SCENE
This paper takes YOLOv5 version 6.1 as the benchmark
network and makes subsequent improvements. YOLOv5 has
five models: YOLOv5n, YOLOv5s, YOLOv5m, YOLOv5l,
and YOLOv5x. Since the detection effect of YOLOv5x is
better than the other four models, even if the calculation cost
is higher than other models, we still choose YOLOv5x to
pursue high detection performance.

A. YOLOv5 NETWORK STRUCTURE AND IMPROVEMENTS
The YOLOv5 algorithm is simple to deploy and train and
has great dependability and stability. At the same time, it is
also one of the most accurate single-stage object detection
algorithms. Therefore, YOLOv5 is chosen in this study for
further improvement and as the object detection algorithm
for UAV capture scenes. YOLOv5 follows the detection idea
of the YOLO series, that is, dividing the grid on the input
image. When there is a center point of the detection object in
a grid, the grid is used to detect the object. Four components
make up the YOLOv5 model: Input, Backbone, Neck, and
Head. Firstly, the image to be detected is processed by the
input end and sent to the backbone network, and then the
preliminary feature extraction is performed by CBS, C3, and
SPPF (SPP-Fast). The backbone network generates feature
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maps of different sizes, and then enhances the ability to detect
objects of different scales through PANet (Path Aggregation
Network) [20]. Finally, three feature maps P3, P4, and P5,
are generated to detect small, medium, and large objects in
the picture. The Prediction Head uses a preset prior bounding
box to perform confidence calculation and bounding box
regression on each pixel in the three feature maps to obtain
a multidimensional array including object class, class con-
fidence, box coordinates, and width and height information.
By setting the corresponding threshold to filter the useless
information in the array and performing the non-maximum
suppression (NMS) process, the final detection information
can be output [21], [22].

For the problem of a large number of small dense objects in
the UAV capture scenes and the presence of complex back-
ground noise interference, this paper proposes an improved
small object detection algorithm based on YOLOv5. Figure 1
shows the structure of the improved YOLOv5 model. The
overall network architecture optimizes the original network
design from three aspects. The red dashed box shows the
improved spatial pyramidal pooling. Firstly, the receptive
field is increased by designing the feature enhancement block
to improve the degree of attention to the small object area.
The adaptive weights are formed for different receptive fields
to improve the extraction ability of the model at different
scales. The feature enhancement block is fused into SPP,
and an Enhanced Spatial Pyramid Pooling (ESPP) module
is proposed, which performs feature enhancement for the
result of each maximum pooling, and generates new features
containing multi-scale contextual information by weighting
the fused contextual features. The feature enhancement block
is introduced into SPP to improve the global feature extrac-
tion capability by weakening the background noise interfer-
ence. Secondly, the feature information is further fused and
expanded after stitching with a Self-Characteristic Expansion
Plate. This gives themodel better robustness and improves the
detection capability of small dense objects. The blue dashed
box represents a micro-scale detection layer that was created
by collecting lower spatial features and combining them with
high-level semantic features to improve the model’s capacity
to detect smaller objects.

B. IMPROVEMENTS IN SPATIAL PYRAMIDAL POOLING
The latest version of YOLOv5 uses SPPF, which replaces the
three parallel max pooling in SPP with serial and modifies
the pooling core size all to the same size. By streamlining
the process of pooling, the duplication of SPP operations is
avoided, and the speed of the network operation is improved.
A comparison of the structure compared to the original SPP
is shown in Figure 2.

Although SPPF speeds up the network’s detection rate,
the detection accuracy is not ideal when facing small
dense objects. Therefore, this paper proposes a novel Spa-
tial Pyramid Pooling (ESPP-S) based on SPP, which has
stronger feature characterization capability than SPP and
SPPF.

FIGURE 1. Structure of the improved YOLOv5 model.

FIGURE 2. Comparison of SPPF and SPP structures.

Firstly, a Feature Enhancement Block (FEBlock) is
designed to enhance the representation ability of features.
In addition, the Self-Characteristic Expansion Plate (SCEP)
is designed for feature information fusion and expansion.
The feature enhancement block FEBlock is integrated into
the spatial pyramid pooling module to generate enhanced
spatial pyramid pooling (ESPP). Then the ESPP is spliced
with the self-feature expansion block to generate ESPP-S,
which improves the detection effect of small dense objects.

1) FEATURE ENHANCEMENT BLOCK (FEBlock)
FEBlock can be regarded as a feature enhancement block,
which integrates information without deepening the network
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FIGURE 3. FEBlock structure diagram.

structure by combining different channel information. The
structure uses an ECA-like attention mechanism to gener-
ate adaptive weights for different receptive field features
through convolution, enabling the efficient fusion of different
receptive field features and enhancing feature representation
[23], [24]. The FEBlock is shown in Figure 3.
The features are first compressed into 1 × 1 scalars along

the spatial dimension, and the output is shaped as a 1× 1×C
feature map by global averaging pooling, representing the
global distribution of feature channel response values. A one-
dimensional convolution follows this with three different con-
volution kernel sizes. The one-dimensional convolution acts
as a non-fully connected layer, with each convolution acting
on only some of the channels, allowing for full integration
of some of the channel interactions through parallelism. This
allows for proper cross-channel interaction and avoids the
complexity of the model that a fully connected layer would
otherwise create. Finally, the weights of each channel gen-
erated after the 2D convolutional feature transformation and
Sigmoid feature mapping are multiplied by their respective
weights [25].

Conventional convolution fuses all channels of the input
feature map, and the network cannot focus on important
feature channels. In contrast, FEBlock can adjust the dis-
tribution of weights, enhance useful features and suppress
useless information [26]. When different scale feature maps
are input, the model can adaptively adjust the size of the
receiving domain of the small target in the UAV capture scene
to improve the object detection performance of the model.

We introduce FEBlock into YOLOv5 as a feature enhance-
ment module. Considering that the spatial pyramid mod-
ule in YOLOv5 generates different scale contextual feature
maps through pooling operations, the new ESPP module
is obtained by introducing a feature enhancement module
to the original spatial pyramid module to generate adaptive
weights for different scale feature maps, and its structure is
shown in Figure 4. The ESPP module first generates feature
maps of different receptive fields through fixed-scale pooling
branches, then compresses the channels through FEBlock,
embeds spatial information into spatial attention maps, and
generates new features containing multi-scale context infor-
mation by weighted fusion context features. When feature
maps of different scales are input, the model can adaptively
adjust the size of the image’s object acceptance region to
highlight the feature map’s object-related areas. Therefore,

FIGURE 4. ESPP model structure.

FIGURE 5. Structure of the SCEP model.

the ESPP module has a more robust feature representation
ability than the original SPP module.

2) SELF-CHARACTERISTIC EXPANSION PLATE (SCEP)
The Self-Characteristic Expansion Plate extracts sub-block
information on the feature map. The subgraph information
is compressed, and the low-dimensional feature map (the
high and low dimensions of this part refer to the number
of channels of the feature map) is fused without scaling the
number of channels of the original feature image. At the same
time, the self-information is summarized with the original
information after the sigmoid, which is conducive to the
expansion of feature features. The fusion and expansion of
feature information are realized through compression, non-
linear mapping, and expansion with its module. The structure
of SCEP is shown in Figure 5.

SCEP first performs two-dimensional convolution on the
input, extracts sub-block features on the feature map, and
outputs x1, x2, and x3, respectively. The x3 is fused with the
low-dimensional feature map for feature fusion, while feature
extraction by convolution and Sigmoid feature mapping is
aggregated with the original information to generate feature
map f 3, which facilitates feature expansion. The x2 is multi-
plied by f 2 and then added to x1 to get the output. The process
can be explained by equation (1).

f 2 = f 1 + x3

f 3 = f 2 + Conv+ Sigmoid

Output = x1 + x2 × f 3 (1)

3) ESPP-S
The Feature Enhancement Block and the Self-Characteristic
Expansion Plate are used in the ESPP-S network. Firstly,
the Feature Enhancement Block is integrated into the spatial
pyramid pooling to form the ESPP module. Then the ESPP
module is connected with the Self-Characteristic Expansion
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FIGURE 6. Structure of the ESPP-S model.

Plate to form the ESPP-S.The structure of ESPP-S is shown
in Figure 6.

ESPP-S first performs convolution, BN and SiLU activa-
tion functions on the input image data. Convolution mainly
performs deep feature extraction. BN allows the data to
be processed before the activation function without causing
unstable network performance due to oversized data. The
activation function allows the nonlinearity of the network
to be increased to fit various nonlinear functions. The next
step is to go through a spatial pyramid pooling operation,
consisting of three parallel kernels of 5, 9, and 13 for the max-
imum pooling, where the output results of the upper levels
are pooled separately. The maximum pooling is done without
changing the input data channels, and the input parameters
change the width and height of the input data.

Feature enhancement is performed on the results of each
maximum pooling. FEBlock first performs global average
pooling on the input data, that is, the data with maximum
pooling on the upper layer. The single-channel elements are
compressed into 1×1 scalars, and the output 1×1×C feature
map is used as the global spatial information on the feature
channel. Three parallel one-dimensional convolutions then
achieve the cross-channel interaction. The dimensionality
of the data produced by these operations is transformed to
match the dimensionality of the original data. Finally, the
original input data is multiplied by the information flowing
through each network layer. The maximum pooling data in
each layer of the SPP network are respectively passed through
the FEBlock module and spliced in the channel direction.
The two dimensions of the final output length and width
of the three shunts are consistent. Feature enhancement was
performed on feature maps at different scales, allowing the
network to focus more on small object regions, suppressing
interference from background noise, and improving feature
characterization. The feature maps are then streamed through
the SCEP module. After compression, non-linear mapping,
and expansion with its module, feature information fusion
and expansion are achieved, further improving the detection
of small objects.

C. ADDING A SMALL OBJECT DETECTION LAYER
Head outputs the prediction results, and the prediction
includes the bounding box loss function and non-maximum

suppression [27]. YOLOv5 uses the GIOU loss function as
the bounding box loss function [21], and the GIOU is calcu-
lated as shown in equation (2)–(3). Assuming that A and B are
any two properties, find a minimum closed shape C such that
C can contain A, B. Then calculate the ratio of the area of C
that does not cover A and B to the total area of C, subtracting
this ratio from the IOU of A and B. It can better reflect the
intersection of the predicted box and the real box, improving
the speed and accuracy of detection. The three feature maps
generated by the neck (dimensions 80 × 80, 40 × 40, and
20 × 20) are sent to the prediction head. Then a confidence
calculation and bounding box regression are performed for
each pixel in the feature map using a pre-defined prior anchor.
A non-maximum suppression process is performed by setting
the corresponding thresholds. However, these three layers of
the feature map no longer meet the current detection needs,
so improvements are made to the original ones.

IOU =
|A ∩ B|

|A ∪ B|
(2)

GIOU = IOU −
|C\(A ∪ B)|

|C|
(3)

This paper focuses on object detection in UAV capture sce-
narios, where the YOLOv5 algorithm is not ideal mainly due
to the size of small objects. The feature maps are extracted by
simple downsampling, which can lead to loss of information
of interest when the down-sampling multiplier is too large,
and forward propagation of the network when the down-
sampling multiplier is too small requires a large number of
feature maps to be stored in memory, increasing the GPU
resource usage and causing the training and inference to
exceed the video memory. To avoid these problems and
improve the accuracy and robustness of the network, accord-
ing to the principle of the receptive field, based on the three
detection layers of the original YOLOv5 head, this paper adds
a shallower feature map as the detection layer according to
the characteristics of the dataset. After the original detection
layer, convolution and upsampling operations are added to
expand the feature map further. Then, the obtained feature
map is merged with the feature map extracted by the network
backbone in order to get a bigger feature map for small
object detection, which makes the network more sensitive to
small objects under high-resolution images and enhances the
network’s ability to detect medium and long-range objects.
In this paper, P2, P3, P4, and P5 four-layer feature maps
are used to achieve object detection, and the prediction box
size setting information for each pixel in each feature layer
is shown in Table 1. By obtaining lower spatial features and
fusing themwith high-level semantic features to generate a P2
detection layer, the model’s ability to detect smaller objects
is better improved [28].

III. EXPERIMENT
A. EXPERIMENTAL ENVIRONMENT
This article uses the Ubuntu20.04 system; the experimental
environment is python3.8, pytorch1.10.0, and cuda11.3. All
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TABLE 1. Information on the prediction box size setting for each pixel point in each feature layer.

TABLE 2. Training parameters.

models are run on the NVIDIA RTX3090 GPU, trained,
validated and tested under the same hyperparameters. The
specific parameters of the experiment are shown in Table 2.

B. INTRODUCTION TO THE DATASET
This paper selects the VisDrone2021 dataset to train and
evaluate the model, which is gathered by the AISKYEYE
team at Tianjin University’s machine learning and data min-
ing lab [29]. All benchmark datasets were taken by drones,
including 288 video clips, 261908 frames, and 10209 static
images, of which 6471 were selected as training sets,
3190 test sets, and 548 validation sets. There are ten cate-
gories of images with 2.6 million labels. Figure 7(a) is the
number of labels for each category, and 7(b) is a distribution
map of all label sizes in the training set. The horizontal and
vertical coordinates in 7(b) represent the width and height of
the label box, respectively. It can be noticed that the lower
left corner has a larger concentration of points, indicating the
presence of more small objects in the dataset, reflecting the
general situation of UAVs in real-world application scenarios.

C. EVALUATION CRITERIA
Currently, the most often used measures for assessing the
performance of object detection algorithms are Precision,
Recall, AP (average precision), mAP (mean AP), Params
(number of parameters in the model), FLOPs (number of
floating point operations), and FPS (frames per second of
the image processed). In this paper, Precision, mAP0.5,
mAP0.5:0.95, Params, FLOPs, and FPS are selected as the
evaluation metrics of our model [30].

D. ABLATION EXPERIMENTS
To verify the effectiveness of the proposed feature enhance-
ment block FEBlock, the self-feature expansion plate SCEP
and the addition of a more shallow feature map as a detection
layer. In this paper, ablation experiments are conducted to
evaluate the impact of different modules on the performance
of the UAV capture scene object detection algorithm under
the same experimental conditions. YOLOv5x version 6.1

FIGURE 7. Results of the dataset used in this paper’s attribute
visualization.

is chosen as the baseline model for the ablation experi-
ments. The input image resolution was set to 640 × 640,
and 200 epochs were trained. The experimental performance
comparison between different models is shown in Table 3 and
Figure 8.
It can be seen from Table 3 that the ablation experiment

results B, mAP0.5 and mAP0.5:0.95 are 2.2% and 1.3%
higher than the YOLOv5 baseline, respectively, indicating
that adding a shallower feature map as a detection layer
can improve the detection effect of small objects. Model C
performs feature enhancement for each maximum pooling
in SPP. Compared with Model A, mAP0.5 is increased by
4.2% and the accuracy is increased by 3.1%. The accuracy is
the highest among all models, which indicates that embed-
ding the FEBlock into the SPP is better than the original
SPP. Model D splices SCEP and SPP separately, and SCEP
expands and fuses the feature information. The precision is
1.6% higher than that of Model A, but 1.5% lower than that of
Model B, which better proves that the embedding of FEBlock
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TABLE 3. Performance comparison between different algorithms.

FIGURE 8. mAP0.5, mAP0.5:0.95 for the ablation experiment.

into SPP improves the detection accuracy of the model.
Model E integrates all improvements together, mAP0.5 is
4.6% higher than the baseline, and mAP0.5:0.95 is 2.9%
higher, which is the largest improvement among all models.
These improvements together lead to a significant increase
in the number of parameters and a significant negative cor-
relation in computational complexity. Still, the accuracy and
mAP have been greatly improved, which can improve the
effect of UAV capture scene object detection.

E. MODEL SELECTION EXPERIMENTS
In this paper, we conduct comparative experiments on the
VisDrone2021 dataset according to different input image res-
olution parameters (320, 480, 640, 1024, 1504). The exper-
imental results are shown in Table 4. The image captured
by UAV has a high resolution,and due to the low reso-
lution of small objects, high-resolution images can retain
more detailed features. It can be seen from Table 4 that
when the training input resolution parameter of YOLOv5x
is 1024, mAP0.5 is 11.9% higher than 640, and mAP0.5 of
the improved YOLOv5x is 9.7% higher than 640, and FPS
remains unchanged. It can be seen that improving the res-
olution does greatly improve the detection accuracy of the
model, and because the network structure and scale have not
changed, increasing the resolution of the input image does
not affect real-time performance. For imageswith a resolution

TABLE 4. Effect of different input image resolutions during training.

parameter of 1504, the amount of calculation increases signif-
icantly, and the growth of mAP0.5 is much slower than that
of 1204. Therefore, it is necessary to note that when the input
resolution is too high, the model calculation is too complex
and prone to over-fitting, which leads to a decrease in detec-
tion accuracy. In contrast, when the resolution is reduced,
mAP0.5 drops significantly, and FPS is unchanged; detecting
small objects is unsuitable for reducing the resolution.

In addition, the performance changes of the model under
different detection image resolutions are shown in Table 5.
Different resolutions of the input images will affect the speed
and accuracy of the detection stage. With the decrease in
the input’s resolution during detection, mAP0.5 continues to
decrease and FPS continues to increase. When the resolu-
tion of the input increases during detection, PFS decreases
continuously and has a greater impact. In addition, with the
increase of input image resolution, mAP0.5 increases rapidly
and then decreases slowly, indicating that the resolution will
affect the detection accuracy. When the resolution increases
from 1024 to 1504, mAP0.5 begins to decline. The resolution
of the input image during training differs too much from that
during detection, which will make the characteristic param-
eters of the model not match the detection image, resulting
in the detection accuracy not rising and falling. Based on the
careful consideration of Table 4 and Table 5, the resolution
parameter of 1024 is selected as the image resolution during
training and detection. The detection accuracy is higher and
can better meet the actual project requirements.

F. COMPARATIVE EXPERIMENTS
This study compares the method with the most recent YOLO
family of object detection algorithms, primarily assessing
the algorithm’s detection accuracy and detection speed to
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TABLE 5. Variation in model performance at different detection image
resolutions.

show the upgraded YOLOv5x algorithm’s superiority over
other algorithms. For a quantitative investigation of tiny
target identification outcomes in UAV capture scenarios,
the enhanced YOLOv5x algorithm is compared with the
YOLOv5x, YOLOX [31], YOLOv6 [32], and YOLOv7 [33]
algorithms, all selecting the largest network structure of each
algorithm. The findings are displayed in Table 6. In addi-
tion, we compared some of the latest improved YOLOv5
algorithms. The network can mine more feature information
by improving the attention mechanism and adding it to the
backbone network. Most of the algorithms are equivalent to
the method in this paper in accuracy, which further improves
the detection accuracy of small targets, but the method in this
paper has more advantages in real-time performance.

It can be seen from Table 6 that the detection accuracy
of the YOLOv6 algorithm is relatively low. Because the
parameters are low and can be deployed in some embedded
devices, YOLOv6 has more advantages in a real production
environment. Still, the benefits of the pure algorithm effect
are not obvious. In contrast, although the detection accuracy
of the YOLOX algorithm is slightly higher than that of the
YOLOv6 algorithm, the number of parameters and calcula-
tions is significantly increased, and the real-time performance
is greatly reduced. The detection effect of small objects is not
ideal.

On the whole, the proposed algorithm introduces FEBlock
in spatial pyramid pooling to enhance the features of fea-
ture maps at different scales and focus more on small
object regions, improving the algorithm’s small object feature
extraction capability; at the same time, the SCEP module
is spliced in after the enhanced spatial pyramid pooling to
feature fusion further and expand feature information on
the feature maps output from the enhanced spatial pyramid
pooling, enhancing the feature representation capability and
improving the network’s effect on small object detection.
Finally, a small object detection layer is added to enhance
the network’s detection effect on small objects. Although
the improved algorithm in this paper is not ideal in terms
of real-time performance, it enhances the feature extraction
capability of small objects. It has a good detection effect on
small objects in UAV capture scenarios.

FIGURE 9. Comparison chart of test results.

G. ALGORITHM VALIDITY ANALYSIS
To verify the object detection effect of the improved algo-
rithm in the actual scene, this paper uses the representative
images in the VisDrone2021 test set to test and make a
visual comparison. The detection effect is shown in Figure 9.
In Figure 9, the left side is the YOLOv5 baseline, and the
right side is the improved algorithm. Select the night street,
road occlusion, blur distortion, and high altitude scenes as the
detection object. Figure 9(a) shows a real scene of a pedes-
trian street at night, with a large number of dense pedestrians
and dim light; the improved model improves the detection
effect in dim scenes. Some occlusions and overlaps exist in
Figure 9(b) and 9(d). The improved model can detect small
occluded objects and distinguish different types. Figure 9(c)
in the presence of blurred image distortion, the model can still
detect the fuzzy object stability, which can be an excellent
response to the actual situation. Figure 9(e) is a picture taken
at a high altitude. The vehicle on the road is very small, but
it can still improve the detection effect, indicating that the
model can detect small objects [34].

14372 VOLUME 11, 2023



Z. Liu et al.: Improved YOLOv5 Method for Small Object Detection in UAV Capture Scenes

TABLE 6. Comparison experiments of the latest YOLO series target detection algorithms.

The improved algorithm increases the receptive field
through feature enhancement blocks, generates adaptive
weights for different receptive fields, and improves the ability
of the model to extract small objects at different scales.
Feature enhancement blocks are fused into SPP, and feature
enhancement is performed for the results of each maximum
pooling to generate new features containing multi-scale con-
textual information by weighting the fused contextual fea-
tures. The feature enhancement blocks are introduced in SPP
to improve the global feature extraction ability by weaken-
ing the background noise interference. After splicing with
SCEP, the feature information is further fused and expanded,
so that the model has better robustness to cope with the
actual situation. The improved algorithm in Figure 9 reduced
false detection and missed detections when dealing with
small dense objects and reduced the impact of environmental
illumination changes. Moreover, it can detect pedestrians
occluded by trees and distinguish distant pedestrians from
vehicles, and the detection effect of distorted images in
blurred scenes is still improved. Overall, the detection accu-
racy of the improved algorithm has been improved to a certain
extent, enhancing the detection effect of small dense objects.

IV. CONCLUSION AND FUTURE WORK
This paper proposes an object detection algorithm based
on improved YOLOv5 for UAV capture scenes, which is
intended to improve the detection accuracy of small-size
objects and small dense objects.

Firstly, a feature-enhanced block, FEBlock, is pro-
posed, which integrates information without deepening the
network structure by combining different channel informa-
tion. Adaptive weights are generated for different recep-
tive field features by convolution. The main weights are
assigned to shallow feature maps to focus more attention
on dense small object regions and improve small object
feature extraction. Then FEBlock is integrated into SPP to
generate enhanced spatial pyramid pooling ESPP, and fea-
ture enhancement is performed for each maximum pooling
result. By weighted fusion of context features, new fea-
tures containing multi-scale context information are gener-
ated to weaken the interference of background noise and
have better feature representation ability. In addition, the
self-characteristic expansion plate SCEP is proposed and
stitched with ESPP to generate a new spatial pyramidal pool-
ing ESPP-S, which further improves the feature extraction
capability of the network by achieving the fusion and expan-
sion of feature information through compression, non-linear
mapping, and expansion with its own module. Finally, based

on the large, medium, and small detection layers of the
YOLOv5 network model, a shallower feature map is added
as the detection layer according to the characteristics of the
data set, which improves the detection ability of the model for
smaller objects. The final experimental results show that the
precision of the improvedYOLOv5 algorithm reaches 59.1%,
mAP0.5 can reach 47.1%, and mAP0.5:0.95 reaches 28.1%,
which is a good improvement compared with YOLOv5x.
And the training model mAP0.5 can reach 56.8% under the
input resolution of 1024 × 1024, which has a good effect
on the actual detection. In this paper, the detection accuracy
has been significantly improved, but the parameter quantity
and calculation amount have been greatly improved, the real-
time performance has been greatly reduced, and the UAV
airborne computing resources are limited. Therefore, how the
lightweight and efficient model can be further studied.
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