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ABSTRACT In recent years, inertial sensors based on Micro-Electro-Mechanical Systems (MEMS) have
become increasingly popular. They have been widely used in various fields due to their low cost, small
size, and low power consumption. It seems that MEMS inertial sensors may eventually fully occupy
the middle to lower end inertial navigation application market that traditional inertial sensors previously
occupied. To realize the full potential of MEMS inertial sensors, one of the critical issues is their temperature
drift. This paper first proposed a recursive model for real-time compensation. Then three algorithms were
proposed, including a two-layer deep gated recurrent unit recurrent neural network (GRU-RNN, short GRU),
deep GRU based on monarch butterfly algorithm (MBA), and deep GRU based on optimized monarch
butterfly algorithm (OMBA). Each of these three algorithms is combined with the real-time compensation
model to compensate for the temperature drift of a MEMS accelerometer. The experimental results proved
the correctness of these three methods, and the MEMS accelerometer’s temperature drift is compensated
effectively. The results indicate that the deep GRU+OMBA shows the best performance for the temperature
drift compensation combined with the real-time compensation model. After deep GRU + OMBA method
compensation, the angle random walk, the bias instability, the rate random walk, and rate ramp of the

MEMS accelerometer were improved from 4.97e−4mg · s
1
2 , 4.90e−4 mg, 5.57e−5mg/s

1
2 , 1.82e−6mg /s to

3.90e−5mg ·s
1
2 , 1.07e−5mg, 1.12e−6mg/s

1
2 , 3.59e−8mg /s, respectively. Their percentage of improvement

reaches 96.50% on average.

INDEX TERMS Deep GRU, MEMS accelerometer, real-time compensation, OMBA, temperature drift.

I. INTRODUCTION
Advances in the MEMS have made it possible to produce
MEMS inertial sensors that measure angular velocity and
acceleration. They have the advantages of small size, light
weight, low cost, and low power consumption and have
been widely used in aerospace, healthcare, gait analysis,
sport science, activity recognition, and portable devices [1],
[2], [3], [4], [5], [6], [7], [8], [9]. Since the mechanical
structure of MEMS inertial sensors inevitably changes with
heat, their performance changes drastically with temperature.

The associate editor coordinating the review of this manuscript and

approving it for publication was Mauro Gaggero .

Temperature effects greatly limit their applications. This
paper mainly studies the temperature drift of MEMS
accelerometers. Extensive literature studies improve the tem-
perature characteristics of MEMS accelerometers. In general,
there are two main ways to improve the temperature charac-
teristics of MEMS accelerometers: hardware compensation
methods and software compensation methods.

The hardware compensation method mainly includes cir-
cuit control or optimizing the structure of the MEMS
accelerometer, which always needs extra cost, additional
hardware, and increased power consumption and volume.
Wang proposed two approaches for temperature compensa-
tion of high performance resonant MEMS accelerometers.
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In the structural design, an electrostatic softening spring is
utilized to isolate the external stress transmission, thereby
improving the thermal robustness of the accelerometer.
In the control circuit, a continuous ring-down technique
is employed to attenuate measuring hysteresis, thereby
improving the temperature compensation accuracy [10].
Liu proposed a temperature drift compensation method
for high-precision capacitive accelerometers based on par-
asitic resistance [11]. Li proposed a new differential sili-
con substrate to significantly reduce the temperature drift
of high-performance resonant accelerometers; in addition,
its cross-interference from undesirable directions is also sig-
nificantly reduced [12]. Tsai developed a CMOS-MEMS
accelerometer whose mechanical structure is a stack of pure
oxide layers. By limiting the distribution area of the metal
layer and metal-oxide, the thermal deformation caused by
the expansion coefficient mismatch is suppressed, thereby
improving the sensitivity and reducing the temperature drift
of the accelerometer [13]. Zotov proposed a silicon MEMS
accelerometer with differential frequency-modulated. There
are two identical tuning forks inside this accelerometer chip,
their sensitive axes are in opposite directions, and the com-
mon mode error is eliminated by these two tuning forks,
thus achieving continuous thermal compensation [14]. Jing
integrates a temperature resonator in the chip to measure the
temperature in the cavity of the silicon resonant accelerome-
ter package so as to obtain a more accurate temperature in the
cavity and improve the temperature compensation accuracy
of the silicon resonant accelerometer [15].

The software compensation method is essentially a math-
ematical method that studies the relationship between the
temperature and the output of the MEMS accelerometer.
Then a temperature drift model is established, and compen-
sation is completed through the model. Different from the
hardware compensation methods, the software compensation
methods always have the characteristics of simple structure,
low cost, time saving, convenient implementation, and ease
of improving accuracy. He analyzed the temperature depen-
dence between thermal deformation and stiffness to develop
temperature drift analysis models for bias and scaling factors.
The model effectively improved the accuracy of a MEMS
capacitive accelerometer [16]. Ruzza used low-order poly-
nomials to compensate for the thermal effects of low-cost
MEMS accelerometers [17]. Du proposed a real-time
temperature compensation algorithm based on the linear rela-
tionship between the temperature of the MEMS accelerom-
eter and its dynamic resonant frequency [18]. Han used a
finite-element-method to complete the quantitative analy-
sis of the temperature effect of the MEMS accelerometer.
The temperature compensation of the MEMS accelerome-
ter is achieved by simulating the deformation of the sen-
sor chip [19]. Khankalantary used cubic spline interpolation
to model the temperature dependence of the error coeffi-
cients to minimize temperature effects [20]. Yang proposed
a simple mathematical model to obtain a more accurate
and robust output of low-cost quartz accelerometers at high

temperatures. The model takes into account both temperature
and rolling sensitivity and has been successfully applied to
temperature compensation of two low-cost quartz accelerom-
eters [21]. Wang used an optimized back propagation neural
network (BP NN) to eliminate zero-bias error and scale factor
error associated with the temperature of MEMS resonant
accelerometers [22].

In this paper, three methods are proposed to model and
compensate for the temperature drift of a MEMS accelerom-
eter. Its temperature drift can be viewed as a random time
series, and an RNN is very good at processing sequential
signals because its context nodes can remember previous
information. GRU is a variant of ordinary RNN with fast
operation speed and good accuracy. A two-layer deep GRU
is employed for simulating the temperature drift of MEMS
accelerometers more accurately. The MBA and OMBA are
used to tune the parameters of the deep GRU to improve the
generalization ability and robustness of the temperature drift
model.

The remainder of this paper is organized as follows: the
in-house-designed guidance navigation and control (GNC)
Module, which integrated an Inertial Measurement Unit
(IMU) and its temperature experiment are described in
Section II; the temperature drift model and the compensation
algorithm are shown in Section III; Section IV shows the data
processing results and the analysis results; the conclusion is
given in Section V.

II. RELATED WORK
There have been some investigations in the area of tem-
perature drift compensation for MEMS accelerometers. For
instance, Pan et al. [23] study the bias drift and scale factor
drift compensation of a quartz flexible accelerometer after
a quick turn-on and before the thermal balance is reached
inside the system based on a wavelet neural network. They
selected accelerometers at six different locations and 11 tem-
perature sensing points in steps ten ℃ between −40 ℃ and
60 ℃ for their temperature experiments. Then a three-layer
wavelet neural network and variable rate learning algorithm
are employed to compensate for the accelerometer’s bias and
scale factor drift. Results show that the compensation scheme
and algorithm increase efficiency and improve attitude preci-
sion. The selection of the temperature sensing points is one
of the keys to achieving adequate compensation.

Li et al. [24] studied an improved BP NN based on
genetic algorithm (GA) for temperature drift compensation
of Quartzes Flexible accelerometer in different temperatures.
They collected the accelerometer temperature and output
voltage every 5 ℃ between −20 ℃ and 55 ℃ and used the
accelerometer temperature as the input to BP NN and the
accelerometer output as the output of BP NN. Then, each
set of neural network weights and thresholds form the GA
individual. After the GA operation(selection, crossover, and
mutation), the individual with the best fitness is selected as
the weight of the BP NN. The results show that this method
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achieved a good effect and had fewer training steps and better
fitting accuracy precision than the standard BP NN.

Yu et al. [25] proposed a temperature drift compensation
method based on the artificial fish swarm (AFS) algorithm
for a quartz flexible accelerometer. The AFS algorithm is
inspired by the social behavior of fish in searching, swarming,
and following, which can easily find the global optimum.
In the experiment, the temperature controlled box’s tempera-
ture is lowered to −20 ℃ , then raised to 50 ℃ , then lowered
to −20 ℃ , and finally raised to 20 ℃ , and maintained at
each temperature point for more than 4 hours. During the
experiment, they collected the accelerometer temperature and
output voltage and used them as the input and output of
the stepwise regression method and the AFS algorithm. The
results show that the drift instability of the accelerometer
output is reduced from 160.2ug to 18.0ug after compensation
by the AFS algorithm, and the compensation effect is better
than the conventional stepwise regression method.

Zhu et al. [26] proposed a fusion algorithm to compensate
for the temperature drift of a high-G mems accelerometer.
This paper first established a temperature drift model based
on a neural network and considered temperature, temperature
variation rate, and temperature product term as the model
input. And then, the experiment’s output was dealt with an
RBF neural network optimized by Kalman filter and genetic
algorithm (RBFNN+GA+KF). After that, the output based
on RBF NN + GA + KF is corrected by the output data of
the temperature model. And at this time, the fusion algorithm
is determined. The results show that after using the fusion
algorithm, the temperature drift and noise characteristics of
HGMA are well optimized.

Han et al. [27] proposed a BP NN model based on an
adaptive genetic algorithm (AGA) to improve the accuracy
of a JSD-1 capacitive accelerometers in rapidly changing
temperature environments. In this paper, the ambient tem-
perature and the accelerometer’s output are used as inputs
to the BP NN, where the accelerometer’s output is influ-
enced by its input acceleration and the ambient tempera-
ture. To compensate for the accelerometer temperature drift
more accurately, GA is introduced to facilitate a more exten-
sive search for optimal solutions in the solution space in
this paper. The crossover and mutation probabilities of the
standard GA are constant, which leads to a poor global
search capability and a tendency to fall into local minima.
To address this problem, this paper proposes a method for
nonlinearly adjusting the crossover and mutation probabili-
ties named AGA. During AGA execution, the average fitness
of all group parameters is calculated, and the maximum fit-
ness is found. Then, determine the order of GA execution
based on the ratio of the average fitness to the maximum
fitness. If the ratio is less than 0.7, the GA flow is selection,
crossover, and mutation. Otherwise, the GA flow is selection,
mutation, and crossover. The validation results show that
AGA-BP has the best compensation for the JSD-1 capaci-
tive accelerometers compared to GA-BP and multiple linear
regression (MLR).

Wu et al. [28] studied the temperature characteristics and
compensated for the temperature drift of a quartz flexible
accelerometer in the cold start condition. This paper pro-
posed first-order, second-order, and higher-order temperature
drift compensation models based on temperature, tempera-
ture gradient, and time-related drift. And then, the particle
swarm optimization (PSO) algorithm is employed to find
the best model parameters. To demonstrate the feasibility
and reliability of the proposed model, they experimented and
compensated with the first-order compensation model as an
example. The results show that the method proposed in this
paper can flexibly compensate for the temperature drift and
greatly reduce the output signal’s standard deviation.

Qi et al. [29] simulated aMEMS accelerometer’s structural
deformation in diverse conditions to trace its temperature drift
error (TDE). They deduced that the ambient temperature and
its square, as well as the ambient temperature variation and
its square, are the critical factor to TDE. Then, The TDE
model was constructed based on the four factors mentioned
above. Then, this paper introduced a BP NN based on PSO
and GA (PSO + GA + BP NN) in its model parameter
identification. GA is introduced to remove local optimums
of BP NN. Further, PSO is utilized in GA to solve its prob-
abilistic disorder to improve its TDE accuracy and real-time
performance of the model to achieve temperature compensa-
tion. Next, the authors analyzed the heat conduction process
between accelerometers and a thermal chamber and designed
a temperature experiment. At last, the conventional and newly
proposed models are compared based on the temperature
experiment data. The result showed that the model proposed
in this paper could estimate TDE more precisely and enhance
the environmental adaptability of MEMS accelerometers.

The above analysis shows that the previous studies about
temperature drift compensation of MEMS accelerometers
have the following characteristics.

1) All of the literature uses single hidden layer neural
networks for compensation.

2) All the literature does not consider the effect of the
MEMS accelerometer historical output information on
the current moment output.

3) The input parameters of all models in the literature are
temperature or temperature-related terms.

4) The above literature’s most comprehensive test temper-
ature range is −30 ℃ to 60 ℃.

5) In most of the literature, several temperature points in
the test temperature range are selected for testing.

6) Most of the literature uses optimization algorithms to
optimize the neural network parameters to find the opti-
mal solution for the temperature compensation model.

With the continuous development of big data and comput-
ing power, deep learning methods have blossomed rapidly
and have been widely utilized in various fields. Following
this line of thinking, a deep learning approach for tempera-
ture drift compensation of MEMS accelerometers using deep
GRU is proposed in this paper. This paper considers the
effect of the accelerometer history output on the temperature

VOLUME 11, 2023 10357



G. Gang-Qiang et al.: Real-Time Temperature Drift Compensation Method of a MEMS Accelerometer Based on Deep GRU and OMBA

drift compensation model and uses GRU instead of a typical
neural network to model the temperature drift of a MEMS
accelerometer. This RNN variant has higher computational
efficiency and accuracy. Besides, the last time’s and current
time’s temperature drift outputs of the MEMS accelerome-
ter are used as input and output of the model, respectively,
to achieve recursion. Then, this paper has a broader tempera-
ture test range of −40 ℃ to 80 ℃, and the chamber ramps up
at a fixed rate, during which the MEMS accelerometer output
is collected continuously. Moreover, this paper introduced
the MBA to find the optimal weights of GRU, a swarm
intelligence optimization algorithm proposed in recent years.
Optimizing the MBA is to improve its speed and accuracy in
finding the best weights.

III. THE IN-HOUSE-DESIGNED GNC MODULE AND
TEMPERATURE EXPERIMENT
A. THE IN-HOUSE-DESIGNED GNC MODULE
The in-house-designed GNC Module consists of multiple
parts, including dual-core processor, AD, IMU, external inter-
face, etc., and is packaged in three-dimensional form. The
internal space of the GNC module is filled with special
materials to make its components a whole, which effectively
improves its impact resistance. Its surface is plated with metal
to interconnect different parts in the same vertical direction.
The GNC module can autonomously provide a full range
of acceleration and angular velocity information through the
IMU integrated in its internal space. By acquiring information
from various sensors and peripherals from the outside, such as
GPS information or geomagnetic field information, functions
such as integrated navigation, flight control, electronic con-
trol combination, and steering gear control can be realized.
Its size is 30 mm × 30 mm × 21.6 mm. The picture of the
GNC Module is shown Fig 1.

B. TEMPERATURE EXPERIMENT
We conducted a temperature test on the GNCModule to gain
insight into its temperature characteristics. During the tem-
perature test, the GNC Module was placed in a temperature
controlled oven with a static base to ensure that its output
was not affected by external vibrations, as shown in Fig 2.
The temperature range was set from −40 ℃ to 80 ℃ and the
ramp rate was 1 ℃/min. The temperature was initially held at
−40 ℃ for 1 hour. Then, the oven was warmed up to 80 ℃
and stay at 80℃ for 1 hour. The entire temperature test lasted
for 4 hours. At the beginning of the heating process, the com-
puter outside the temperature controlled oven synchronously
collected the output of the GNC Module with the frequency
of 200Hz.

IV. REAL-TIME COMPENSATIOM MODEL
Many authors have considered temperature and other
temperature-dependent quantities to model the temperature
drift of MEMS accelerometers. The accelerometer temper-
ature drifts compensation at the current moment is calcu-
lated after obtaining the current accelerometer temperature.

FIGURE 1. In-house-designed GNC Module.

FIGURE 2. Temperature test equipment.

But the current accelerometer temperature drift and the
current accelerometer temperature usually output syn-
chronously. Therefore, real-time compensation is not possible
in this way. To solve this problem, we consider using a
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FIGURE 3. The framework of the real-time compensation model.

FIGURE 4. Basic structure of GRU workflow.

one-step ahead predictor to perform real-time compensation
of the temperature drift of the MEMS accelerometer. That
is, the temperature drift output at time t − 1 (u(t − 1)) is
used as the model input, and the temperature drift output
at time t (u(t)) is used as the model output simultaneously.
Hence, the MEMS accelerometer readings of the tempera-
ture experiment from 1 to M − 1 ([u(1), u(2), · · · , u(M −

1)]) and from 2 to M ([u(2), u(3), · · · , u(M )]) are repre-
sented as the input and output data for the proposed model,
respectively. That is, X = [u(1), u(2), · · · , u(M − 1)] and
Y = [u(2), u(3), · · · , u(M )]. M is the total number of the
MEMS accelerometer’s temperature drift output data. The
full real-time compensation model parameters are obtained
from the training data set. The current moment output minus
the predicted temperature drift of the last moment to achieve
real-time compensation. The target model could be defined
as:

Y (t) = u(t) = F[X (t)] = F[u(t − 1)] = F[u(t − 1)] (1)

where X (t) and Y (t) are the input and output of the model at
time t , respectively. F[·] is the target function to be trained.
Fig 3 shows the framework of the proposed model.

V. ALGORITHM
A. GRU AND DEEP GRU
1) GRU
GRU is a variant of RNN proposed by Cho in 2014, which
aims to make each recurrent unit adaptively capture depen-
dencies in the data [30]. Fig 4 shows the basic architecture
of GRU workflow, which is built with the ‘‘gate’’ structure.
There are two gate units in the GRU to regulate the flow of

information inside the unit, called ‘‘update gate’’ and ‘‘reset
gate’’ [31].

The role of the update gate zt is to control how much
information can be brought into the current state from the
previous state of the unit. The update gate is computed by
expression (2).

zt = σ (Wzxxt +Wzhht−1 + bz) (2)

where zt is the output of update gate at time t; xt is the input
of GRU at time t; ht−1 is the output of GRU at time t − 1;
Wzx andWzh are coefficient of xt and ht−1,respectively; bz is
the threshold of update gate; σ (·) is the sigmoid funtion.

The reset gate enables the GRU to forget the previous
computational state, making it unaffected by the previous
state. The reset gate is computed by expression (3), which
is computed similarly to the update gate.

rt = σ (Wrxxt +Wrhht−1 + br ) (3)

where rt is the output of reset gate at time t; xt is the input
of GRU at time t; ht−1 is the output of GRU at time t − 1;
Wrx andWrh are coefficient of xt and ht−1,respectively; br is
the threshold of reset gate; σ (·) is the sigmoid funtion.

The candidate hidden state ĥt is calculated as
expression (4).

ĥt = tanh(Wĥxxt +Wĥh(rt
⊙

ht−1) + bĥ) (4)

where ĥt is the candidate hidden state output of GRU at
time t; xt is the input of GRU at time t; ht−1 is the output
of GRU at time t − 1; rt is the output of reset gate at
time t;

⊙
represents the point-wise multiplication operation;

Wĥx andWĥh are coefficient of xt and rt
⊙

ht−1,respectively;
bĥ is the threshold; tanh(·) is the hyperbolic tangent function.

The output of GRU at time t is calculated as expression (5),
which is a linear interpolation between the previous activation
ht−1 and the candidate hidden state output ĥt .

ht = (1 − zt )
⊙

ht−1 + zt
⊙

ĥt (5)

The above analysis shows that xt and ht are the input and
output, respectively. zt , rt , and ĥt are intermediate variables
in the calculation process. Wzx , Wzh, bz, Wrx , Wrh, br , Wĥx ,
Wĥh, and bĥ are the weights determined on the training data
set. σ (·) and tanh(·) are activation functions.

2) DEEP GRU
Fig 4 shows a single-layer GRU and Fig 5 is a basic workflow
of two-layer GRU. The xt in the first layer GRU is the input
of the real-time compensation model mentioned before. The
output of the first layer GRU is passed to the second layer
GRU and used as its input. The input vector goes through
the two-layer GRU one by one to get the outputs. In general,
a sequence GRU decides the output together. Its structure is
shown in Fig 6.

Training deep GRU requires large datasets. The parameters
of the entire deep GRU will be determined or learned during
training.
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FIGURE 5. Workflow of two-layer GRU.

FIGURE 6. Basic structure of Deep GRU workflow.

B. MBA AND OMBA
1) MBA
The MBA is a swarm intelligence optimization algorithm
proposed by Wang in 2015 [32]. It is a nature-inspired algo-
rithm obtained by simplifying and idealizing the migration
of monarch butterflies in eastern North America. In order to
extract the optimization algorithm from the migration behav-
ior of monarch butterflies, the migration behavior of monarch
butterflies is simplified to the following rules.

1) The monarch butterfly population is divided into two
parts, the subpopulation on Land1 and the subpopu-
lation on Land2, which together constitute the entire
monarch butterfly population. Each monarch butterfly
is randomly distributed on Land1 or Land2.

2) Each child monarch butterfly individual is generated
by the migration operator of the parent individual dis-
tributed on land1 or by the adjusting operator of the
parent individual distributed on land2.

3) Totalmonarch butterfly population remains unchanged.
If the fitness of the child individual is better than that of
the parent, then replace the parent individual with the
child individual. If the fitness of the child individual is

not better than that of the parent, the child individual
will be discarded, and the parent individual will remain
unchanged and enter the next generation.

4) The monarch butterfly with the best fitness goes
directly to the next generation, so as to ensure that the
overall quality of the population will not decline.

The migration operator and adjusting operator for the
monarch butterfly are shown below [32], [33].

Assume that there are a total of N monarch butterfly indi-
viduals in the population, each with n dimensions/elements.
This monarch butterfly population can be represented as an
expression (6). Each row of the matrix represents an individ-
ual monarch butterfly.

x1,1 x1,2 · · · x1,n
x2,1 x2,2 · · · x2,n
...

...
. . .

...

xN ,1 xN ,2 · · · xN ,n

 (6)

The monarch butterfly’s population can be divided into
two subpopulations on Land1 and Land2. The individuals in
Land1 and Land2 can be expressed as an expression (7) and
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an expression (8), respectively. And N = N1 + N2.
x1,1 x1,2 · · · x1,n
x2,1 x2,2 · · · x2,n
...

...
. . .

...

xN1,1 xN1,2 · · · xN1,n

 (7)


x1,1 x1,2 · · · x1,n
x2,1 x2,2 · · · x2,n
...

...
. . .

...

xN2,1 xN2,2 · · · xN2,n

 (8)

a: MIGRATION OPERATOR
For individual i in the Land1 subpopulation, the migration
operator is influenced by the location of other monarch
butterflies on Land1 and Land2. The migration operator is
used for information exchange within the monarch butterfly
population to obtain better individuals. Information exchange
can take place between individuals on land1 and Land2,
or between individuals within Land1. Themigration operator
can be expressed as follows.

x t+1
i,k =

{
x tr1,k , if r ≤ p

x tr2,k , else
(9)

where x t+1
i,k is the kth dimension of ith individual in generation

t + 1 of the Land1 subpopulation; r1, r2 are individuals
randomly selected on Land1 subpopulation and Land2 sub-
population, respectively; the parameter r = rand ∗ peri,
where rand is a uniform random number on [0, 1], peri is
usually a constant with a value of 1.2, representing migration
period; p is an adjustable migration ratio, usually a constant
with a value of 5

12 .

b: ADJUSTING OPERATOR
For individual i in the Land2 subpopulation, the adjusting
operator needs to consider the global optimal individual of the
previous generation, a random individual in subpopulation
on Land2, and Lévy flight. The adjusting operator mainly
considers the following three factors.

1) The influence of the global optimal individual on the
overall population.

2) The effect of moving to a random individual on Land2.
3) The purpose of introducing the Lévy flight algorithm is

to increase the diversity of the population and expand
the search range for optimal individual.

The adjusting operator can be expressed as follows.

x t+1
i,k =


x tbest,k , if rand1 ≤ p
x tr3,k , if rand1 > p ∩ rand2 ≤ BAR
x tr3,k + α × (dx − 0.5), else

(10)

where x t+1
i,k is the kth dimension of ith individual in generation

t+1 of the Land2 subpopulation; x tbest,k is the kth dimension
of the global optimal individual in generation t; r3 is a indi-
vidual randomly selected on Land2 subpopulation; rand1 and

rand2 are uniform random numbers on [0, 1]; BAR is the
adjusting rate of monarch butterflies, usually a constant with
a value of 5

12 . α is the weighting factor; dx is a parameter
calculated by Lévy flight.

The expression for α and dx can be given as (11) and (12)
respectively.

α =
Smax
t2

(11)

dx = Levy(x ti,k ) (12)

where Smax is max walk step of monarch butterfly, gener-
ally 1. Levy(·) stands for Lévy flight algorithm.

The constants in the algorithm are calculated based on
the proportion of the time the monarch butterflies spend in
various places and activities throughout the year, which is
very realistic.

2) OMBA
According to the introduction of MBA, we need to compare
the fitness of the child individuals with their parent individ-
uals one by one and leave only one of the individuals in
each group. Possibly, a particular group of parent individuals
and child individuals has better fitness than another group
of parent individuals and child individuals. However, each
of the two groups discarded a worse individual within the
group in this approach. To solve this problem, we proposed
an optimization operator to optimize the MBA to improve its
accuracy in finding the optimal individual. The optimization
operator is to discard groups with poor fitness rather than dis-
carding poor individuals in each group. The process of opti-
mization operator is as follows. After executing the migration
and adjusting operators, all individuals are sorted according
to their fitness. The total population at this point is twice the
initial population, including the parent and newly generated
child populations. Then we select half of the population with
better fitness to enter the next generation. Performing the
migration operator and the adjusting operator increases the
population’s diversity. After selecting half of the population
with better fitness, we use the optimal global individual to
replace the one with the worst fitness among the selected
individuals. And then, these individuals go into the next
generation together.

According to the analysis mentioned above, the flow of the
OMBA is as follows.

1) Initialize the population of N monarch butterfly indi-
viduals. Randomly select N1 individuals as a subpopu-
lation on Land1 and N2 individuals as a subpopulation
on Land2. Where N = N1 + N2.

2) Set the parameters of MBA such as migration period
peri (generally 1.2), the migration ratio p (gener-
ally 5

12 ), butterfly adjusting rate BAR (generally 5
12 ),

the max walk step of Lévy flight Smax (generally 1),
and the maximum generation Gmax .

3) Use the migration operator and the adjusting oper-
ator to produce subpopulations on land 1 and 2,
respectively. These two subpopulations form a new

VOLUME 11, 2023 10361



G. Gang-Qiang et al.: Real-Time Temperature Drift Compensation Method of a MEMS Accelerometer Based on Deep GRU and OMBA

FIGURE 7. The flow chart of deep GRU + OMBA.

population, whose number is N . Then, calculate the
fitness of the new population.

4) Sort the original population with the new population
according to the fitness value and select half of the indi-
viduals with better fitness. The other half is discarded.

5) The individual with the worst fitness in the newly
obtained population is replaced with the optimal global
individual in the parent population.

6) Continue (3)-(5) when termination criteria is not met.
After the algorithm is finished, the optimal individual
is obtained.

C. FUSION ALGORITHM
The process of deep GRU + MBA is similar to that of deep
GRU + OMBA. The difference is that OMBA has one more
step of the optimization operator thanMBA. Here, we present
the fusion algorithm by the example of deep GRU + OMBA.
The flow chart of the deep GRU + OMBA is shown in Fig 7
and its steps can be described as follows:

1) Randomly generates N groups of deep GRU parame-
ters as initial values. Each group of parameters in the
initial and subsequent deep GRU represents a set of
weights for the deepGRU, a string of n elements, where
n is the number of the trainable weight parameters. It is
obtained by transforming the deep GRU weights into
row vectors and stitching them together. The N groups
of deep GRU parameters have the same form as an
expression (6).

2) These N groups of initial values are used to train the
deep GRU. Calculate the fitness corresponding to each
group of parameters and continuously update the deep
GRU parameters by adagrad optimizer.

3) Training the deep GRU until the ending condition one
is met, that is, the accuracy of the deep GRU meets
requirements or reaches preset cycles of the deep GRU
training. If the accuracy meets requirements, finish
training and export the optimal deep GRU parameters.
Else the N sets of parameters of deep GRU constitute
the initial population of the OMBA. The OMBA popu-
lation consists of N individuals, each with n elements,
in other words, n dimensions.

4) The N initial individuals obtained from the deep GRU
is divided into two subpopulations on Land1 and
Land2. Then migration operator, adjusting operator,
and optimization operator of the OMBA are used to
improve the accuracy of the deep GRU.

5) Repeat the last step until the ending condition two
is met, that is, the accuracy of the deep GRU meets
requirements or reaches preset cycles of the OMBA.

6) Stop training and export the optimal results.

VI. RESULTS AND ANALYSIS
The GNC module used in this paper was calibrated before
the experiment. It is placed stationary in the temperature
controlled oven. The sensitive axis of the MEMS accelerom-
eter selected in this paper is perpendicular to the direction
of local gravitational acceleration. A computer outside the
temperature controlled oven collected its temperature drift
output from the beginning of the heating process during the
temperature experiment. The data output frequency is 200Hz,
and the collecting process lasts more than two hours. So,
we can get more than 1,440,000 data. This paper collected
two sets of measurements of the MEMS accelerometers. The
first set of measurements is used to train the model proposed
in this paper to obtain its parameters, namely training data.
In contrast, the second set of measurements is used as test
data to verify the performance of the model trained with the
first set of measurements, namely validation data.

The training of the proposed model is based on a CPUwith
six cores and six threads, and all the simulation and analysis
for experiment data are carried out on Matlab. To remove
noise caused by data fluctuations, we smooth the training data
for 5s. The learning rate was set as 0.01. Figure 8 shows the
simulation results of training the proposed model with the
training data. As shown in Figure 8, all three methods fit the
training data remarkablywell, andwe got three set parameters
of the deep GRU.

The validation data is then used in these obtained models.
To ensure that the validation data is as diverse as possible,
we smooth the validation data for 0.01s. Figure 9 shows the
fitting results for the validation data using the model parame-
ters obtained earlier, and Figure 10 shows the compensation
results for the validation data by the threemethods. Intuitively
all three methods work well. To quantify the compensation
results of different methods, we introduce Allan variance
analysis, the standard and most popular method for analyz-
ing the performance of inertial sensors [26], [34], [35]. The
Allan method is used to analyze the noise contained in the
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FIGURE 8. Simulation results on training data by the three methods.

FIGURE 9. Fitting results on validation data by the three methods.

FIGURE 10. Compensation results on validation data by the three
methods.

original signal output by the inertial sensor. It has five basic
parameters, namely quantization noise (Q), angle random

FIGURE 11. Allan variance analysis results after compensation of
validation data by the three methods.

TABLE 1. Allan Variance Analysis for Different Compensation Methods.

walk (N ), bias instability (B), rate random walk (K ), and rate
ramp (R). Fig 11 shows the results of Allan variance analysis,
which shows that the deep GRU+OMBAmethod has the best
compensation effect. Analysis of the validation data shows no
part of its Allen variance curve corresponding to quantization
noise. Therefore, quantization noise was not considered in the
quantitative analysis.

Table 1 shows the quantitative results and the percentage
of improvement after compensation by the three methods.
It proves that the proposed method offers the best perfor-
mance. As seen from Table 1, after deep GRU compensation,
the four Allen variance coefficients of the accelerometer are
increased by 90.27% on average. The original MBA has
little optimization effect in this application. After introducing
the OMBA, the four Allan variance coefficient is improved
further, and their percentage of improvement reaches 96.50%
on average. This also proves the effectiveness of our opti-
mization of the MBA.

VII. CONCLUSION
This paper proposed a real-time compensation model and a
fusion algorithm for the temperature drift compensation of a
MEMS accelerometer. It is a recursive compensation model.
The temperature drift prediction for the next moment can be
calculated recursively from the model and the temperature
drift output for the current moment. For the temperature
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drift compensation algorithm of the MEMS accelerometer,
three algorithms are proposed: deep GRU, deep GRU +

MBA, and deep GRU + OMBA. The test has proven that
the proposed real-time compensation model combined with
deep GRU + OMBA shows the best performance. First, the
temperature drift accuracy is improved by the deep GRU
and the real-time compensation model. Second, MBA is
used to optimize the parameters of the deep GRU. Next,
the optimization algorithms are used to optimize the MBA
further to get more accuracy compensation, and the optimized
MBA is called OMBA. Finally, a new fusion algorithm of
deep GRU + OMBA is proposed. The Allan variance anal-
ysis is introduced to quantify the compensation effects of
the three algorithms with the original data. Comparison of
the original data with the compensation results using deep
GRU + OMBA by Allan variance analysis, it shows that N
from 4.97e−4mg ·s

1
2 to 3.90e−5mg ·s

1
2 , B from 4.90e−4mg

to 1.07e−5mg,K from 5.57e−5mg/s
1
2 to 1.12e−6mg/s

1
2 , and

R from 1.82e−6mg /s to 3.59e−8 mg /s and their percentage
of improvement reaches 96.50% on average.

The main contributions of this paper are as follows:
1) A real-time compensation model is proposed in this

paper.
2) The deep learning approach is introduced for the tem-

perature drift compensation of MEMS accelerometers.
3) A swarm intelligence optimization algorithm, namely

MBA, is introduced to find the optimal weights
of GRU.

4) An optimization operator is proposed to optimize the
MBA to improve its accuracy in finding the best
weights.

Themotivation of this paper was to explore amore accurate
method for a MEMS accelerometer temperature drift model-
ing and compensation. The following problems need more
discussion in the future.

1) Only a GNC module was employed in testing the
proposed method. It is of significance for evaluating
the performance of the deep GRU + OMBA method
in different GNC modules since other GNC modules
perform different temperature drift characteristics.

2) Both the training process and the validation process are
based on the computer’s CPU in this paper. Investigate
ways to simplify the computational effort and then port
the verification process to the GNC processor to enable
online compensation.
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