
Received 6 January 2023, accepted 26 January 2023, date of publication 30 January 2023, date of current version 3 February 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3240724

Execution Recording and Reconstruction for
Detecting Information Flows in Android Apps
HIROKI INAYOSHI , SHOHEI KAKEI , AND SHOICHI SAITO
Nagoya Institute of Technology, Nagoya 466-8555, Japan

Corresponding author: Hiroki Inayoshi (h.inayoshi.849@nitech.jp)

ABSTRACT Security researchers utilize taint analyses to uncover suspicious behaviors in Android apps.
Current static taint analyzers cannot handle ICC, reflection, and lifecycles dependably, increasing the result
verification cost. On the other hand, current dynamic taint trackers accurately detect execution paths.
However, they depend on specific Android versions and modified devices, reducing their usability and
applicability. In addition, they require app exercise every time running the taint analysis. This paper presents a
new dynamic taint tracker called T-Recs, tracking information flows by recording and reconstructing the app
execution. First, before the taint analysis, the app’s runtime data are obtained by instrumenting logging code
into the app’s bytecode and running the app to be independent of specificAndroid versions and devices. Then,
T-Recs performs the taint analysis accurately with the logged data and separately from the app exercise. This
paper is an extended version of our work published. Previously, T-Recs’ accuracy was mainly evaluated in
privacy leak detection. The results show that T-Recs outperforms compared analyzers, which are FlowDroid
(w/ and w/o IC3), Amandroid, DroidSafe, and TaintDroid (w/ and w/o IntelliDroid). This paper also involves
DroidRA and IccTA. This paper shows that T-Recs detects ICC- and reflection-related leaks missed by
FlowDroid in popular Google Play apps. The other static analyzers fail to analyze most of the apps. These
experiments also indicate an advantage of T-Recs: its users can re-execute T-Recs’ taint analysis without
re-exercising the app. T-Recs’ app-runtime overhead and parallel execution performancewere also evaluated,
and the results are acceptable.

INDEX TERMS Android security, information flow, privacy leak detection, taint analysis.

I. INTRODUCTION
Protecting smartphone users has attracted increasing interest
due to the appearance of suspicious apps and third-party
SDKs. App analysts apply automatic analysis techniques to
large-scale datasets of Android apps to detect suspicious
behaviors. For example, Zhao et al. uncovered backdoor and
blocklist secrets in apps published on Google Play and Baidu
Market and pre-installed apps [1]. They used a static taint
analysis tool called FlowDroid [2] to uncover the secrets.
Static taint analysis is popular in analyzing a large-scale
dataset because of its scalability.

However, static taint analysis has the problem of detecting
incorrect execution paths, increasing the cost of verifying
experiment results. Recent reviews of the literature on static

The associate editor coordinating the review of this manuscript and

approving it for publication was SK Hafizul Islam .

taint analysis showed the limitations of the analysis [3], [4].
Zhang et al. evaluated currently-available static taint analysis
tools: FlowDroid, Amandroid [5], and DroidSafe [6] with
DroidBench [7] apps supported by the tools and real-world
apps. The results show that the tools are inaccurate and cannot
be used for analyzing real-world apps dependably. Handling
inter-component communication (ICC), reflective calls, and
component lifecycles are significant challenges. For exam-
ple, FlowDroid supports ICC detection with IccTA [8] and
IC3 [9], which are shown to be unreliable. The increase in
false positives (FPs) complicates analysis-result verification,
causing an increase in analysis cost. For example, Zhao et al.
manually analyzed 70 out of over 16,000 detected apps to
estimate the accuracy, and the result is 87.14% (i.e., nine apps
are FPs) [1]. Three of the FPs were caused by conflicting
constraints along the execution path. Such a manual analysis,
especially finding path constraints, is complex and requires

10730 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0003-3355-8804
https://orcid.org/0000-0003-3137-4956
https://orcid.org/0000-0003-3103-9656
https://orcid.org/0000-0002-2703-0213


H. Inayoshi et al.: Execution Recording and Reconstruction for Detecting Information Flows in Android Apps

significant effort. Also, increasing the complexity of the anal-
ysis algorithms increases the analysis time, precluding the
analysis from completing in a reasonable time.

On the other hand, dynamic taint analysis only analyzes the
executed paths, and there is no chance of detecting incorrect
execution paths. For example, TaintDroid [10] generates no
FP in the privacy leak evaluation with 30 popular real-world
apps. However, current dynamic taint analysis tools depend
on specific devices and versions of Android OS. It decreases
their usability [11] and the range of analyzable apps. In addi-
tion, the app exercise must be performed every time the
taint analysis runs. Therefore, when the analyst or researcher
changes the parameters or features of the taint analysis and
re-analyzes the same app, the app exercise also needs to be
executed, which incurs extra costs.

This paper presents a new dynamic analysis system called
T-Recs, with which users can start analyzing apps immedi-
ately after plugging an unmodified device into their computer.
T-Recs first records the target app’s runtime information at
almost instruction-by-instruction. Then, it accurately recon-
structs the app execution on the computer with the logged
information to track information flows and detect information
leaks, whereas overcoming the device dependency issue. The
computer is outside the Android framework in contrast to
TaintDroid, which is implemented on the Android frame-
work. Also, the logs are stored in the analysis computer so
that the taint analysis can be executed independently of the
app exercise.

T-Recs consists of five components: parser, instrumentator,
logger, reconstructor, and exerciser. The parser, the instru-
mentator, and the logger procure the app’s runtime infor-
mation with as minimal bytecode instrumentation as possi-
ble. Then, the reconstructor reproduces the app execution
based on the parsed and logged information. The exerciser
addresses how to trigger the target behavior in apps, a general
challenge in dynamic analyses. App exercise depends on the
apps and the data to be tracked. For example, tracking user
inputs requires input-related exercises. The exerciser trig-
gers ICC, callbacks, and lifecycles in the DroidBench apps
because the static taint analysis has limitations for handling
them.

This paper is an extended version of the conference
paper [12]. Previously, T-Recs’ accuracy, analysis time,
and success rate were evaluated in privacy leak detection
compared to currently available taint analyzers, which are
FlowDroid (w/ and w/o IC3), Amandroid, DroidSafe, and
TaintDroid (w/ and w/o IntelliDroid [13]). The results show
that T-Recs outperforms the compared tools in detection
accuracy. T-Recs also achieves reasonable analysis time and
success rate. T-Recs has been made available to the commu-
nity.

This paper further evaluates T-Recs. DroidRA [14], [15]
(w/ FlowDroid, Amandroid, and DroidSafe) and IccTA are
additionally included. Also, this paper shows that T-Recs
detects ICC- and reflection-related leaks missed by Flow-
Droid in popular Google Play apps collected in 2016 and

2021. To identify and count the leaks, a debugging feature
was added to the reconstructor. Then, only the reconstructor
was executed. These experiments were conducted once the
overall analysis was finished, indicating that T-Recs’ taint
analysis (i.e., the reconstructor) can be re-executed without
re-exercising the app, which is one of T-Recs’ advantages.
T-Recs’ app-runtime overhead (i.e., overhead for apps to
be installed, launch, cause leaks, and be uninstalled) and
parallel execution performance were also evaluated in com-
parison with the other trackers. The results are acceptable,
and running T-Recs in parallel can easily shorten the analysis
time. This paper also provides a more detailed description of
T-Recs.

Here is the summary of our contributions:

• We developed a mechanism for accurately reconstruct-
ing the app execution outside the Android framework
based on the app’s runtime information logged on a
device.

• We implemented the mechanism into a new dynamic
taint analysis system called T-Recs with nearly 17,000
lines of Python and Smali code.

• We demonstrated T-Recs’ leak detection perfor-
mance compared to FlowDroid, Amandroid, DroidSafe,
DroidRA, IccTA, TaintDroid, and IntelliDroid with
DroidBench, 254 popular apps from Google Play in
2016 and 2021, and SDK-version-varied apps from
Google Play and Anzhi [16].

• The importance of tracking ICC- and reflection-related
flows is highlighted by T-Recs, detecting these flows in
ten apps and related leaks in six apps among 96 apps
fromGoogle Play in 2016 and also these flows in 52 apps
and associated leaks in 29 apps among 158 apps from
Google Play in 2021.

• The additional experiments indicate that T-Recs’s cost
of re-executing taint analysis is small, taking 34 minutes
(17% of the whole) for the 96 apps collected in 2016 and
one hour and 40 minutes (11% of the total) for the
158 apps collected in 2021.

The rest of this paper is organized as follows. Information
leaks and taint analysis are explained in Section II. Our
approach is presented in Section III, and its implementation
is described in Section IV. Our evaluation is reported in
Section V, and the results are discussed in SectionVI. Related
work is explained in Section VII. Lastly, our conclusion is
stated in Section VIII.

II. BACKGROUND
This section first discusses an information-leaking app’s
code. Then, it explains information flow tracking and current
taint analysis approaches.

A. INFORMATION-LEAKING APP’s CODE
An app can leak sensitive information with, for example, the
Smali code in Fig. 1. In Smali, one class is defined per file,
similar to Java. The class name is printed in the first line of

VOLUME 11, 2023 10731



H. Inayoshi et al.: Execution Recording and Reconstruction for Detecting Information Flows in Android Apps

FIGURE 1. Smali code leaking the sensitive information.

the Smali file. It is prefixed with a capital L and suffixed with
a semicolon. In Fig. 1, Leaker is the class name. A field of
Leaker is defined in Line 3. The left part of the colon is the
field name (i.e., imei) and the right part is the data type (i.e.,
Ljava/lang/String;). The data type is java.lang.String in Java,
and slashes are used instead of dots in Smali.
Leaker has three methods defined in Lines 5-28. A method

definition begins from a line starting with .method to next
.end method line. A constructor is defined in Lines 5-8;
callback1(), 10-21; and callback2(), 23-28. The V attached to
the method names’ ends indicates the data type of the return
value, and V means void in Java. The invoke instructions,
such as invoke-direct in Line 7, invoke-virtual in Line 12,
and invoke-static in Line 27, are used to call a method. The
move-result-object instruction assigns the return value of the
most recent invoke instruction to the destination register (e.g.,
v1 in Line 14). The if-eqz instruction is one of the branch
instructions, and the path to the label is taken if the operand
register value is 0 (e.g., if v1’s value is 0 in Line 16, Line 18
is skipped, and Line 20 is subsequently executed). The iput-
object and iget-object instructions in Lines 18 and 25 are a
setter and a getter of instance fields, respectively.

B. INFORMATION FLOW TRACKING
The information flow starts when the code obtains a device’s
hardware identifier (i.e., IMEI) in Lines 12-14 in the method
callback1(). The code sets the value to the field imei in Line
18. Then, the code moves the value from the field imei to the
register v1 in Line 25 and leaks it by calling Log.i() in Line
27 in the other method callback2().

Assume that callback1() is called, a taint tracker can assign
a taint tag to the register v1 in callback1() and propagates
the taint from v1 to the field imei. A challenge is to deter-
mine whether callback1() and callback2() are executed in
this order. Execution of the methods depends on ICC, user-
interface events, and the app’s lifecycle. If a tracker overap-
proximates the call flows, the leak is falsely detected (i.e.,
FP). Alternatively, if a tracker underapproximates, the leak is
missed (i.e., false-negative (FN)).

C. STATIC TAINT ANALYSIS
Static taint analysis requires no Android device and processes
apps without running them. A significant challenge is to
obtain precise Android models to find correct execution paths
(e.g., the execution order of callback1() and callback2() in
Fig. 1). Also, the execution order of instructions changes
based on system properties, such as OS version and IMEI
(e.g., Line 16 in Fig. 1).

Considerable effort has been devoted to Android-modeling
techniques; however, the limitations are demonstrated [4].
Zhang et al. showed that currently-available static taint anal-
ysis tools produce many FPs and FNs in DroidBench apps
that contain ICC- and lifecycle-related code similar to Fig. 1.
They also evaluated the tools with real-world apps and con-
cluded that none of them was reliable. The increase of FPs
increases the analysis cost and complicates the verification of
analysis results. Also, increasing the complexity of analysis
algorithmsmultiplies the analysis time, making it challenging
to complete the analysis in a reasonable time.

D. DYNAMIC TAINT ANALYSIS
Dynamic taint analysis uses the target app’s runtime seman-
tics. For example, TaintDroid [10] performs taint tracking
within theDalvik virtualmachine interpreter, and theAndroid
models are not used. Since only the executed paths are ana-
lyzed, FPs, due to misestimating call flows and control flows,
do not occur. The computation required for the Android
modeling is no longer necessary, and the analysis time does
not depend on the modeling.

However, Reaves et al. [11] discuss that TaintDroid is the
most difficult to set up in comparison with static analysis
tools they audited because TaintDroid requires the user to
build the Android source code. Also, a supported device is not
always available. Other current dynamic taint analyzers could
be easier to set up; however, they have been barely examined
in the community and are not effortlessly usable, which are
discussed in Section VII.
TaintDroid’s other drawback is that the app exercise needs

to be executed every time running the taint analysis because
the app exercise and the taint analysis are performed simulta-
neously in TaintDroid. Therefore, when the analyst changes
the parameters of the taint analysis (e.g., the data to be
tracked) and re-analyzes the same app, the app exercise also
needs to be repeated, which incurs extra costs. It also dis-
tresses researchers who add new features to the taint analysis
and evaluate them.

Another issue is the app exercise itself. Since a dynamic
taint analysis only analyzes executed part of the app’s code,
triggering the target behavior in the app is necessary. Mon-
key [17], a popular UI/application exerciser, exercises the app
randomly. Random exercise is inefficient in triggering a leak
in practice because sometimes a leak is only triggered by a
particular sequence of UI operations. For example, some of
the DroidBench apps require a specific sequence of opera-
tions to trigger leaks as shown by callback1() and callback2(),

10732 VOLUME 11, 2023



H. Inayoshi et al.: Execution Recording and Reconstruction for Detecting Information Flows in Android Apps

FIGURE 2. Overview of our approach.

which must be called in this order to cause the leak (Fig. 1).
Finding such operation sequences using random input can
take much time or fail to trigger leaks.

III. APPROACH
This section presents a new taint analysis system addressing
the model accuracy, device dependency, and re-analysis cost
issues.

A. OVERVIEW
The system is designed to be automatic for analyzing large-
scale datasets. It performs dynamic taint analysis outside the
Android framework to accomplish accuracy, usability, and
small re-analysis costs. There are the following challenges:

• How to implement a mechanism to provide app runtime
information outside theAndroid framework in away that
is effective for many real-world apps.

• What kind of app runtime information should be used
to accurately reconstruct the app execution and track
information flows outside the Android framework.

• Since this is a dynamic analysis, how to automatically
exercise the app to trigger the target behavior should be
addressed.

The system consists of five components that address these
challenges. Fig. 2 shows the overview of the system. After the
user plugs the unmodified Android device into the analysis
server, the setup is finished, and the analysis server first
unpackages the app and extracts the app’s Smali code.

• Parser extracts the app’s information from the Smali
code to reduce the information to be logged.

• Instrumentator injects the logger into the app code.
It also provides the logging point information to the
reconstructor.

• Logger saves the app runtime information at the app’s
bytecode level. It is independent of specific Android
devices and versions and requires no device modifica-
tion, such as rooting. The logs are eventually stored in
the analysis server.

• Reconstructor reproduces the app execution, includ-
ing call-, control-, and dataflows on the analysis server
based on the parsed and logged data. The logs are saved
in the storage of the analysis server so that the recon-
structor can be executed separately from the logger.

FIGURE 3. Example of the instrumentation applied to the code in Fig. 1.
The red-colored lines are logging points injected into the code.

• Exerciser cooperates with the reconstructor to auto-
matically trigger leaks caused by ICC, callbacks, and
lifecycles in the DroidBench apps.

The rest of this section describes each component.

B. PARSER
The parser extracts class, method, field, and instruction infor-
mation from the app’s Smali code. The parser maps each
class and method (e.g., class Leaker and methods init(), call-
back1(), and callback2() in Fig. 1) to distinguish between
in-app and API methods, and the instrumentator uses the
results. The parser also distinguishes fields (e.g., imei in
Fig. 1) implemented in subclasses and superclasses because
the classes can have the same name fields, and the fields
are not distinguishable based on their names. The parser also
extracts fields’ default values hard-coded in the app code.

C. INSTRUMENTATOR
The instrumentator injects the logging code (i.e., the logger)
into the target app’s Smali code. In this section, first, logging
points are described. Then, logging-method construction is
explained. Next, the type-conflict problem and a solution are
discussed. Lastly, DEX-related problems and solutions are
described.

1) LOGGING POINTS
Fig. 3 shows an example of the instrumentation. The red-
colored lines are logging points in the app code where
the logging method invocations are injected. The logging
methods are static and are called by the invoke-static/range
instruction. An argument register is passed to the logging
methods with brackets for logging the register’s value. For
example, p0 is passed to the logging method by {p0.. p0}
in Line 9, and p0’s value will be logged. The subsequent
LTRecsLog;→Log_1_7_p0 specifies the called class and

VOLUME 11, 2023 10733



H. Inayoshi et al.: Execution Recording and Reconstruction for Detecting Information Flows in Android Apps

method names of the logger. TRecsLog is the class name
and Log_1_7_p0 is the method name. The method name
consists of the target class identifier, the original instruction
line number in the code before the instrumentation (Fig. 1),
and the register name, which are 1, 7, and p0 respectively.
The class identifier is assigned to each class (i.e., each Smali
file) in the app. The following (Landroid/app/Application;) is
the data type of the argument p0. V at the end is the data type
of the method’s return value and is void because the logging
methods return nothing. The logging method in Line 6 has
no argument, and no value is logged at the point. The logging
points are as follows:

• immediately after field-getter instructions to save values
loaded into the destination registers because fields can
bemodified outside the app code (e.g., Line 32 in Fig. 3).
Also, logging at static-field operators informs the recon-
structor about the timing of the clinit invocation.

• right after monitor-enter, const-class, and check-cast
instructions and catch labels.

• immediately after method calls (e.g., Lines 9, 18, 19, 35,
and 36 in Fig. 3) and at the head of each method in the
app code (e.g., Lines 6, 13, and 29 in Fig. 3). The logs are
used to determine method call relationships accurately,
which is explained in Section III-E3. Argument values
are also recorded at the head of the method and used for
argument mapping. The logger skips value logging for
constructors because constructors have an uninitialized
object reference as its base object at the method head
(e.g., Line 6 in Fig. 3). The return value is recorded for
API method calls at the correspondingmove-result (e.g.,
Line 19 in Fig. 3) and used for the return value mapping,
described in Section III-E3. The value of reference-data-
type arguments is also recorded after the method call
since the method may modify the arguments.

The instrumentator considers reducing the instrumentation
code volume for app runtime performance. Results of arith-
metic and logic operations and conditional branches (e.g.,
Line 21 in Fig. 3) are not logged to reduce the amount of
instrumentation code. Also, no logging code is injected to the
end of each method (e.g., Lines 10, 26, and 37 in Fig. 3).
Instead, the reconstructor simulates the operations on the
server based on reproduced register values.

2) LOGGING-METHOD CONSTRUCTION
Fig. 3 indicates that a static logging method is constructed for
every instrumented instruction. It avoids using local variables
in the instrumented methods to reduce the impact on the
original code.

Suppose all the logging points call the same logging
method. In that case, each logging point must provide infor-
mation, including the class identifier, line number, and reg-
ister name to the logging method (i.e., each logging point
needs a local variable to keep the information). However,
introducing an additional local variable for the logging to
a method can fracture the original code. A method can use

FIGURE 4. Instrumented code of exception handling. The modified part
and injected code are red-colored.

registers v0 to v65535 for the method’s local variables and
parameters in Smali. The method’s local variables are first
assigned to registers from v0. Then, The method’s parame-
ters are assigned to registers. For example, if a method has
14 local variables and 2 parameters, the local variables use
registers v0 to v13, and the parameters use v14 and v15.
Assuming that an additional local variable is used for the log-
ging, the local variables now use registers v0 to v14, and the
parameters use v15 and v16. The second parameter’s register
is changed from v15 to v16, which is not acceptable because
whereas the first 16 registers v0 to v15 can be operated by all
the instructions, v16 and later registers are limited that only
specific instructions can operate the registers. As a result, the
instrumentator must rewrite the original code’s instructions
related to the second parameter, which is complex and better
to be avoided. Therefore, the logging is designed to use no
local variables in the instrumented methods. Since sharing a
logging method among multiple logging points requires an
additional local variable, a logging method is constructed for
every logging point.

3) TYPE-CONFLICT PROBLEM
The instrumentation code must not cause errors while the
app is running. Solving the type-conflict problem discussed
in [18] is challenging. Instrumenting an app can make data
types of a register potentially conflicted within a method of
the app.

Fig. 4 shows an example of the instrumentation applied
to an exception-handling code. The modified parts of the
code are red-colored. A try block starts at :try_start_0 in
Line 1 and ends at :try_end_0 at Line 10. If no exception
occurs between Line 1 and 8, the goto instruction changes
the program counter to :goto_0 in Line 14, and invoke-static
instruction in Line 15 is subsequently executed after the try
block. In the original code, only invoke-static in Line 2 can
cause an exception in the try block. Thus, the catch block
would never be executed after the invoke-static in Line 2 is
successfully executed, and the instructions in Lines 4, 8, and
9 are necessarily executed. In other words, in the original
code, after an integer value is assigned to v0 in Line 4, the
value is certainly converted to float by int-to-float in Line 8.

On the other hand, if an exception occurs in the try block,
the execution point is changed to :catch_0 in Line 12. Then,
instructions in Lines 13-15 are subsequently executed. In the

10734 VOLUME 11, 2023



H. Inayoshi et al.: Execution Recording and Reconstruction for Detecting Information Flows in Android Apps

code after the instrumentation, invoke-static/range in Line 5
can cause an exception in the try block, indicating that int-
to-float in Line 8 can be skipped, and v0 holds an integer
value when the instructions after Line 12 are executed. In that
case, the type-conflict problem occurs because v0’s value
must be float for invoke-static in Line 15. In this way, the
instrumentation can introduce a new exceptional flow leading
to the type-conflict problem.

Since a verifier module of the Android runtime system
always assumes that invoke causes exceptions, it detects the
type conflict and terminates the app execution. To address
the problem, Balachandran et al. developed a register-type
separation technique, which rewrites the whole code of the
app [18]. On the other hand, our approach replaces the desti-
nation register ofmove-result in a try block (e.g., v0 at Line 4)
with an unused register. We call the approach temporary-
register technique. For example, v1 is used as a temporary
register instead of v0 in Line 4, and the logger saves the v1’s
value as the v0’s value in Line 5. After the logging, the value
is moved from v1 to v0 in Line 6 to maintain the semantics.
The technique is also applied to move-exception.

4) DEX-RELATED PROBLEMS
The instrumentator should avoid the 64K problem [19],
which restricts a DEX file to containing 65,536 method ref-
erences at most. After the logging methods are injected, the
instrumentator counts the number of method references in
Smali files in each DEX file, which is a directory when the
app is unpackaged. Then, the instrumentator rearranges the
Smali files in a DEX directory into multiple DEX directories
if the DEX directory contains more method references than
the maximum.

The instrumentator also detects long-distance jumps
between an if-statement and its jump destination. When an
if-statement uses a 16-bit address to specify the jump desti-
nation, the jump distance could exceed the limit because of
the injected code, and the app repackaging would fail. The
instrumentator detects such jumps and replaces the jumps
with a goto/32 statement that uses a 32-bit address.

D. LOGGER
The logger is injected into the app code by the instrumen-
tator. Then, T-Recs repackages, installs, and launches the
app on the Android device, and the logger is also executed.
The logger targets primitive-data-type values, class object
representations, string values of String type classes, array
representations, and array elements’ values.

The logger converts the class object representations into
strings to write them into a log file. However, the formats
of string representations depend on the class’s toString()
implementation. Also, the toString() should not be used when
the class overrides the method because calling themethod can
affect the app’s behavior (e.g., it could change a field value).
Therefore, the logger explicitly invokes getClass().getName()
and hashCode(). The logger uses a ring buffer to keep logs in

FIGURE 5. Example of app-execution reconstruction.

the memory and reduce the number of writing to the disk for
the app runtime performance with a large number of logging.

After the app is exercised for a time specified by the ana-
lysts, T-Recs terminates and uninstalls the app. Then, T-Recs
collects the log file from the device and saves it in the analysis
server.

E. RECONSTRUCTOR
The reconstructor reproduces the app execution, consisting
of call-, control-, and dataflows, based on the information
obtained by the parser, the instrumentator, and the logger.
Simultaneously, the reconstructor propagates taints to track
information flows.

Fig. 5 shows an example of reproducing the execution of
the code in Fig. 3. The log file is obtained by executing the
code in Fig. 3 and is stored in the storage of the analysis server
so that the reconstructor can be performed independently of
the logger. The log format isPID:TID:ClassID_LineNumber.
PID and TID are the identifiers of the process and thread
that executed the logging code. ClassID is the identifier of
the class. LineNumber is the instrumented instruction’s line
number in the original code shown in Fig. 1. The log is fol-
lowed by _RegisterName:RegisterValue if the instrumented
instruction has an operand register to be logged.

The reconstructor reproduces the execution with PID
12 and TID 56 in Fig. 5. The reproduced execution includes
currently-executed instruction, program counter, call stack,
registers, instances, and fields. The call stack is empty at
first, and the reconstructor starts by obtaining the first log
12:56:1_5. The reconstructor sets the program counter 5 and
simulates the instruction. Since program counter 5 is the head
of constructor, the reconstructor creates its stack frame and
pushes it to the call stack. Then, the reconstructor increments
the program counter. The next instruction is invoke-direct at
program counter 7, which is another logging point, and the
reconstructor breaks the reproduction and obtains the next
log 12:56:1_7_p0:0xabcd. The reconstructor creates register

VOLUME 11, 2023 10735



H. Inayoshi et al.: Execution Recording and Reconstruction for Detecting Information Flows in Android Apps

p0 and instance 0xabcd based on the log. The reconstruc-
tor increments the program counter, reaches the end of the
method, and removes the method’s stack frame. Since the call
stack is now empty, the reconstructor breaks the reproduction
and obtains the next log, and the next method’s reconstruction
starts at program counter 10 in callback1(). By repeating
these steps, the reconstructor reproduces the execution. The
rest of this section explains how the reconstructor simulates
register values, control flows, and call flows, and the taint
propagation is described at the end.

1) REGISTER VALUES
The reconstructor reproduces register values based on
logged object identifiers, strings, and primitive-data-type val-
ues. It considers registers’ data types: primitive-data-type,
reference-data-type, and class references.

Primitive-data-type values are reproduced based on the
logs and data extracted by the parser. Boolean values, true and
false, are represented by numeric values, 1 and 0, respectively,
for using the values with branches (e.g., if-eqz). Unary and
binary operations, such as numerical and logical calcula-
tions, with primitive-data-type values, are simulated by the
reconstructor. The reconstructor explicitly uses the same bit
length to obtain the same results of calculations as the actual
execution.

Arrays and classes are reference-data-type, and registers of
the data type hold object references. In the reconstructor, sim-
ulated registers hold references to array and class instances as
same as the actual execution (e.g., register p0 holds a refer-
ence to instance 0xabcd in Fig. 5). Null values are represented
by the numeric value 0, which is compatible with branches
(e.g., if-eqz). An array’s elements are logged and used to
simulate array operations. The reconstructor also supports
multidimensional arrays. The reconstructor manages fields of
classes and handles static fields as a global area.When the app
accesses an uninitialized field, the reconstructor simulates
default values, 0 for numeric values and null for objects.

Whenmultiple threads write and read the same field simul-
taneously, the reconstructor detects the timing of each oper-
ation based on logs at the monitor-enter. Figure 6 shows
an example of instrumented code with monitor-enter and
monitor-exit instructions. These instructions enable an app
to perform exclusive control to maintain consistency when
multiple threads use the same data in, for example, a field.
In this example, thread1() sets a value to field Leaker.imei at
Line 7, and thread2() gets the value from the field at Line 19.
Since these instructions are placed between monitor-enter p0
and monitor-exit p0, they are executed one at a time. The
reconstructor can detect their execution order based on the
logs generated at Lines 5 and 17, and the data flow from v1 in
Line 7 to v1 in Line 19 is accurately reproduced. On the other
hand, if an app does not use exclusive control, the reconstruc-
tor cannot reproduce the execution order of instructions in
multiple threads accurately. However, in such case, the impact
of incorrect reproduction might be small because the app’s
developer also disregards the execution order.

FIGURE 6. Instrumented code with monitor-enter and monitor-exit
instructions.

Class references are generated by const-class instructions
and used by branches and method calls. The reconstructor
simulates class references based on logged object represen-
tations.

2) CONTROL FLOWS
The reconstructor reproduces control flows in each method
of the app, which consists of conditional branches (i.e., if
and switch), unconditional jumps (i.e., goto), and exceptional
flows (i.e., try, catch, and throw). App code is written in
Dalvik executable (DEX) bytecode [20], which is register-
based, and conditional branches operate on registers. Hence,
the reconstructor simulates conditional branches based on
the reproduced register values (e.g., program counter 16 in
Fig. 5).

Simulating exceptional flows requires the detection of
exception sources and exceptional-jump destinations. The
reconstructor detects exception sources based on simula-
tion results (e.g., ArrayOutOfBoundException by simulating
arrays) and the logs (e.g., exception-causing calls by checking
the completion of each call). The reconstructor checks a log
that must appear right after a finished call, and if the log is
not found, the reconstructor understands that an exception is
caused during the call. For example, the reconstructor detects
that the call at Line 15 in Fig. 3 causes no exception based
on log 12:56:1_14_v0:0xef10 (Fig. 5). In the same way, the
reconstructor detects whether a check-cast instruction throws
an exception. The reconstructor also breaks the trace and
checks the next log at throw instructions. The reconstructor
detects exceptional-jump destinations based on the logs from
catch blocks (e.g., the logging point at Line 13 in Fig. 4),
which can be in a different method from the exception source.

3) CALL FLOWS
There are various patterns of method calls involving call-
backs, lifecycles, ICC, reflection, threading, and constructors.
It indicates that only one-to-one mapping of parameters and
arguments fails to detect dataflows from a caller to a callee.

10736 VOLUME 11, 2023



H. Inayoshi et al.: Execution Recording and Reconstruction for Detecting Information Flows in Android Apps

Also, the return value from a caller to a callee is not one-
to-one because a callee can return a value to outside the app
code, or a caller can receive a returned value from outside the
app code.

The logs provide the reconstructor with the timings of
starting and ending of each method invocation and the tim-
ings of starting methods. The reconstructor breaks the trace
when it reaches a method invocation instruction and checks
the next log. If the following log is generated at the next
line of the invocation, the invoked method is an API, not
implemented in the app. If the following log is a method
head’s, an in-app caller-callee relationship is detected. The
reconstructor utilizes the logged register values to match
parameters and arguments from the caller to the callee. When
the callee is finished, the reconstructor matches the return
value from the callee to the caller based on the logged register
values.

When the app executes multiple threads, all the threads’
logs are mixed in the log file. The reconstructor distinguishes
threads using each log’s process and thread identifiers. Sup-
pose the next log has new process and thread identifiers.
In that case, the reconstructor considers that a new thread is
starting and matches the base object’s representation to the
previously-created instance’s representations.

Detecting implicit control flow transitions facilitated
by the callback mechanism in the Android framework
is challenging for static taint analyzers [21]. Figure 7
shows an example of source code causing an implicit
control flow transition. In the application space, Main-
Class.main() creates and passes a Leaker instance to Sys-
temClass1.method1() in Lines 3 and 4. Then, in the
framework space, SystemClass1.method1() invokes app-
Class.callback1() in Line 3, which is Leaker.callback1(),
defined in Figure 1. Leaker.callback1() obtains IMEI, which
can eventually be leaked. Therefore, a taint tracker must
detect this control flow transition. The reconstructor cannot
detect the relationship between SystemClass1.method1() and
Leaker.callback1() because it occurs in the framework space.
However, such a relationship is unnecessary because the
reconstructor can detect the leak in Figure 1 based on logs
generated at Leaker.callback1() and Leaker.callback2(). Also,
based on PIDs and TIDs in the logs, the reconstructor can
detect the exact time sequence of the method executions in a
thread. On the other hand, if a callback method is executed
in a different thread, the reconstructor identifies the time
sequence as described in Section III-E1.

The reconstructor resolves the target class and method
names of reflective calls to detect calls of taint sources and
sinks. The reconstructor uses the argument values of the calls.
Also, the reconstructor must consider that a taint source or
sink can be called with an in-app class inheriting the class of
the taint source or sink as the base object. The reconstructor
resolves the called method’s superclass based on class hierar-
chy information extracted by the parser.

There is a concern that the reconstructor may take a long
time to analyze loops with a large number of iterations.

FIGURE 7. Simplified example of source code causing an implicit control
flow transition.

In our preliminary investigation of the DroidBench apps, such
loops were found in the method computePi() in PI1 from
the category Emulator Detection (ED). The method has no
parameters and no return value (condition 1). In addition,
the method has no API invocation or field operation in the
method body (condition 2). The method does not affect any-
thing outside the method, and the reconstructor can safely
skip the method. Therefore, by checking the two conditions,
the reconstructor automatically detects such a method as an
anti-analysis technique and skips it.

4) TAINT PROPAGATION
Taint propagation is required at DEX bytecode instruc-
tions [20] and across API method calls to track information
flows. Taint propagation rules for DEX bytecode instruc-
tions are well developed in previous studies such as Taint-
Droid [10], and the reconstructor utilizes the same rules.
TaintDroid assigns taints to registers, but the reconstructor
assigns taints to simulated class instances. For example,
in Fig. 5, the reconstructor detects the execution of the taint
source at the program counter 14 and introduces the taint by
assigning the taint mark to the string instance 356..3, which
will be stored in the field imei of the object 0xabcd. When
a reference to a class is moved between registers by regis-
ter operations, the taint propagation is implicitly achieved,
which is an advantage in simulating class instances. When
a class instance field is operated through different registers
holding the same reference (i.e., aliasing), the operations are
implicitly applied to the same field of the same instance. For
example, registers p0 in callback1() and p0 in callback2()
reference the same object 0xabcd with the field imei holding
the tainted string in Fig. 5.

Previous studies developed conservative rules [22] and
automatic model generators (e.g., StubDroid [23]) for prop-
agating taints across API method calls. The reconstructor,
performing on the analysis server, can be equipped with
current approaches used by static and dynamic taint trackers.
In this study, an approach that conservatively propagates
taints is simply used. There are some dataflows that the
conservative rules cannot track. The reconstructor considers
Intent, Message, Bundle, Shared Preferences, Parcel, and
files. The reconstructor uses API class names and matches
values between setter and getter methods. By propagating the
taint status, the reconstructor not only assigns the taint but
also removes the taint. It can refine over-tainting caused by
the conservative rules and reduce FPs.

VOLUME 11, 2023 10737



H. Inayoshi et al.: Execution Recording and Reconstruction for Detecting Information Flows in Android Apps

TABLE 1. App exercise operations necessary to trigger leaks in the
DroidBench apps.

F. EXERCISER
After the app is installed on the Android device, the exerciser
performs app exercise operations to trigger leaks in the app.
The exerciser focuses on how to exercise the DroidBench
apps in this paper. Table 1 shows necessary operations to
trigger leaks in the DroidBench apps.It also shows commands
to perform each operation and necessary information, such
as the app’s package name and activity name, which are
passed to the commands. Leaks in some of the DroidBench
apps can be triggered by only launching them. On the other
hand, some of the DroidBench apps require a sequence of
operations specific to individual apps. Therefore, exercising
the DroidBench apps using random input can take much time
until a specific operation sequence is performed by chance.

The exerciser shortens the analysis time by triggering leaks
in the DroidBench apps as quickly as possible. The exerciser
iteratively runs the app and executes the reconstructor to
detect information flows. The exerciser checks the recon-
structor’s result, and if the number of taint marks increases
from the previous reconstruction result, the exerciser saves
the current sequence of operations and uses it in the next turn.

Algorithm 1 shows the exerciser’s pseudocode. The argu-
ments are the app’s data (app), a device with the app is
installed (device), and the maximum number of operations
to be performed (max_op_num). There are two loops in the
procedure (Lines 7 and 11). In the outer loop, exercise opera-
tions that increase the taint marks (taint_increasing_ops) are
performed in Lines 8-9, and performable operations (per-
formable_ops) are obtained in Line 10. The performable
operations include the operations shown in Table 1. For exam-
ple, the coordinates of the app’s UI buttons are detected, and
the tap operation is prepared for each button. Then, in the
inner loop, taint_increasing_ops are performed, and one of
the performable operations is performed in Lines 15-19. The
log is obtained in Line 20, and the reconstructor is executed
with the log in Line 21. Based on the newly found leaks
and the number of taint marks (leaks and taint_num), the
exerciser stops the procedure (Lines 25-26), exits the inner
loop (Line 27-33), or inserts op to performable_ops’ head
to retry the same operation (Line 34-35). Some DroidBench
apps change their behavior depending on random numbers,
and the number of taint marks can be different even for
the same operation. Therefore, the exerciser retries the same

Algorithm 1 App Exercise Procedure
1: procedure exercise(app, device, max_op_num)
2: op_num← 0
3: prev_taint_num← 0
4: found_leaks← empty list
5: taint_increasing_ops← empty list
6: max_leak_num← get_max_leak_num(app)
7: while true do
8: stop app and remove the logs on device
9: perform taint_increasing_ops
10: generate performable_ops
11: while performable_ops is not empty do
12: if op_num > max_op_num then
13: return
14: end if
15: stop app and remove the logs on device
16: perform taint_increasing_ops
17: op← pop an item from performable_ops
18: perform op
19: op_num← op_num + 1
20: log← logs obtained from device
21: leaks, taint_num← reconstructor(log)
22: if leaks not in found_leaks then
23: found_leaks← leaks|found_leaks
24: leak_num← length of found_leaks
25: if leak_num = max_leak_num then
26: return
27: else
28: taint_increasing_ops← empty list
29: break
30: end if
31: else if taint_num > prev_taint_num then
32: append op to taint_increasing_ops
33: break
34: else if taint_num < prev_taint_num then
35: append op to performable_ops’ head
36: end if
37: end while
38: if taint_num ≤ prev_taint_num then
39: break
40: end if
41: prev_taint_num← taint_num
42: end while
43: end procedure

operation as long as the number of taint marks decreases to
trigger the app’s information-flow-causing behavior. When
the inner loop is finished, the outer loop also ends if the
number of taint marks does not increase (Lines 38-39).

Also, determining when the exerciser exits is essential. The
exerciser should not stop when a leak is detected, as some of
the apps cause multiple leaks. The exerciser should also not
run indefinitely, as reaching full coverage in runtime is very
difficult. Therefore, in addition to the condition (Line 38-39),

10738 VOLUME 11, 2023



H. Inayoshi et al.: Execution Recording and Reconstruction for Detecting Information Flows in Android Apps

the exerciser stops when one of the following conditions is
satisfied. First, the exerciser limits the number of performed
operations (Line 12). Second, the exerciser exits when all the
leaks are found in the app (Line 25). The max_leak_num is
calculated before the exercise (Line 6) and is the number of
all possible combinations of taint sources and sinks, including
reflective calls, in the app extracted by the parser.

In addition, the exerciser lets the reconstructor simu-
late triggering non-triggerable callback methods. A callback
method onLowMemory() is barely called in the DroidBench
apps because the Android OS executes it only with memory-
consuming apps. In the DroidBench test cases, five apps
are identified to contain the callback method. The call-
back method executes a taint source, sink, or both. The
exerciser tells the reconstructor to trigger onLowMemory()
apart from the actual runtime. The reconstructor reproduces
the app execution without the app’s runtime information
(i.e., without breaking the reproduced execution at logging
points) and detects information flows and leaks caused by
onLowMemory().

IV. IMPLEMENTATION
Python is used to implement all the components except the
logger. The logger is implemented with the Smali language.
The system is called T-Recs and is about 17,000 lines of code.
T-Recs uses the Apktool [24] version 2.6.1 to unpackage and
repackage the apps. The reconstructor uses Python’s refer-
ences, exceptions, and lists to reproduce references, excep-
tions, and arrays in the app execution. NumPy is used to
simulate the same bit length of numeric values in the recon-
structor. The instrumentator performs the temporary-register
technique, explained in Section III-C2, only for methods in
that two more registers are available.

The logger currently targets a limited depth of arrays,
which is two-dimensional. The supported level of depth can
be trivially expanded by modifying the logger to record more
items in multidimensional arrays. However, the modification
could affect the app-runtime performance.

As Section III-F explains, our exerciser is a prototype only
for the DroidBench apps. The callback-method triggerer is
implemented to reproduce the execution of onLowMemory(),
the only method that cannot be triggered on Android devices
in the DroidBench apps. Since taint sources must be exe-
cuted before taint sinks to cause the leaks, the timings of
the method execution are at each constructor’s end and the
whole reconstruction’s end, which were determined based on
the investigation of the DroidBench apps.

V. EVALUATION
This section presents T-Recs’ evaluation with a test suite
and real-world apps. First, this section explains datasets.
Then, it describes compared tools and analysis results of each
dataset. Lastly, it explains ethical considerations.

A. DATASETS
The following datasets were used.

1) DroidBench 3.0
DroidBench is a popular test suite initially published in 2014,
covering a wide range of language- and Android-specific
categories. DroidBench had 19 categories and 190 test cases
in total when this paper was written. This paper focuses
on 158 test cases in 13 categories supported by current
static taint trackers: FlowDroid, Amandroid, and Droid-
Safe [4], [25] to evaluate how T-Recs outperforms the
trackers in accuracy with the supported cases. The cate-
gories are Aliasing (A), Android Specific (AS), Arrays and
Lists (AL), Callbacks (C), ED, Field and Object Sensitiv-
ity (FO), General Java (GJ), ICC, Lifecycle (L), Reflection
(R), Reflection ICC (RICC), Threading (T), and Unreachable
Code (UC).

2) POPULAR APPS FROM GOOGLE PLAY IN 2016
Analysis accuracy, time, and success rate were evaluated for
detecting privacy leaks in real-world apps. Since TaintDroid
detects leaks of sensitive information, such as IMEI and
IMSI, a dataset in this evaluation must contain many apps that
obtain and leak the information. Popular Google Play apps
from the Agrigento dataset have such apps, 22 apps leaking
IMEI and six apps leaking IMSI [26]. They were collected in
June 2016. The app set contains 96 apps given by the authors
of [26].

3) VARIED DATASET FROM GOOGLE PLAY AND ANZHI
The app set contains randomly-collected 19,943 apps from
Google Play and 19,537 apps from Anzhi, 39,480 apps in
total, via AndroZoo [27] in September 2021 for evaluating
the success rates of the compared tools’ essential phases.
Anzhi was selected as the representative of third-party app
markets because Anzhi was the market with the largest app
collection after Google Play [27]. The Google Play apps
support SDK versions from one to 28 (i.e., 16 codenames),
and the Anzhi apps support SDK versions from one to 25 (i.e.,
14 codenames). The datasets vary in supported SDK versions.
Also, the distribution of apps’ supported SDK versions differs
between themarkets, and the tools were evaluatedwith a wide
range of SDK versions.

4) POPULAR APPS FROM GOOGLE PLAY IN 2021
The leak detection number and analysis time were evaluated
with newer real-world apps. The app set contains 158 apps
that appeared in the top chart list of free apps in Google Play
in July 2021. Since these apps are recently developed, 98%
of them have androidx.* packages [28]. Leaks caused by the
packages were ignored because the packages are official and
can be considered benign.

B. PRIVACY LEAK DETECTION IN DroidBench 3.0
This section describes the evaluation results of Droid-
Bench 3.0 to show T-Recs’ superiority over current track-
ers in detection accuracy. It also discusses the analysis
time.

VOLUME 11, 2023 10739



H. Inayoshi et al.: Execution Recording and Reconstruction for Detecting Information Flows in Android Apps

TABLE 2. Results of DroidBench. The second column shows the expected #leaks. Gray cells highlight accurate results.

1) COMPARED TOOLS AND SETUP
Available static taint analysis tools were selected based
on the study by Zhang et al. [4]: FlowDroidIC3 [29],
FlowDroid [29], Amandroid [30], DroidSafe [31], and
DroidRA [32]. IC3 is obtained from the authors of [4].
In accordance with [4], DroidRA is used with Flow-
Droid, Amandroid, and DroidSafe, denoted by DroidRAF ,
DroidRAA, and DroidRAD respectively. The same tool
options, taint source and sink definitions, and tool versions
as the study [4] were used except for versions of DroidRA
and FlowDroid (2.9.0). Also, the comparison includes tools
targeting ICC: IccTA [33] and RAICC [34], [35]. In addi-
tion, it includes TaintDroid [36] and IntelliDroid [37], which
leverage dynamic taint analysis.

Note that whereas the idea of the recording and recon-
struction was initially realized in VTDroid [38], VTDroid
was omitted from our evaluation. The decision is because
VTDroid is specialized for specific flows, e.g., control depen-
dencies and timing channels, which are not supported by the
selected tools, including T-Recs.

The execution environment for T-Recs and the static ana-
lyzers is a ten-core (20 threads) 3.7GHz CPU and 128GB
RAM. Devices of Zenfone 4 (Android 8.0.0) and Nexus 5
(Android 5.0.1) and an emulator of Nexus 9 (Android 8.0.0)
were used for T-Recs to exemplify T-Recs’ independency
from specific Android devices and versions.

This section also involves TaintDroid with Nexus 4
(Android 4.3), the most popular and stable dynamic taint
tracker for Android apps. In order to evaluate TaintDroid
with DroidBench, TaintDroid was modified to support the
taint sinks, which the original version of TaintDroid does
not support (Appendix). Since TaintDroid does not have an
app-exercise ability, a publicly-available hybrid analysis tool
called IntelliDroid was used in combination with TaintDroid.
IntelliDroid performs targeted execution and officially sup-
ports TaintDroid.

The exerciser was employed to exercise the apps for T-
Recs automatically. As Section III-F explains, the exerciser
requires a parameter that specifies the maximum number of
exercise operations (Table 1) to be performed for an app
on a device. The parameter value was determined based on
a preliminary investigation. Each app was tested, and the
number of exercise operations needed to trigger leaks in each
app was obtained. The maximumwas 27 for a case in the ICC
category. Therefore, 30 was used as the maximum number of
exercise operations in this evaluation.

2) DETECTION ACCURACY
Table 2 shows the result. The expected leak numbers are
obtained from [25]. The result shows that only T-Recs is
100% accurate. The parser, the instrumentator, and the logger
successfully processed all the apps, the exerciser automati-
cally triggered all the leaks, and the reconstructor success-
fully detected all the leaks.

Notably, in ED, the instrumentator did not inject the logger
into the computePi() method in an app called PI1 and suc-
cessfully kept the method execution time within the thresh-
old. In addition, the reconstructor detected computePi() as
a method that does not affect the execution and skipped it,
resulting in successful leak detection.

T-Recs’ independence of the analysis environment helps
T-Recs analyze apps in ED.One of the apps, for example, trig-
gers a leak only when specific files exist on the device. Prior
to the evaluation, we checked devices, Nexus 4 (Android
4.3), Nexus 5 (Android 5.0.1), Zenfone 3 (Android 6.0.1),
Zenfone 4 (Android 8.0.0), Pixel 4 (Android 10), and Pixel 6
(Android 12). Among them, only Nexus 4 and 5 can trigger
the leaks. Nexus 5 was included in this evaluation, and T-Recs
successfully ran on the device and detected the leaks.

FlowDroidIC3 and FlowDroid generate 15 and 17 FPs,
respectively, in call-flow-related cases (AS, C, GJ, and L),
control-flow-related cases (UC), and other cases (A and AL).
UC is related to path sensitivity, which FlowDroid cannot
consider. The dynamic taint trackers outperform the static
taint trackers in this category. FlowDroidIC3 and FlowDroid
also produce some FNs. In particular, the tools produce nine
and 13 FNs because of failure in intent tracking in ICC
and 19 FNs in RICC because of failure to resolve reflec-
tive calls. The other static taint analysis tools, Amandroid,
DroidSafe DroidRAF , DroidRAA, DroidRAD, and IccTA,
also produce a certain amount of FPs and FNs.

TaintDroid generates no FP, indicating that the tool is
accurate. However, TaintDroid misses 65 leaks. IntelliDroid
improves TaintDroid’s result in three apps (four leaks) in
GJ and ICC. Since some callbacks were successfully trig-
gered, IntelliDroid should be adequate for more apps. The
small number of improvements may be due to the quality
of the tool, and increasing the quality may improve the
result.

RAICC instruments none of the 158 apps. This is because
the apps do not contain code targeted by RAICC. Since no
leak detection is performed, the RAICC’s result is excluded
from Table 2. Section VII discusses RAICC further.

10740 VOLUME 11, 2023



H. Inayoshi et al.: Execution Recording and Reconstruction for Detecting Information Flows in Android Apps

TABLE 3. Analysis time for the DroidBench apps.

3) ANALYSIS TIME
Table 3 shows the result. Each tool analyzed the apps one at
a time. T-Recs’ parser and instrumentator took 15 minutes,
and the exerciser with the reconstructor took four hours and
43 minutes. T-Recs is the fifth slowest, but it is acceptable
because it finishes within a reasonable time (one minute and
53 seconds per app). FlowDroid is the fastest, but the result
would be different in real-world-app analysis because the
benchmark apps have minimal code, and the static analysis
time depends on the amount of code. On the other hand,
T-Recs, TaintDroid, and IntelliDroid require an app execution
time regardless of benchmarks or real-world apps. A result of
real-world-app analysis is discussed in Section V-C4.

The analysis time of T-Recs can be shortened by improving
the exerciser. The maximum number of exercise operations
slightly influences the number of leaks detected and anal-
ysis time. If the maximum number of exercise operations
is 40, T-Recs detects all the leaks and takes five hours and
13 minutes. It is 10% longer than the analysis with 30 as the
maximum number of exercise operations. If the maximum
number of exercise operations is 20, T-Recs fails to detect
one leak in a case in the ICC category and takes four hours
and 48 minutes. The analysis time is almost the same as one
with 30 as the maximum number of exercise operations. Each
analysis time is the average of three executions. On the other
hand, T-Recs took 52 minutes in total with an ideal exerciser,
which was manually created and contained a minimum set of
operations to trigger all the leaks.

C. PRIVACY LEAK DETECTION IN POPULAR APPS 2016
This section compares T-Recs, FlowDroid, FlowDroidIC3,
Amandroid, DroidSafe, DroidRAF , DroidRAA, DroidRAD,
IccTA, TaintDroid, and IntelliDroid based on accuracy, time,
and success rate for detecting privacy leaks in real-world
apps. The tracking targets are those that the tools support:
hardware identifiers (IMEI, IMSI, and ICCID), phone num-
bers, and location data.

1) COMPARED TOOLS AND SETUP
T-Recs uses the Pixel 3 with Android 9 and the computer
explained in Section V-B1. Android 9 is the last version in
which the hardware identifiers are accessible. For T-Recs and
TaintDroid, each app is installed and launched on the Android
devices, and each system waits for approximately 60 seconds

and then uninstalls it. We decided not to exercise the apps
based on the results of our preliminary experiment, indicating
that apps in the dataset cause leaks by simple operations, such
as starting an app. A one-hour timeout is used per app for each
of T-Recs and the static analyzers.

Having flawless taint sink definitions for T-Recs and the
static taint analyzers is challenging because there are numer-
ous candidates, which are API methods that may cause leaks.
Since taint sink definitions must be prepared to detect pri-
vacy leaks, they were created by ourselves. API methods of
network-related libraries were chosen. Also, API methods
that write data to transmit it to the network were selected.
These sink definitions were used for T-Recs and the static
taint analyzers, and it was believed that none of the tools is
particularly advantageous to producing more TPs. However,
our taint sink definitions cannot be used universally. Also,
taint sink definitions vary depending on what code the ana-
lysts attempt to find and should be prepared by the analysts
on their own. Therefore, it should be clear that this paper
does not offer taint sink definitions (i.e., out-of-scope). On the
other hand, TaintDroid’s default sink definitions were used
for TaintDroid and IntelliDroid.

2) DETECTION ACCURACY
Whereas establishing a ground truth is infeasible, correct
leaks were obtained bymanually searching the network dump
for plaintexts (e.g., IMEI value 356000000000003 in Fig. 5)
and names (e.g., IMEI) of the target information. We also
searched for transformed data (e.g., XXxxxxx==) reported
by T-Recs and TaintDroid. In the dynamic analysis, detecting
no leak is correct if no leak occurred, and detecting a leak
is correct if the leak occurred. Therefore, we only consider
leaks occurring on both T-Recs’ and TaintDroid’s devices.
Each alert of T-Recs and TaintDroid was compared with the
network dump to verify that the leak occurred. If an alert
includes transformed data, the app code was manually ana-
lyzed to confirm that the data contain the target information.
The number of unique URLs in TaintDroid’s alerts and the
number of unique sink code locations in T-Recs’ alerts were
counted.

Table 4 shows the result. The expected #leaks indicates the
number of unique URLs with that the sensitive information
leaked. T-Recs does not generate FP for apps without leaks.
Since the analyst needs to check only the 18 apps with leaks,
the impact of the FPs is small, and we conclude that T-Recs
is highly accurate. T-Recs has more FPs than TaintDroid
because T-Recs’ sink definition differs from TaintDroid.
The conservative rules for API method calls explained in
Section III-E4 may also be a factor. For the same reason,
T-Recs generates more TPs than TaintDroid.

IntelliDroid only detects the three expected leaks in two
apps, which are also detected by TaintDroid (Table 4).
On the other hand, IntelliDroid misses many leaks that Taint-
Droid detects, demonstrating that introducing IntelliDroid
into TaintDroid makes TaintDroid overlooks more leaks.
Note that IntelliDroid finds a leak that does not occur in the

VOLUME 11, 2023 10741



H. Inayoshi et al.: Execution Recording and Reconstruction for Detecting Information Flows in Android Apps

TABLE 4. Leak detection result. E indicates expected #leaks. ✗ indicates that the tool failed, and ✗IC3 indicates that IC3 failed.

environments of T-Recs and TaintDroid, showing its superior-
ity over T-Recs and TaintDroid. However, this paper ignores
the leak because improving code coverage of real-world apps
is out-of-scope of this paper, as Section VI also discusses.

FlowDroid’s alerts were also verified based on T-Recs’
results because the two tools use the same sink definitions.
In addition, taint sources suggested by each alert were com-
pared with taint sources identified in the network dumps.
We identified 20 TPs. On the other hand, as indicated by
unsure in Table 4, the 58 alerts do not match with the network
dumps. They are considered to be unsure leaks that could
be either TP or FP because we had no resources for further
high-cost verification. It was confirmed that T-Recs does not
detect the unsure leaks because of the code coverage. All the
unsure leaks are caused by codes outside the T-Recs’ code
coverage. The maximum, minimum, average, and median of
the T-Recs’ code coverages were 40.7%, 0.3%, 6.6%, and
4.3%, respectively. Note that 15 apps with zero code coverage
were omitted from this calculation. In contrast, FlowDroid
can analyze the entire code of each app, which is an advantage
of static analysis. There is a trade-off between the coverage
and accuracy, which is discussed in Section VI.

FlowDroidIC3, Amandroid, DroidSafe, DroidRAA, and
DroidRAD detect no leaks. Note that the default definitions of
taint sources and sinks are used for DroidSafe because chang-

ing the definitions requires modification of the source code
of DroidSafe. Since DroidSafe with the default definitions
fails to analyze all the apps, it would detect no leaks even if
different source and sink definitions, such as the ones used
by T-Recs and the other static analyzers, were used. Also,
the developer clearly states that DroidSafe is unsuitable for
analyzing Google Play apps [39]. DroidRAF finds one TP
and two unsure leaks, which are also detected by FlowDroid.
IccTA detects no TP and four unsure leaks. These seven tools
are not very effective in analyzing real-world apps.

On the whole, FlowDroid misses many leaks that T-Recs
and TaintDroid detect, and FlowDroid’s recall is low. At the
same time, FlowDroid generates 58 unsure alerts, suggesting
high verification costs. Therefore, T-Recs and TaintDroid are
more practical than FlowDroid for privacy leak detection.
Also, the other tools generate almost no alerts and cannot be
used for privacy leak detection dependably.

3) TRACKING ABILITY FOR ICC- AND REFLECTION-RELATED
FLOWS
Static analysis can usually detect more leaks with higher FP
rates than dynamic analysis. However, the result shows that
the dynamic analyzers (i.e., T-Recs and TaintDroid) detect
more leaks than the static analyzer (i.e., FlowDroid). T-Recs

10742 VOLUME 11, 2023



H. Inayoshi et al.: Execution Recording and Reconstruction for Detecting Information Flows in Android Apps

TABLE 5. ICC- and reflection-related flows that we selected based on the
DroidBench apps with that FlowDroid generates FNs.

TABLE 6. #Apps and #codes in parentheses in which the five code types
are found and whether T-Recs and FlowDroid detect the leaks caused by
the five code types. The row ‘‘any’’ gives #apps and #codes in which at
least one code type is found.

detects 43 TPs; TaintDroid, 27 TPs; and FlowDroid, 20 TPs.
One of the possible reasons is that FlowDroid failed to com-
plete the analysis of apps in that the dynamic analyzers detect
TPs. FlowDroid failed the analysis for two apps with one or
more expected leaks (Table 4).

Another possible reason is the difference in information-
flow-tracking abilities between FlowDroid and the other
tools. Since FlowDroid mostly misses leaks in the Droid-
Bench apps of ICC and RICC, we are focusing on the
ICC and RICC cases. Selected code types are shown in
Table 5 based on the DroidBench apps with that FlowDroid
generates FNs (Table 2). T-Recs’ reconstructor was modi-
fied to identify and count the occurrences of the five code
types. The experiment was conducted once the overall anal-
ysis was completed (i.e., after the results in Table 4 were
obtained). Since the logs obtained by the logger were kept,
we only needed to re-execute the reconstructor. In other
words, re-exercising the app is unnecessary when testing a
new feature in the reconstructor, which is further discussed in
Section VI.
Table 6 shows the number of apps and code points where

the five code types are found by T-Recs (second column flow).
It also shows the number of apps and code points where
T-Recs detects leaks caused by the five code types (third and
fourth columns). It also shows whether FlowDroid detects
the TP leaks detected by T-Recs (fifth, sixth, and seventh
columns). The result shows that four out of the five code
types are found, and two of them cause leaks. Whereas six
leaks of the third type and 11 of the fifth type are FP (i.e.,
the leaks are falsely detected), all the leak-detected apps are
TP (i.e., no app is falsely detected by T-Recs). In contrast,
FlowDroid fails to detect all of them. FlowDroid misses some
of the leaks and fails to complete the analysis of some apps,
as indicated by incompleted. Note that Table 6 excludes the
result that FlowDroid detects none of the FP leaks detected

TABLE 7. Analysis time for the privacy leak detection.

by T-Recs. The results highlight the importance of tracking
ICC- and reflection-related flows as the flows appear in the
real-world apps as well as the DroidBench apps.

There can be other types of code with that FlowDroid
generates FNs in the DroidBench apps. However, identifying
the exact instructions preventing FlowDroid from tracking
flows requires debugging FlowDroid, which is unfamiliar to
us. Therefore, we focus only on ICC and reflection in this
section and consider the choice to be sufficient to show how
T-Recs detects leaks that FlowDroid misses.

4) ANALYSIS TIME
Table 7 shows the result. TaintDroid is the fastest, FlowDroid
is second, and T-Recs is third. Their results are not largely
different. They did not reach the timeout in analyzing any
apps. In comparison, FlowDroidIC3 and the other tools took
over 15 hours each. They failed many apps because of the
timeout and are not suitable for the analysis of a set of real-
world apps. For example, IC3 improves the performance of
FlowDroid’s ICC handling, but the result shows that IC3
cannot be finished in a reasonable time.

T-Recs’ parser and instrumentator took 27 minutes; the
app exercise, 138 minutes; and the reconstructor, 34 minutes.
After the parser and the instrumentator process an app, the
analyst can analyze the app to detect various information
flows by reconfiguring and running the reconstructor and,
if necessary, exercising the app on a device to acquire more
code coverage. In other words, the parser and the instrumenta-
tor only need to be executed once for each app. Hence, reduc-
ing the analysis time for the parser and the instrumentator is a
low priority. The two components have not been optimized in
the current implementation by, for example, processing Smali
files in parallel. Therefore, we simply determined to run the
two components in 12 threads without conducting a further
performance evaluation of them.

On the other hand, the reconstructor must be executed
every time the analyst changes the configuration (e.g., taint
source and sink definitions). Also, if the analyst needs
more code coverage, re-trying the app exercise is neces-
sary. Therefore, the rest of this section first discusses the
analysis time taken by the reconstructor (Section V-C5),
and then the analysis time for the app exercise is explained
(Section V-C6).

VOLUME 11, 2023 10743



H. Inayoshi et al.: Execution Recording and Reconstruction for Detecting Information Flows in Android Apps

FIGURE 8. Analysis time of T-Recs and FlowDroid with different number
of apps analyzed in parallel. The blue bars represent T-Recs’ results, and
the green bars represent FlowDroid’s results. The labels on the bars show
the number of successfully-analyzed apps.

5) T-Recs’ AND FlowDroid’s PARALLEL APP ANALYSIS TIME
The reconstructor’s time depends on the number of apps ana-
lyzed in parallel, which is determined by the available RAM
size of the computer used. A computer with 128GBRAMwas
used, and each tool’s memory was fixed to 120GB by using a
Docker container limited to 120GB RAM with disabling the
swap. Since the computer’s CPU has ten cores (20 threads),
the reconstructor was executed by changing the number of
apps analyzed in parallel from one to 20. FlowDroid was also
tested for comparison. The analysis time may vary depending
on the order of the apps to be analyzed. In this study, the tools
analyzed the apps in alphabetical order by the app’s name.

Fig. 8 shows the result. The blue bars show the analysis
time taken by all phases of T-Recs. The dark blue parts rep-
resent the time for the parser, the instrumentator, and the app
exercise. The light blue parts show the reconstructor’s time.
For example, 98 minutes for #apps= 1, 59 minutes for #apps
= 2, and 34minutes for #apps= 20, which is the shortest. The
bars’ labels represent the number of successfully-analyzed
apps. The maximum is 94 because T-Recs fails two apps
in phases prior to the reconstructor, and the reconstructor
processes only 94 apps. On the other hand, the green bars
indicate FlowDroid’s result. For example, 291 minutes for
#apps = 1, 175 minutes for #apps = 2, and 74 minutes for
#apps= 20, which is the fastest. However, as the bars’ labels
show, the number of successfully-analyzed apps decreases
as the number of apps analyzed in parallel increases. Flow-
Droid’s maximum number of successfully-analyzed apps is
85 because FlowDroid fails 11 apps regardless of the RAM
size. Hence, the maximum number of apps that FlowDroid
can analyze in parallel without causing failure is three, and
the time is 154 minutes.

For the results in Table 7, the number of apps analyzed
in parallel was determined based on the maximum number
that would not cause the analysis to fail due to lack of
memory. T-Recs’ reconstructor was executed in 20 threads,
and FlowDroid was executed by analyzing three apps
in parallel.

FIGURE 9. Time for apps to launch and cause leaks on Pixel 3 with and
without T-Recs and Nexus 4 with and without TaintDroid, which are
represented by the dark blue bar, the light blue bar, the dark brown bar,
and the light brown bar from left to right, respectively.

6) T-Recs’ AND TaintDroid’s APP-RUNTIME OVERHEADS
In dynamic analysis (i.e., T-Recs and TaintDroid), the
app-runtime overhead affects the operation delay, which in
turn makes the analysis time longer. If the app exercise time is
too short, the app may be terminated before a leak occurs, and
the leak would not be detected. Therefore, we investigated the
app-runtime overheads of T-Recs and TaintDroid. We mea-
sured the time for apps to launch and cause the same leaks
with and without the tools. Pixel 3 was used with and without
T-Recs, and Nexus 4 was used with and without TaintDroid
to compare with T-Recs.

Fig. 9 shows the leak time of the 18 apps that cause more
than one leak. Pixel 3 with and without T-Recs and Nexus
4with andwithout TaintDroid are represented by the four bars
from left to right for each app. A transparent part of the bar
indicates the time for the first leak in the app, and the colored
part indicates the time for the last leak in the app (i.e., the
time for occurring all the expected leaks in the app shown in
Table 4). In a total of the 18 apps, T-Recs took 578.1 seconds;
Pixel 3 without T-Recs, 74.9 seconds; TaintDroid, 104.0 sec-
onds; and Nexus4 without TaintDroid, 113.1 seconds. T-Recs
is 7.7 times slower than the original Pixel 3 and 5.6 times
slower than TaintDroid. Using TaintDroid is faster than not
using TaintDroid, indicating that TaintDroid has no overhead,
and the result is consistent with the original paper [10], report-
ing that TaintDroid has negligible perceived latencywith real-
world apps. T-Recs took the longest time for app number 8,
which was 60.9 seconds. TaintDroid took the longest time for
app number 9, which was 22.3 seconds. The T-Recs’ longest
time is 2.7 times larger than TaintDroid.

The app-runtime overhead of T-Recs is caused due to the
instrumentation, which is a trade-off for the tool’s device
independency. Preparing Android devices is easier for T-Recs
than TaintDroid. Hence, T-Recs users can run the app exer-
cising parallelly on multiple devices to shorten the analysis
time. For example, assuming that the analyst sets the same
exercising time for every app (i.e., 61 seconds per app for
T-Recs and 23 seconds per app for TaintDroid), T-Recs’ time
would be shorter than TaintDroid if three or more devices
were used in parallel for T-Recs. Hence, the app-runtime
overhead of T-Recs is considered to be acceptable.

10744 VOLUME 11, 2023



H. Inayoshi et al.: Execution Recording and Reconstruction for Detecting Information Flows in Android Apps

TABLE 8. Time (seconds) for apps to be installed and uninstalled on the
devices with and without the tools.

We also measured the time for apps to be installed and
uninstalled, which affects the analysis time. Table 8 shows the
total time for 90 apps with T-Recs, Pixel 3 without T-Recs,
TaintDroid, and Nexus 4 without TaintDroid. We excluded
two apps that T-Recs failed to complete the analysis and
four apps that TaintDroid failed. The uninstallation times
are the same for Pixel with and without T-Recs. It barely
changes for Nexus 4 with and without TaintDroid. On the
other hand, for the installation times, although using T-Recs
is 26% slower than not using T-Recs, the T-Recs’ result
is 3.4 times faster than TaintDroid. This is mainly because
T-Recs’ device, Pixel 3, has a higher processing perfor-
mance than TaintDroid’s Nexus 4. The result demonstrates
the device-independency advantage of T-Recs, in which the
analyst can use new smartphones with high-performing pro-
cessors.

7) ANALYSIS SUCCESS RATE
Table 9 shows the results. T-Recs’ success rate is 98%, the
highest among the compared tools. It failed one app in the
instrumentation phase and one app in the installation phase.
No type-conflict error occurred during app execution, and the
success rate of the logger is 100%. The reconstructor also
succeeded in detecting information flows.

FlowDroid’s success rate is 89%. It stopped during the
analysis due to some runtime errors with 11 apps. All fail-
ures occurred in the call graph construction phase before
the flow detection process. These failures occur regardless
of the taint source and sink definitions. FlowDroidIC3 failed
with 67 apps, mostly due to IC3 failures (e.g., exceeding
the timeout). TaintDroid failed to install four apps due to
incompatible SDK versions. TaintDroid uses Android 4.3 at
the latest, and all apps that do not support this version cannot
be analyzed. IntelliDroid’s success rate is 75%, and the other
tools’ success rates are diminutive.

D. SUCCESS RATE OF ESSENTIAL PHASES IN VARIED
DATASET
This section focuses on the tools’ essential phases that are
independent of tracked data to obtain the upper bounds of
the tools’ analysis success rate in general. Section V-D1
explains the essential phases, which vary from tool to tool,
and Section V-D2 presents the result.

1) COMPARED TOOLS AND SETUP
Since IntelliDroid, FlowDroidIC3, Amandroid, DroidSafe,
DroidRAF , DroidRAA, DroidRAD, and IccTA detect almost
no leaks (Table 4), and their success rates are less than 80%

TABLE 9. #Apps successfully analyzed, #apps failed, and the analysis
success rate for each tool in the privacy leak detection.

(Table 9), this section excludes them. Hence, this section
compares T-Recs, FlowDroid, and TaintDroid. They may fail
for reasons other than those described in Section V-C7. How-
ever, hidden errors could not be detected without knowing the
tools’ details. Also, errors in information flow tracking could
depend on tracked data. In dynamic analysis, app exercise
also depends on data being tracked. Therefore, this section
focuses on the tools’ essential phases, independent of taint
source and sink definitions.

Since T-Recs’ instrumentation and app-installation failed
(Section V-C7), the percentage of successfully instrumented
and installed apps was examined. The device used was Pixel 6
(Android 12), which was the latest device available at the
paper was written and is much newer than TaintDroid’s
Nexus 4, highlighting the device-independency advantage of
T-Recs. Considering that FlowDroid failed regardless of the
taint source and sink definitions (Section V-C7), FlowDroid
was executed without taint source and sink definitions to
examine the percentage of analysis failures that occurred in
the call graph construction phase. No timeout was used. Since
TaintDroid’s app-installation failed (Section V-C7), the per-
centage of apps that are successfully installed to TaintDroid
was examined. TaintDroid failed because of the apps’ sup-
ported SDK versions, which can be acquired by investigating
the app files, but other factors may cause the installation
failures. Therefore, the apps were actually installed one by
one to TaintDroid without launching them.

2) RESULTS
The rate of successfully-processed apps for each Android
codename is shown in Fig. 10. The Android codename (e.g.,
1.0, 1.1, C, and D) indicates the minimum SDK version sup-
ported by an app configured by the app developers. The result
shows that T-Recs evenly supports the 16 codenames (i.e.,
28 SDK versions). T-Recs achieves at least 86.3% for any
version, and the average is 96.6%. FlowDroid also achieves at
least 87.5% for any version, and the average is 95.6%. On the
other hand, TaintDroid fails for apps newer than version J
(i.e., Android 4.3), and the average is 62.5%. TaintDroid is
not applicable for apps developed for Android 4.4 or later

VOLUME 11, 2023 10745



H. Inayoshi et al.: Execution Recording and Reconstruction for Detecting Information Flows in Android Apps

FIGURE 10. Success rates for the varied dataset. T-Recs is left blue bars,
FlowDroid is center green bars, and TaintDroid is right brown bars.

versions after 2013. In this evaluation, T-Recs took 276 hours;
TaintDroid, 116 hours; and FlowDroid, 108 hours.

E. ID LEAK DETECTION IN POPULAR APPS 2021
Recently-published popular apps were used to consider a
more up-to-date situation than Section V-C because access to
the hardware identifiers has been restricted since Android 10.

1) COMPARED TOOLS AND SETUP
This section compares T-Recs, FlowDroid, FlowDroidIC3,
Amandroid, DroidSafe, DroidRAF , DroidRAA, DroidRAD,
and IccTA. It omits TaintDroid and IntelliDroid because
TaintDroid’s success rate is low for newer apps (Section V-D2).
The app set used in this section contains 139 apps (88%) with
minimum SDK versions 19 (i.e., Android 4.4) and greater,
which cannot be analyzed by TaintDroid and IntelliDroid.
As a result, T-Recs was only compared with static analysis,
which was disadvantageous for T-Recs because of the cover-
age difference, and static analysis should detect more leaks.
However, showing that T-Recs can detect leaks in newer apps
is still valuable.

T-Recs launched and waited for each app on Pixel 3 for
two minutes with no exercise operation based on the assump-
tion that ID leaks swiftly occur as well as the evaluation in
Section V-C. A one-hour timeout is used per app for each
tool.

Target taint sources are identifiers, including Build.
SERIAL, MAC address, Android ID, Google Advertising
ID, Instance ID, and Globally-Unique ID [40] in addition
to the taint sources used in the privacy leak evaluation
(Section V-C). Taint sinks are the same as the privacy leak
evaluation. As described in Section V-C2, this evaluation also
uses the default definitions of taint sources and sinks for
DroidSafe.

2) RESULTS
Table 10 shows the number of apps and leaks detected by the
tools. T-Recs and FlowDroid detect leaks in 55 and 60 apps,
respectively. FlowDroidIC3 detects six leaks in four apps,
which are also uncovered by FlowDroid. The other tools
generate no alerts.

T-Recs detects leaks in fewer apps than FlowDroid,
as expected. In contrast, T-Recs detects 400 leaks, which is

larger than FlowDroid’s result. Based on the result in Table 4,
T-Recs generates numerous FP leak alerts as well as TPs for
leak-causing apps. Therefore, some of the 400 leaks could be
FP. At the same time, however, Table 4 shows that T-Recs
produces no FP for no-leak-causing apps. Hence, all 55 apps
detected by T-Recs in Table 10 are likely TP. Interestingly, the
detected apps and leaks overlap slightly between the tools.
The result shows that T-Recs can track information flows
and detect ID leaks, primarily undetected by FlowDroid,
in recently-developed apps from Google Play.

On the other hand, Table 10 shows that FlowDroid detects
206 leaks that T-Recs does not detect (i.e., among 214 leaks
detected by FlowDroid, the overlap is only eight leaks). It was
confirmed that 205 leaks are caused by codes not covered by
T-Recs. In contrast, the other leak is caused by codes within
T-Recs’ code coverage. However, T-Recs does not detect the
leak because of the leak’s sink. This sink is a writer that
outputs data not to the network but to a file. Hence, detecting
the leak is FP. T-Recs identifies that the information flow’s
destination is a file and does not detect it as a leak. Overall,
FlowDroid detects leaks undetected by T-Recs principally
because of the difference in their code coverages. The max-
imum, minimum, average, and median of the T-Recs’ code
coverages were 28.9%, 0.05%, 6.1%, and 4.6%, respectively.
Note that 16 apps with zero code coverage were excluded
from this calculation. In contrast, FlowDroid can analyze the
whole code of each app, which is a trade-off for accuracy, and
Section VI further discusses this.
Table 11 shows the analysis time taken by each tool. T-Recs

took 14 hours and 35 minutes. The parser and the instrumen-
tator took five hours and 13 minutes; the app exercise, seven
hours and 42 minutes; and the reconstructor, one hour and
40 minutes.

3) TRACKING ABILITY FOR ICC- AND REFLECTION-RELATED
FLOWS
Similar to Table 6 in the privacy leak evaluation
(Section V-C3), Table 12 shows T-Recs’ and FlowDroid’s
results for the five types of code related to ICC and reflection.
It shows the number of apps and code points where the five
code types are found (second column flow) and where the
related leaks are detected (third column leak). It also shows
whether FlowDroid detects the leaks (fourth, fifth, and sixth).
The result shows that all five code types are found, and also
leaks related to four code types are found. In contrast, Flow-
Droid detects none of the leaks. FlowDroid fails to complete
the analysis for some of the apps, as indicated by incom-
pleted. The results show one of the reasons why T-Recs’ and
FlowDroid’s results barely overlap. The results emphasize
the importance of tracking ICC- and reflection-related flows
as the flows appear in the recently-published real-world
apps.

As well as Section V-C3, this experiment was con-
ducted after the results in Table 10 were obtained, and
re-exercising the app was unnecessary. It is also discussed in
Section VI.

10746 VOLUME 11, 2023



H. Inayoshi et al.: Execution Recording and Reconstruction for Detecting Information Flows in Android Apps

TABLE 10. #Apps and #leaks in parentheses detected in the apps from 2021. ‘‘Overlap’’ indicates #apps and #leaks detected by both T-Recs and the
other tool.

TABLE 11. Analysis time for the ID leak detection.

TABLE 12. #Apps and #codes in parentheses in which the five code types
are found and whether FlowDroid detects the leaks caused by the five
code types. The row ‘‘any’’ gives #apps and #codes in which at least one
code type is found.

F. ETHICAL CONSIDERATIONS
In our evaluation, the experiments were carried out only
by us. We used Android devices bought and prepared for
the experiments and used no actual personal information.
We consider respect for app publishers. The bytecode instru-
mentation targets only code that does not change any data sent
to remote servers so as not to affect the publishers’ properties.
Additionally, the results were carefully used only to evaluate
the tools and were not used for other purposes.

VI. DISCUSSION
As mentioned in Section V-C3 and Section V-E3, T-Recs can
re-execute the taint analysis (i.e., the reconstructor) without
the app exercise after a new feature is added to the taint
analyzer. In the privacy leak detection (Section V-C4), the
reconstructor took 34 minutes, which is 17% of the whole.
The reconstructor took one hour and 40 minutes, which is
11% of the whole in the ID leak detection (Section V-E2).
Note that these times were measured after the new feature
(i.e., the ICC- and reflection-related-flow counter) had been
added. A large amount of time is saved because T-Recs’ anal-
ysis time depends mainly on app exercise time. As another
example, in the DroidBench evaluation (Section V-B3), the
exerciser took four hours and 43 minutes (i.e., 95% of the
whole). In addition, the app exercise time can be extended
when the analyst targets other than privacy leaks because

this paper currently focuses only on privacy leaks, which
tend to take a short time to occur. Therefore, being able to
re-execute the taint analysis without running the app exercise
is a significant advantage of T-Recs.

The evaluation shows that T-Recs has higher usability in
terms of ease of setup than TaintDroid. TaintDroid is only
available on Nexus 4 or older devices. Accessibility of the
devices is extremely poor, and also, devices have a limited
lifespan due to, for example, battery swelling. T-Recs, on the
other hand, allows analysts to freely select devices such
as Pixel3 and Pixel6, depending on each evaluation’s envi-
ronmental requirements (e.g., Android OS version). These
devices are readily available, and the analysis can be started
speedily by simply connecting them to a computer.

In the evaluation, privacy leaks are the main target and
can be easily triggered. The core of this paper is to per-
form dynamic taint analysis outside the Android device,
and improving code coverage of real-world apps is out-of-
scope. As long as there is a code coverage problem with
dynamic analysis, it is unrealistic to replace static analysis
with dynamic analysis in some cases, and the analyses should
be selected according to the user’s purpose. Static analysis
should be used in exchange for higher verification costs when
code coverage is a priority. T-Recs should be used when low
verification cost (i.e., accuracy) is a priority.

In the DroidBench evaluation, the categories covered by
the compared tools [4] were selected, and others, such as
native code and inter-app communication, are out-of-scope.
We believe that T-Recs can be used in combination with
existing tools, such as JN-SAF [41] for summarizing flows
in native code because T-Recs performs the taint analysis on
the server.

Our manual analysis of the network dumps explained in
Section V-C2 is limited, which could affect the accuracy of
the data in Table 4. We only searched the network dumps
for plain texts of the target information, their names, and
transformed data found by T-Recs and TaintDroid. Therefore,
some leaks could be missed, for example, leaks caused by an
app performing complex encryption on IMEI without being
detected by the tools. Such mistakes affect the following.
First, there would be more FNs in T-Recs’ and TaintDroid’s
results. However, the impact is considered to be small because
modifying both tools’ results by the same amount does not
change the conclusion that T-Recs generates fewer FNs than
TaintDroid. Second, if a missed leak had been counted as
the unsure in FlowDroid’s result, the number of unsure leaks
would decrease, and the number of TPs would increase.
However, detecting such encrypted leaks requires reverse
engineering of the app. The cost is high, which is consistent

VOLUME 11, 2023 10747



H. Inayoshi et al.: Execution Recording and Reconstruction for Detecting Information Flows in Android Apps

TABLE 13. Taint sinks and corresponding file paths we modified.

with our argument that the verification cost of the unsure
leaks is high in Section V-C2. Therefore, the effect of missing
leaks is considered to be acceptable.

Apps may detect code rewriting and stop running to protect
the app developers and users [42].When analyzing such apps,
the logger must be integrated into the Android OS instead
of the app bytecode instrumentation. As a result, the logger
would depend on the Android OS version, the same as the
existing dynamic analysis systems. However, compared to
implementing the taint logic itself, implementing only the
logger would be less expensive and more practical.

Whereas TaintDroid performs variable-, method-, file-,
and message-level tracking, T-Recs does not track inter-app
messages and does not keep tracking tainted content in a file
across different runs. Although this was not a problem in the
evaluation, it could depend on the information being tracked.
As well as TaintDroid, T-Recs disregards implicit flows [43].

VII. RELATED WORK
Various tools of static taint analysis for Android apps have
been developed and assessed in the community [3], [4], [44].
Mordahl et al. [44] examined configurations in FlowDroid
and DroidSafe. Pauck et al. [3] evaluated static taint trackers:
Amandroid, DIALDroid [45], DidFail [46], DroidSafe, Flow-
Droid, and IccTA. They excluded unavailable and unsatisfied
tools, such as SCanDroid [47] and DroidInfer [48], for com-
petitive comparison. Zhang et al. [4] compared FlowDroid
combined with IccTA, Amandroid, and DroidSafe under the
same setup. They also includedDroidRA, an instrumentation-
based approach targeting reflective calls and used in combi-
nationwith FlowDroid, Amandroid, andDroidSafe.We opted
to follow the study and used the same tools and configuration
parameters because the exact set of used benchmark applica-
tions and the answers are available [25].

RAICC [34] is one of the latest tools targeting ICC. Specif-
ically, RAICC targets ‘‘atypical ICC methods’’, which allow
to perform an ICC while it is not its primary purpose [34].
Since the 158 apps in DroidBench do not contain ‘‘atypical
ICC methods’’, RAICC instruments none of the apps in the

evaluation (Section V-B2). We also contacted its developers,
and they confirmed that it is intended for RAICC to instru-
ment no DroidBench apps. On the other hand, this paper
mainly focuses on addressing the inaccuracy of current taint
analyzers against DroidBench, which contains more common
cases than ‘‘atypical ICC methods’’. Also, Barros et al. [49]
developed a static analysis technique for handling ICC and
reflective calls precisely. Their approach is implemented for
Java and requires the target apps’ source code. However,
when analyzing apps from Google Play or third-party mar-
kets, their source code is not usually available.

As native code is being more frequently used in apps,
researchers have been developing new static analysis tech-
niques targeting native code, such as JN-SAF [41] and
JuCify [50]. JuCify unifies call graphs of native code
and bytecode, and the result can be used by Flow-
Droid and other static analyzers that do not support
native code. Also, CTAN [51] further improves JN-SAF.
As Section VI explains, native code is out-of-scope of
this paper.

There are more tools [22], [52], [53], [54], which per-
form the bytecode-level dynamic taint analysis for Android
apps other than TaintDroid. Although, in comparison with
static taint analyzers, dynamic taint trackers have been
barely reviewed in the community except for TaintDroid.
We obtained the taint tracking module of ARTist from the
authors. However, the authors mentioned that the module
is aged and requires quite some adoptions to be used with
ARTist. Therefore, the tool was not used in our evalua-
tion. We also obtained TaintMan from the authors. However,
we encountered difficulties in deploying the tool and decided
to omit the tool. Since native code is out-of-scope, OS-level
trackers [55], [56] were excluded. For these reasons, only
TaintDroid was chosen for our evaluation.

Recently, researchers developed hybrid analysis tech-
niques such as targeted execution [13] and program slic-
ing [57], which can assist taint trackers in detecting more
leaks. IntelliDroid performs targeted execution, which is effi-
cient when attempting to run a specific code path. However,

10748 VOLUME 11, 2023



H. Inayoshi et al.: Execution Recording and Reconstruction for Detecting Information Flows in Android Apps

it depends on static analysis and inherits the drawbacks of
inaccurate models. It was evaluated in our DroidBench eval-
uation in Section V-B2, and its result only slightly increased
from TaintDroid. Besides IntelliDroid, Harvester [57] can
improve TaintDroid by triggering malicious code. However,
Harvester was omitted because the user must coordinate its
target logging points (i.e., not wholly automatic), and also,
Harvester is not publicly available.

VIII. CONCLUSION
This paper presents a usable dynamic taint tracker called
T-Recs, detecting information flows by recording and recon-
structing the app execution. T-Recs addresses the limitations
of current dynamic trackers, which are the dependency on
the analysis environments and the re-analysis cost. T-Recs
was implemented and evaluated with 158 apps from Droid-
Bench, 96 and 158 popular apps fromGoogle Play, and SDK-
version-varied apps randomly collected from Google Play
and Anzhi. The results show that T-Recs is making steady
progress. Future work includes the evaluation of T-Recs with
benchmarks excluded in this paper. T-Recs is going to be
applied to real-world apps to uncover apps’ suspicious behav-
iors that have not been recognized yet. T-Recs has been made
publicly available at https://github.com/SaitoLab-Nitech/T-
Recs.

APPENDIX.
TaintDroid MODIFICATION
TaintDroid only supports HTTP/HTTPS transmission as the
taint sinks by default. Six files in the source code of Taint-
Droid were modified to support taint sinks in the DroidBench
apps. Table 13 shows the added taint sinks and corresponding
file paths. For more details, the modified code is available
from us upon reasonable request.

REFERENCES
[1] Q. Zhao, C. Zuo, B. Dolan-Gavitt, G. Pellegrino, and Z. Lin, ‘‘Automatic

uncovering of hidden behaviors from input validation in mobile apps,’’
in Proc. IEEE Symp. Secur. Privacy (SP), San Francisco, CA, USA,
May 2020, pp. 1106–1120.

[2] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. L. Traon,
D. Octeau, and P. McDaniel, ‘‘FlowDroid: Precise context, flow, field,
object-sensitive and lifecycle-aware taint analysis for Android apps,’’ in
Proc. 35th ACM SIGPLAN Conf. Program. Lang. Design Implement.,
Edinburgh, U.K., Jun. 2014, pp. 259–269.

[3] F. Pauck, E. Bodden, and H. Wehrheim, ‘‘Do Android taint analysis tools
keep their promises?’’ in Proc. 26th ACM Joint Meeting Eur. Softw. Eng.
Conf. Symp. Found. Softw. Eng., Lake Buena Vista, FL, USA, Oct. 2018,
pp. 331–341.

[4] J. Zhang, Y.Wang, L. Qiu, and J. Rubin, ‘‘Analyzing Android taint analysis
tools: FlowDroid, amandroid, and DroidSafe,’’ IEEE Trans. Softw. Eng.,
vol. 48, no. 10, pp. 4014–4040, Oct. 2022.

[5] F. Wei, S. Roy, X. Ou, and Robby, ‘‘Amandroid: A precise and gen-
eral inter-component data flow analysis framework for security vetting
of Android apps,’’ ACM Trans. Privacy Secur., vol. 21, no. 3, pp. 1–32,
Apr. 2018.

[6] M. I. Gordon, D. Kim, J. Perkins, L. Gilham, N. Nguyen, and M. Rinard,
‘‘Information-flow analysis of Android applications in DroidSafe,’’ in
Proc. Netw. Distrib. Syst. Secur. Symp., San Diego, CA, USA, 2015, p. 110,
doi: 10.14722/ndss.2015.23089.

[7] Secure Software Engineering. DroidBench 3.0. Accessed: Oct. 3, 2021.
[Online]. Available: https://github.com/secure-software-engineering/
DroidBench/tree/develop

[8] L. Li, A. Bartel, T. F. Bissyandé, J. Klein, Y. L. Traon, S. Arzt,
S. Rasthofer, E. Bodden, D. Octeau, and P. McDaniel, ‘‘IccTA: Detecting
inter-component privacy leaks in Android apps,’’ inProc. IEEE/ACM IEEE
Int. Conf. Softw. Eng., Florence, Italy, May 2015, pp. 280–291.

[9] D. Octeau, D. Luchaup, and M. Dering, ‘‘Composite constant propaga-
tion: Application to Android inter-component communication analysis,’’
in Proc. Int. Conf. Softw. Eng., Florence, Italy, May 2015, pp. 77–88.

[10] W. Enck, P. Gilbert, B. Chun, L. P. Cox, J. Jung, P. D. McDaniel, and
A. Sheth, ‘‘TaintDroid: An information-flow tracking system for realtime
privacy monitoring on smartphones,’’ in Proc. 9th USENIX Symp. Oper.
Syst. Design Implement. (OSDI), Vancouver, BC, Canada, Oct. 2010,
pp. 393–407.

[11] B. Reaves, J. Bowers, S. A. Gorski, O. Anise, R. Bobhate, R. Cho, H. Das,
S. Hussain, H. Karachiwala, N. Scaife, B. Wright, K. Butler, W. Enck, and
P. Traynor, ‘‘∗droid: Assessment and evaluation of Android application
analysis tools,’’ ACM Comput. Surv., vol. 49, no. 3, pp. 1–30, Oct. 2016.

[12] H. Inayoshi, S. Kakei, and S. Saito, ‘‘Plug and analyze: Usable dynamic
taint tracker for Android apps,’’ in Proc. IEEE 22nd Int. Work. Conf.
Source Code Anal. Manipulation (SCAM), Limassol, Cyprus, Oct. 2022,
pp. 24–34.

[13] M. Y. Wong and D. Lie, ‘‘IntelliDroid: A targeted input generator
for the dynamic analysis of Android malware,’’ in Proc. Netw. Dis-
trib. Syst. Secur. Symp., San Diego, CA, USA, 2016, pp. 21–24, doi:
10.14722/ndss.2016.23118.

[14] L. Li, T. F. Bissyandé, D. Octeau, and J. Klein, ‘‘DroidRA: Taming reflec-
tion to support whole-program analysis of Android apps,’’ inProc. 25th Int.
Symp. Softw. Test. Anal., Saarbrücken, Germany, Jul. 2016, pp. 318–329.

[15] X. Sun, L. Li, T. F. Bissyandé, J. Klein, D. Octeau, and J. Grundy, ‘‘Taming
reflection: An essential step toward whole-program analysis of Android
apps,’’ ACM Trans. Softw. Eng. Methodology, vol. 30, no. 3, pp. 1–36,
Apr. 2021.

[16] Anzhi. Accessed: Oct. 10, 2021. [Online]. Available: http://
www.anzhi.com

[17] Google. UI/Application Exerciser Monkey. Accessed: Sep. 20, 2022.
[Online]. Available: https://developer.android.com/studio/test/monkey

[18] V. Balachandran, D. J. Tan, and V. L. Thing, ‘‘Control flow obfuscation for
Android applications,’’ Comput. Secur., vol. 61, pp. 72–93, Aug. 2016.

[19] Google. Enable Multidex for Apps With Over 64K Methods.
Accessed: Sep. 21, 2022. [Online]. Available: https://developer.
android.com/studio/build/multidex

[20] Google. Dalvik Bytecode. Accessed: Sep. 21, 2022. [Online]. Available:
https://source.android.com/devices/tech/dalvik/dalvik-bytecode

[21] Y. Cao, Y. Fratantonio, A. Bianchi, M. Egele, C. Kruegel, G. Vigna,
and Y. Chen, ‘‘EdgeMiner: Automatically detecting implicit control
flow transitions through the Android framework,’’ in Proc. Netw. Dis-
trib. Syst. Secur. Symp., San Diego, CA, USA, 2015, pp. 1–15, doi:
10.14722/ndss.2015.23140.

[22] J. Schüette, A. Küechler, and D. Titze, ‘‘Practical application-level
dynamic taint analysis of Android apps,’’ in Proc. IEEE Trust-
com/BigDataSE/ICESS, Sydney, NSW, Australia, Aug. 2017, pp. 17–24.

[23] S. Arzt and E. Bodden, ‘‘StubDroid: Automatic inference of precise data-
flow summaries for the Android framework,’’ in Proc. IEEE/ACM 38th Int.
Conf. Softw. Eng. (ICSE), Austin, TX, USA, May 2016, pp. 725–735.

[24] Apktool. Accessed: Sep. 21, 2022. [Online]. Available: https://ibotpeaches.
github.io/Apktool/

[25] J. Zhang, Y. Wang, L. Qiu, and J. Rubin. Supplementary Materi-
als. Accessed: Oct. 3, 2021. [Online]. Available: https://resess.github.io/
artifacts/StaticTaint/index

[26] A. Continella, Y. Fratantonio, M. Lindorfer, A. Puccetti, A. Zand,
C. Kruegel, and G. Vigna, ‘‘Obfuscation-resilient privacy leak detec-
tion for mobile apps through differential analysis,’’ in Proc. Netw. Dis-
trib. Syst. Secur. Symp., San Diego, CA, USA, 2017, pp. 1–15, doi:
10.14722/ndss.2017.23465.

[27] K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon, ‘‘AndroZoo: Collecting
millions of Android apps for the research community,’’ inProc. IEEE/ACM
13th Work. Conf. Mining Softw. Repositories (MSR), Austin, TX, USA,
May 2016, pp. 468–471.

[28] Google. AndroidX. Accessed: Sep. 21, 2022. [Online]. Available:
https://developer.android.com/jetpack/androidx

VOLUME 11, 2023 10749

http://dx.doi.org/10.14722/ndss.2015.23089
http://dx.doi.org/10.14722/ndss.2016.23118
http://dx.doi.org/10.14722/ndss.2015.23140
http://dx.doi.org/10.14722/ndss.2017.23465


H. Inayoshi et al.: Execution Recording and Reconstruction for Detecting Information Flows in Android Apps

[29] Secure Software Engineering. FlowDroid. Accessed: Sep. 29, 2021.
[Online]. Available: https://github.com/secure-software-engineering/
FlowDroid

[30] Argus Group. Argus-SAF. Accessed: Feb. 13, 2022. [Online]. Available:
https://github.com/arguslab/Argus-SAF

[31] MIT-PAC. Droidsafe-SRC. Accessed: Feb. 20, 2022. [Online]. Available:
https://github.com/MIT-PAC/droidsafe-src

[32] SerVal Research Group. DroidRA. Accessed: Nov. 29, 2022. [Online].
Available: https://github.com/serval-snt-uni-lu/DroidRA

[33] L. Li. IccTA. Accessed: Dec. 2, 2022. [Online]. Available:
https://github.com/lilicoding/soot-infoflow-android-iccta

[34] J. Samhi, A. Bartel, T. F. Bissyande, and J. Klein, ‘‘RAICC: Reveal-
ing atypical inter-component communication in Android apps,’’ in Proc.
IEEE/ACM 43rd Int. Conf. Softw. Eng. (ICSE), Madrid, ES, USA,
May 2021, pp. 1398–1409.

[35] J. Samhi. RAICC. Accessed: Nov. 29, 2022. [Online]. Available:
https://github.com/JordanSamhi/RAICC

[36] TaintDroid. Accessed: Feb. 9, 2022. [Online]. Available:
https://github.com/TaintDroid

[37] M. Wong. IntelliDroid. Accessed: Feb. 20, 2022. [Online]. Available:
https://github.com/miwong/IntelliDroid

[38] H. Inayoshi, S. Kakei, E. Takimoto, K. Mouri, and S. Saito, ‘‘VTDroid:
Value-based tracking for overcoming anti-taint-analysis techniques in
Android apps,’’ in Proc. 16th Int. Conf. Availability, Rel. Secur., Vienna,
Austria, Aug. 2021, pp. 1–6.

[39] MIT-PAC. Droidsafe-src. Accessed: Feb. 20, 2022. [Online]. Available:
https://mit-pac.github.io/droidsafe-src

[40] Google. Best Practices for Unique Identifiers. Accessed: Sep. 22, 2022.
[Online]. Available: https://developer.android.com/training/articles/user-
data-ids

[41] F. Wei, X. Lin, X. Ou, T. Chen, and X. Zhang, ‘‘JN-SAF: Precise
and efficient NDK/JNI-aware inter-language static analysis framework
for security vetting of Android applications with native code,’’ in Proc.
ACM SIGSAC Conf. Comput. Commun. Secur., Toronto, ONT, Canada,
Oct. 2018, pp. 1137–1150.

[42] A. Merlo, A. Ruggia, L. Sciolla, and L. Verderame, ‘‘You shall not repack-
age! Demystifying anti-repackaging on android,’’Comput. Secur., vol. 103,
Apr. 2021, Art. no. 102181.

[43] D. King, B. Hicks,M. Hicks, and T. Jaeger, ‘‘Implicit flows: Can’t live with
‘em, can’t live without ‘em,’’ in Proc. 4th Int. Conf. Inform. Syst. Secur.
(ICISS), Hyderabad, Andhra Pradesh, India, Dec. 2008, pp. 56–70.

[44] A. Mordahl and S. Wei, ‘‘The impact of tool configuration spaces on the
evaluation of configurable taint analysis for android,’’ in Proc. 30th ACM
SIGSOFT Int. Symp. Softw. Test. Anal., Jul. 2021, pp. 466–477.

[45] A. Bosu, F. Liu, D. Yao, and G. Wang, ‘‘Collusive data leak and more:
Large-scale threat analysis of inter-app communications,’’ in Proc. ACM
Asia Conf. Comput. Commun. Secur., Abu Dhabi, UAE, Apr. 2017,
pp. 71–85.

[46] W. Klieber, L. Flynn, A. Bhosale, L. Jia, and L. Bauer, ‘‘Android taint flow
analysis for app sets,’’ in Proc. 3rd ACM SIGPLAN Int. Workshop State Art
Java Program Anal., Edinburgh, U.K., Jun. 2014, pp. 1–6.

[47] A. P. Fuchs, A. Chaudhuri, and J. S. Foster, ‘‘SCanDroid: Automated
security certification of Android applications,’’ Dept. Comput. Sci., Univ.
Maryland, College Park, MD, USA, Tech. Rep. CS-TR-4991, Nov. 2009.
[Online]. Available: http://hdl.handle.net/1903/11847

[48] W. Huang, Y. Dong, A. Milanova, and J. Dolby, ‘‘Scalable and precise taint
analysis for Android,’’ in Proc. ISSTA, Baltimore, MD, USA, Jul. 2015,
pp. 106–117.

[49] P. Barros, R. Just, S. Millstein, P. Vines, W. Dietl, M. d’Amorim, and
M. D. Ernst, ‘‘Static analysis of implicit control flow: Resolving Java
reflection and Android intents (T),’’ in Proc. 30th IEEE/ACM Int. Conf.
Automated Softw. Eng. (ASE), Lincoln, NE, USA, Nov. 2015, pp. 669–679.

[50] J. Samhi, J. Gao, N. Daoudi, P. Graux, H. Hoyez, X. Sun, K. Allix,
T. F. Bissyandé, and J. Klein, ‘‘JuCify: A step towards Android code
unification for enhanced static analysis,’’ in Proc. 44th Int. Conf. Softw.
Eng., Pittsburgh, PA, USA, May 2022, pp. 1232–1244.

[51] S. B. Andarzian and B. T. Ladani, ‘‘Compositional taint analysis of native
codes for security vetting of Android applications,’’ in Proc. 10th Int. Conf.
Comput. Knowl. Eng. (ICCKE), Mashhad, Iran, Oct. 2020, pp. 567–572.

[52] M. Sun, T. Wei, and J. C. S. Lui, ‘‘Taintart: A practical multi-level
information-flow tracking system for Android runtime,’’ in Proc. ACM
Sigsac Conf., Vienna, Austria, Oct. 2016, pp. 331–342.

[53] M. Backes, S. Bugiel, O. Schranz, P. Von Styp-Rekowsky, and
S. Weisgerber, ‘‘ARTist: The Android runtime instrumentation and secu-
rity toolkit,’’ in Proc. IEEE Eur. Symp. Secur. Privacy, Paris, France,
Apr. 2017, pp. 481–495.

[54] W. You, B. Liang, W. Shi, P. Wang, and X. Zhang, ‘‘TaintMan: An ART-
compatible dynamic taint analysis framework on unmodified and non-
rooted Android devices,’’ IEEE Trans. Dependable Secure Comput.,
vol. 17, no. 1, pp. 209–222, Jan. 2020.

[55] L. K. Yan and H. Yin, ‘‘DroidScope: Seamlessly reconstructing the OS and
Dalvik semantic views for dynamic Android malware analysis,’’ in Proc.
21st USENIX Secur. Symp., Bellevue, WA, USA, Aug. 2012, pp. 569–584.

[56] L. Xue, C. Qian, H. Zhou, X. Luo, Y. Zhou, Y. Shao, and A. T. S. Chan,
‘‘NDroid: Toward tracking information flows across multiple Android
contexts,’’ IEEE Trans. Inf. Forensics Security, vol. 14, no. 3, pp. 814–828,
Mar. 2019.

[57] S. Rasthofer, S. Arzt, M. Miltenberger, and E. Bodden, ‘‘Harvesting run-
time values in Android applications that feature anti-analysis techniques,’’
in Proc. Netw. Distrib. Syst. Secur. Symp., San Diego, CA, USA, 2016,
pp. 1–15, doi: 10.14722/ndss.2016.23066.

HIROKI INAYOSHI received the B.E. and M.E.
degrees from the Nagoya Institute of Technology,
Japan, in 2018 and 2021, respectively. He has been
a Graduate Student with the Department of Com-
puter Science, Nagoya Institute of Technology,
since 2021. His research interests include dynamic
program analysis, mobile security, and privacy.
He is a member of IPSJ.

SHOHEI KAKEI received the B.E. and M.E.
degrees from Gifu University, Japan, in 2011 and
2013, respectively, and the Ph.D. degree from
Kobe University, Japan, in 2019. He has been an
Assistant Professor with the Department of Com-
puter Science, Nagoya Institute of Technology,
Japan, since 2019. His current research interests
include digital forensics, blockchain technology,
and information security. He is a member of IEICE
and IPSJ.

SHOICHI SAITO received the B.S. and M.E.
degrees in engineering from Ritsumeikan Uni-
versity, in 1993 and 1995, respectively, and the
Dr.Eng. degree, in 2000. He became a Research
Associate at the Department of Computer and
Communication Sciences, Wakayama University,
in 1998. He was an Assistant Professor, in 2003,
and an Associate Professor, in 2005. He was an
Associate Professor with the Nagoya Institute of
Technology, in 2006, where he has been a Profes-

sor, since 2016. His research interests include operating systems, security,
and Internet. He is a member of ACM, IEEE CS, and IPSJ.

10750 VOLUME 11, 2023

http://dx.doi.org/10.14722/ndss.2016.23066

