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ABSTRACT Location spoofing is a critical attack in mobile communications.While several previous studies
investigated the detection of location spoofing attacks, they are limited in their performance and lack the
consideration of emerging attack variations. In this paper, we present a data-driven methodology for the
reliable detection of location spoofing and its variations. To enhance the performance, we introduce and
utilize a new set of features, which is differential in nature and enables the checking of themobility constraints
and inconsistency. Our comparison study with the previous research shows that the presented scheme using
the new features significantly improves the accuracy and reliability of the detection against location spoofing
attacks. To take the possibility of attack variations into account, we establish a set of scenarios manipulating
coordinate data to create attack variants. Our experimental results confirm the feasibility and effectiveness
of the new features for identifying diverse types of spoofing attacks and their variations, greatly improving
the detection performance by up to 99.1% accuracy. Additionally, we present a profiling-based detection
approach (building the detector referring only to legitimate coordinate data), to further extend resilience to
previously unseen attacks as a means to zero-day detection. The evaluation result shows the potential of the
profiling-based detector with comparable or even better performance than the supervised learning methods
(requiring both legitimate and falsified data to construct the detector).

INDEX TERMS Attack variation, location spoofing, mobile communications, position falsification,
profiling-based detection, zero-day detection.

I. INTRODUCTION
In mobile communication, the coordinate of mobile agents is
the crucial information for various applications, such as per-
formance prediction [1], resource allocation and offloading
decisions [2], and mobile agent deployment and routing [3],
to list a few. For instance, we may want to predict application
throughput at the current position of a mobile device [4].
Another example would be that the unmanned aerial vehicle
(UAV) can be deployed to a suitable place to provide the
required quality of service [5]. The location information is
also crucial for vehicular ad-hoc network (VANET) since it
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is directly connected to safety functions, such as collision
avoidance and improper lane change detection [6], [7].

Given the importance of the coordinate information of
mobile agents, protecting the integrity of such information
is extremely vital. Unfortunately, however, there can be a
chance of the exchange of incorrect coordinates, which leads
to unwanted consequences owing to several reasons. For
example, GPS hardware may malfunction. Even worse, posi-
tion information can be manipulated intentionally. Location
spoofing (or position falsification) refers to faking location
so that an adversary masquerades as being at a different
location [8], [9], [10], [11], [12]. Such an attack can also be
used for launching other subsequent attacks. Since location
spoofing poses serious threats to security, the detection of
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falsified coordinates should be considered crucial to promote
greater security for location-based mechanisms in mobile
networks.

This paper explores the challenges of location spoof-
ing attacks with a well-known mobile dataset providing
coordinate information, Vehicular Reference Misbehavior
(VeReMi) dataset [13], [14], [15]. We chose VeReMi since it
provides location spoofing attack instances together with gen-
uine samples with unmanipulated coordinates. Several previ-
ous studies [16], [17], [18], [19], [20] employed the VeReMi
dataset to measure detection performance against spoof-
ing attacks, and it was reported that conventional machine
learning (ML) methods are able to yield highly accurate
detection rates, e.g., >95% with a random forest classifier
against five attack types [17]. However, our preliminary study
using the same methodology and replicating the previous
research reveals somewhat lower performance than what has
been reported in previous studies, signaling the need for a
thorough investigation into the problem of location spoof-
ing attacks. More critically, previous studies concentrate on
predefined attack vectors (e.g., five static types in [14]),
which confines their efficacy. Our study shows that existing
detection schemes are susceptible to attack variations even
with minor modifications of coordinates, degrading detection
performance considerably. Indeed, this is critical given the
evolution of attackswith cleverer schemes to bypass detection
functions.

Motivated by those observations and limitations, this study
investigates location spoofing attacks in mobile communi-
cation settings and develops a data-driven methodology for
reliable detection of different types of attack trials, including
their potential variations. In our exploration, we place our
focus on detection performance, resilience to attack varia-
tions, and light-weight detection without the need for heavy
computational power. For detection performance, we exam-
ine the effectiveness of current feature sets defined in existing
studies and present newly formulated features to enhance the
performance. We also shed light on the impact of potential
attack variations and evaluate the reliability of detection func-
tions against such variants. Last but not least, the detection
function is often required for concluding the decision in a
timely manner, which is one of the principles placed on our
design of the detection methodology.

The following is a summary of the key contributions of this
study:
• We present a feature set that is differential in nature
and enables the checking of the mobility constraints
and inconsistency. Our comparison study reveals that
the use of existing features results in poor performance,
particularly in several attack scenarios. We show that
the new feature set is greatly beneficial, with which
detection rates consistently outperform those with exist-
ing features across different scenarios. From the exper-
iments conducted on a fair setting (including the same
training and testing sets), the new feature set yields
a detection performance of up to 99.1%, significantly

outperforming the existing feature set with 94.5% at
best.

• We establish a set of scenarios to consider attack vari-
ations when manipulating coordinate data. Spoofing
attacks may not be static as defined in the original
dataset; rather, future attacks would be more intelligent
when fabricating location information with dynamic
choices of coordinate offsets. We share our evaluation
results showing the capability of our methodology with
the substantially enhanced resilience to attack variations.

• We further consider resilience to attack variance with
a profiling-based detection approach as a means to
zero-day detection of previously unseen patterns of
attacks. We implement a profiling-based detector on top
of the autoencoder architecture, which identifies attack
samples by characterizing genuine benign samples. Our
experimental results show that the profiling-based detec-
tor performs greatly with the proposed feature set, yield-
ing comparable or even better performance than the
supervised learning methods.

The organization of this paper is as follows. In Section II,
we introduce the background of this study with a descrip-
tion of the problem tackled and the dataset employed for
developing the detection scheme with the evaluation
methodology. We then present a new feature set defined for
improving detection performance in Section III, and a set of
scenarios for creating attack variations will be introduced in
Section IV. To consider the zero-day detection capability,
Section V presents our profiling-based detection approach
with its implementation using the variational autoencoder
structure. We provide a brief of the closely related studies
in Section VI and conclude our presentation in Section VII
with a summary of this study and future directions.

II. BACKGROUND
This section provides the overview and background of this
study. We first describe the problem with the 2-sequence
approach tackled in this study for light-weight detection of
location spoofing attacks. We then provide the overview
of the dataset employed for the development and evaluation of
detection methods with a brief description of ML algorithms
considered in this study. Finally, we introduce the experimen-
tal setting and metrics for performance comparison.

A. PROBLEM DESCRIPTION
This study adopts a simple definition of location spoofing: a
true location of amobile agent is not equal to a location adver-
tised by that agent. The equality of the location information is
tested with an acceptable margin (ϵ) to account for precision
errors.

Formally, we describe our problem tackled in this study
with notations summarized in Table 1. To detect an incor-
rectly advertised location (accidentally or intentionally),
we assume the availability of location-related information
for mobile agents, which contains the coordinate (C =

(cx , cy, cz)), velocity (V = (vx , vy, vz)), and integer time
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FIGURE 1. Location spoofing examples by attack types: The start point is represented in blue, the endpoint is in red, and the arrow
shows the direction from the start point to the endpoint.

TABLE 1. Notations.

TABLE 2. Attack types defined in the dataset.

step t , where (x, y, z) denotes the three-dimensional space.1

To compare two different coordinates, Ci and Cj (i ̸= j),
we define Di,j = (dx , dy, dz) = Cj ⊖ Ci, where ⊖ is an
element-wise subtraction operator. For each element in Di,j,

1Although we assume a three-dimensional space for generality, including
aerial agents, it can be simply reduced to a two-dimensional space by setting
cz and vz to zeros.

a positive value indicates the forward direction in that axis,
and the following holds:Di,j = −Dj,i. We assume thatDi,j =
0 if all element values are lower than the acceptable margin
(i.e., dx < ϵ, dy < ϵ, and dz < ϵ).
Similarly, we define the location-wise state of a mobile

agent to keep track of it over time. The state of an agent is
defined as S t = ⟨C t ,V t

⟩, where C t and V t are the coordinate
and the velocity at time t . The position change at t (i.e., the
difference between two consecutive time steps from t − 1
to t) is defined as Dt = C t−1

⊖ C t , and Dt = 0 indicates
no movement (within the acceptable margin) in that time
interval.

Based on this, we focus on identifying whether the
currently advertised location C t is true (Normal) or not
(Spoofed), by referring to two consecutive states (S t−1 and
S t ). Hence, it is considered a ‘‘2-sequence’’ approach that
detects location spoofing by referencing the location informa-
tion collected from two consecutive advertisements. We note
that it is also possible to consider an n-sequence approach
(n > 2) to expect improved detection rates, as introduced
in [16]. However, it takes more time to collect the required
number of advertisements with increasing analysis costs if
n > 2, while our scheme performs well with high accuracy
with n = 2.

This study considers the binary classification that deter-
mines whether an updated location is correct (genuine) or not.
There can be different types of spoofing attacks, as shown
in Table 2. While it may be interesting to identify the type
of individual spoofing attacks, this study focuses on the
determination of the correctness of the advertised location
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information. The rationale of this is a specific type of location
spoofing attack may not trigger a prescribed response, unlike
intrusion detection functions often expected to enforce a rel-
evant security policy (e.g., filtering, logging, etc.) against the
detected event type.

B. DATASET DESCRIPTION
To develop and evaluate detection functions against location
spoofing attacks, we employ the VeReMi dataset, which
includes a collection of data instances with original and
spoofed coordinate information [14], [15]. In VANET, each
vehicle broadcasts its information in the form of Basic Safety
Messages (BSMs), which occur at regular intervals (e.g.,
10 times per second) [21]. One of the critical concerns in
VANET is that malicious agents may inject falsified informa-
tion through BSMs, which can adversely affect other agents.
VeReMi provides a log of BSMs, each of which contains the
coordinate, velocity, and timestamp information. The dataset
includes 225 simulations assuming different traffic scenarios
with data instances for both genuine and falsified positions.

The VeReMi dataset defines five spoofing attack types
(1, 2, 4, 8, and 16), as summarized in Table 2. In our
context, the constant attack (Type=1) sets C t to the prede-
fined coordinate, while the constant_offset attack (Type=2)
changes the coordinate with the fixed 1x and 1y values.
The randomization-based attacks (Type=4 and Type=8) are
similar to the constant-based attacks (Type=1 and Type=2),
but they choose the parameter values randomly. Lastly, the
eventual_stop attack (Type=16) is to mimic as if the mobile
agent had stopped based on increasing stop probability.

To take a closer look at the different attack types, Fig. 1
visualizes how these attacks change the original coordinates
to false positions. In the figure, the arrow shows the direction
from a start point (in blue) to an endpoint (in red). For
example, we can see that all the genuine points (in blue) are
modified to the single location (in red) in case of Type=1
(constant attack), while the genuine and modified points are
the same for Type=16 (eventual_stop attack). Additionally,
Type=4 (random attack) shows a wider coordinate space
(than the original space) with randomized modified points.

C. MACHINE LEARNING METHODS
In this study, we evaluate detection performance with a set of
widely-applied classification algorithms. These ML methods
were also considered in previous studies [16], [17], [18], [19],
[20] (but we exclude under-performing algorithms, such as
decision trees, naïve Bayes, and linear regression). We addi-
tionally consider a neural network model, which is capable
of dealing with non-linearity. While the details of the ML
algorithms can be found from [22], [23], the following is a
brief description of the algorithms:

• k-Nearest Neighbors (KNN): An instance-based learn-
ing algorithm characterized by memorizing training
instances. KNN performs the classification by finding
the k nearest neighbors of the sample using a distance

function (e.g., Euclidean distance). The prediction is
made based on majority voting among the nearest
neighbors.

• Support Vector Machine (SVM): An extension of
the perceptron algorithm. Unlike the basic perceptron
algorithm minimizing misclassification errors, SVM
maximizes the margin between the decision boundary
(hyperplane) and instances closest to the hyperplane
(support vectors).

• Random Forest (RF): An ensemble of decision trees.
RF divides the input space into multiple subsets, which
are fed into individual decision trees running in parallel.
The final decision is then made by combining the pre-
diction outcome of the trees (e.g., taking an average or
using a majority vote).

• Extreme Gradient Boosting (XGB): An ensemble
method based on a distributed gradient-boosted decision
tree. Gradient boosting assumes a gradient descent algo-
rithm over an objective function to combine individual
decision trees sequentially. Each tree is built to reduce
the residuals of the previous tree along the sequential
process. XGB is a scalable implementation of gradient
boosting.

• Multi-layer Perceptron (MLP): A multi-layer feed-
forward neural network consisting of an input layer, one
or more hidden layer(s), and an output layer. MLP is
trained to perform input-output mapping, often with a
non-linear (activation) function.

While we can simply take default settings for most ML
algorithms above, a neural network should be organized and
configured to implement MLP. For this purpose, we cre-
ated an MLP structure with three hidden layers with the
activation function of ReLU (in the first two hidden layers)
and Sigmoid in the last hidden layer, which is connected
to the Softmax function. The loss is measured with the
cross-entropy function for binary classification.

D. EVALUATION SETTING AND METRICS
For evaluation, we transform the original dataset into a
2-sequence collection. Any two adjacent messages adver-
tised by the same sender are combined and form an instance
with S t−1 (the former message) and S t (the latter message).
We then organize two disjoint sets for training and testing
from the 2-sequence collection. Each set contains an equal
number of instances for Normal and Spoofed. There are
8,000 instances for training and 2,000 for testing. For the
Spoofed instances, each attack type has an equal number of
instances.

In this study, we focus on binary classification to deter-
mine whether an advertised location is legitimate or not.
To measure detection performance, we mainly use the metric
of accuracy. It is known that the accuracy may lead to a
biased conclusion if there is a class imbalance (i.e., a signif-
icant difference between the majority and minority classes
in quantity). In case of the unbalanced setting, the metric
of F1 score based on the harmonic mean would be more
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TABLE 3. Performance metrics.

FIGURE 2. Validation and testing performance (Basic): All the detectors
other than SVM perform well with greater than 94.4% of accuracy at
validation, which drops down to 91.4% at testing. SVM performs poorly
with only 63% of accuracy. The highest accuracy measured at testing is
94.5% by XGB.

reliable for measuring the performance. When the testing set
is balanced with an equal number of Normal and Spoofed
instances, it is safe to rely on the accuracy metric to report the
performance of detectors. In other cases, we will use the F1
score. Table 3 provides a description of the standard metrics
for classification.

We also evaluate the detectionmodels with attack instances
only and see performance for individual attack types. In that
case, we report the detection rate, which is simply a fraction
of detected instances out of entire attack samples.

III. FEATURE ENGINEERING
Feature engineering is one of the core parts in data prepara-
tion, developing features from raw data [24]. In this section,
we first examine the effectiveness of the basic 2-sequence
feature set consisting of S t−1 and S t (named ‘Basic’).We then
present our proposed feature set (named ‘Ext’), defining a set
of new features with the intuition behind them. The perfor-
mance of Basic and Ext will be compared and reported.

A. BASIC FEATURE SET
As mentioned, we consider two consecutive advertisements
from the mobile agent for the detection task. Thus the
two back-to-back BSMs form a single data instance in

TABLE 4. Detection rate breakdown by attack types (feature set=Basic).

the context of the VeReMi dataset. As a result, the Basic
feature set contains ⟨S t−1, S t ⟩. Note that the same type
of data transformation has been considered in previous
studies [17], [18], [25].

We first look at the effectiveness of the Basic feature set
empirically. Fig. 2 shows the validation and testing accu-
racy performed with Basic. Here, the validation performance
refers to classification accuracy measured with the training
set. While their overall performance is good, we found that
the testing accuracy is somewhat lower than the validation
accuracy in our experimental setting. For instance, RF and
XGB show quite degraded performance from 99% (at vali-
dation) to around 94% (at testing). KNN follows with 92.4%
testing accuracy, while SVM works quite poorly with around
63% accuracy for both validation and testing. Finally, MLP
performs great with 100% at validation, but it goes down to
91.4% at actual testing.

To further analyze, we take a closer look at the detec-
tion performance against individual attack types. Table 4
shows the detection performance breakdown by attack types
obtained with Basic. From the table, we can see that some
attack types are relatively well detected, while some other
types show degraded detection rates. When utilizing KNN,
RF, and XGB, for example, the classifiers produce at least
97% of detection performance for Types 1, 2, and 4, whereas
it drops to 88.5% and less for Type 8 and 16. SVM per-
forms unsatisfactorily with extremely low detection rates.
Interestingly, MLP shows consistent performance across the
different attack types, with 98.5% of detection rates or higher.
By combining the observation made in Fig. 2, MLP detects
attack instances very well at the expense of a non-negligible
false positive rate, limiting its overall performance to 91.4%
accuracy.

B. PROPOSED FEATURE SET
While the Basic feature set is compact, it is limited with
94.5% accuracy at max (by XGB) due to the unaccept-
able performance to detect certain types of spoofing attacks.
A potential weakness of Basic is its dependency on real coor-
dinates. As a result, even a slight difference in the coordinate
space may diminish the capability of detection models.

In this study, we define a new feature set to better capture
the characteristics of normal vs. spoofed data instances. Here,
our objective is to define features that can help improve
detection performance with a manageable cost to compute
new features so as to support accurate, timely detection of
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spoofing attacks. To meet this objective, we create a set
of new features by transforming the Basic features, which
enables us to capture the checking of the mobility constraints
and inconsistency, as follows:

• Dt : Difference between two consecutive coordinates
(i.e., C t−1

⊖ C t );
• d t : Euclidean distance between two consecutive coordi-
nates of C t−1 and C t ;

• 1t : Time gap between two consecutive advertisements
(i.e., the difference between two time steps of t and t-1)

• κ t : Movement plausibility check (MPC) constant
(derived from S t−1 and S t ).

The intuition behind the definition of Dt and d t is to relax
the limitation of the reliance on real coordinates bymeasuring
the movement along the axes (Dt ) and the moving distance
over the Euclidean space (d t ). The feature of time gap (1t )
may be crucial information if the advertisement can be miss-
ing or irregular for some reason. The concept of movement
plausibility check (MPC) constant is borrowed from the pre-
vious study in [16], defined to detect the discordance between
the location and velocity information. In detail, the MPC
feature records whether the location remains the same despite
a non-zero velocity value (i.e., actually moved). We define
MPC at t (κ t ), as follows:

κ t = K × ((V t−1
̸= 0) ∧ (C t−1

= C t ))

Here, K is a pre-selected constant (e.g., K=1000 in [16]).
We define the Ext set to include these new features beyond

the Basic set. The new features are differential in nature. Our
intuitions for introducing them to the detection problem are
that the law of physics bounds the spatial state changes (e.g.,
cannot teleport) and that there cannot be inconsistencies due
to dataset tampering. Introducing these new features enables
the checking of such intuitions. We later show that the dif-
ferential features in Ext significantly improve the detection
performance and robustness across the attack variations.

There would be some other features that may help improve
detection rates. In [16], for example, two additional features
of Minimum Distance to Trajectories (MDT) and Minimum
Translation Distance to Trajectories (MTDT) are defined in
addition to MPC. The feature of MDT searches the closest
data instance to the current one by measuring the Euclidean
distance over the trajectory. The MTDT feature is similar to
MDT, but the difference is that MTDT relies on a transla-
tion vector to search the closest data instance to the current
sample in question. These features are computationally too
expensive, requiring aggregations and pair-wise computa-
tions with the entire legitimate samples in the training set.
Since feature engineering complexity is a crucial element
for supporting real-time operations, particularly under the
provision of restrictive resources, we do not consider these
features imposing too expensive engineering costs. Note that
the engineering cost for our defined features is O(1), since
they can be calculated directly from the existing features in
that instance (without referring to any other instances).

FIGURE 3. Performance comparison between Basic and Ext: Using the Ext
feature set greatly improves the detection performance from 4.3% (XGB)
to 31.4% (SVM) compared to Basic. All the detectors yield at least 94.7%
accuracy with Ext, and MLP shows the best, producing 99.1% accuracy.

TABLE 5. Detection rates breakdown by attack types (feature set=Ext).

FIGURE 4. Significance of features (compiled by RF): The newly defined
features in Ext play a crucial role in the detection, placed on higher ranks
than the existing features.

We now examine the performance with the Ext feature set.
Fig. 3 compares the classification accuracy measured with
the Basic and Ext feature sets. The figure shows that the Ext
feature set greatly helps improve the detection performance.
Even the SVM classifier yields 94.7% with Ext, while it was
63.3% when using the Basic set. Other than SVM, all the
detectors yield at least 94.7% accuracy with Ext, and MLP
shows the best producing, 99.1% accuracy.

Table 5 presents the performance breakdown by attack
types as a comparison to the result in Table 4. Overall, the
detection performance has significantly been enhanced with
Ext. In particular, relying on the new feature set is greatly
helpful for detecting Type 8 and 16 attacks. The detectors
based on theXGB andRFmodels perform consistently across
the attack types with 95% detection rates at the minimum.
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TABLE 6. Performance details for Basic and Ext.

MLP shows a slightly lower detection rate for Type 4 attacks
with Ext than with Basic, while it deals with the other types
of attacks very well. Nonetheless, the overall performance of
MLP (in Fig. 3) shows that it performs better with Ext than
Basic.

To see the significance of the features defined in the Ext
set, Fig. 4 provides the ranks measured by the RF algorithm.
Interestingly, the Euclidean distance (d t ) plays a vital role
in detection. The difference measures in the x-axis (Dtx) and
the y-axis (Dty) between two sequences follow next. In the
VeReMi dataset, Dtz has no effect since the movement takes
place in a two-dimensional space; however, this feature would
be crucial in other domains assuming the movement in a
three-dimensional space. We also see that MPC (κ t ) is ranked
higher than the features in Basic. The feature importance
indicates that the new features defined in the Ext set con-
tribute to the significant improvement of performance in the
detection of spoofing attacks.Note that the other features have
negligible significance values (less than 0.1) and are omitted.

Summary: Table 6 summarizes the performance of the
detection models in detail. As can be seen, utilizing the Ext
set shows much lower false rates (FPR and FNR) than Basic.
The only exception is that MLP shows a slightly higher FNR
with Ext, implying its tendency to classify instances more to
Normal, considering its zero FPRwith Ext. Lastly, themetrics
of accuracy and F1 score produce similar results since the
test set is well balanced with an equal number of Normal vs.
Spoofed instances.

IV. RESILIENCE TO ATTACK VARIATIONS
While previous studies referred to the five spoofing attack
types described in Table 2, it is not hard to assume the
emergence of attack variants, for example, modifying values
of the parameters defined for each attack. In this section,
we establish a set of scenarios based on parameter modifi-
cation to consider attack variations when manipulating coor-
dinate data. We then evaluate the impact of the modification
schemes on detection performance.

A. PARAMETER MODIFICATION
To measure the resilience to attack variations, we establish
four scenarios that modify the parameter values defined in
Table 2, as follows:

• Type 1 (Constant): The original dataset moves the posi-
tion to the predefined single coordinate (x = 5560,
y = 5820) for any attack instance under this type.
The modified encoding applies a range of variations of
x = (5560+ αx) and y = (5820+ αy). We vary αx and
αy within the range of [−300,+300], with a step size
δ = 50.

• Type 2 (Constant_offset): The basic offset values are set
to 1x = +250 and 1y = −150. In our variation sce-
nario, we vary the offset values from −300 to +300 for
both 1x and 1y, with a step size δ = 50. Hence, the
offset value ranges become 1x ← [−300,+300] and
1y← [−300,+300].

• Type 4 (Random): In the original dataset, the random
coordinate space (x ← [0, 14000] and y← [0, 12000])
is too larger than the actual coordinate range (x ←
[2000, 7000] and y ← [5000, 6500]). We retain the
same coordinate space for generating random locations.
From Fig. 1(a), however, we exclude the space between
[5000, 6500] in the y-axis, so as to remove the possi-
bility that the random location overlaps with any of the
genuine coordinates.

• Type 8 (Random_ offset): Basically, the offset values are
set to 1x,1y ← [−300,+300], within which random
values are chosen for modifying the original x and y
coordinates. We extend the offset ranges 1x,1y ←
[−β, β], by varying the parameter β from 100 to 500
with a step size δ = 100. Hence, the extended offset
configuration varies from 1x,1y ← [−100,+100] to
1x,1y← [−500,+500].

Note that Type 16 (Eventual_stop) is not considered for
creating attack variations in our 2-sequence approach.

B. PERFORMANCE AGAINST ATTACK VARIATIONS
We evaluate the impact of the attack variations on detection
performance with the Basic and Ext feature sets.

At first, Fig. 5 compares the impact of the Type 1 attack
variations configured by varying αx (in the x-axis) and αy (in
the y-axis, for each detector model. In the figure, a lighter
color implies a better performance, while a darker color is
for lower performance. Here, (αx , αy) = (0, 0) indicates the
predefined Type 1 attack defined in the original dataset, and
the default Type 1 point shows almost the perfect detection
rate across the different detectors, implying the detection
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FIGURE 5. Performance against attack variations (Type=1): A lighter (yellow) color represents a higher detection rate, while a darker color does a
lower rate. Overall, Ext outperforms Basic, with the aggregated average detection rate (across the detectors) of 98.4% (Ext) vs. 88.1% (Basic). When
counting RF, XGB, and MLP only, the average rate is 98.4% (Basic) and 99.3% (Ext).

FIGURE 6. Performance against attack variations (Type=2): Type 2 attack variants have greater impacts on KNN and SVM (than Type 1 variations) when
the offset is close to zero (i.e., closer to the genuine point). With Ext, MLP perfectly detects the variations, while RF and XGB are slightly degraded only
if either αx or αy is immediately adjacent to zero. Ext performs better with the aggregated average detection rate of 89.2% than Basic with 72.5%
across the detection models. If we count RF, XGB, and MLP only, the average rate observed is 91.7% (Basic) and 99.7% (Ext).

models are quite well trained. The overall result shows that
using Ext produces much lighter colors (and hence, better
detection rates) across the parameter value ranges for αx
and αy.
For details, Table 7 shows the percentile of detection rates

measured against Type 1 variants. In the table, we use ‘‘-%’’
to indicate percentile (e.g., x-% = x percentile). Other than
SVM, using Basic performs well even in 10-%, showing
93.5% at the lowest. Using Ext performs much better, and
even SVM produces a 91.5% detection rate at 10-%. The
aggregated average detection rate across the detectors is

88.1% (Basic) and 98.4% (Ext). When counting RF, XGB,
and MLP only, the average rate observed is 98.4% (Basic)
and 99.3% (Ext).

We next examine the impact of Type 2 attack variations,
and Fig. 6 shows the experimental result. The parameter
setting of (αx , αy) = (0, 0) indicates no use of offsets (since
1x = 1y = 0). As seen from the figure, Type 2 attack
variants have greater impacts on KNN and SVM (than Type 1
variations in Fig. 5) when the offset is close to zero (i.e., closer
to the genuine point). With Ext, MLP perfectly detects the
variations, while RF and XGB are slightly degraded only if
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TABLE 7. Percentile (‘‘-%’’) of detection rates against attack variations
(Type=1).

TABLE 8. Percentile (‘‘-%’’) of detection rates against attack variations
(Type=2).

TABLE 9. Performance against attack variations (Type=4).

either αx or αy is immediately adjacent to zero. Table 8 shows
the percentile of the detection rates against Type 2 variants.
From the table, we can confirm that Ext performs better with
the aggregated average detection rate of 89.2% than Basic
with 72.5% across the detection models. If we count RF,
XGB, and MLP only, the average rate is 91.7% (Basic) and
99.7% (Ext).

We move to Type 4 attack variations. The experimental
result in Table 9 shows that Basic and Ext perform almost
comparably, and the detection rates are pretty satisfactory.
The only exception is the SVMdetector showing an unaccept-
able performance (30.5% accuracy) with Basic, which yields
99.5% with Ext on the contrary.

Lastly, Table 10 shows the detection rates against Type 8
attack instances encoded with different β values. Here, β =
300 is the default setting applied in the original dataset.
A smaller β value indicates a closer point to the original

TABLE 10. Detection rates against attack variations (Type=8).

location, and hence, it may be more challenging to detect.
We can see that RF, XGB, and MLP identify Type 8 variants
very well with Ext even in case of β = 100, which is the most
challenging parameter setting in Type 8. Using Basic works
well with the MLP detector, while RF and XGB show clearly
lower detection rates than Ext. We can see that KNN and
SVM perform much worse than the other detection models,
although Ext much enhances the performance compared to
Basic.

Summary: Through the evaluation performed with attack
variations, we observe that using Ext consistently outper-
forms Basic, indicating greater resilience to attack variants
emerging in the future. For Type 1 variations, the two fea-
ture sets yield the aggregated average detection rate (across
the entire detectors) of 88.1% (Basic) vs. 98.4% (Ext) over
the different classifiers on the diverse parameter setting.
Similarly, Ext performs better with the aggregated average
detection rate of 89.2% than Basic with 72.5% across the
detection models. Using Ext keeps working better with 99%
mean detection performance for Type 4 variations, while
Basic degrades to 85.6% on the same setting. For Type 8,
we observe that RF, XGB, and MLP identify its variants
with the least performance of 91.5%, while Basic performs
ineffectively, dropping the detection rate down to 47.0%.

V. ZERO-DAY DETECTION METHODOLOGY
We thus far concentrated on supervised learning for creating a
detectionmodel with an assumption of the availability of both
Normal and Spoofed instances. Alternatively, a profiling-
based approach can be considered for building up a detection
model only using the Normal instances. The constructed pro-
file can then be referenced to identify attack instances that are
not conforming to the learned representation. The term zero-
day detection refers to the identification of previously unseen
attack instances different from the existing (known) repre-
sentation [26], [27], [28], [29]. In this section, we present
our approach to zero-day detection, given the emergence of
new types of spoofing attacks with smarter features to fool
the detector (e.g., using a generative model like generative
adversarial networks [30]).

The concept of semi-supervised learning is the creation of
the detection model only from the single data class [31], [32].
That is, we can construct a profile that captures the
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FIGURE 7. Autoencoder architecture: The encoder maps the input data
into a low-dimensional space (φ : Rn → Rm, n > m), and the decoder
regenerates from the latent representation to output (ψ : Rm → Rn).
Typically, the autoencoder minimizes the reconstruction error
(ϵ := ∥x⃗ −

ˆ⃗x∥) through the learning process.

characteristics of the Normal instances by relying on the
semi-supervised detection concept. The autoencoder archi-
tecture has been utilized for implementing semi-supervised
learning [33], [34], [35], [36]. The basic idea is that the
autoencoder model restores Normal instances relatively well
compared to Spoofed instances since it focuses on restoring
Normal instances only in the data-learning phase.

A. AUTOENCODER ARCHITECTURE
We introduce the typical autoencoder architecture with its
main functionality. As illustrated in Fig. 7, the autoencoder
is composed of an encoder (φ(·)) and a decoder (ψ(·)) with
internal hidden layers. The encoder projects the input data to
a lower dimensional space (φ : x⃗ → z⃗), and the decoder
restores the lower dimensional representation to the output
on the input dimension space (ψ : z⃗ → ˆ⃗x). The difference
between the input (x⃗) and the output ( ˆ⃗x) is known as recon-
struction error, defined as: ϵ := ∥x⃗ − ˆ⃗x∥. The autoencoder
is then trained with a given dataset in a way to minimize the
reconstruction error.

The autoencoder can be utilized for the purpose of
profiling, capturing the unique characteristics of a certain
class [36], [37]. For example, an autoencoder model can be
established using training instances belonging to a single
class under consideration. The autoencodermodel would then
be clever enough to restore a sample within that class with a
bounded ϵ (reconstruction error). On the contrary, it has little
idea of restoring a sample from a different class, resulting in
a relatively larger ϵ. Based on the measured ϵ, the decision
function (π (·)) tests if the sample belongs to the class in
question, e.g., π : if ϵ ≤ τ, then True; else False, where
τ is a pre-determined threshold (often chosen based on the
distribution of reconstruction errors collected in the training
stage).

B. PROFILING-BASED DETECTOR
We design the profiling function using a variational
autoencoder (VAE). The VAE maintains the probabilistic

information, which is referred to in the generative process.
Internally, the probabilistic information is collected from the
encoded representation, and the output is regenerated based
on sampling provided by the sampling layer placed between
the encoder (φ) and decoder (ψ).

We configure the encoder with the same number of hidden
layers used in MLP, while the decoder has the mirrored
structure of the encoder (as illustrated in Fig. 7). The VAE
is equipped with LeakyReLU for internal non-linearity and
tanh for the last-mile activation. For profiling, the VAE is
trained with genuine instances (Normal) only. Like the MLP
model chosen in this study, the VAE model with the least loss
has been selected for performance evaluation, which makes
a decision for a test sample whether it is Normal or not,
based on the measured reconstruction error (ϵ). To set up
the threshold (τ ) for actual determination, we simply take the
percentile information from the distribution of reconstruction
errors (gathered in the training time). The underlying idea
here is that taking τ = x% means that the expected (and tol-
erable) FPR is (1− x

100 ), since τ comes from the 95-percentile
out of the ϵ distribution. For example, if x = 95%, the upper
5% of the instances with greater reconstruction errors in the
training set should be identified as non-Normal, which results
in FPR=5%. We examine the model with a set of threshold
values: τ = {95%, 96%, 97%, 98%, 99%}.

C. PERFORMANCE EVALUATION
To evaluate the performance of the profiling-based detection
using the autoencoding concept, we use exactly the same
experimental setting. The only difference is that the training
set excludes the Spoofed instances (unlike the supervised
learners trained with both Normal and Spoofed instances).

Table 11 summarizes the performance of profiling-based
detection measured with Basic and Ext. The result shows that
Basic performs unsatisfactorily with lower than 70% accu-
racy with any threshold setting. In contrast, Ext boosts the
performance dramatically, yielding over 98% accuracy across
different threshold values. Interestingly, the profiling-based
detector equipped with Ext is comparable to or even better
than the supervised learners in Table 6.
We next evaluate the resilience to attack variations. The

same set of attack variations presented in Section IV is used
for evaluating the resilience of the profiling-based detector.
In this experiment, we simply set τ = 99%, since the
performance is not significantly different across the thresh-
old values (as seen from Table 11). Table 12 shows the
detection rates of the profiling-based detector implemented
with VAE. Here, we report detection rates for Type 4 and
average detection rates for Type 1, 2, and 8 (aggregated over
their parameter value range). We can see that our VAE-based
detector performs very well with Ext, producing at least a
93% detection rate for attack variations. In particular, it shows
better performance than the supervised learning-based detec-
tors for Type 1, 2, and 4 variations while showing slightly
lower performance for Type 8 variations than the supervised
learners (except SVM) with Ext.
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TABLE 11. Performance evaluation of profiling-based detection.

TABLE 12. Performance of profiling-based detection against attack
variations (Detection rate for Type 4 and average detection rate for
Type 1, 2, and 8).

Summary: The profiling-based detection captures the
characteristics of the Normal instances and then discriminates
Spoofed samples deviating from the learned representation.
The comparison study shows that the profiling-based detector
performs greatly with Ext, while it does not performwell with
Basic. The detector with Ext performs comparable or even
better than the supervised learning methods, yielding up to
99.8% accuracy for regular attacks and at least 93% detection
rates for identifying attack variations.

VI. RELATED WORK
In this section, we summarize previous studies closely related
to our study.

The previous work in [17] and [18] tackled the problem
of location spoofing in a VANET setting using a set of ML
algorithms, including KNN, RF, Naive Bayes, and decision
tree. Like our study, the authors take the 2-sequence approach
that simply serializes two consecutive BSM messages. The
reported performance using the VeReMi dataset is promising,
showing over 95%when using KNN and RF across the attack
types. However, our evaluation result shows somewhat lower
performance, particularly for attack type 8 and 16 (less than
90% using KNN and RF) in our experimental setting.

The work in [16] conducted feature engineering for
the detection of location spoofing attacks. The authors
established an n-sequence trajectory inspection problem as
a generalization of the detection of location spoofing. Three
features of Movement Plausibility Check (MPC), Minimum
Distance to Trajectories (MDT), and Minimum Transla-
tion Distance to Trajectories (MTDT) were defined in this
previous work, as discussed in Section III-B. While those
features are interesting and helpful for managing detection
performance well, they are computationally too heavy to

obtain due to the requirement of pair-wise comparison across
the training set. In addition, the detection in this previous
work requires monitoring three or more advertised messages
to expect high-quality prediction. In contrast, our presented
scheme performs comparably only with two advertisements
without imposing expensive pair-wise computations for fea-
ture engineering, which is a crucial element for support-
ing real-time operations under the provision of restrictive
resources common in a mobile communication setting.

A study in [20] defined features for the plausibility check,
including MPC (earlier than [16]). The feature of Location
Plausibility Check (LPC) predicts the acceptable location
boundary based on the current coordinate and velocity infor-
mation based on 95% and 99% confidence intervals. The
authors evaluated the detection performance using KNN and
SVM with the two plausibility check features, but the result
shows a somewhat lower detection performance than other
previous studies.

In [13], the authors defined three features based on inter-
actions between the sender and receiver. The feature of the
angle of arrival is defined using the arctangent function with
the distance between the sender and receiver. The other two
features defined in this previous work are the estimated
distance derived from the received signal strength indicator
(RSSI) and the pass loss in dB information, and the difference
between the estimated and measured distance information.
These features were combined with the location and velocity
differences for the evaluation performed with conventional
ML algorithms, including KNN, RF, and a combination of
RF and KNN. The authors in this work assume that the
detection takes place at individual vehicles based on the
concept of distributed intrusion detection, which is the pri-
mary motivation for using the interactions between the sender
and receiver. In this study, we do not assume a distributed
detection environment.

Additionally, there are some other studies [19], [38],
[39] that investigated the location spoofing problem using
the VeReMi dataset. While the previous studies reported
interesting results, they considered the static attack types
defined in the dataset. In this study, we bring up the pos-
sibility of attack variations with a set of scenarios defined
for potential attack variations. Moreover, we examine the
feasibility of zero-day detection for location spoofing using
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a profiling-based detection mechanism (often employed in
anomaly detection), while the previous research focused on
supervised learning with little attention to emerging attack
variants.

VII. CONCLUSION
This study presented a data-driven methodology for detecting
location spoofing attacks accurately and reliably. In partic-
ular, our scheme utilizes a new set of features, which is
differential in nature and enables the checking of the mobil-
ity constraints and inconsistency. We compared our scheme
with the previous research to show that the use of these
features improves the detection performance consistently.
In this study, we also introduced a set of scenarios to create
attack variants with dynamic choices of coordinate offsets
when fabricating location information, established in order
to evaluate the resilience of the detectors against such vari-
ations. The evaluation results confirm the effectiveness of
the presented scheme with significantly improved perfor-
mance across diverse attack variants. To further extend the
study of attack variations, we examine the feasibility of the
profiling-based approach as a tool for zero-day detection. The
VAE-based implementation of the profiling-based detection
performs greatly with the newly defined feature set, showing
comparable or even better performance than the supervised
learning methods often confined to known attacks.

There would be several avenues for future exploration.
The profiling-based detection can further be analyzed and
optimized, including the architectural structures and the
determination of threshold ranges. Another direction is deep
learning-based generative models for creating sophisticated
attack variants; for example, generative adversarial networks
(GANs) have often been applied to create counterfeit samples
to deceive the detection process (e.g., intrusion detection).
Evading attacks using adversarial attack tools would also be
interesting to see their impact on the resilience of the detector
function.
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