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ABSTRACT Deep multilayer perceptrons (MLPs) have achieved promising performance on computer
vision tasks. Deep MLPs consist solely of fully-connected layers as the conventional MLPs do but adopt
more sophisticated network architectures based on mixer layers composed of token-mixing and channel-
mixing components. These architectures enable deepMLPs to have global receptive fields, but the significant
increase of parameters becomes a massive burden on practical applications. To tackle this problem, we focus
on using tensor-train decomposition (TTD) for compressing deep MLPs. At first, this paper analyzes deep
MLPs under conventional TTD methods, especially using various designs of a macro framework and micro
blocks: The former is how to concatenate mixer layers, and the latter is how to design a mixer layer. Based
on the analysis, we propose a novel TTD method named Train-TTD-Train. The proposed method exerts
the learning capability of channel-mixing components and improves the trade-off between accuracy and
size. In the evaluation, the proposed method showed a better trade-off than conventional TTD methods on
ImageNet-1K and achieved a 0.56% higher inference accuracywith a 15.44%memory reduction on Cifar-10.

INDEX TERMS Tensor-train decomposition, low-rank approximation, deep neural networks, deep
multilayer perceptron, network parameter compression.

I. INTRODUCTION
Deep learning has achieved state-of-the-art performance in
computer vision. With the development of high-performance
and larger-scale datasets, we have witnessed the trend shift
from multilayer perceptron (MLP) to convolutional neural
networks (CNNs) [1], [2], [3], [4], and further to Vision
Transformer (ViT) [5], [6], [7].

MLPs are the most classical neural networks composed of
multiple layers that are pairs of linear and nonlinear trans-
formations. Although their structure was the key to solving
linearly inseparable problems, it was not possible to exploit
their potential in the 1970s due to insufficient computational
capability and the absence of proper training algorithms.
Consequently, MLPs lost the interest of researchers and were
practically forgotten for decades.
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In recent years, MLP-based deep neural networks have
captured our attention once again, which is triggered by the
advent of MLP-Mixer [8]. Compared with the conventional
MLP [9], [10], [11],MLP-Mixer adopted deep layers, showed
higher inference accuracy, and boosted it to a comparable
level with ViT. MLP-Mixer achieved this accuracy boost
by applying more hidden layers to a sequence of non-
overlapping patches cropped from an input image, which
is a much simpler strategy than that of ViT. After MLP-
Mixer, a series of subsequent studies succeeded it, such
as ResMLP [12], gMLP [13], MetaFormer [14], and they
have successfully improved accuracy by using deeper MLP
structures.

DeepMLPs benefit from the global receptive fields created
by FC layers, but on the other hand, they also suffer from
the memory requirements of the FC layers. In contrast to
convolution layers sharing weights within a kernel, an FC
layer has an unshared weight for each pair of pre- and post-
synaptic neurons. So, the number of its weights equals the
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FIGURE 1. Example of TTD: The gray tensor is decomposed into four
TT-cores. The first and last TT-cores have a 2D shape, and the second and
the third TT-cores have a 3D shape, where Ai is the i -th dimensionality of
the gray tensor, and Rj is the j-th TT-rank, in which R1 and R5 always
equal to 1.

product of both numbers of pre- and post-synaptic neurons,
becoming a large burden on memory resources. To tackle
this issue, it is necessary to find a method to reduce memory
requirements for FC layers without an accuracy drop.

Tensor-Train Decomposition (TTD) [15] could be a good
solution for this issue. TTD is a low-rank approximation for
tensors, and as in FIGURE 1, the key idea is decomposing
a higher-rank tensor G with elements G(α1, α2, . . . , αd ) into
tensor-train (TT) coresGi, a series of lower-rank tensors, with
elements Gi(ri, αi, ri+1):

G (α1, α2, . . . , αd )

≈ G1 (1, α1, :)G2 (:, α2, :) . . .Gd (:, αd , 1)

=

R2,...,Rd∑
r2,...,rd

G1 (1, α1, r2) . . .Gd (rd , αd , 1) , (1)

where αi is the i-th dimension index of tensor G, and Rj is
the j-th TT-rank that decides the size of TT-core Gi, in which
R1 and Rd+1 are always equal to 1. In [16], Novikov et al.
successfully convert the dense weight matrices of CNN’s FC
layers to the TT-format based on TTD, where TTD enables a
higher compression ratio than pruning for FC layers: TTD
achieves 5 000 – 700 000× compression, while a pruning
method [17] achieves only 4 – 25×.

There are many other studies that use TTD in connection
with parameter reduction [18], [19], [20], [21], [22], [23],
[24]. Similar to [16], studies [18], [19] realized parameter
reduction by random initialization and learning of the TT
matrix. Among them, Qi et al. [18] decomposed several
FC layers in spoken command recognition tasks. It showed
that TTD made a good effect when decomposing a small
part of a CNN framework. Yang et al. [19] enlarged
the decomposition scope by applying TTD to an RNN’s
main structure and achieved more than 1 000× parameter
reduction. It showed the TTD’s potential ability if applied
to the whole network. Rather than decomposing neural
networks, Bigoni et al. [20] combined the discrete TT format
with spectral theory to solve high-dimensional mathematical
problems. It adopted the TT-DMRG-cross algorithm [21]
rather than TT-SVD algorithm [15]. Based on TTD’s wide
usage, some studies [22], [23], [24] developed good libraries
about TTD. T3F [22] sped up tensor calculus by adopting
Riemannian optimization under TensorFlow. Tntorch [24]
supported the PyTorch framework without Riemannian

optimization. Mpnum [23] supported the TT-DMRG-cross
algorithm.

However, an open problem is how to apply these methods
to the deep MLPs without an accuracy drop. Although [20]
showed that TTD has potential capabilities for high-
dimensional problems in mathematics, its applicability to
neural networks is unknown. For TTD studies [16], [18]
on CNNs, the decomposing scopes are limited to several
FC layers. Although Yang et al. [19] already showed that
TTD enables compressing the entire RNNs, the accuracy
drop of applying TTD to other networks’ main structures is
unknown. Moreover, deep MLPs’ heterogeneous structure,
the combination of token-mixing and channel-mixing compo-
nents, makes it complicated because both components show
different sensitivity against the low-rank approximation.
Consequently, a larger TTD space has to be explored for deep
MLPs than CNNs. To solve this issue, we can utilize the key
ideas from these TTD libraries [22], [23], [24]. Our proposed
idea is taking advantage of TT-SVD and hybridizing different
TTD methods into deep MLPs. The libraries are not directly
suited to deep MLPs, so we developed the initial idea and
implemented them tightly with deep MLPs.

To exploit the capability of TTD for deepMLPs, we imple-
ment various TTD methods on deep MLPs and analyze their
effects. Furthermore, we propose a novel TTDmethod, Train-
TTD-Train, based on the analysis. The contributions of this
paper are summarized as follows:

1) To the best of our knowledge, this is the first study of
TTD to decompose deep MLPs,

2) this paper compares existing TTD methods on deep
MLPs for the first time,

3) this paper analyzes the characteristics of deep MLPs
under TTD to maximize compression ratio without
accuracy drop, and

4) we propose a novel TTDmethod for deepMLPs, called
Train-TTD-Train.

The rest of this paper is organized as follows. Section II
explains deep MLPs and TTD to help understand this study.
Section III describes the proposed TTD methodology for
deepMLPs, and Section IV provides experimental results and
analysis. Finally, Section V concludes this paper.

II. RELATED WORK
For further discussion, it is essential to understand the details
of deep MLPs and TTD. This section explains the basic
architecture of deep MLPs and their structural differences,
introduces the previous studies on TTD for deep neural
networks (DNNs), and describes their limitations.

A. DEEP MLPs
As in FIGURE 2, deep MLPs share a basic architecture that
consists of four parts: a per-patch FC layer, N mixer layers,
a pooling layer, and a classifier head. A deep MLP divides
an input image into patches, the per-patch FC layer embeds
each patch into a token, and the mixer layers transform the
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FIGURE 2. Overview of deep MLPs: A deep MLP consists of a per-patch
FC layer, mixer layers, a pooling layer, and a classifier head. The
distinctive feature of each deep MLP comes from how to design the
macro framework concatenating mixer layers and the micro blocks
composing a mixer layer.

tokens to generate a featuremap. After that, the classifier head
following the pooling layer obtains the final classification.

The structural differences between deep MLPs mainly
come from the design ofmixer layers. DeepMLPs havemixer
layers consisting of FC layers with additional operations in
common but adopt different designs for the macro framework
concatenating mixer layers and the micro blocks composing a
mixer layer. Consequently, these structural differences affect
the results when we apply TTD to deep MLPs.

Single-stage and multi-stage designs are the current main
streams for the macro framework. The single-stage design
adopts mixer layers with the input and the output tensors of
an identical size [8], [12], [13]. In contrast, the multi-stage
design uses a hierarchical pyramid of mixer layers, where
a deeper mixer layer has an input tensor with a spatially
lower resolution with more channels [25], [26], [27] or vice
versa. Recent work tends to prefer the multi-stage design
over the single-stage design because the hierarchical pyramid
performs better accurately in some cases.

On the other hand, the micro block has more variations
than the macro framework — a mixer layer consists of
token-mixing and channel-mixing blocks in common, but
its details are different. For instance, ViP [28] has a token-
mixing block containing three mixing branches, element-
wise addition to combine their outputs, and an FC layer
for feature fusion. This multi-branch mixing enables ViP
to extract more feature information and boost its accuracy.
Also, CycleMLP [27] utilizes a Cycle FC layer for mixing,
which conducts MLP operation over points sampled in a
cyclical style along the channel dimension. By using Cycle
FC, CycleMLP successfully reduces both parameters and
FLOPs simultaneously.

B. TENSOR-TRAIN FOR DEEP NEURAL NETWORKS
TTD is a tensor decomposition method proposed by [15]. It is
based on a low-rank approximation of unfolding matrices and
decomposes a tensor into a train of low-rank tensors called
TT-cores, as its name ‘‘tensor-train’’ suggests.

Recent studies have focused on the low-rank approxima-
tion and proposed TTD methods for compressing DNNs
[16], [18], [19], [22], [23], [24]. The TTD methods proposed
in the previous studies can be categorized into two types:
TTD-after-train and TTD-before-train. For the convenience
of explanation, we call the two types Train-TTD and TTD-

TABLE 1. Comparison between two types of the previous TTD methods
(Train-TTD / TTD-train) and the proposed method (Train-TTD-Train).

Train, respectively. Some previous studies also contain both
of them in experiments. As summarized in TABLE 1, Train-
TTD is the type applying TTD to a pre-trained model; fine-
tuning can follow TTD as well [18], [22], [23], [24]. On the
other hand, TTD-train is the type that trains a model in TT-
format from scratch [16], [18], [19], [22], [23], [24]. As in
TABLE 1, the proposed method is a combination of both
types, but its details will be explained in Section III.

The conventional methods successfully reduced the param-
eters of recurrent neural networks (RNNs) and convolutional
neural networks (CNNs). Reference [19] achieved more than
1 000× parameter reduction of the input-to-hidden layers
on RNNs. References [16], [18] also achieved up to 7×
and 4× parameter reduction on CNNs, where these numbers
are the compression ratio of the whole networks, and TTD
decomposes only FC layers.

Despite their high compression performance, these meth-
ods suffer from accuracy degradation. TTD-Train is difficult
to achieve higher accuracy because TTD-Train limits TT-
ranks before training. To be more specific, the models’
capacity is limited and closely related to TT-rank val-
ues. Among previous studies, most of TTD-Train studies
[16], [18], [19] usually adopt balanced TT-rank values,
while using TT-SVD results in unbalanced TT-rank values.
This balanced setting is not mathematically consistent with
the decomposition attribute and makes training much more
susceptible to initialization. Also, the approximation error
is an inevitable issue for Train-TTD. Although Train-TTD
provides a model with a good initialization by directly
decomposing a full-rank model, the decomposed model
is still difficult to be recovered even after fine-tuning.
The previous study [18] uses two TTD methods in the
experiments, but the results are very close without any in-
depth analysis. Even tensor-ring, a Train-TTD-like SOTA
method, reports that it suffers from a 0.88% accuracy drop
with a 2.2× compression ratio for ResNet32 on Cifar-10 [29].
Moreover, accuracy degradation can be worse on deep MLPs
because their structures and blocks essentially differ from
RNNs and CNNs.

III. PROPOSED DEEP TENSOR-TRAIN MLPs
Conveniently, deep MLPs consist solely of FC layers that
are the exact target of the previous TTD studies, but the
unique structure of their mixer layers is an unexplored area
for TTD. This section introduces the proposed method named
Train-TTD-Train and explains how Train-TTD-Train builds
the TT-format from each FC layer and trains deep TT-MLPs.
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FIGURE 3. FC layer in TT-format: TT-cores are decomposed iteratively. The gray matrix is the original weight matrix. Firstly, its width and length values
are factorized. Then it is decomposed by the TT-SVD algorithm iteratively. During each iteration, the U matrix is reshaped into a 4D TT-core, and the
remaining matrix continues to be decomposed. For example, at the first iteration, the light green Matrix-1 U1 is reshaped into a 4D TT-core, and the
orange matrix 61V ⊤

1 continues to be decomposed. Subsequent operations follow this way.

A. FULLY-CONNECTED LAYER IN TRAIN-TTD-TRAIN
FCLayer is the basic building block of deepMLPs, projecting
an input vector x ∈ RN into an output vector y ∈ RM linearly
as

y = Wx + b, (2)

where W ∈ RM×N is a weight matrix and b ∈ RM is a bias
vector. We call it the low-to-high layer whenM > N and the
high-to-low layer whenM < N in this paper.
As shown in FIGURE 3, Train-TTD-Train follows tensor-

train singular value decomposition (TT-SVD) to convert FC
layers in TT-format. Its processes are as follows. (i) First,
it tensorizes the weight matrix W ∈ RM×N into a weight
tensor

W ∈ RA1×A2×...Ad×B1×B2×···×Bd , (3)

where N =
∏d

i=1 Ai and M =
∏d

i=1 Bi. Since W and W
have identical elements, they are interconvertible. (ii) Second,
it initializes i = 1 and obtains the initial decomposition target
matrixW (1) from the weight tensorW:

W (1)
∈ R(A1×B1)×(A2×···×Ad×B2×...Bd ), (4)

where the input and the output dimensions of the weight
matrix W are rearranged and will be decomposed simulta-
neously. (iii) Third, W (i) is decomposed in the SVD manner.
The upper bound of approximation error is ϵ

√
d−1

∥W∥F [15],
where ϵ is a prescribed accuracy and ∥ · ∥F is the Frobenius
norm. In addition, each rank value Ri is constrained to be
below the maximum value Rmax . Rmax is defined based on
compression requirements:

W (i)
= Ui6iV⊤

i + E, ∥E∥F ≤
ϵ

√
d − 1

∥W∥F

s.t. Ui ∈ R(Ai×Bi)×(Ri×Ri+1),

6iV⊤
i ∈ R(Ri×Ri+1)×(Ai+1×···×Ad×Bi+1×···×Bd ),

Ri ≤ Rmax . (5)

(iv) The matrix Ui is reshaped into a TT-core Gi:

Gi ∈ RRi×Ai×Bi×Ri+1 . (6)

(v) It definesW (i+1)
= 6iV⊤

i and updates i = i+ 1. (vi) The
processes (iii) – (v) are repeated d times. (vii) As a result, the
sequence of d TT-cores (G1, . . . ,Gd ) is obtained.
In the final TT-format of an FC layer, the output y ∈

R(B1×···×Bd ) with elements y(β1, . . . , βd ) can be written as

y(β1, . . . , βd )

=

A1,...,Ad∑
α1,...,αd

G1(:, α1, β1, :) . . .Gd (:, αd , βd , :)x(α1, . . . , αd )

+b(β1, . . . , βd ). (7)

where Ai and Bi are hyperparameters, and TT-SVD decides
the TT-rank factors Ri that adjust the trade-off between
compression ratio and approximation capability.

B. TRAINING DEEP TENSOR-TRAIN MLPs
Train-TTD-Train adopts a combined training flow of Train-
TTD and TTD-Train. As shown in FIGURE 4, two significant
differences exist between both processing flows. One is the
order of training and TTD: Train-TTD performs TTD after
training and TTD-train vice versa. The other is how to define
TT-ranks: TT-SVD defines TT-ranks in Train-TTD, and TT-
ranks are hyperparameters in TTD-train. As mentioned in
Section II-B, TTD-after-Training causes the approximation
error, and user-defined TT-ranks cause the dependency on
initialization.

To complement the shortcomings of both approaches,
Train-TTD-Train builds TT-format models in the same
manner as Train-TTD. After getting a TT model whose
compression ratio is bigger than 1, it initializes the whole
network’s weights and trains them from scratch. In addition,
our proposed method adopts a convergence-first scheme
during the decomposition process. Initially, it prepares
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FIGURE 4. Processing flows of Train-TTD, TTD-Train, Train-TTD-Train, and convergence-first scheme: (a) Train-TTD includes fine-tuning and without
fine-tuning options. Both of them start by defining networks and initializing weights. Then they train a model and implement the TTD (SVD). Finally, the
network will be fine-tuned or not be fine-tuned. TT hyperparameters like TT-ranks come from the TT-SVD algorithm. (b) TTD-Train starts the same as
Train-TTD but adopts TTD without training before. Thus, TT hyperparameters are defined by users. Finally, it trains the model from scratch.
(c) Train-TTD-Train follows the same as the Train-TTD method at the beginning. The difference is that it only inherits TT hyperparameters: TT-ranks and the
number of TT-cores, but initializes the network’s weights. Finally, it trains the TT-model from scratch. (d) The convergence-first scheme illustrates details
about converge process in the Train-TTD-Train method.

various truncation parameters, including prescribed accuracy
and constraints of rank value. It checks convergence first and
then the compression ratio during the decomposing process.
If it fails to converge, it will select other constraints of rank
values (bigger ones). Or if it fails to compress the model
size, it will choose another prescribed accuracy until there
are no candidates from the parameter pool. By doing so, it is
possible to avoid using user-defined TT-ranks and satisfy the
upper bound of approximation errors. The proposed Train-
TTD-Train resembles Train-TTD with fine-tuning except for
the additional initialization, but it shows better performance
than Train-TTD with fine-tuning in our experimental results.

Also, to keep inference accuracy, Train-TTD-Train con-
strains the TT-ranks, Ri, and the hyperparameters, Ai and Bi,
in a descending style:

Ai ≥ Ai+1, Bi ≥ Bi+1, Ri ≥ Ri+1 (8)

except R1 = Rd+1 = 1. Because TTD is an iterative
decomposition method, approximation error accumulates
along the iterations, which means a TT-core Gi+1 has more
risk of error than a TT-core Gi. The constraints above
guarantee the extraction of larger TT-cores, at least the same
size as adjacent TT-cores. In earlier decomposition, being
more advantageous to keep the original feature information.

IV. EXPERIMENTS
To evaluate and reveal deep MLPs’ characteristics under
TTD methods, we implemented different TTD methods for
deep MLPs and analyzed their performance. This section
shows the settings for experiments and analysis of deep
MLP’s characteristics under the TTD application. Moreover,
it describes deep MLP’s performance under our proposed
Train-TTD-Train method and reveals general rules about
TTD.

A. EXPERIMENTAL SETTINGS
This subsection describes baseline models, datasets, and
decomposition settings.

FIGURE 5. Baseline model structures including MLP-Mixer (left) and
MetaFormer (right): MLP-Mixer has two configurations. Each
configuration is represented as [N, In1, Out1, In2, Out2, In3, Out3, In4,
Out4]. The configuration about MLP-Mixer-6 is:
[6, 64, 64, 64, 64, 128, 128, 128, 128]. For MLP-Mixer-8, it is:
[8, 49, 256, 256, 49, 512, 2048, 2048, 512]. Each mixer layer has a
channel-mixing component and a token-mixing component. MetaFormer
has four stages. Each stage’s configuration is represented as [Token, MLP
Ratio, Embed., Dim.]: stage1 [H/4 × W /4, 4, 64], stage2
[H/8 × W /8, 4, 128], stage3 [H/16 × W /16, 4, 320], and stage4
[H/32 × W /32, 4, 512].

1) BASELINE MODELS
MLP-Mixer [8] and MetaFormer [14] are used as bench-
marks. Their structures are shown in FIGURE 5. MLP-
Mixer is the pioneering deep MLP with a single stage and
has classical characteristics. In our settings, MLP-Mixer
has two configurations. One (MLP-Mixer-6) adopts six
identical mixer layers for Cifar-10, and another (MLP-Mixer-
8) adopts eight identical mixer layers for ImageNet-1K.
Each mixer layer includes token-mixing and channel-mixing
components. In the following experiments, channel-mixing
layers represent FC layers belonging to the channel-mixing
component, and token-mixing layers represent FC layers
belonging to the token-mixing component. MetaFormer uses
a pyramidal structure with smaller patch size and higher
feature fitness, representing newly developed deep MLPs.
PoolFormer-S12 [14] is used as a typical MetaFormer model
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with four stages. Each stage has several PoofFormer blocks.
In a PoolFormer block, there is one pooling layer as a token-
mixing component and two channel-mixing FC layers as a
channel-mixing component. Specifically, one is a low-to-high
FC layer, and another is a high-to-low FC layer. We use the
PoolFormer-S12 for experiments on Cifar-10 and ImageNet-
1K datasets.

2) DATASET
The training datasets are Cifar-10 [30] and ImageNet-
1K [31]. Cifar-10 contains 50 000 training images and
10 000 test images. ImageNet-1K contains 1.3M training
examples and 1 000 classes. For experiments on CIFAR-10,
MetaFormer uses a pyramidal structure, requiring big input
feature maps. Therefore, we implemented preprocessing for
the dataset by resizing the original input shape from 32 ×

32 to 256 × 256. MLP-Mixer still receives the original
input size. For experiments on ImageNet-1K, we use a
data loading mechanism from FFCV [32] to speed up
training.

3) DECOMPOSITION SETTINGS
The experiments set different prescribed accuracy ϵ [15]
when implementing TT-SVD toward a target A. The ϵ

influences the truncation threshold δ by δ = ϵ ∥A∥F .
Therefore, TT-MLP models will have different compression
ratios (CRs) if implementedwith different ϵ. Our experiments
set ϵ ∈ {1.50, 1.25, 1.00, 0.75, 0.50, 0.25, 0.10} for MLP-
Mixer, and ϵ ∈ {1.00, 0.85, 0.75, 0.50, 0.25, 0.10} for
MetaFormer. We set 65 and 130 as the constraints to
limit the TT-rank values for MLP-Mixer on Cifar-10 and
ImageNet-1K, respectively. We also set 130 for MetaFormer
models on both Cifar-10 and ImageNet-1K. These settings
guarantee each decomposition convergent into an upper
bound but cause some ineffective compression models,
whose compression ratios are smaller than 1.0 shown in
TABLE 2 and TABLE 3. MLP-Mixer-6 is trained from
scratch within 900 epochs on Cifar-10 and MLP-Mixer-8 is
trained within 120 epochs on ImageNet-1K. MetaFormer is
trained from scratch within 1600 and 300 epochs on Cifar-
10 and ImageNet-1K, respectively. These models are used as
pre-trained models in the Train-TTD and Train-TTD-Train
methods. For speeding up the TTD operations, we use an
optimized einsum operation [33].

4) HARDWARE SETTING
The GPU device is the TESLA V100, and its memory capac-
ity is 32G. The CPU device is the Intel(R) Xeon(R) CPU E5-
2698 v4 at 2.20GHz. The experiments are implemented on
these devices.

B. PREPARATION FOR ANALYSIS
Before analyzing experimental results, this subsection
describes the baseline accuracy for comparison and effective
compression with different prescribed accuracy ϵ.

TABLE 2. Compression ratio and ϵ about layers of MLP-Mixer.

TABLE 3. Compression ratio and ϵ about the stages of MetaFormer.

1) ACCURACY OF PRE-TRAINED MODELS
MetaFormer and MLP-Mixer are trained from scratch.
On Cifar-10, MLP-Mixer achieves 80.69% top-1 accuracy
with 0.259M parameters, and MetaFormer achieves 96.91%
top-1 accuracy with 11.9M parameters. On ImageNet-1K,
MLP-Mixer achieves 58.35% top-1 accuracy with 19.1M
parameters, and MetaFormer achieves 73.81% top-1
accuracy with 11.9M parameters. The previous studies
[8], [14] adopt many data augmentation techniques such
as RandAugment [34], MixUp [35], CutMix [36] and
more. Compared with them, the FFCV data loader uses
half-precision (FP16) and only adopts random horizon-
tal flips without other data augmentation operations.
Therefore, our baselines’ accuracy on ImageNet-1K is
limited.

Generally, when we have limited data and classes, the
k-fold cross-validation can be applied to find better hyper-
parameters in practical applications [37]. However, it is
not suitable for our study in terms of training time. For
example, training a PoolFormer-TT model on ImageNet-1K
(with a Train-TTD-Train method) takes 28394 s/epoch on a
GPU. To explore the TT-MLP attributes with different TTD
settings, we set a large amount of TTD experiments. There
are various decomposition targets, different decomposition
manners, multiple TTD settings, two datasets, and four
baseline models. They are time-consuming TTD experiments
with our limited computing resources. Instead, we did our
best to generalize the models for practical applications,
including extending the dataset from Cifar-10 to ImageNet-
1K and using data augmentation.
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FIGURE 6. Train-TTD without Fine-tuning for MLP-Mixer-6 (FC-layer-by-FC-layer) on Cifar-10: The Top-1 accuracy of Cifar-10 dataset with different
prescribed accuracy ϵ. The Train-TTD (without fine-tuning) method is implemented toward each FC layer of the MLP-Mixer. Each graph shows the
inference accuracy (y-axis)-TT layer (x-axis). The blue histograms show the inference accuracy of decomposing a token-mixing layer, and the orange
histograms are about decomposing a channel-mixing layer.

FIGURE 7. Train-TTD without Fine-tuning for MLP-Mixer-8 (FC-layer-by-FC-layer) on ImageNet-1K: The Top-1 accuracy of ImageNet-1K dataset with
different prescribed accuracy ϵ. The Train-TTD (without fine-tuning) method is implemented toward each FC layer of the MLP-Mixer. Each graph shows
the inference accuracy (y-axis)-TT layer (x-axis). The blue histograms show the inference accuracy of decomposing a token-mixing layer, and the orange
histograms are about decomposing a channel-mixing layer.

2) COMPRESSION RATIO FOR BASELINE MODELS
Based on the proposed method, different prescribed accuracy
results in various compression ratios for MLP-Mixer and
MetaFormer. The results are shown in TABLE 2 and
TABLE 3. For MLP-Mixer, we calculated the compres-
sion ratio of FC layers belonging to token-mixing and
channel-mixing components, respectively. For MetaFormer,
we calculated the compression ratio stage-by-stage. The
results show that TTD takes no compression effect when
ϵ ≤ 0.25, so the following discussion mainly focuses on the
effective part.

C. DEEP MLPs’ DIFFERENT CHARACTERISTICS AFFECT
RESULTS OF TTD APPLICATIONS
This subsection describes the exploration and analysis of
MLP-Mixer and MetaFormer. It mainly focuses on channel-
mixing and token-mixing components for MLP-Mixer,
and high-to-low and low-to-high layers for MetaFormer.
In addition, the decomposition scope is enlarged from FC-
layer-by-FC-layer to mixer-by-mixer and further to stage-by-
stage.

1) CHANNEL-MIXING AND TOKEN-MIXING LAYERS
Channel-mixing layers are more sensitive, with higher
approximation error under the TT decomposition. Train-
TTD (without fine-tuning) is applied toward two pre-trained
MLP-Mixer models: MLP-Mixer-6 and MLP-Mixer-8.
Specifically, each MLP-Mixer model is decomposed in an
FC-layer-by-FC-layer manner. It means converting an FC
layer into a TT-format layer and maintaining other FC layers
as original ones. Since every mixer layer has four FC layers,
the accuracy changes of four FC layers in one mixer layer
need attention. For convenience, we call a model a token-
TT model or a channel-TT model if its FC layer in a
token-mixing or channel-mixing component is decomposed.
FIGURE 6 reflects gaps between the accuracy of the token-
TT models (blue) and the channel-TT models (orange)
for MLP-Mixer-6. The average accuracy gaps are 12.65%,
15.08%, 17.13%, 8.27%, 1.92% when ϵ = 1.5, 1.25, 1.0,
0.75, 0.5, respectively. These accuracy gaps also exist in
MLP-Mixer-8, as FIGURE 7 shows. Except for the case
where the accuracy gap between the token-TT model and
channel-TT model is −1.30% with ϵ = 1.5, most cases
show that token-TT models have better accuracy results. The
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FIGURE 8. Train-TTD with Fine-tuning for MLP-Mixer-6 (FC-layer-by-FC-layer) on Cifar-10: The Top-1 accuracy of Cifar-10 dataset with different prescribed
accuracy ϵ. Train-TTD (with fine-tuning) is implemented in each FC layer of MLP-Mixer. Each graph shows the inference accuracy (y-axis)-TT layer (x-axis).
The blue histogram is for decomposing a token-mixing layer, the orange histogram is for decomposing a channel-mixing layer, and the green curve is for
the baseline accuracy.

accuracy gaps are 2.17%, 3.43%, 3.05%, and 1.35% when
ϵ = 1.25, 1.0, 0.75, and 0.5, respectively. These results show
that channel-mixing layers are more sensitive if the Train-
TTD (without fine-tuning) method is directly implemented.

Channel-mixing layers have better learning capability to
gain new features under TT decomposition. Train-TTD (with
fine-tuning, 100 epochs) is applied toward a pre-trained
MLP-Mixer model. As FIGURE 8 shows, the accuracy gaps
between TT-token models and TT-channel models still exist
when ϵ = 1.5, 1.25, 1.0. However, when ϵ = 0.75,
0.5, the previous accuracy gaps are not obvious anymore.
The accuracy of channel-TT models can be better than the
accuracy of token-TT models. This can be observed from
the 2nd mixer layer, the 5th mixer layer and the 6th mixer
layer when ϵ = 0.75, and the 1st mixer layer, the 2nd

mixer layer, the 4th mixer layer, the 5th mixer layer and
the 6th mixer layer when ϵ = 0.5. In detail, the average
accuracy of channel-TT models is about 1.4% and 1.8%
higher than the average accuracy of token-TT models, when
ϵ = 0.75, 0.5, respectively. This is because when ϵ becomes
smaller, FC layers belonging to channel-mixing components
can maintain more original information. In the meantime,
they have better learning capability to acquire new features
with fine-tuning.

2) HIGH-TO-LOW AND LOW-TO-HIGH LAYERS
High-to-low layers have strong robustness with smaller
approximation errors, and low-to-high layers have bet-
ter learning capability. We implemented Train-TTD
(with/without fine-tuning) toward MetaFormer on both
Cifar-10 (within 30 epochs) and ImageNet-1K (within
15 epochs). We calculated the average accuracy of models
whose TT-FC layers belong to the same stage and
divided them into high-to-low and low-to-high categories.
As FIGURE 9 shows, the order of accuracy under different
TTD methods follows as low-to-high (Train-TTD with fine-
tuning, 1st ), high-to-lower (Train-TTDwith fine-tuning, 2nd ),
high-to-lower (Train-TTD without fine-tuning, 3rd ), low-to-
high (Train-TTDwithout fine-tuning 4th). Low-to-high layers

FIGURE 9. Low-to-high Layers and High-to-low Layers in MetaFormer
with the Train-TTD Method (FC-layer-by-FC-layer, ϵ = 1.00): Both
Train-TTD (with fine-tuning) and Train-TTD (without fine-tuning) are
implemented toward MetaFormer in an FC-layer-by-FC-layer manner. The
average accuracy is about models whose TT-FC layer belongs to the same
stage. The figure shows the top-1 inference accuracy (y-axis)-TT stage
(x-axis) for decomposing different kinds of layers in different stages.

need to provide sufficient ‘‘scattered’’ information so that
the next high-to-low layer can synthesize the information by
‘‘gathering’’ it. Under Train-TTD, decomposing low-to-high
layers directly is much more sensitive. Therefore, the low-to-
high (Train-TTD without fine-tuning) is the last one in the
order. But a low-to-high layer has better learning capability
with fine-tuning, which helps it become the first. For a high-
to-low layer, it has a smaller approximation error and strong
robustness. Therefore, TT models related to it are in the 2nd

and 3rd order.

3) MIXER-BY-MIXER AND STAGE-BY-STAGE
The front mixer layers have worse robustness, and the final
mixer layer has better learning capability. We implemented
the Train-TTD and the Train-TTD-Train methods toward
MLP-Mixer in a mixer-by-mixer manner both on Cifar-
10 and ImageNet-1K. This manner means decomposing all
FC layers that belong to one mixer layer and maintaining
other FC layers. For Cifar-10, FIGURE 10 shows that
the Train-TTD-Train and the Train-TTD (with fine-tuning,
100 epochs) methods both improve the accuracy compared
with the Train-TTD (without fine-tuning) method. The
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FIGURE 10. MLP-Mixer-6 with Different TTD methods in a Mixer-by-mixer Manner on Cifar-10: Train-TTD-Train, Train-TTD (without fine-tuning), and
Train-TTD (with fine-tuning) are implemented to MLP-Mixer. The x-axis is about the mixer layer, which means using TT to decompose one mixer layer’s
whole FC layers. The y-axis is about the top-1 accuracy.

FIGURE 11. MLP-Mixer-6 with the Train-TTD (without fine-tuning) Method on Cifar-10: Channel-mixing layers and token-mixing layers are decomposed
separately in a mixer-by-mixer manner. The blue histograms are about decomposing token-mixing layers, and the orange histograms are about
decomposing channel-mixing layers.

common characteristic for all methods is that decomposing
the first mixer layer causes the lowest accuracy. For Train-
TTD-Train and Train-TTD (with fine-tuning), decomposing
the final mixer layer leads to the highest accuracy compared
with decomposing others. Some cases even achieve better
accuracy than the baseline. Such as the TT models whose
6th mixer layer is decomposed achieve 81.37%, 81.47%,
81.27%, 81.75%, and 81.23% top-1 accuracy when ϵ = 1.5,
1.25, 1.0, 0.75, and 0.5, respectively in the Train-TTD (with
fine-tuning) method.

If decomposed directly, the channel-mixing layers and
token-mixing layers in front mixer parts are more sensitive
and have worse approximation errors than others, especially
channel-mixing layers. Considering that each mixer part has
token-mixing layers and channel-mixing layers, we decom-
posed them separately with the Train-TTD (without fine-
tuning) method and explored them in a mixer-by-mixer
manner. FIGURE 11 reflects the MLP-Mixer characteristics
when decomposed directly. The blue histograms are about
decomposing token-mixing layers, and the orange histograms
are about decomposing channel-mixing layers. The overall
trend of the orange histograms is increasing from the first
mixer layer to the last one. Overall, token-TTmodels perform
with better accuracy than channel-TT models. In addition,
whether for token-TT models or channel-TT models, the
model whose first mixer layer is decomposed has smaller
accuracy than others, especially for the channel-TT models.
This phenomenon shows that if decomposed directly, both

channel-mixing and token-mixing layers in front mixer parts
have worse robustness than layers in subsequent parts.

Experiments on ImageNet-1K also have a similar phe-
nomenon as FIGURE 12 shows. If both token-mixing and
channel-mixing layers are decomposed in a mixer-by-mixer
manner, the mixer layers that have subsequent positions have
stronger robustness than the front layers.Without fine-tuning,
the top1 accuracy for TT-Mixer layers 5, 6, 7, and 8 is
higher than TT-Mixer layers 1, 2, 3, and 4. The average
accuracy gaps between two groups are 32.70%, 32.16%,
32.01%, 24.56%, and 3.76% when ϵ = 1.5, 1.25, 1.0,
0.75, and 0.5, respectively. The final mixer layer has better
learning capability if implemented with fine-tuning (within
15 epochs). Specifically, decomposing the final mixer layer
leads to the highest accuracy compared with decomposing
other mixer layers for all ϵ values.

A stage with more PoolFormer blocks has worse robust-
ness than other stages. Train-TTD (without fine-tuning)
is implemented toward MetaFormer by decomposing one
stage’s whole FC layers. We call this kind of model as
TT-stage model. As FIGURE 13 shows, the most telling
feature of the figure is the improvement of the TT-stage3
models’ accuracy with the reduction of ϵ. This is because
the third stage has more PoolFormer blocks (six blocks)
than other stages (two blocks). It is much more sensitive to
be decomposed directly. When the ϵ reduces from 1.0 to
0.75 and further to 0.5, the TT-stage3 model can keep more
original information and have better robustness. FIGURE 14
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FIGURE 12. MLP-Mixer-8 with Different TTD Methods in a Mixer-by-mixer Manner on ImageNet-1K: Channel-mixing layers and token-mixing layers are
decomposed in a mixer-by-mixer manner. The blue histograms are about decomposing them without fine-tuning, and the orange histograms are about
decomposing them with fine-tuning (15 epochs).

FIGURE 13. MetaFormer with the Train-TTD (without fine-tuning) Method on Cifar-10: We implemented the Train-TTD method in a stage-by-stage
manner. It decomposes one stage’s whole FC layers. The y-axis is about Top-1 inference accuracy, and the decomposed stage is shown in the x-axis.

FIGURE 14. MetaFormer with the Train-TTD (without fine-tuning) Method on ImageNet-1K: We implemented the Train-TTD method in a stage-by-stage
manner. It decomposes one stage’s whole FC layers. The y-axis is about Top-1 inference accuracy, and the decomposed stage is shown in the x-axis.

shows the same tendency on ImageNet-1K. Other than that,
FIGURE 13 and FIGURE 14 do not show specific regular
patterns because other stages have the same number of
MetaFormer blocks. Although each stage has different values
of token number and channel dimension, they make up for
each other in a dynamically balanced way — the smaller the
token number is, the bigger the channel dimension is.

D. TRAIN-TTD-TRAIN
The Train-TTD-Train method exerts the learning potential
of channel-mixing components and performs with higher
accuracy than the Train-TTD method. On Cifar-10, our
method can achieve higher accuracy with parameter reduc-
tion compared with the baseline. On ImageNet-1K, it is
also a better trade-off than Train-TTD between size and
accuracy. In detail, this method is implemented in MLP-
Mixer andMetaFormer, and the results are compared with the

Train-TTD (with fine-tuning) method. We enlarged the TTD
scope by decomposing the whole channel-mixing layers,
token-mixing layers, or both channel-mixing and token-
mixing layers. For the convenience of description, we still
call the token-TT model or channel-TT model to indicate
models whose token-mixing layers or channel-mixing layers
are decomposed. In addition, if decomposing a model’s
both channel-mixing and token-mixing layers, we call it a
token&channel-TT model.

For MLP-Mixer-6 on Cifar-10, we implemented Train-
TTD (with fine-tuning, 100 epochs) method for comparison.
All the token-TT models perform better than the channel-TT
models and token&channel-TT models. The first sub-figure
in FIGURE 15 shows that the accuracy gap becomes smaller
with the increment of ϵ. More specifically, the accuracy gaps
between the token-TT models and channel-TT are 12.73%,
12.3%, 12.25%, 5.79% and 2.55%when ϵ = 1.5, 1, 25, 1.00,
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FIGURE 15. MLP-Mixer and MetaFormer Models on Cifar-10 and ImageNet-1K: The first sub-figure is about implementing TTD methods with different ϵ

on Cifar-10. The second sub-figure is about implementing TTD methods with ϵ = 0.5 on ImageNet-1K. The channel-mixing layers are decomposed in a
mixer-by-mixer manner, and ‘‘All’’ means that all channel-mixing layers are decomposed. The third and fourth sub-figures are about decomposing
MetaFormer in a stage-by-stage manner on Cifar-10 and ImageNet-1K, respectively.

0.75 and 0.50, respectively. As for the accuracy gaps between
the token-TTmodels and token&channel-TTmodels, they are
34.83%, 30.87%, 30.53%, 10.82% and 4.27%when ϵ = 1.5,
1, 25, 1.00, 0.75 and 0.50, respectively.
The phenomenon is different when the MLP-Mixer is

implemented by the Train-TTD-Train (900 epochs) method.
On the one hand, the accuracy of both channel-TT models
and token&channel-TT models is improved much compared
with the Train-TTD-Train method; on the other hand,
some cases show that the channel-TT models perform with
better accuracy than token-TT models. In detail, when
ϵ = 1.5, the accuracy gaps still exist. However, the gaps
are much smaller than the Train-TTD (with fine-tuning)
when ϵ = 1.25 and 1.00. If reducing the ϵ, a new
trend is emerging: both the channel-TT models and the
token&channel-TT models perform with better accuracy
than the token-TT models. In detail, the channel-TT models
achieve higher accuracy than the token-TT models with
1.36% and 0.45% when ϵ = 0.5 and 0.75, respectively.
The token&channel-TTmodels have higher accuracy than the
token-TT models with 0.79% and 1.6% when ϵ = 0.5 and
0.75, respectively. In addition, there are TT models whose
accuracy is higher than the baseline with smaller model
sizes. These TT models include token-TT models, channel-
TT models, and token&channel-TT models. Among them,
a channel-TT model achieves the highest top-1 accuracy of
81.25% with 0.219M parameters. These results show that
on a small dataset like Cifar-10, channel-mixing components
have better learning capability to achieve higher accuracy
than the baseline model, especially in the Train-TTD-Train
method.

Since decomposing channel-mixing components play
a better effect than decomposing other components on
Cifar-10, we continued to decompose and test them
on ImageNet-1K. For MLP-Mixer-8 on ImageNet-1K,
we implemented Train-TTD-Train and Train-TTD (with
fine-tuning, 15 epochs) methods toward channel-mixing
layers in a mixer-by-mixer manner. The second sub-figure
in FIGURE 15 shows that the Train-TTD-Train method
achieves higher accuracy than the Train-TTD method in

most cases. The accuracy gaps between the Train-TTD-
Train method and the Train-TTD method are −0.61%,
−0.81%, −0.76%, 1.26%, 0.91%, 1.73%, 1.45%, 0.47%,
and 3.21% when decomposition targets are in mixer layer1,
mixer layer2, mixer layer3, mixer layer4, mixer layer5,
mixer layer6, mixer layer7, mixer layer8 and all mixer
layers, respectively. Among TTD models, TT-Mixer-Layer-
6 with the Train-TTD-Train method achieves 57.93% top-1
accuracy as the highest. Although there is a 0.42% accuracy
drop compared with the baseline model on ImageNet-1K,
Train-TTD-Train still performs better accuracy than
Train-TTD.

MetaFormer achieves better accuracy in the Train-TTD-
Train method than the Train-TTD (with fine-tuning) method
both on Cifar-10 and ImageNet-1K. For experiments on
Cifar-10, we implemented two decomposition methods in
a stage-by-stage manner, including the Train-TTD-Train
(1600 epochs) method and the Train-TTD (with fine-tuning,
100 epochs) method. The third sub-figure in FIGURE 15
shows decomposition results when ϵ = 1.0. The Train-
TTD-Train method performs better when decomposing the
1st , 3rd and 4th stages, with 0.10%, 1.59%, and 1.48%
higher accuracy, respectively. As for the Train-TTD (with
fine-tuning) method, it only achieves 0.13% higher than
the proposed method when decomposing the 2nd stage.
The change of accuracy with the Train-TTD (with fine-
tuning) method is a little sharp, and the stage-3 model drops
much accuracy. The experiments on ImageNet-1K have a
similar tendency. From the fourth sub-figure in FIGURE 15,
we can see the Train-TTD-Train method performs better than
the Train-TTD (with fine-tuning, 15 epochs) method when
decomposing the 1st , 2nd and 3rd stages, with 0.31%, 0.31%,
and 2.61% higher accuracy, respectively. As for the Train-
TTD (with fine-tuning) method, it only achieves 0.3% higher
than the proposed method when decomposing the 4th stage.
When comparing TTD models with the baseline model, they
have very close accuracy on Cifar-10 but can not achieve
higher accuracy on ImageNet-1K. Among TTD methods,
Train-TTD-Train shows a better trade-off between accuracy
and size than Train-TTD.
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FIGURE 16. Inference Time Evaluation of Train-TTD-Train Method towards MLP-Mixer and MetaFormer: The two sub-figures on the left are about
MLP-Mixer models on Cifar-10 and ImageNet-1K. The two sub-figures on the right are about MetaFormer models on Cifar-10 and ImageNet-1K. All
subfigures’ x-axes are the same as the ones in FIGURE 15, and their y-axes are all about the ratio of the TTD model’s inference time to the baseline
model’s inference time.

For inference, TTD models take more time than the
baseline. We evaluated models optimized by the Train-TTD-
Train method on a TESLA V100 GPU and calculated the
ratio of the TTD model’s inference time to the baseline
model’s inference time. The first sub-figure in FIGURE 16
shows the TTD model takes 2.0–3.4×, 2.1–3.6×, 2.3–4.7×,
2.8–9.9×, and 4.6–14.7× more than the baseline when ϵ =

1.5, 1.25, 1.0, 0.75, and 0.5, respectively. We can find if a
decomposition target is fixed, there is a trade-off between
compression ratio and inference time. As the ϵ increases,
we will get smaller TT-rank values, which leads to smaller
TT cores. Thus, the inference time of a TT model becomes
shorter. For MLP-Mixer-8 on ImageNet-1K, the second sub-
figure shows TTD models take 8.9–10.7× more than the
baseline if one mixer’s channel layers are decomposed. For
the case which decomposes all token-mixing layers, it takes
66.3× than the baseline. For MetaFormer models on Cifar-
10, it takes 7.2×, 11.1×, 37.1×, and 6.8× more than the
baseline when the 1st , 2nd , 3rd and 4th stages are decomposed,
respectively. For its inference time on ImageNet-1K, it takes
2.6×, 3.0×, 11.5×, and 2.7× more than the baseline if the
1st , 2nd , 3rd and 4th stages are decomposed, respectively.
The reason is that TT-format inference contains a high
computational cost. After being implemented with a TTD
method, the value of MAC operation changes from MN to
MN

∑d−1
1 riri+1, as shown in FIGURE 3. That is, the TTD

method essentially transforms parameter-intensive network
models into compute-intensive models. If a deep learning
accelerator runs a big model with limited on-chip memory
resources, TTD is a good choice to help it avoid a large
size of memory footprint. However, it may be necessary
to design a domain-specific accelerator for handling the
increased computation cost and improving energy efficiency,
by taking advantage of reduced external memory accesses,
such as [38], [39].

E. TTD GENERAL RULES
With a fixed number of TT-cores, increasing TT-ranks
will be helpful for accuracy improvement. TT has a huge

FIGURE 17. TTD experiments with a fixed number of TT-cores for
MLP-Mixer and MetaFormer on Cifar-10: The left graph is about
MLP-Mixer-6. Different TTD methods are implemented for token and
channel-mixing components. Its y-axis is about top-1 accuracy on
Cifar-10, and the x-axis is about prescribed accuracy ϵ. The right graph is
about MetaFormer. The TTD-Train method is applied to it. Its x-axis is
about model size, and its y-axis is about the top-1 accuracy on Cifar-10.

TABLE 4. Average TT-ranks for TT-layers (the MLP-Mixer) in a mixer layer
with different ϵ (the MLP-Mixer): the TT-ranks are represented as
[R1, R2, R3, R4]. Here R1 = R4 = 1, and R2, R3 are shown in the table.

optimization space, including the shape and number of TT-
cores. This subsection explores how different TT-ranks affect
the decomposition results with a fixed number of TT-cores.

For MLP-Mixer-6, the experiment sets three TT-cores
and different prescribed accuracy as ϵ = 1.5, 1.25, 1.0,
0.75, and 0.50. These factors influence TT-ranks R1, R2,
R3 and R4. The first TT-rank (R1) and the final TT-rank
(R4) must be 1 to match the decomposition shape. The
changes about R2 and R3 are shown in TABLE 4. They
increase obviously as the ϵ becomes smaller. The average
accuracy of the MLP-Mixer-6 is calculated when the model
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is decomposed in a mixer-by-mixer manner with different
ϵ in FIGURE 17. No matter decomposing which kind of
mixing component, the top-1 accuracy increases obviously
as the ϵ reduces in all TTD methods. Moreover, we also
explored the TTD-Train method with balanced TT-ranks
toward the MetaFormer. In the experiment, we used the
original Cifar-10 input size, set four TT-cores, and fixed the
TT-ranks in a balanced manner (R2 = R3 = R4). There are
four sets of TT-ranks to choose: [1, 5, 5, 5, 1], [1, 8, 8, 8, 1],
[1, 11, 11, 11, 1], [1, 14, 14, 14, 1]. All the TT-FC layers in
the four stages adopt the same set of TT-ranks. The results
also show that increasing TT-ranks improves the model’s
accuracy.

V. CONCLUSION
This article is the first study to explore TTD toward
deep MLPs. The study adopts different TTD methods to
analyze TTD performance and reveals that deep MLPs’
different components have different learning capabilities
and robustness under decomposition. The proposed Train-
TTD-Train method makes effective compression toward deep
MLPs and exerts the learning capability of channel-mixing
components. Compared with the baseline model on Cifar-
10, the Train-TTD-Train optimizes a deep MLP model with
a 0.56% higher accuracy and 15.44% memory reduction.
On ImageNet-1K, Train-TTD-Train also shows a better trade-
off than other TTD methods. Our future study considers
speeding up the inference process by exploring domain-
specific acceleration for tensor-train.
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