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ABSTRACT Wireless capsule endoscopy (WCE) is a recently developed tool that allows for the painless
and non-invasive examination of the entire gastrointestinal (GI) tract. The microcamera captures a large
number of redundant frames for each WCE examination such that a video summarization technique is
needed to assist in diagnosis. However, prevalent methods of summarizing WCE videos focus only on
the representativeness of the frames owing to a lack of high-level information on their importance. This
paper develops a Frame Importance-Assisted Sparse Subset Selection model, called FIAS3, to integrate the
high-level frame importance from networks into a sparse subset selection model. The FIAS3 is optimized
under three constraints: 1) a frame importance matrix to help pay more attention to important frames,
2) a sparsity constraint to make video summaries more compact, and 3) a similarity-inhibiting constraint to
reduce redundancy. The results of experiments on a public dataset demonstrated that our FIAS3 outperforms
other methods of summarizing WCE videos. Specifically, its coverage and video reconstruction error
were 92% and 0.143, respectively, at a 90% compression ratio, recording respective at least 16.9% and
0.031 improvements over other methods. The results of generalization experiments showed that FIAS3 also
achieves competitive results on private datasets.

INDEX TERMS Computer-aided diagnosis, deep learning, keyframe extraction, video summarization,
wireless capsule endoscopy (WCE).

I. INTRODUCTION
Wireless capsule endoscopy (WCE) is a recently developed
tool for gastrointestinal (GI) examination that uses a micro-
camera and wireless transmission technology. It is expected
that patients will soon be able to use it on their own in the
comfort of their home. During WCE, patients need to only

The associate editor coordinating the review of this manuscript and
approving it for publication was Byung-Gyu Kim.

swallow a pill-sized endoscope equipped with a camera that
then visualizes the GI tract, as shown in Fig. 1(a). Although
WCE is painless, non-invasive, and available for the entire
GI tract [1], [2], reviewing the entire video is time consum-
ing and tedious for gastroenterologists. Each WCE video
on average contains more than 50,000 frames, as shown in
Fig. 1(b), most of which capture the normal mucosa that
do not have clinical diagnostic value. Some frames can-
not provide useful information owing to their poor quality

10850
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0002-4024-3619
https://orcid.org/0000-0002-2161-3231


W. Xie et al.: FIAS3: Frame Importance-Assisted Sparse Subset Selection to Summarize WCE Videos

FIGURE 1. An illustration of WCE and WCE video summary. During (a) WCE, a wireless capsule is swallowed and moves along the entire GI tract; the
captured images are transmitted to the receiving device to generate (b) an original WCE video. The proposed FIAS3 is able to summarize (b) into (c) a WCE
summary while preserving the important findings, such as GI lesions (marked by blue arrows) and anatomical landmarks.

(e.g., due to reflections of light, darkness, bubbles, and undi-
gested residues). The movement of the wireless capsule in the
GI tract is uncontrollable, and it sometimes becomes stagnant
in a specific location for a long time to yield a large number of
redundant frames. One effective way to reduce the time taken
by gastroenterologists is WCE video summarization.

Video summarization is widely used [3] in today’s era
of massive amounts of video data, with the aim of select-
ing a sequence of still keyframes or shots to represent the
original video. Keyframe selection is usually applied in the
task of WCE video summarization because keyframes offer
more flexibility for browsing and navigating videos. There-
fore, video summarization and keyframe extraction have the
same meaning in the context of WCE videos, with the goal
of choosing the most representative and important frames.
Representative frames refer to a sequence of diverse frames
whereas important frames contain such helpful information
as images of GI lesions and anatomical landmarks, as shown
in Fig. 1(c). However, frame importance has never been
explicitly defined in the context of WCE videos, and is diffi-
cult to accurately quantify.

Most methods of WCE video summarization are shot-
based approaches [4], [5], [6], [7], [8], [9], [10] that segment
the original video into shots and then extract keyframes from
each shot by relying on inter-frame relationships, such as
those of similarity [4], [5], [6] andmotion [7], [8]. These shot-
based methods can eliminate local redundancy within indi-
vidual shots, but similar scenes may recur in multiple shots
such that they fail to eliminate global redundancy. In addition,
the boundary of a shot in suchmethods is vague and cannot be
clearly defined because WCE video is physically taken in a
single shot. More critically, shot-based approaches may elim-
inate some frames containing important information owing

to the lack of a mechanism for assessing frame importance.
To avoid shot segmentation and introduce frame importance,
a recent study [11] trained a sequence-to-sequence network to
directly learn the underlying frame importance from human-
labeled frame-wise importance scores. This network archi-
tecture can receive the long-range spatiotemporal information
of the video and generate summaries of it that are consistent
with human perception. However, these supervised methods
require expensive frame-wise annotations for WCE video
summarization, and this is impractical owing to the long dura-
tion of the video and the inconsistency of annotating among
gastroenterologists, or even among repetitions of the exercise
by one gastroenterologist. WCE video summarization thus
remains a challenging task.

In this paper, we define frame importance for WCE videos
and propose Frame Importance-Assisted Sparse Subset
Selection (FIAS3), to formulate WCE video summariza-
tion as a problem of subset selection, and estimate frame
importance based on cost-effective labels for GI lesions and
anatomical landmarks. Our FIAS3 reconstructs the WCE
video by optimizing a coefficient matrix under three con-
straints: 1) a frame importance matrix for selecting impor-
tant frames, 2) a sparsity constraint to make the information
as compact as possible to generate short video summaries,
and 3) a similarity-inhibiting constraint to eliminate global
redundancy within the video summaries. By minimizing the
weighted reconstruction loss under these constraints, FIAS3
can produce WCE video summaries with a high coverage of
GI lesions and anatomical landmarks at different ratios of
compression. Quantitative and qualitative experiments were
conducted on the public dataset Kvasir-Capsule to verify the
proposed method [12], and its capability for generalization
was evaluated on a private dataset constructed by the authors.
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TABLE 1. Comparative analysis of related works.

The experimental results showed that our method outper-
forms prevalent methods of WCE video summarization on
the public dataset and achieves competitive performance with
them on the private dataset.

II. RELATED WORK
A. WCE VIDEO SUMMARIZATION
Many early studies in the area proposed shot-based
approaches to WCE video summarization that involve first
segmenting the entire video into shots and then separately
selecting keyframes from each shot. Such methods are effi-
cient for processing long videos. As shown in Table 1,
WCE-RIE [5] andWCE-VS [6], proposed by Chen et al., seg-
ment shots based on similarities between adjacent shots, and
then select keyframes by using an adaptive K-means cluster-
ing algorithm. The difference between them is thatWCE-RIE
uses color-related and textural features whereas WCE-VS
extracts high-level semantic features by using a Siamese
neural network (SNN) [13]. The relational rank matrix [4],
motion analysis [7], [8], and factorization analysis [9], [10]
have also been used to select keyframes in WCE videos from
shots. These shot-based methods may separate numerous
repeating and brief shots, leading to the selection of identical
keyframes from various shots. Recently, Lan and Ye [11]
collected an annotated dataset of frame-wise WCE videos
from seven patients, similar to that in TV-Sum [14], and used
it to propose a sequence-to-sequence network called Adv-Ptr-
Der-SUM forWCE video summarization. Adv-Ptr-Der-SUM
models spatiotemporal information by using long short-term
memory (LSTM) [15] and predicts frame-wise scores that are
similar to the ground truth. Although Lan et al. were thus
able to avoid shot segmentation and select important frames
that were aligned with human perception, annotating frame-
wise importance is a subjective and expensive task for WCE
videos. In this paper, we estimate frame importance with-
out resorting to such expensive frame-wise annotations, and
propose an optimization model that incorporates high-level
frame importance while avoiding the problems of vagueness
of shot segmentation and the annotation of frame-wise impor-
tance. A matrix of high-level frame importance is estimated
by using GI lesion and anatomical landmark classification

networks, thus making full use of the advantages of deep
learning techniques as well as accurate and cost-effective
image labels.

B. SPARSE SUBSET SELECTION
Sparse subset selection is a method of global modeling
that has been verified on tasks of video summarization.
Cong et al. [16] introduced an efficient global optimization
algorithm to solve a row-sparse dictionary selection prob-
lem in consumer videos. Fei et al. [17] combined sparse
subset selection with hierarchical clustering to improve the
efficiency of keyframe extraction. In addition, sparse sub-
set selection exhibits strong extendability. Ma et al. [18]
extended the conventional linear sparse formulation into a
block kernel sparse coding problem and introduced global
inter-frame relationships by simply applying a transformation
matrix. Wang et al. [19] merged changes in the gaze and
content into prior cues to help a model of sparse dictio-
nary selection choose important frames from a gastroscopic
video. As in the work in Reference [19], we formulate WCE
video summarization as a sparse subset selection problem,
and estimate a frame importance matrix by using networks
for classifying GI lesions and anatomical landmarks. The
estimated frame importance is considered to be a weight that
helps the sparse subset selection model pay more attention to
important frames and thus improve the coverage of GI lesions
and anatomical landmarks. To the best of our knowledge, this
is the first study to define frame importance for WCE videos
and use it to assist a sparse subset selection model.

C. WCE ABNORMALITY DETECTION
WCE abnormality detection is another way to assist gastroen-
terologists in quickly reviewingWCE videos. The emergence
of open datasets is conducive to development in this direction.
Many studies have sought to identify only one or several
types [20], [21], [22], [23], [24] of abnormalities, such as
bleeding [25], [26], tumors [26], polyps [27], ulcers [28],
and hookworms [29]. In addition to the abnormalities, sev-
eral GI anatomical landmarks and low-quality categories
were also classified to help diagnose WCE. For example,
Zhao et al. [20] produced a study synopsis by obtaining
multiple labels for each frame of a WCE video, including
those showing bile, air bubbles, extraneous matter, lesions,
normal lumen, and polyps. They implemented frame-based
classification by using support vector machines (SVMs) and
sequence-based classification through hidden Markov mod-
els (HMMs) [30]. However, their synopsis provided multiple
labels for every original video frame, including redundant
and uninformative frames. By contrast, we aim to produce
brief video summaries that provide the gist of the entire
WCE video. To improve the coverage of GI lesions and
anatomical landmarks in the summary, we train GI lesion
and anatomical landmark classification networks to esti-
mate a frame importance matrix to assist in WCE video
summarization.
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FIGURE 2. Process flow of WCE video summarization. ‘‘FIAS3’’ represents our frame importance-assisted sparse subset selection model.

FIGURE 3. Overview of FIAS3.

III. METHODS
The process flow of our methods of WCE video sum-
marization is illustrated in Fig. 2. Before the applica-
tion of FIAS3, preprocessing is performed to reduce the
amount of requisite computation. Uninformative and redun-
dant frames are removed from the original video in this
step. FIAS3 then extracts keyframes from the preprocessed
WCE video by a sparse subset selection constrained by the
similarity-inhibition and frame importance.

A. FIAS3
FIAS3 selects keyframes from a preprocessed WCE video.
As illustrated in Fig. 3, a similarity estimation network first

estimates the visual feature dictionaryV and frame similarity
matrix S. The frame importance matrix P is obtained by
using the GI lesion and anatomical landmark classification
networks. The obtained matricesV, S, and P for each prepro-
cessed WCE video are then introduced to the sparse subset
selectionmodel to solve for the optimal coefficient matrixX∗.
Finally, we select keyframes by thresholding the video with
respect to the frame-wise key scores calculated from X∗.

1) SIMILARITY ESTIMATION NETWORK
As the first step of image analysis, feature extraction is critical
to the subsequent modeling. The most commonly used fea-
tures are low-level hand-crafted features, such as color and
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FIGURE 4. Similarity estimation network. Y , I1, and I2 are labels and
frame pairs. Gθ represents CNNs that share structures and parameters (θ).
L stands for contrastive loss.

texture. Although deep features extracted from a pretrained
CNN are high dimensional, they still lack high-level semantic
information. As illustrated in Fig. 4, we use an SNN [13] as
our similarity estimation network to extract high-level seman-
tic features. The network was trained on human-labeled sim-
ilar and dissimilar frame pairs. The branches of the CNN Gθ
consist of two convolutional layers and three linear layers
each, and share the parameters θ . In the training phase, pairs
of frames (I1 and I2) were fed into Gθ to obtain their features
Gθ (I1) andGθ (I2), respectively. The distance of the frame pair
can be calculated by:

Dθ (I1, I2) = ∥Gθ (I1) − Gθ (I2)∥2 (1)

If I1 is similar to I2, the label Y is zero, and they are expected
to be close, and vice versa. Hence, the parameters θ are
optimized by using contrastive loss as:

L (θ, (Y , I1, I2)) =
1
2
(1 − Y )(Dθ (I1, I2))2

+
1
2
Y {max(0,m− Dθ (I1, I2))}2 (2)

where m is a margin. In the inference phase, the similarity
between frames I1 and I2 can be obtained by:

Sθ (I1, I2) =
1
m

max(0, m− Dθ (I1, I2)) (3)

Our similarity estimation network can extract high-level
semantic features such that frames of the WCE video can
be better distinguished than they can be based on low-level
features, such as color, texture, and motion.

2) GI LESION AND ANATOMICAL LANDMARK
CLASSIFICATION NETWORKS
To define frame importance, it is necessary to understand how
gastroenterologists diagnose based on the results of WCE.
During WCE diagnosis, gastroenterologists focus on the
appearance and anatomical location of GI lesions. GI lesions
can appear significantly different but the normal mucosae
in the GI tract a highly similar such that localization is a

challenge. Fortunately, several identifiable anatomical land-
marks can help localize the GI tract. Therefore, we define
the frame importance in WCE video as the possibility that
a frame contains GI lesions or anatomical landmarks.

To extract high-level frame importance, we used massive
amounts of public data to train GI lesion and anatomical
landmark classification networks; it is benefiting from the
rapid development of labeled data, optimization algorithms,
GPU devices for efficient parallel computing, and deep CNN
architecture. The classification networks, supervised by the
human-labeled ground truths, can predict the frame-wise pos-
sibility of each class of GI lesions and anatomical landmarks.
Their generated predictions are expressed as (cnor, cles) and
(cord, clan), respectively. cnor and cord are scalars representing
the probabilities of predictions of the normal mucosa and
the ordinary location, respectively. By contrast, cles and clan
are vectors representing the probabilities of predictions of
multiple classes of GI lesions and anatomical landmarks,
respectively.

3) FRAME RELATIONSHIP AND IMPORTANCE ESTIMATION
After training the similarity estimation network as well as the
GI lesion and anatomical landmark classification networks,
we construct a visual feature dictionary V, a frame similarity
matrix S, and a frame importance matrix P for subsequent
model optimization, as shown in the left half of Fig. 3.We use
Gθ to extract the d-dimensional high-level visual features (vi)
of the i-th frame and then concatenate them into the visual
feature dictionary V = (v1, v2, . . . , vn). Further, we estimate
the frame similarity matrix S by (1) and (3) based on V, the
element sij of which denotes the similarity between the i-th
and the j-th frames.
By using predictions of the GI lesion and anatomical land-

mark classification networks, the i-th element of the diagonal
frame importance matrix P, representing the frame impor-
tance of the i-th frame, can be formulated as:

pii =
cnor

max(cles)
+

cord
max(clan)

(4)

where cnor, cles, cord, and clan have been introduced in
Section III-B. We aim to obtain a small pii if the i-th frame
contains GI lesions or anatomical landmarks. Therefore,
cnor and cord should be positively related to pii whereas
cles and clan should be inversely related to pii. We consider
cnor and cord to be molecules, and use the maximum values
of cles and clan as denominators for a more robust estimation.
The element of the frame importance matrix is the sum of
estimates of the two classification networks.

4) SPARSE SUBSET SELECTION
As in References [16], [19], we first formulate the task of
WCE video summarization as a vanilla sparse subset selec-
tion problem without the similarity-inhibiting constraint and
high-level frame importance information:

argmin
X

1
2

∥V − VX∥
2
F + λ ∥X∥2,1 (5)
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whereV andX are the visual feature dictionary and the coeffi-
cient matrix, respectively. The model attempts to reconstruct
V through linear combinations of V and X under the row
sparsity constraint ||X||2,1. The j-th column of X contains the
coefficients to reconstruct the j-th frame, and the i-th row of
X is the coefficient of the i-th frame used to reconstruct V.
Therefore, the L2-norm of the i-th row vector ||xi.||2 can be
used to estimate the key score of the i-th frame. With the row
sparsity constraint, the model in (5) attempts to reconstructV
by using fewer frames. We can use the optimal coefficient
matrix X∗ to estimate the frame-wise key scores used for
keyframe selection.

To impose a penalty for scenarios in which both similar
frames obtain high key scores, we add a similarity-inhibiting
constraint by using the frame similarity matrix S as:

argmin
X

1
2 ∥V − VX∥

2
F + λ ∥X∥2,1 + β

n∑
i,j=1

∥xi.∥2sij
∥∥xj.∥∥2

(6)

where λ and β are the balance factors, and the element sij with
the range of values of 0 to 1 represents the similarity between
the i-th and the j-th frames. When two frames are similar (sij
is large), their key scores ||xi.||2 and ||xj.||2 are not high at the
same time. The model in (6) can use the similarity-inhibiting
constraint to extract keyframes with lower redundancy than
otherwise.

However, the model in (6) cannot adequately cover GI
lesions or anatomical landmarks because it lacks high-level
information on frame importance. We use elements of the
frame importance matrix P as columnar weights for to
reconstruct the visual feature (V - VX) and weights of
the rows for the row sparsity constraint to obtain our
final FIAS3:

argmin
X

1
2

∥(V − VX)P∥
2
F + λ ∥PX∥2,1

+β

n∑
i,j=1

∥xi.∥2sij
∥∥xj.∥∥2 (7)

The smaller the element pii is, the more likely is a GI lesion
or anatomical landmark to be present in the i-th frame.
Therefore, we use P to reduce the reconstruction loss and
the row sparsity constraint with regard to frames containing
GI lesions or anatomical landmarks. This helps improve the
coverage of GI lesions and anatomical landmarks.

5) MODEL OPTIMIZATION
To solve the non-convex function (7), we transform it into an
L2, 1-norm problem [31] as follows:

argmin
X

1
2

∥(V − VX)P∥
2
F + λTr(XTP9PX)

+βTr(XTW8WX) (8)

where Tr stands for the trace of a square matrix, and the three
latent variables 9, W, and 8 are diagonal matrices whose

elements are defined as follows:

ψii = 1/(2 ∥pi.X∥2)

wii =

∑n

j=1
sij

∥∥xj.∥∥2
ϕii = 1/(2 ∥wi.X∥2) (9)

The optimal coefficient matrix X∗ can be obtained by:

X∗
=

(
VTVP + λP9P + βW8W

)−1
VTVP (10)

Because 9, W, and 8 depend on X, a one-step optimization
is not convex, and an iterative update strategy is thus adopted.
The coefficient matrixX is initialized to a randommatrix. For
each iteration,9,W, and8 are obtained by (9), andX is then
updated by (10) by using the current values of 9,W, and 8.
When the change (||1X||F ) in the coefficient matrix is smaller
than a predetermined threshold or the number of iterations
reaches a predetermined number, we use X∗ to estimate the
frame-wise key scores used for keyframe selection.

B. PREPROCESSING
Our FIAS3 can be used on entire original WCE videos.
Moreover, many prevalent techniques can be used to simplify
our task and reduce the amount of computation required.
These techniques include the removal of uninformative and
redundant frames.

1) REMOVAL OF UNINFORMATIVE FRAMES
WCE videos contain a variety of low-quality frames, such as
ones that are too dark, out of focus, contain blurred motion,
bubbled frames, frames with highly reflective surfaces, and
those containing residues. The complexity of and requisite
computation for subset selection can be reduced by removing
these low-quality frames. However, GI lesions or anatomical
landmarks may be faintly visible in some low-quality frames,
as shown in Fig. 5(a). Therefore, we remove only uninforma-
tive frames that do not contain any useful information.

The removal of uninformative frames is formulated as a
traditional problem of supervised image binary classification.
The color histogram is a typical visual feature used to remove
uninformative frames fromWCE videos [20], [32], [33], [34].
The luminance component usually does not contain useful
information owing to complex shooting conditions. There-
fore, we use HS histograms in which both the hue and the
saturation components are quantified into 24 uniform bins.
A simple but effective K-nearest neighbor (KNN) classi-
fier [35] is used to classify uninformative frames by using
48-dimensional HS histograms.

2) REMOVAL OF REDUNDANT FRAMES
We can further reduce the complexity of subset selection and
the amount of computation required by removing redundant
frames. Some shot-based methods first segment a video into
shots based on low-level similarities between adjacent frames
and then select the ones closest to the cluster centers as
representative frames. However, small GI lesions, shown in
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FIGURE 5. Examples of low-quality and redundant frames. (a) The first
two low-quality frames contain a lymphoid hyperplasia (indicated by a
blue arrow) or a pylorus, whereas the last two do not contain useful
information (called uninformative frames). (b) The first two redundant
frames contain no GI lesion but the last two contain a small angiectasia
(indicated by the blue arrows).

Fig. 5(b), may be missed owing to the high similarity of
their adjacent frames. Instead, we use a similarity estima-
tion network to extract high-level semantic features for each
frame. Furthermore, we use adaptive K-means clustering [5]
to automatically select representative frames.

Rather than determining clusters without prior knowledge,
adaptive K-means clustering generates them by limiting the
maximum distance between samples within each cluster.
The algorithm starts by selecting a frame as the first cluster.
The remaining frames are then gradually grouped into the
cluster nearest to them if their distance to the nearest cluster
center is less than the predetermined maximum distance.
Otherwise, a new cluster is created. The cluster centers need
to be updated in every iteration. Finally, the frames closest
to each cluster center are selected as representative ones to
remove redundant frames.

C. EVALUATION METRICS
We quantitatively evaluated the video summaries generated
by our method along three dimensions: the coverage [9], [36]
of GI lesions and anatomical landmarks, the video recon-
struction error (VRE) [36], [37], [38], and the compression
ratio [6], [36]. We expected our FIAS3 to preserve as many
diagnostically valuable frames as possible, and it is less
subjective than general methods of video summarization.
We evaluated its coverage of GI lesions and anatomical land-
marks as follows:

Coverage = 1 −
Nmis

Nlab
(11)

where Nlab denotes the number of labeled findings regarding
GI lesions and anatomical landmarks and Nmis denotes the
number of missed findings. A coverage of 100% indicates
perfect performance. The VRE is defined as follows:

VRE =
1
Nori

Nkey∑
k=0

Tk+1∑
t=Tk

min
(

∥f (t) − f (Tk )∥22 ,
∥f (t) − f (Tk+1)∥22

)
(12)

TABLE 2. Labeled data for the uninformative frame classifier and the
similarity estimation network.

where Nori denotes the total number of frames in the original
video, Nkey denotes the number of keyframes, f (t) denotes
the HS histogram of the t-th frame, and Tk denotes the frame
index of the k-th keyframe. k = 0 and k =Nkey +1 correspond
to the indices of the first and last frames, respectively, in the
original video. A small VRE indicates good performance.
The compression ratio is defined as follows:

Compression ratio = 1 −
Nkey

Nori
(13)

A higher compression ratio indicates that more uninformative
and redundant frames have been removed.

D. IMPLEMENTATION DETAILS
We validated our proposed method on the public dataset
Kvasir-Capsule [12] and tested its capability for generaliza-
tion on a private dataset. The public dataset was captured
by using the Olympus EC-S10 endocapsule, in a resolution
of 336 × 336, and the private dataset was generated by
using the OMOM JS-ME-II capsule at Nanfang Hospital in
Guangzhou, China, with pixel-resolutions of 256 × 240.

Table 2 lists the labeled data for our classifier of unin-
formative frames and the similarity estimation network on
the public and private datasets. We collected the training and
test sets from three videos. The videos for the public dataset
were selected from the unlabeled videos. We evaluated the
KNN-based uninformative frame classifier on the public and
private datasets by setting K to seven. The color histogram of
each frame was collected at the original image size. Its accu-
racy was higher than 98.4% and false positive rate was lower
than 1.3% on the test sets of both the public and the private
datasets. Similarly, we evaluated the similarity estimation
network by setting the similarity threshold to 0.5 to classify
pairs of frames. The input image was resized to 96 × 96. Its
accuracy was higher than 96.6% and false positive rate was
lower than 3.5% on the test sets of both the public and the
private datasets.

Table 3 lists the labeled data for each category of the GI
lesion and the anatomical landmark classification networks
on the public dataset. Images of ordinary locations were
collected from the classes of GI lesions. More details of
the categories have been provided in Reference [12]. Both
networks used the architecture of ResNet-152 [39]. The input
images were resized to 224×224.We also used data augmen-
tation techniques, including random rotation, flipping, and
color jitter. Both networks were optimized by using weighted
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TABLE 3. Labeled data for GI lesion and anatomical landmark classification networks.

TABLE 4. Labeled data for keyframe evaluation.

cross-entropy loss. Their sensitivity and specificity were 96%
and 70% for normal mucosa, and 87% and 63% for ordinary
locations on the test set.

Table 4 shows the labeled data used for the evaluation and
comparison of keyframes. Each labeled finding, such as a GI
lesion or an anatomical landmark, was visible in more than
one frame. The 19 videos used from the public dataset were
labeled videos in the test set.

To implement FIAS3, we set the maximum distance of
adaptive K-means clustering to 0.03 in preprocessing. The
preprocessed sequence of frames was uniformly sampled as
successive non-overlapping segments due to limitations of
the hardware. We used FIAS3 to extract keyframes from
each segment and collected them as a final video summary.
The Adam optimizer was used to optimize the similarity
estimation network with an initial learning rate of 0.01, and
this was reduced by a factor of 0.8 if the validation loss
stopped decreasing after 10 epochs. Themargin of contrastive
loss was set to one, the total number of iterations of training
was set to 200, and the batch size was set to 256. Both
classification networks were also optimized by using Adam
with a learning rate of 0.0001 and a batch size of 128 over
50 epochs. The threshold in the model optimization was set
as 10−8, and the maximum number of iterations was 200.

Our methods were implemented in Python 3.9.1 under
with the deep learning framework of PyTorch 1.7.1. The
results were mainly obtained on a PC equipped with an
Intel Core i7-9700 with a 3.0 GHz CPU and 8 GB of RAM.
The training and inference of CNNs, including the simi-
larity estimation network as well as the GI lesion and the
anatomical landmark classification networks, were achieved
on a workstation equipped with a GPU (NVIDIA GeForce
RTX 2080 Ti).

IV. EXPERIMENTS
We first validated the removal of uninformative and redun-
dant frames through preprocessing. We then conducted
ablation studies on the effects of the SNN feature extrac-
tor, the similarity-inhibiting constraint, and the weights
assigned according to frame importance on the quality of the

TABLE 5. The performance of each process.

keyframes. We then compared our FIAS3 both quantitatively
and qualitatively with other methods of WCE video summa-
rization. Finally, we tested the generalization of the proposed
method on the private dataset.

A. PREPROCESSING PERFORMANCE
Table 5 shows the performance of FIAS3 at each step in
the process of removing uninformative frames, removing
redundant frames, and selecting final keyframes. The cov-
erages were 100% after the removal of uninformative and
redundant frames, indicating that neither process had missed
any GI lesion or anatomical landmark. The compression ratio
showed that 5.6% of uninformative frames and 29.5% of
redundant frames had been eliminated through preprocessing.
In addition, the inference time of the preprocessing step was
much shorter than that of keyframe extraction. These results
suggest that the removal of uninformative and redundant
frames can reduce the complexity of the system and the
amount of required computation.

B. ABLATION STUDY
Fig. 6 shows the results of the ablation studies on the effects
of our proposed SNN feature extractor, similarity-inhibiting
constraint, and the importance weights assigned to frames
on the quality of keyframes on the public dataset. We first
fixed S as a zero matrix 0n and P as an identity matrix
In in the model in (7), and then used high-level semantic
visual features as our baseline (SNN). To validate the effec-
tiveness of our SNN feature extractor, we varied the fea-
ture dictionary V by using different features to solve the
models of sparse subset selection (color–texture, deep–color).
The color–texture model combined a 255-dimensional color
histogram with a four-dimensional texture feature that was
extracted by using a grey-level co-occurrence matrix [5].
The deep–color model combined a 26-dimensional color
histogram with 2048-dimensional deep features extracted
by a pretrained ResNet-50 [10]. In another experiment to
verify the similarity-inhibiting constraint and the weights
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FIGURE 6. Coverage and compression ratio of the sparse subset selection
model with different settings for the feature extractor,
similarity-inhibiting constraint, and matrix of frame importance.

assigned to frames according to importance, we fixed the
feature dictionary of the SNN and then replaced S with
our estimated frame similarity matrix (SNN-S), replaced
P with our estimated frame importance matrix (SNN-P),
and replaced both (SNN-S-P). The performance curves
show the coverage at different compression ratios to com-
pare different methods. As expected, our SNN-based high-
level semantic visual features yielded better performance
than low-level features. The highest coverage was obtained
by using both the similarity-inhibiting constraint and the
matrix of frame importance. Specifically, the color–texture,
deep–color, SNN, SNN-S, SNN-P, and SNN-S-P models
yielded gains of 72.5%, 77.5%,81.1%, 79.5%, 88.2%, and
92.0% in coverage, respectively, when the compression ratio
was 90.0%.

Table 6 listed the chosen factors and their effect on over-
all improvement at 90% compression ratio. By grid search,
the highest performances were achieved when the λ and β
were set to 0.01 and 0.0001 on the public dataset, respec-
tively, and 0.005 and 5 on the private dataset. The length
of each segment was 100 on both datasets. The best λ of
the private dataset was smaller, and β was bigger than that
of the public dataset. This may be because the accuracy
of the estimated frame importance on the private dataset is
lower than that on the public dataset, so it is necessary to
reduce the weight of the frame importance constraint item
in FIAS3.

C. COMPARISON WITH OTHER METHODS
We quantitatively and qualitatively compared our FIAS3
against four methods of WCE video summarization, denoted
by CCTS-MRFE [4], WCE-RIE [5], SNN-SVM [6], and
Adaptive-SVD [10], on the public dataset. As shown in Fig. 7,
our FIAS3 generally obtained the best performance in terms
of coverage and the VRE. The reproduced CCTS-MRFE
method using seven-dimensional features could not attain
a high compression ratio. The coverages of WCE-RIE,

TABLE 6. Coverage with different factors at 90% compression ratio.

SNN-SVM, Adaptive-SVD, and our FIAS3 were 73.2%,
67.7%, 75.1%, and 92.0%, and their VREs were 0.174, 0.235,
0.177, and 0.143, respectively, when the compression ratio
was 90%. Our FIAS3 thus obtained the best performance,
with coverage that was 16.9% higher and VRE that was
0.031 lower than those of the other methods of WCE video
summarization.

We chose two WCE videos from the public test set for
qualitative evaluation. Two example intervals with abnor-
mal findings were defined in these videos. Five methods
were first applied to these videos at a compression ratio
of 95%. The extracted keyframes within the example inter-
vals are shown in Fig. 8. Specifically, the low-quality inter-
val in Fig. 8(a) consists of frames with indices ranging
from 27474 to 27534, where lymphoid hyperplasia frequently
masked by food debris was captured. The redundant interval
in Fig. 8(b) consisted of frames with indices ranging from
21087 to 21129, where minor angiectasia was identified. The
CCTS-MRFE, WCE-RIE, SNN-SVM, and Adaptive-SVD
successfully covered the lymphoid hyperplasia but selected
more redundant frames more than FIAS3. Of the methods
considered, only Adaptive-SVD and our FIAS3 successfully
coveredminor angiectasia. Furthermore, the keyframes of our
FIAS3 provided more diverse views on it. The quantitative
and qualitative results suggest that our FIAS3 can generate
keyframes with higher coverage and lower redundancy than
the other methods.

D. GENERALIZATION CAPABILITY
We retrained the KNN-based uninformative frame classifier
and the similarity estimation network on the private dataset.
The curves of performance in Fig. 9 show that FIAS3 still
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FIGURE 7. Quantitative comparison of FIAS3 with other methods.

achieved competitive results with the other methods. How-
ever, the improvement due to it was less remarkable than
on the public dataset owing to its incorrect estimation of
the matrix of frame importance. Specifically, the coverages
of WCE-RIE, SNN-SVM, Adaptive-SVD, and our FIAS3
were 75.5%, 69.6%, 78.3%, and 80.5%, and their VREs were
0.104, 0.128, 0.093, and 0.106, respectively, when the com-
pression ratio was 80%. The cross-dataset results demonstrate
that our FIAS3 could adapt to the private dataset and obtain
competitive results with the other methods.

V. DISCUSSION
The results of both the quantitative and the qualitative exper-
iments demonstrated the superiority of FIAS3, especially
in terms of the coverage of GI lesions and anatomical
landmarks. As illustrated by our ablation studies, the SNN
feature extractor, similarity-inhibiting constraint, and matrix
of frame importance contributed to its superiority over preva-
lent methods ofWCE video summarization. The SNN feature
extractor extracted high-level semantic features that could
better distinguish between WCE frames than low-level fea-
tures. The frame importancematrix estimated by theGI lesion
and the anatomical landmark classification networks con-
tained a large amount of high-level information that helped
the model pay more attention to frames containing GI lesions
and anatomical landmarks. Rather than introducing high-
level information, the similarity-inhibiting constraint helped
improve the coverage of the model by eliminating global
redundancy. It is worth mentioning that the proposed sum-
marization framework is not only suitable for WCE videos,
but can be used on videos in different areas as long as frame
importance is clearly defined. The similarity estimation net-
work as well as the GI lesion and the anatomical landmark
classification networks are plug-n-play, which means that
they can be improved by leveraging advanced techniques in
these domains.

The uninformative frame classifier and similarity estima-
tion network performed well on both public and private
datasets with different resolution, providing V and S esti-
mates of comparable quality. However, the results of the
generalization experiment showed that the advantage of high
coverage of FIAS3 became less prominent on the private
dataset. Rather than the different resolution, this occurred is
probably due to a gap in the distribution of features, such
as different colors, lighting, and shooting angle, caused by
the different wireless capsules on the public and the private
datasets. The gap in distribution will lead to inaccurate P
estimates and can be minimized by applying domain adap-
tation [40]. For instance, Dong et al. [41] trained a model
of endoscopic lesion segmentation on gastroscope annota-
tions by using domain adaptation. Hence, we believe that the
summarization performance of the proposed model on wire-
less capsules from various manufacturers can be improved
by integrating of our FIAS3 with methods of domain
adaptation.

Compared with shot-based approaches, our FIAS3 can
perceive information over a longer range to obtain better
keyframes. It first transforms a long sequence of frames into a
visual feature space and then selects keyframes by solving the
problem of global optimization of the model of sparse subset
selection. Although we increased the range of perception
further through preprocessing, we still could not feed the
entire WCE video into a single optimization model due to
limitations of hardware. Such architectures as the LSTM [15]
and the video transformer [42] can accommodate the entire
video to avoid the bottleneck imposed by the hardware, but a
method to introduce frame importance to these architectures
has yet to be designed and verified.

Furthermore, our FIAS3 is more flexible than shot-based
approaches in terms of the length of the video summaries.
It can derive frame-wise key scores from the optimal coef-
ficient matrix to generate video summaries at different rates
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FIGURE 8. Qualitative comparison of FIAS3 with other methods of WCE video summarization. (a) Keyframes within a 60-frame low-quality interval
containing lymphoid hyperplasia. (b) Keyframes within a 42-frame redundant interval containing a small angiectasia (indicated by blue arrows). The
red text highlights methods that could not cover the abnormalities.

of compression without resolving the model. Such flexibility
may be useful for gastroenterologists as it allows them to
adjust the compression ratio based on their experience.

In addition to the abovementioned possible improvements
in performance, methods to assess WCE video summariza-
tion should be further advanced. Video summarization is still
a subjective task in general, although it is more objective
for WCE videos because there is consensus among gastroen-
terologists on which frame is important. Such quantitative

metrics as coverage and compression ratio can be used to
roughly evaluate summarization performance, but they might
be sub-optimal. To resolve this problem, we can have one
group of gastroenterologists offer a diagnosis based on the
original WCE video and another group provide it based
on the corresponding video summaries generated. We can
then compare their performance on detection and review-
ing times to reflect the clinical practicability of the video
summarization.
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FIGURE 9. Generalization-related performance of FIAS3 and the other methods on the private dataset.

VI. CONCLUSION
In this study, we developed a method of WCE video summa-
rization called FIAS3 to generate video summaries by using
both the relationships between frames and frame importance.
Our frame importance matrix, estimated from the GI lesion
and the anatomical landmark classification networks, signif-
icantly improves the coverage of GI lesions and anatomical
landmarks. The similarity-inhibiting constraint used together
with the frame importance matrix further improves cover-
age. The similarity estimation network can extract high-level
semantic features from the video that provide better per-
formance than low-level features. In addition, the proposed
steps of preprocessing can reduce the amount of computa-
tion required. In general, the proposed FIAS3 outperformed
prevalent methods on public and private datasets.
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