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ABSTRACT High order statistics are useful for automatic modulation recognition and parameter estima-
tions. In this paper, we cast the problem of recovering high order statistics of PSK signals taken from
nonuniform compressive samples as a one of recovering a low-rank matrix from missing or corrupted
observations. This is a new model to describe the high order statistics of PSK signals. Unlike traditional
uniformly Nyquist samples, our method uses the advanced optimization technique, which is guaranteed to
find the low-rank matrix by simultaneously fixing the missing entries. Simulation results demonstrate that
our method achieves accurate estimates of the major portion of the high order statistics. The new technique
can be used to fulfil automatic modulation recognition (AMR) and rough estimations of parameters. More
specifically, low-rank structure of PSK signals is studied. In contrast to the existing l1 optimization criteria,
our method proposed here is computationally more efficient and provides high accuracy.

INDEX TERMS Compressed Sensing, high order statistics, low-rank matrix completion, modulation
recognition, parameter estimations, PSK signals.

I. INTRODUCTION
For many applications, such as spectrum surveillance and
cognitive radio (CR), automatic modulation recognition
(AMR) is a basic task [1]. As a well-studied research arena,
there is a wide variety of methods available [1], [2], [3], e.g.,
Wavelet/Fourier transform, Cumulants, and Cyclic features.
To implement most of the classical AMR methods, Nyquist-
rate (or faster) samples are required, which brings a heavy
burden for Analog to Digital Converter (ADC), especially
for wide band signals. Whereas, AMR only extracts quite
little information from the sampling data, compared with the
amounts of samples.

Recently, Compressed Sensing (CS) has emerged as a new
sampling theory [4], [5], [6]. In CR, CS has been introduced
to relieve the significant burden of ADC [7], which explores
the sparsity of wireless signals.

Currently, some attention has been paid to CS based
AMR schemes. Lim and Wakin [6] tried to fulfil AMR by
estimating the Nth power spectrum without reconstruction,
which does not have strong anti-noise ability and can only
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discriminate BPSK, QPSK and 8PSK signals. Besides, Liu
et al. [8] proposed a new method to estimate the compres-
sive high order cyclostationary statistics, which requires a
significant amount of specialized hardware. Based on Tian’s
work [6], Zhou and others derived some other techniques
through cyclic spectrum reconstruction with Sub-Nyquist
samples [9], [10], whose calculation is usually complicated.

In our previous work [11], [12], utilizing CS, we estab-
lished the relationship between Sub-Nyquist samples with
high order statistics. Based on the reconstructed Nth power
spectrum, we fulfilled the tasks of AMR and rough estima-
tions of parameters for PSK signals. The use of CS could
reduce the complexity of signal receiver, as well as the
amount of data sampled.

To achieve the goal of both accuracy and efficiency,
we establish a new model of high order statistics recovery
with low-rate nonuniform samples based on recent advances
in the area of low-rank matrix completion [13], [14], [15],
[16], [17], [18].Wemodel the recovery of high order statistics
of PSK signal as one of completing a low-rankmatrix. Thanks
to the modified Singular Value Threshold (SVT) algorithm
proposed in this paper, which uses very minimal storage
space and keeps the computation cost of each iteration low,
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we have a good solution method to the model. In contrast to
the previous l1 optimization criteria models of AMR, our new
method is much more computationally efficient and can deal
with data of very large scale, which can improve the accuracy
further. Due to the limited space, we only analyze the model
for PSK signals, but the model can be easily extended to some
other signals, such as ASK, FSK, et al.

Actually, there are many other matrix completion
researches. Mohimani et al. [21] presented a fast algorithm
based on smooth l0-norm. Ghasemi et al. [22] and Malek-
Mohamma [23] proposed a smooth rank function method.
Wang put forward a novel approach to approximate the
rank function and l0-norm [24]. Li proposed the S-NMF-EC
method [25]. These are good works to solve different low-
rank completion problems. However, extensive comparisons
are beyond the scope of this paper. In this paper, we put
forward a simple and effective low-rank matrix completion
method, modified from SVT. And comparisons are made
between the l1-norm method when dealing with high order
statistics recovery of PSK signals.

The remainder of this paper is organized as follows.
In Section II, we introduce the high order statistics recovery
model based on low-rank matrix completion. In Section III,
we describe the efficient modified SVT algorithm. In Sec-
tion IV, we provide the AMR and parameter rough estimation
strategies. In SectionV,we give some comparisonswith the l1
minimization criteria. We show the efficiency of our method
by simulations in Section VI. Finally, we conclude this paper
in Section VII.

The main contributions of this work lie in each section of
this paper:

(1) We look into the problem of recovering high order
statistics of PSK signals with compressive samples.

(2) We bring up the low-rank completion model for prob-
lem A, which is new and creative.

(3) We put forward a simple and effective algorithm
(TSVT, modified from SVT) to solve the model of problem
B. And give some analyses of the algorithm.

(4) We testify the effectiveness of the model and algorithm
with simulation and used the model to finish the task of
automatic modulation recognition and parameter estimations.

II. RECOVERY OF HIGH ORDER STATISTICS BASED ON
LOW-RANK MATRIX COMPLETION
In this section, we will formulate the problem of recovering
high order statistics of PSK signals as a rank minimization
problem. First, we give some fundamental analysis of PSK
signals’ high order statistics. Based on the analysis, we dis-
cuss the low-rank structure of the high order statistics matrix.
In the end, we model the recovery of high order statistics as
low-rank matrix completion problem.

A. ANALYSIS OF PSK SIGNALS’ HIGH ORDER STATISTICS
It has been long known that the Nth Power Nonlinear Trans-
formation (NPT) is an efficient technique to distinguish some
types of signals [3], e.g., MPSK (M=2, 4, 8), MSK, OQPSK,

FSK and ASK. Different nonlinearities applied to the signals
under classification are used to exploit differences in the high
order moment-spaces. These differences manifest themselves
in spikes of the spectrum of the transformed signals, with
locations determined by carrier frequency and symbol rate
Rs [3]. For simplicity, we only research the characteristics
of MPSK, OQPSK and MSK signals, which are collectively
called PSK signals in this article.

In [3], Reichert analyzed the locations of the spikes gener-
ated by different nonlinearities, but the author failed to give
out the exact amplitudes and locations of the spikes with
Square-Root Raised Cosine (SRRC) Pulse Shape filter. In the
following steps, we compute the analytic expressions for the
amplitudes of the spikes and continuous part of the power
spectral density (PSD) by the example of squared BPSK
signals. For signals with other shape filters, the conclusions
are similar and the low-rank matrix model still applies.

First, we define the signal model. For MPSK, the signal
models are [10]:

sMPSK (t) =

L∑
n=−L

Ag(t − nTs) exp
(
j2π

mn − 1
M

+ j2π fc

)
(1)

where A is the amplitude. Ts = 1/Rs is the symbol period,
and Rs is the symbol rate. M ∈ {2, 4, 8} is the number of
unique phases; mn is the nth transmitted symbol; fc is the
carrier frequency; g(t) is SRRC filter, with the roll-off factor
α (0 < α < 1). The frequent property of g(t) is as follows:

G (f )=


1 |f | <

1 − α

2Ts

cos
[
πTs
2α

(
|f |−

1 − α

2Ts

)]
1−α

2Ts
< |f |≤

1 + α

2Ts

0 |f | >
1 + α

2Ts
(2)

According to (1), it is easy to know that, the expression of
squared BPSK signals is as follows:

s2BPSK (t) = b2n exp(j4π fct + j2φn) + s2cross exp(j4π fct)

= b2n exp(j4π fct) + s2cross exp(j4π fct) (3)

where

b2n (t) = A2
L∑

n=−L

g2(t − nTs) (4)

and

s2cross (t) = A2
∑
n

∑
m̸=n

g(t − nTs)g(t − mT ) exp(jφn + jφm)

= A2
∑
n

∑
m̸=n

anamg(t − nTs)g(t − mT ) (5)

φk ∈ {0, π} is the k-th transmitted symbol’s phase, and
ak = exp(jφk ) ∈ {1, −1} is the k-th transmitted symbol.
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According to the property of Fourier transform, the item
exp(j4π fct) works as frequency shift, which means we only
need to analyze the items b2n(t) and s

2
cross (t).

Since b2n (t) is the periodical extension of g2(t)g2(t), the
Fourier Transform of b2n (t) should be Fourier Series. As the
non-zero bandwidth of g(t) is

(
−(1 + α)

/
2Ts, (1 + α)

/
2Ts

)
,

according to the convolution property of Fourier Trans-
form, the non-zero bandwidth of b2n (t) should be(
−(1 + α)

/
Ts, (1 + α)

/
Ts

)
(0 < α < 1). Thus, we only

need to analyze the coefficients corresponding to f = 0 and
f = ±1/Ts.

According to the convolution property of Fourier trans-
form, the Fourier transform maps the product of two signals
into their convolution. If we denote the Fourier transform of
b2n (t) as B (f ). Then, it can be calculated that:

B (f )
∣∣f=0 = F

[
b2n (t)

]∣∣∣
f=0

= A2 [G (f ) ∗ G (f )]

∣∣∣∣f=0 =
2LA2

Ts
(6)

Proof: See Appendix A.

B (f )
∣∣f=±1/Ts = F

[
b2n (t)

]∣∣∣
f=±1/Ts

= A2 [G (f ) ∗ G (f )]

∣∣∣∣f=±1/Ts =
2LA2

Ts
·

α

π

(7)

Proof: See Appendix B.
According to the periodogram method [26], when calcu-

lating the PSD of corresponding frequency, we only need to
raise the values to the power of 2.

As to the continuous contribution, s2cross (t), it is caused
by the stochastic nature of the modulation signal (self-noise).
Denoting the Fourier transform of s2cross (t) as S (f ), we can
calculate its PSD with the definition [27]:

P (f ) = lim
L→∞

E
[
|S (f )|2

]
(2L + 1)Ts

(8)

It can be calculated that:

P (f ) = lim
L→∞

E
[
|S (f )|2

]
(2L + 1)Ts

= 0 (9)

Proof: See Appendix C.
Based on (9), we know that, as the number of symbols

increases, the stochastic value of the continuous part tends
to zero, which is clearly shown in Fig. 1 (a).

Based on all computations above, it is safe to reach the con-
clusion that, for BPSK signal, the spectrum of BPSK raised
to power 2 is a standard sparse signal, which is applicable to
CS theory. And the ‘Information’, which is concerned by CS
theory, is the spikes of the spectrum. In the following part,
we can see that, the data matrices generated by the samples
are standard low-rank matrices, and the rank of the matrices
are also determined by the spikes.

Other simulation parameters of Fig. 1 are set as follows:
fc = 25Hz, fs = 400Hz, Rs = 100Hz, α = 0.5.

FIGURE 1. Spectrum of BPSK signal raised to power 2.

In the simulations, we set α = 0.5. From (6) and (7), we
know that,

λ =
B (f )

∣∣f=±1/Ts

B (f )
∣∣f=0

=
α

π
=

0.5
π

≈ 0.1592 (10)

In Fig. 1(a)-Fig.1(c), we can see, the simulation results
of λ approximate the theoretic value.

Moreover, what needs to be pointed out is that, the con-
tinuous part of the spectrum will not approximately equal to
zero, when the number of symbols is not large enough. But
empirically, as long as the number of symbols is no less than
several hundreds, which is not a strict restraint in practice,
the spikes of the spectrum would be obviously of larger
amplitudes than that of the continuous part. This situation is
shown is Fig. 1(b). And only the spikes are what we concern,
the continuous part is actually redundant structure. As shown
below in Table 1 and Table 2, since we only need to extract
the spikes of the spectrum, the sequence of the spectrum can
be regarded a compressible signal, where CS theory can be
applied.
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An additional advantage of high order statistics is that
when mixed with noise, the features of spikes are ‘unbiased’
in the sense that the noise, if uncorrelated, does not cause
additional spikes which could be regarded as modulation.
For the commonly seen Additive White Gaussian Noise
(AWGN), as the noise obeys uniformly random distribution,
is statistically independent with the signals, all aliases are
shaped into constant floor along the whole spectrum. In this
case, as long as the Signal to Noise Ratio (SNR) is high
enough, the spikes are still much higher than the floor, and
the CS theory still applies. BPSK signal mixed with AWGN
is shown in Fig. 1 (c).

The computations for the other modulations and nonlinear-
ities of higher order are more tedious but follow in similar
way. The spectrum features of PSK signals are shown in
Table 1 and Table 2.

B. LOW-RANK MATRIX STRUCTURE
From Table 1, we can see that, the number of spikes (denoted
as r) in Nth power spectrum is no more than 7, that means we
the signals of nonlinearities can be characterized mainly by
complex sinusoidal signals. For a given complex sinusoidal
signal,

u (t) = ejωt (11)

we can see that,

u (t + 1) = u (t) · ejω (12)

From (12), we can see that, it is an order-1 procedure for a
given complex sinusoidal signal.

For a given PSK signal s = [s(1), · · · , s(L)]T , we denote
sN as the Nth power transformed forms:

sN = [sN (1), · · · , sN (L)]T (13)

Then, sN is an order-r procedure, where r is decided by
Table 1.
Consider the matrices O1 and O2 constructed by stacking

all the entries of sN defined as below.
Suppose L = 2l0(l0 ∈ N) (if not, we can always discard

some entries of sN to satisfy the requirement), we define O1
as,

O1 =


sN (1) sN (2) sN (l0 + 1)
sN (2) sN (3) · · · sN (l0 + 2)

...
...

...

sN (l0) sN (l0 + 1) sN (L)

 (14)

Similarly, suppose L = l21 (l1 ∈ N) (if not, we can
always discard some entries of sN to satisfy the requirement),
we define O2 as,

O2 =


sN (1) sN (l1 + 1) sN (l21 − l1 + 1)
sN (2) sN (l1 + 2) · · · sN (l21 − l1 + 2)

...
...

...

sN (l1) sN (2l1) sN (L)

 (15)

Considering the sequence of entries in the same row or line
in stacking matrices, we can see that, they are also an order-r
procedure.

Clearly, irrespective of the number of entries L and the
stacking method, the rank of O1 and O2 is r .
Here, we can name the stacking methods of O1 and O2

as crossover stacking method and non-crossover stacking
method. Empirically, for a given L, we find the crossover
stacking method has stronger anti-noise ability, as most ele-
ments are used many times and it has much more redundant
information; while for a given stacking matrix size, which
determines the algorithm complexity, the non-crossover
method can stack a larger L, and this would bring a more
precise result in turn.

Of course, there are many other methods of data stacking.
In our discussions and simulations below, we simply use the
non-crossover stacking method.

Take BPSK signal as an example,

sBPSK = [s1, · · · , sL]T (16)

BPSK signal raised to power 2 is donated as,

sBPSK2 = [s21, · · · , s2L]
T (17)

Stacking matrices O1 and O2 are defined as,

O1 =


s2 (1) s2 (2) s2 (l0 + 1)
s2 (2) s2 (3) · · · s2 (l0 + 2)

...
...

...

s2 (l0) s2 (l0 + 1) s2 (L)

 (18)

O2 =


s2(1) s2(l1 + 1) s2(l21 − l1 + 1)
s2(2) s2(l1 + 2) · · · s2(l21 − l1 + 2)

...
...

...

s2(l1) s2(2l1) s2(L)

 (19)

According to Table 1,O1 andO2 both are rank-3 matrices.
In Section II-C, wewill cast the rankminimization problem

as nuclear norm minimization problem of the data matrices,
which is the tightest convex relaxation of the former. Thus,
we can validate the rank of the data matrices by the singular
values. Take BPSK signal raised to power 2 as an example,
the singular values of datamatrix with non-crossover stacking
method are simulated.

In Fig. 2 (a) and Fig. 2 (b), the singular values are sorted
according to their amplitudes. Parameters of simulations are
as follows: fc = 0Hz, fs = 2.4kHz, Rs = 800Hz, Ns = 216,
α = 0.5. These two figures illustrate the statement above
that, there are three major singular values of the data matrix.
Judging from their amplitudes and the calculation results of
(6) -(7), we know that, the largest singular value corresponds
to the spike of carrier frequency, while the second and the
third singular values correspond to the two spikes of symbol
rate. The rest singular values correspond to the continuous
part of the spectrum.

Since we cast the rank of matrix as nuclear norm, the
simulations validate the data of Table 1 that, the spikes’
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number in spectrum of sBPSK2 is 3. Besides, from Fig. 2 (b),
we can calculate the ratio of the second/ third singular value
to the first singular:

λ1 = 47.8491/
295.2675 = 0.1620 (20)

λ2 = 47.5128/
295.2675 = 0.1609 (21)

Based on the discussion in the last two paragraphs,
we know the theoretic value of λ1 and λ2 should be identical
with λ, which is calculated in (10). We can see the simulation
results indeed approximate that of λ.

FIGURE 2. Singular values of data matrix with non-crossover stacking
method for BPSK signal raised to power 2.

C. MODELING OF LOW-RANK MATRIX COMPLETION
1) LOW-RATE NONUNIFORM COMPRESSIVE SAMPLING
AND LOW-RANK MATRIX COMPLETION PRELIMINARIES
As discussed above, the stacking matrices O1 and O2 have
low-rank structures, which can be recovered from limited
observations of sN . This may arise when data defi-
ciency occurs on the samples. However, one more signif-
icant application is for nonuniform compressive sampling
(NCS) [6], [8], [28].

NCS was first proposed by Candès et al. [28], the low-
rate NCS is applicable to the sparse or compressible signals
in frequency domain. In NCS strategy, an analog signal is
sampled nonuniformly with random intervals between the
sampling times. Usually, these random intervals are integer
multiples of a fixed finer sampling interval (which is at least
as fine as the Nyquist-rate sampling interval).

If we let s denote a hypothetical length-L vector of Nyquist-
rate samples of some underlying analog signal r(t):

s = [s1, s2, · · · , sL]T = [r(t0), r(t1), · · · , r(tL−1)]T (22)

where tl = lTs(l ∈ N) and Ts is a sampling interval that is
no larger than the Nyquist-rate sampling interval. In previous
papers [6], [10], the authors directly collect a random subset
ofM samples from the L entries of s. The NCS procedure can
be represented as:

y = 8s (23)

where8 is a randomly generated matrix containing a single 1
in each row. For example, if M = 5,L = 10, one realization
of 8 is:

8 =


1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1

 (24)

then, we would have the NCS sequence:

y = [y1, y2, y3, y4, y5]T = [s1, s3, s6, s8, s10]T (25)

As can be seen, the measurement matrix 8 fulfils the
function of randomly sampling of s.

It is proven that, if we denote 9 as the L × L DFT

matrix, then A =

√
L
/
M · 89 satisfies the RIP of order

M
/
log4 L [39]. This is the reason why we can recover the

sparse spectrum of PSK signals’ high order statistics in our
previous paper [13], with low-rate nonuniform samples.

In this section, we will cast the problem of recovering high
order statistics of PSK signals as a sparse low-rank matrix
completion model with low-rate nonuniform samples.

Recently, there is rapidly growing studies in the recovery of
partial unknown low-rank or approximately low-rank matrix
from limited entries. This problem has widespread uses, such
as machine learning [16], [17], [18], control [19] and so
on [20].

In previous studies [22], Candès and Recht proved that,
most low-rank matrices can be recovered exactly by solving a
convex optimization problem. If the unknown matrix is M ∈

Rn1×n2 , n = max (n1, n2), with available m sampled entries{
Mij : (i, j) ∈ �

}
, and � is a random subset of cardinality

m. It has been proven [29] that, most low-rank matrices can
be perfectly recovered by solving the following optimization
problem.

min ∥X∥∗

s.t. X(i, j) = M(i, j), (i, j) ∈ � (26)

provided that the samples number satisfies m ≥

Cn6/5r log n, where C is a positive numerical constant.
In (26), ∥·∥∗ is the nuclear norm, which is the sum of

singular values. In some sense, (26) is the tightest convex
relaxation of the NP-hard rank minimization problem:

min rank(X)

s.t. X(i, j) = X(i, j), (i, j) ∈ � (27)
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TABLE 1. Number of discrete peaks for PSK type signal.

TABLE 2. Peak lines in different nonlinearities for PSK type signals N: None. Y: Exist (n ∈ Z).

2) MODELING RECOVERY OF HIGH ORDER STATISTICS AS
LOW-RANK MATRIX COMPLETION
Having got theNCS sequence y, we can get the corresponding
NPT forms of y, which is donated as yN :

yN = [yN1 , yN2 , · · · , yNM ]T (28)

Thanks to the structural property of 8, we have actually
finished randomly sampling of sN :

yN = 8sN (29)

Then, we can stack the sequence yN into the stacking
matrices OyN , with crossover or non-crossover methods.
In order for computation and expression simplicities, we set
the sampled entries of OyN as yNk (k = 1, 2, · · · ,M ), and the
unsampled entries as zeros. So that, OyN is of the same size
as OsN (the stacking matrix of sN ). In fact, we can discover
that, the non-zero entries ofOyN is a random sampling subset
of OsN .
As discussed above, OsN is a rank-r matrix. Therefore,

we come to the conclusion that, recovering OsN from OyN
is a low-rank matrix completion problem:

Pr : min rank(OsN )

s.t. OsN (i, j) = OyN (i, j), (i, j) ∈ � (30)

where � is a random subset of cardinality m. As to the
NCS method, � is determined by the measurement matrix
8. Of course, we can also implement the randomly sampling
by directly sampling the signals after NPT, and the low-rank
matrix completion model is the same as (30).

In fact, (30) is a NP-hard and non-convex problem, whose
tightest convex relaxation form is as follows:

P∗ : min
∥∥OsN

∥∥
∗

s.t.OsN (i, j) = OyN (i, j), (i, j) ∈ � (31)

where ∥·∥∗ is the nuclear norm.
It has been proven by [29] that, most matrices OsN of

rank r can be perfectly recovered by solving the optimization
problem (31).

In practice, the low-rank structure of the stacking matrix
OsN is seldom observed. This is due to the presence of noise in
practical data as well as the continuous part of the spectrum.
In this condition, the stacking matrix O1

SN
of practical data

can be discomposed as follows:

O1
SN

= OsN + E (32)

whereE is the noise matrix, andOsN is the signal data matrix.
Considering the existence of noise, the model proposed

by (31) should be rewritten as follows:

P∗,1 : min
∥∥OsN

∥∥
∗

s.t.
∥∥P�(OsN − OyN )

∥∥
F ≤ σ (33)

where σ is the parameter controlled by the noise level. P� is
the orthogonal projector onto the span of matrices vanishing
outside of �, so that the (i, j)th component of P�(X) is equal
to Xij if (i, j) ∈ � and zero otherwise.
However, in practical situation, the noise level of σ is

unknown. Based on the discussion above, we know that,
the matrix OsN is of low-rank structure. However, thanks to
the existence of E, the low-rank structure of O1

SN
has been
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destroyed. In fact, there are few theories of low-rank matrix
recovery from noisy data at the moment, and the related
study is obviously beyond the scope of this paper. In this
paper, we give an alternative method by proposing a modified
model.

D. MODIFIED MODEL OF DATA RECOVERY
It is clearly stated in (32) that, while getting the practical
data matrix O1

SN
, only the signal data matrix OsN is low-

rank, which is desired by us. Moreover, the rank of OsN is
determined by Table 1, which is known to us. From this point
of view, we can see model of (31) inversely.

On account of the analysis, we can rewrite (33) into a more
reasonable form:

P∗,2 : min
∥∥P�(OsN − OyN )

∥∥
F

s.t.
∥∥OsN

∥∥
∗

≤ r∗ (34)

where r∗ is a preset parameter.
Now, we have established the basic model used to recover

high order statistics of PSK signals. In the following part,
we will discuss how to solve (34) efficiently.

III. EFFICIENT SOLUTION VIA CONVEX OPTIMIZATION
In [23], Cai, Candès, and Shen gave the SVT algorithm for
the solution of matrix completion problem of large scale.
However, the authors failed to handle the noisy sampled
situation properly with unknown level of noise energy. Here,
based on the model (34), we propose Truncated Singular
Value Threshold (TSVT) algorithm.

As discussed in Section II, when the signal sampled is
mixed with AWGN, or existing continuous part of spectrum
as to the number of the symbols is not large enough, the
stacking matrices are not strictly low-rank matrices and there
may be no low-rank matrix matching the noisy data. When
utilizing the SVT algorithm directly, we find the rank of
recovered stacking matrix is divergent. That means we can’t
get the stopping criterion by only exploring the recovering
error or the maximum iteration count, as the SVT algorithm
proposed.

In Fig. 3, BPSK signal raised to power 2 is simulated.
Simulation parameters are as follows: fc = 0Hz, fs =

2.4kHz, Rs=800Hz, SNR=10dB, Ns =212, L = 12288.

FIGURE 3. Rank of recovered matrix is divergent in practical applications.

Maximum iteration number is set 200. We only randomly
sample 1296 entries (about 10.5%) of the signal.

Although we know the rank of the recovered data matrix
is 3, the rank of the recovered matrix increases with the
iteration. When the iteration stops at the set count, the final
rank of the data matrix is much larger than 3, as Fig. 3 shown.
In order to describe TSVT algorithm, we give some defi-

nitions, cited from SVT [29], which are also used in TSVT
algorithm.

In SVT algorithm, the shrinkage iterations are as fol-
lows [29]: {

Ok
sN = Dτ (Yk−1)

Yk
= Yk−1

+ δP�(OyN − Ok
sN )

(35)

where Dτ is the soft-thresholding operator defined in [29].

Algorithm 1Truncated Singular Value Thresholding (TSVT)
Algorithm
Input: sampled set � and sampled entries P�(OyN ), step size δ,
tolerance ò, parameter τ , increment ℓ, maximum iteration count
kmax , and maximum rank rmax .
Output: U, 6,VandOopt

sN (Oopt
sN = U6V∗), iteration count k .

Description: Recover a low-rank matrix Oopt
sN from a subset of

randomly sampled entries.
1. Set Y0

= k0δP�(OyN ) (k0 is defined below)
2. Set r0 = 0
3. for k = 1 to kmax
4. Set sk = rk−1 + 1
5. repeat
6. Compute [Uk−1, 6k−1,Vk−1]sk
7. Set sk = sk + ℓ

8. until σ k−1
sk−ℓ ≤ τ

9. Set rk = max{j : σ k−1
j > τ }

10. Set Ok
sN =

∑rk
j=1(σ

k−1
j − τ )uk−1

j vk−1
j

11. if ∥P�(Ok
sNOyN )∥F/∥P�OyN∥Fε or rk ≥ rmax then

break

12. SetYkij =

{
0if(i, j) /∈ �

Yk−1
ij + δ(OyN (i, j) − Ok

sN (i, j)) if (i, j) ∈ �

13. end for k
14. Set Oopt

sN = Ok
sN

Note: k0 is an integer defined in SVT algorithm, which is relate to
the rank of the data matrix. The reviewer can refer to reference [23],
pp18.

For convenience, we define for each nonnegative integer
s ≤ min{n1, n2},

[Uk , 6k ,Vk ]s, k = 1, 2, · · · (36)

where Uk
= [uk1, · · · , uks ] and Vk

= [vk1, · · · , vks ] are the
first s singular vectors of the matrix Yk , and 6k is a diagonal
matrix with the first s singular values σ k1 , · · · , σ ks on the
diagonal.

For more information of SVT algorithm, readers can refer
to paper [30] for details.

As mentioned above, there are few low-rank matrix recov-
ery algorithms from noisy data, and the relative theory is
far beyond the scope of this paper. However, by exploring
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the intrinsic properties of high order statistics of PSK sig-
nals, we propose the Truncated SVT (TSVT) algorithm here,
which is described in Algorithm 1.

The most significant difference between TSVT and SVT
lies in the stopping criterion. For the original SVT algo-
rithm, the iteration stops when the relative recovering error is
small enough or the iteration count comes to the set number.
As to the existence of unknown level of noise in practice
condition, the relative recovering error criterion is barely
satisfied, and the iteration will always come to the largest set
number, while the rank of recovered Oopt

sN is far beyond the
theoretical rank r .
We know that, only the first r singular vectors and first r

singular values contain useful information. Considering this,
we set the rank of the recovered matrix,Ok

sN , as one stopping
criterion. Just as Algorithm 1 shows, once the rank ofOk

sN has
reached the set count rmax , the algorithm will break.

IV. AMR AND PARAMETER ROUGH ESTIMATIONS
STRATEGIES
As highlighted in our introduction and paper of Reichert [3],
we can use the high order statistics to fulfill the tasks of AMR
and parameter rough estimations.

After recovering the stacking matrix Oopt
sN , we can get the

original signal sequence sN . Then, we can get the spectrum
of sN , donated as fN (N=2, 4, 8), with which we can finish
the tasks of classification and estimations based on Table 1
and Table 2.

In TSVT algorithm, there is a key parameter, rmax , which
should be set manually. For different applications, the values
of rmax should be set differently.
In fact, from the discussion above, we know that, every

singular vector and the corresponding singular represent a
complex sinusoidal signal, which are used for classification
and estimations.

A. AMR STRATEGY
As shown in Fig. 1(c), when mixed with noise, the energy
of NPT signals is spread in the whole spectrum. To decrease
the computation complexity of classification, we need to
reduce the dimension of the data. There are many classical
methods to realize the purpose, such as PCA,MDS, et al. [31].
Considering the TSVT algorithm arranges the singular values
in descent order, the TSVT algorithm can automatically finish
the task of principal component analysis.

Theremany criteria to choose rmax based on different AMR
strategies. Here, we simply set rmax = 8, and use Support
Vector Machine (SVM) to implement AMR efficiently.

Besides, according to Table 1, to distinguish BPSK signals,
we only need f2. With f2 and f4, we can distinguish QPSK,
OQPSK and MSK. As for 8PSK, it needs to make full use of
f2, f4 and f8. Thus, we can design the AMR strategy as Fig. 4.
We use a random sampler at Sub-Nyquist rate to sample the
analog signals. After Nth Power Transform of the samples,
we can get the recovered NPT signal sN with maximum rank
rmax . Having gotten the corresponding spectrum fN , it is sent

to SVM, which will make the final decision as a classifier.
In our simulations in Section VI, we use the SVM toolbox
(libsvm) provided by Chih [41] as the classifier.

B. ESTIMATIONS OF fc AND Rs
For the tasks of carrier frequency and symbol rate estima-
tions, we only need to extract the first r singular values and
the corresponding singular vectors, which means rmax =

r + 1. Thus, the corresponding fN would contain mainly r
discrete peaks.

Take QPSK signals for example. If we donate A1,A2,A3
as the locations of three dominant peaks of f4, and it can be
calculated that:

f̂c = A1
/
4

(
or(A2 + A3)

/
8
)

(37)

R̂s = |A3 − A2|/2 (38)

The parameters estimation methods for other modulations
follow in the same way. Authors can refer to Table 2 for the
specialized estimation methods.

V. COMPARISON WITH l1 MINIMIZATION
In our previous studies [13], [14], we have researched the
tasks of AMR and parameter estimations of PSK signals
based on CS theory. In this section, we will give some com-
parisons between l1 minimization model and nuclear-norm
minimization model.

A. MINIMUM SAMPLING NUMBER
For simplicity, we can define the compression factor as:

β = M/L (39)

whereM is the number of NCS.
It is easy to understand that, the compression ratio

increases as β decreases.
In our previous paper [13], we use NCS just as Section II

discussed. After getting yN , we can recover the spectrum of
yN by the following model:

P1 : f̂N = argmin ∥fN∥1 s.t.yN = 89fN (40)

where 9 is the L × L DFT synthesis matrix, working as the
sparsifying matrix.

It has been discussed in Section II-C that, the minimum
sampling numberM1 should be no less than r · log4(L). Here,
we denote the model as Model I.

In our previous paper [14], we realized the purpose of
AMR based on CS theory by using compressive sampling
of signals after NPT. The measurement matrix 8 ∈ RM×L

used is Gaussian random matrix. In this case, the minimum
sampling numberM2 is of order r log

(
L
/
r
)
[40]. The recov-

ering model is the same as (40). And we denote this model as
Model II.

As discussed in Section II, the minimum sampling number
M3 required by the low-rank model should be more than
n6/5r logn = 1/2L3/5r logL (n = L1/2 for non-crossover
stacking).
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FIGURE 4. The proposed AMR scheme.

Here, we have to point out that, the minimum sam-
pling number stated above is a sufficient but not necessary
condition.

Intuitively, we can get the conclusion that,

M1,M3 ≫ M2 (41)

But as what will be discussed below, the current l1 opti-
mization method can hardly deal with sN (or fN ) of the
scale larger than several thousands. In this condition, fN is
not strictly sparse (the corresponding stacking matrix is not
strictly of low-rank structure). Thus, the minimum sampling
numbers would be larger than the theoretical values. In our
simulations previously [13], [14], the compression factor is
usually set 0.2-0.3. For the low-rank model proposed in the
paper, we denote it as Model III. When dealing with small
number of symbols, the compression factor is 0.2-0.3, too.
But the compression factor can be much smaller (i.e., the
compression ratio can be much larger) if the symbol number
is large enough, in which condition, the l1 minimization
algorithm is hard to deal with. In our simulations, we can set
the compression factor of Model III as 0.05 or smaller.

B. COMPUTATION COMPLEXITY
As for the convex optimization models, one important prob-
lem is the computation complexity.

Traditionally, P1 is formulated as a linear programming
(LP) problem, basis pursuit (BP) for example [32], or approx-
imately solved by heuristic greedy algorithms, which are
much faster than LP methods. The greedy algorithms, how-
ever, may fail in some conditions [33]. Readers are referred
to [34] and [35] for more details of the techniques.

Homotopy method is a fast algorithm that is suitable
for large-scale applications to solve P1. The complex-
ity of the homotopy algorithm is O(M2

+ ML) for each
iteration [36], [37], [38].

As to Algorithm 1, each iteration requires a SVD compu-
tation that has a complexity of O(n1n22). However, to speed
up the algorithm, we can compute only partial SVDs in each
iteration since we expect the optimal solution to have rank at
most 7.

Thus, the complexity of each iteration reduces to O(ln1n2)
[30]. With non-crossover method, we know that O(ln1n2) =

O(lL) (n1 = n2 = L1/2), where l is the number of singular
vectors computed in each iteration. It can be seen easily from
Algorithm 1 that, l < rmax and l is much smaller than M
and L. That means, the complexity of P∗,2 is only linearly.

dependent on the dimension of signal sequence, and is much
smaller than that of 220, i.e., O(lL) ≪ O(M2

+ML)1024.
Since the computation cost of P∗,2 is much smaller,

it means the low-rank model we proposed here can deal with
large-scale problems. In our simulations, the proposed algo-
rithm can solve problems, in Matlab, involving sequences of
size 220 (stacking matrices of size 1024×1024) in 30 seconds
having 70% unknowns on a standard desktop computer with
a 2.6 GHz CPU (i-5 4300M) and 16 GB of memory. As to
the model of P1, the computation time would more than
3 minutes for a sequence of size 214, and would be out of
memory for larger scale.

C. COMPUTATION PRECISION
It is difficult to estimate the computation precision exactly.
But the statistical characters we use here for AMR and param-
eters estimations concern much about the symbol number.
The ability of dealing with data of much larger scale means
we can get much more precise results.

VI. SIMULATION RESULTS
In this section, we verify the efficacy of the low-rank model
proposed in the paper. We would give the simulation results
of AMR and parameters estimations.

In this section, we use BPSK, QPSK, 8PSK, OQPSK
and MSK signals under different scenarios to evaluate the
performance of our model. The simulation results contain the
correct ratio of recognition and carrier frequency estimation
of QPSK signal with f4.
In the following simulations, the simulation results with

uniform samples corresponding to the ‘Nyquist’ curves. And
the ‘TSVT’ curves represent the results of NCS.

A. VALIDATION OF TSVT
Simulation parameters are set as follows: fc = 0Hz, Rs =

800Hz, fs = 2.4kHz, α = 0.5, symbol number Ns = 212,
SNR=10dB. Length of s is L= 12288. We only randomly
sample 1296 entries of the signal. Thus, β ≈ 0.105.

Fig. 5 (a) depicts the original spectrum of BPSK signal
raised to power 2. The amplitudes of spikes are also given
in the figures.

The ranks of recovered data matrix by original SVT algo-
rithm are shown in Fig. 3. In the simulation, the maximum
iteration number is 200. We can see the rank is divergent.

Fig. 5 (b) depicts the partially amplified result of Fig. 3.
We can see that, the rank of recovered data matrix quickly
comes to 3, which is the theoretical value. But as the practical
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FIGURE 5. Simulations results of TSVT algorithm with BPSK signal raised
to power 2.

data sampled is not strictly low-rank, the recovery algorithm
won’t stop.

For PSK signal recognition and parameter estimations,
we only need to retain the first 3 singular values and the
corresponding singular vectors.

Fig. 5 (c) shows the recovered spectrum of BPSK sig-
nal raised to power 2, with the result of 200 iterations,
which is the calculation result with original SVT algorithm.
In Fig. 5 (c), apart from 3 major spikes, there are many
other noise spikes. This is due to the concentration of noises’
energy in a few spikes. This causes that the spikes correspond-
ing to noises are higher than the noise floor of Fig. 5 (a).
Obviously, this is not an ideal result for AMR and parameter
estimations.

FIGURE 6. Simulation results of AMR and estimation of carrier frequency
with small scale of data.

Fig. 5 (d) shows the recovered spectrum with TSVT algo-
rithm. In the algorithm, we simply set rmax = 4. (For
BPSK signal raised to power 2, the rank of data matrix is 3.)
We can see that, the spectrum shown in Fig. 5 (d) recovered
the 3 major spikes without other noise spikes. This result is
more suitable for AMR and parameter estimations.

B. PSK SIGNAL CLASSIFICATION AND PARAMETER
ESTIMATIONS WITH SMALL SCALE OF DATA
In this part, we testify our model and algorithm with small
scale of data. Parameters are set as follows: fc = 0Hz, Rs =

800Hz, fs = 2.4kHz, Ns = 212, L = 12288. As to the data
of this scale, the P1 minimization model can still address,
even though a little laborious with the computer configuration
features mentioned in Section V-B. The simulation results of
P1 minimization model is shown in [13] and [14].

1) VARY SNR
In this part, we set β = 0.3, which meansM = 0.3L ≈ 3686.

In the following simulations, we define η as the rate of
correct classification.

Fig. 6 (a) and Fig. 6 (b) depict the rate of correct
classification of PSK signals versus varying signal-to-noise
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FIGURE 7. Rate of correct classification of BPSK signals with small scale
of data.

ratios (SNR). Fig. 6(c) shows the estimation results of carrier
frequency of QPSK signal. From Fig. 6(a) and Fig. 6(b),
for a given accuracy rate of classification, AMR using NCS
requires about 4∼6 dB (7dB for MSK) of SNR more than
uniform sampling. From Fig. 6(c), it is about 2dB for the
estimation of carrier frequency.

2) VARY COMPRESSION FACTOR
In this part, we set SNR=3dB, and all other parameters are
the same with part 1). We validate our model under different
compression ratio for BPSK signal.

From Fig. 7, we can see that, with the set parameters,
we can achieve almost 100 percent correct classification rate
when β is greater than 0.3.

We make the following observations with regards to the
simulations. First, as SNR increases, the correct classification
rate and parameter estimation accuracy increase. Second, the
correct classification rate increases as β increases (i.e., the
compression ratio decreases).

Analyzing the simulation results, we hold the conclusion
to be obvious that, when SNR is too low, the model we pro-
posed is inferior to the Nyquist uniformly sampling method.
We ascribe the reason to the high-level energy of noise and
existence of the continuous part of the spectrum. All these
factors contribute to the inaccuracy of the sparse model.
When SNR goes high enough, our model becomes more
applicable.

On the other hand, compared with Nyquist uniformly sam-
pling method, the model we proposed here has a compression
factor of 0.3 for simulations of Fig. 6. This is quite a benefit.

C. PSK SIGNAL CLASSIFICATION AND PARAMETER
ESTIMATIONS WITH LARGE SCALE OF DATA
In this part, we testify our model and algorithm with larger
scale of data. The parameters are as follows: fc = 0Hz, Rs =

800Hz, fs = 2.4kHz, Ns = 217, L = 393216. As to data of
this scale, the P1 minimization model can hardly address, due
to too much memory required. However, our model proposed
here can still solve the problem easily.

1) VARY SNR
In this part, we set β = 0.3. Thus, the number of compressive
samples isM = 0.3L ≈ 117965.

FIGURE 8. Simulation results of AMR and estimation of carrier frequency
with large scale of data.

Fig. 8 (a) and Fig. 8 (b) depict the rate of correct classifi-
cation of PSK signals versus varying SNR. Fig. 8 (c) shows
the estimation results of carrier frequency of QPSK signal.
From Fig. 8 (a) and Fig. 8 (b), for a given accuracy rate of
classification, AMR using NCS requires about 2 dB more of
SNR for BPSK, 8PSK and OQPSK than uniformly sampling.
While for QPSK and MSK, the requirement is about 4dB.
From Fig. 8 (c), it is about 4dB for the estimation of carrier
frequency.

From the simulations, we can see that, as the number of
symbols increase, the classification and parameter estimation
accuracies also improve a lot.

2) VARY COMPRESSION FACTOR
In this part, we set SNR=1dB, and all other parameters are
the same with part 1). We validate our model under different
compression ratio for BPSK signal.

From Fig. 9, we can see that, with the set parameters,
we can achieve almost 100 percent correct classification rate
when the compression factor is greater than 0.027.

Compared with Fig. 7, we can see that, even we set a worse
SNR here, the compression ratio can improve 10 times more
(0.3

/
0.027 ≈ 11.1).
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FIGURE 9. Rate of correct classification of BPSK signals with large scale
of data.

Compared with the simulation results of Section VI-B,
we can see that, when the symbol number is large enough,
our model can achieve quite good effects.

We make the following observations with regards to the
simulations. First, as the symbol number processed increases,
the classification and parameter estimation performances
upgrade for a given SNR. This is due to the statistical char-
acters we use here concern much about the symbol number.
Second, as the symbol number processed increases, the com-
pression factor can be quite low. Besides, the performance
differences between our model and that of the Nyquist uni-
form sampling decrease a lot. This is because the low-rank
structures become more distinct.

We hold the conclusion to be self-evident that, when the
symbol number is large, the data matrices have better low-
rank structures. Thus, our model here works better.

VII. CONCLUSION
In extending the method of AMR from CS to low-rank matrix
completion theory, we proposed the recovery method of high
order statistics of PSK signals based on low-rank matrix
completion and an efficient solution algorithm. We also con-
sidered specifically the applications of AMR and parame-
ter estimations. Simulations provide promising classification
and parameter estimation results even when the compression
factor is very low. Our work can also extend to some other
kinds of signals, and potentially enable AMR for high band-
width signals with much lower sampling rate.

In this paper, we did not discuss the classification strategy,
which is quite fundamental for the accurate classifications.
In practice, it is necessary to design an excellent classification
scheme. We have used SVM to classify the signals.

As discussed in the introduction, there are many other
low-rank matrix completion methods. TSVT(SVT) is only a
simple testification of the low-rank model we proposed in
the paper. In our future work, more accurate and efficient
low-rank matrix completion will be explored.

APPENDIX A
PROOF OF (6)

B (0) = B (f )
∣∣f=0

= F
[
b2n (t)

] ∣∣f=0

= 2A2L [G (f ) ∗ G (f )]
∣∣f=0

= 2A2L
∫ 1+α

2Ts

−
1+α
2Ts

G2 (f ) df

= 2A2L


∫ −

1−α
2Ts

−
1+α
2Ts

1+cos π(−2Tsf−1+α)
2α

2 df

+
∫ 1+α

2Ts
1−α
2Ts

1+cos π(2Tsf−1+α)
2α

2 df +
∫ 1−α

2Ts

−
1−α
2Ts

1df


= 2A2L (A0+B0+C0) (42)

where F[·] denotes Fourier transform, and A0, B0, C0 are
defined as follows:

A0 =

∫
−

1−α
2Ts

−
1+α
2Ts

1 + cos π(−2Tsf−1+α)
2α

2
df

B0 =

∫ 1+α
2Ts

1−α
2Ts

1 + cos π(2Tsf−1+α)
2α

2
df

C0 =

∫ 1−α
2Ts

−
1−α
2Ts

1df (43)

Now, we will calculate A0, B0, C0 separately:

A0 =
1
2

[
1 + α

2Ts
−
1 − α

2Ts
+

∫
−

1−α
2Ts

−
1+α
2Ts

cos
π (2Tsx + 1 − α)

2α
dx

]

=
1
2

[
α

Ts
+

α

πTs
sin

π (2Tsx + 1 − α)

2α

∣∣∣∣− 1−α
2Ts

−
1+α
2Ts

]

=
1
2

[
α

Ts
+

α

πTs
sinπ

]
=

α

2Ts
(44)

B0 =
1
2

[
1 + α

2Ts
−
1 − α

2Ts
+

∫ 1+α
2Ts

1−α
2Ts

cos
π (2Tsx + 1 − α)

2α
dx

]

=
1
2

[
α

Ts
+

α

πTs
sin

π (2Tsx + 1 − α)

2α

∣∣∣∣ 1+α
2Ts

1−α
2Ts

]

=
1
2

[
α

Ts
+

α

πTs
sinπ

]
=

α

2Ts
(45)

C0 =
1 − α

2Ts
+

1 − α

2Ts
=

1 − α

Ts
(46)

Then, we come to the result that,

B (0) = B (f )
∣∣f=0 = 2A2L (A0+B0+C0) =

2LA2

Ts
(47)

APPENDIX B
PROOF OF (7)
According to the symmetry, we know that,

B (−1/Ts) = B (1/Ts) (48)
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and we can calculate their values as follows:

B (−1/Ts)

= B (1/Ts)

= B (f )
∣∣f=1/Ts

= F
[
b2n (t)

] ∣∣f=1/Ts

= 2LA2 [G (f ) ∗ G (f )]
∣∣f=1/Ts

= 2LA2
1+α
2Ts
∫
1−α
2Ts

cos
[
πTs
2α

(
f −

1 − α

2Ts

)]

·cos
[
πTs
2α

(
−f +

1
Ts

−
1 − α

2Ts

)]
df

= 2LA2
1+α
2Ts
∫
1−α
2Ts

cos
[
πTs
2α

(
f −

1 − α

2Ts

)]

·cos
[
πTs
2α

(
f −

1 + α

2Ts

)]
df

= 2LA2
1+α
2Ts
∫
1−α
2Ts

1
2

{
cos

[
πTs
2α

(
2f −

1
Ts

)]
+ cos

π

2

}
df

= 2LA2
1+α
2Ts
∫
1−α
2Ts

1
2
cos

(
πTs
α

f −
π

2α

)
df

=
αLA2

πTs
sin

(
πTs
α

f −
π

2α

)∣∣∣∣ 1+α
2Ts

1−α
2Ts

=
2LA2

Ts
·
α

π
(49)

APPENDIX C
PROOF OF (9)
Firstly, we should give out the calculation of S(f ), which is
the Fourier transform of s2cross (t):

S (f ) =

∞∫
−∞

s2cross (t) e
−j2π ftdt

= A2
∑
n

∑
m̸=n

anam

∞∫
−∞

g(t − nTs)g(t − mTs)e−j2π ftdt

= A2
∑
n

∑
m̸=n

aname−j2π fnTs
∞∫

−∞

g(t)g(t − (n− m)Ts)

×e−j2π ftdt

= A2
∑
n

∑
m̸=n

aname−j2π fnTsGn−m (f ) (50)

where

Gn,m (f ) =

∞∫
−∞

g(t)g(t − (n− m)Ts)e−j2π ftdt (51)

Then, we have,

|S (f )|2

= S (f ) S∗ (f )

=

∑
n

∑
m

∑
k

∑
l

anambkblej2π f (k−n)TsGn−m(f )G∗
k−l(f )

(52)

Thus, the corresponding expectation is as follows:

E[|S(f )|2]

=

∑
n

∑
m̸=n

∑
k

∑
l ̸=k

E(anambkbl)ej2π f (k−n)TsGn−m(f )G∗
k−l(f )

(53)

Since an, am, bk , bl are IID random sequences in {1, −1},
it is easy to know,

d = anambkbl =

{
1 P=0.5
−1 P=0.5

(54)

Then, we can conclude that,

E(anambkbl) = 0 (55)

That is to say,

P (f ) = lim
L→∞

E
[
|S (f )|2

]
(2L + 1)Ts

= 0 (56)
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