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ABSTRACT This paper is devoted to solving the output regulation problem on the basis of the new Francis
equations for arbitrary reference/disturbance signals, whose model are obtained by High-Gain observers,
providing in this way, the regulation of unmodeled but measurable reference signals. The design is given
by fixing a steady state globally attractive by means of LMIs which allows controlling the decay rate by
considering input bounds; while the regulation problem is solved by computing the steady-state input based
on a modified set of the regulation equations, when the exosystem is constructed upon High-Gain observers,
extending in this way, the classical output regulation theory for unmodeled reference/disturbance signal. The
Furuta pendulum is used to illustrate the viability of the proposed approach.

INDEX TERMS Output regulation, high-gain observer, linear matrix inequality.

I. INTRODUCTION
The problem regarding controlling the output of a system
that asymptotically tracks a desired reference and rejects
undesired disturbances, retaining stability in closed-loop sys-
tems is frequently addressed due to its wide applicability in
mechanical systems, aeronautics, robotics and different areas
of science.

A common scenario appears when the reference signal is
fully known, making it easy to find a controller. However,
in practical cases, the signal can diverge from the considered,
inheriting control problems and accuracy loss. Similar prob-
lems arise when the tracking signal comes directly from the
sensor measurement. In those cases, the controller may not
ensure the stability of the closed-loop system.
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On the other hand, when the signal has a significant ampli-
tude or high frequency, fulfilling global stability is not a sim-
ple task, due to the relative degree (defined and constant over
the region of interest) with a smooth and bounded signal [1].

To achieve global stability, controllers based on dynamic
models of reference/disturbances have been developed as the
works of Francis [2] and Francis andWonham [3]. They have
shown that the solvability of a multivariable linear regulator
problem corresponds to the solvability of a system of two lin-
ear matrix equations, called Francis Equations. Later, Isidori
and Byrnes [4] showed that the result established by Francis
is a particular case of the nonlinear problem. Additionally, the
solvability for the nonlinear case requires an error feedback
regulator, depending on a set of nonlinear partial differential
equations called Francis-Isidori-Byrnes (FIB). Unfortunately,
these equations, present, in many cases, a considerable com-
plexity during their solving process. Furthermore, when vari-
ables of state are unknown, the internal model principle is
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used to generate the appropriate signal control trending the
error to zero for the close-loop system when the exosystem is
partially or fully known.

In the classical Isidori’s regulation theory, a problem to
consider is that the exosystem must be known a priori, mak-
ing it impractical for real situations because the dynamical
model that describes the path to track is not always available,
although, in many cases, measurable. This implies that the
controller must be designed with partial information. At the
same time tracking control with time-varying external dis-
turbances has been addressed by feedback linearization for
a three-rotor UAV and proof stability via Lyapunov analy-
sis [5]. The extension of the output regulation to random refer-
ences/disturbances in a quadrotor for a hybrid exosystem [6]
where the Kalman filter is used.

There has been a development of approaches to solving
the output regulation, considering the different conditions of
the problem. In [7] is introduced an optimal average cost
learning framework for output regulation controller design
when linear systems have unknown dynamics. In [8] is used
a fuzzy adaptive output feedback control scheme to approx-
imate unknown functions for a class of nonlinear uncer-
tain strict-feedback systems under the action of nonlinear
exosystems. Moreover, in the case of PDE’s introducing an
adaptive internal model that estimates unknown frequencies,
output regulation, and disturbance rejection are achieved,
even if the disturbance is generated by an unknown finite-
dimensional exosystem [9], [10], or the exosystem coef-
ficients are time-varying [11]. Likewise, [12] proposes an
event-triggered control based on an adaptive internal model
for a class of uncertain linear systems, where the system
matrix of the exosystem contains unknown parameters. Ref-
erences [13], [14] develops an internal model designed by
the circle criterion introducing the Nussbaum gain to deduce
adaptive laws for a backstepping controller.

In literature, in order to overcome the unmodeled
references/disturbances, High-Gain observers are used in lin-
earizable plants and observers of lower dimension (Cascade
High-Gain observer) to estimate the states without facing
the peaking phenomenon [15]. In [16] High-Gain observers
allow the controller to achieve the stabilization of the hybrid
internal model for linear systems with a relative degree
greater than one and dealing with periodic jumps in the
plant/exosystem. For the neutrally stable exosystem whose
frequencies are not known a priori, but in a compact set,
a robust stabilizer and an internal model (adaptively tuned)
produce a controller for the output-zeroing condition [17].
In this context, for output regulation of uncertain nonlinear
systems in output feedback under disturbances generated by a
class of nonlinear exosystems, Ding [18] proposed the design
of a High-Gain internal model, or in the case of an unknown
function in the system dynamics Nazrulla and Khalil [19]
demonstrated that regulation can be achieved through the
incorporation of a High-Gain observer in sliding mode con-
trol. Also, in [20] is proposed the combination of a nonlinear

internal model and an extended High-Gain observer, where
the observer is used to estimate the unmatched or unmeasured
terms of the redesigned outputs of the plant.

High-Gain observers are capable of estimating the states
of nonlinear systems even when the dynamics are fully
unknown, but the system must be Lipschitz. Thus, if the ref-
erence/disturbance signals are assumed smooth and bounded,
it is possible to construct a High-Gain observer for each of
them. On the other hand, classical results on output regulation
require the fully modeled dynamics for the reference to track
making it impractical for unmodelled references. Thus, the
problem consists of solving some modified regulation equa-
tions which consider an exosystem constructed upon High-
Gain observers.

So, based on blending both the output regulation and the
High-Gain Observer theories, the main contribution of the
work is to provide an alternative method for tracking signals
whose dynamics are unknown, extending, in this way, the
classical regulation results. Thus, the output regulation is
achieved through the modified regulation equation when a
High-Gain Observer is used to replace the missing exosys-
tem. Sufficient conditions for the existence of the linear and
the nonlinear regulators are given. Besides, it is shown that
the proposed controller can be obtained readily, and that it
can be easily implemented in different systems such as the
Furuta pendulum.

The rest of this work is organized as follows. The studied
problem is defined in Section II. The High-Gain Observers
are briefly reminded in Section III. Also, in Section III, the
modified regulation equations are presented. The numerical
and real-time results are given in Sections IV and V, respec-
tively. Finally, the concluding remarks appear in Section VI.

II. PROBLEM STATEMENT
Consider the plant for output regulation as a nonlinear system
described by

ẋ(t)= f (x,w, u), y(t)=h(x), (1)

where x ∈ Rn is the state vector, u ∈ Rm is the input vector,
y ∈ Ro is the output vector, and w ∈ Rq is the state vector
of the exosystem, to be defined later, which generates the
reference and/or the perturbation signals; f (·, ·, ·) : Rn

×Rq
×

Rm
7→ Rn and h(·) : Rn

7→ Ro are sufficiently smooth vector
fields such that f (0, 0, 0) = 0 and h(0) = 0. For the sake of
space, the argument t is omitted in some expressions, but it is
considered that the states, outputs, and inputs of the plant and
the exosystem are time-dependent, as well as the measurable
reference/disturbance signals. Now, consider the following
exosystem

ẇ(t) = s(w), yr (t) = q(w), (2)

where s(w) : Rq
7→ Rq and q(·) : Rq

7→ Ro are sufficiently
smooth vector fields holding s(0) = 0, and q(0) = 0, where
yr ∈ Ro is called the reference output. Besides, such an
exosystem is Poisson stable. Then, the task is to design a
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controller such that the tracking error

e(t) = y(t) − yr (t) = h(x) − q(w), (3)

goes asymptotically to zero [21].
In [1] and [4], the nonlinear output regulation problem for

systems in the form (1)-(3) consists of finding the controller

u = K (x − π (w))+ γ (w), (4)

with K designed such that the linear approximation of (1) is
asymptotically stable, while the nonlinear gains π(w), with
π (0) = 0 (the steady-state zero-error manifold) and γ (w),
with γ (0) = 0 (the steady-state input) are computed from

∂π (w)
∂w

s(w) = f (π (w),w, γ (w)), (5)

0 = h(π (w)) − q(w). (6)

The set of equations (5)-(6) is known as Francis-Isidori-
Byrnes (FIB) equations.

Clearly, the linear output regulation problem appears when
(1), (2) and (3) are linearized around the origin, yielding:

ẋ = Ax + Bu+ Pw, y=Cx, (7)

ω̇ = Sω, (8)

e = Cx − Qω. (9)

The linear counterpart of the set (5)-(6) is obtained when the
nonlinear mappings xss = π (ω) and uss = γ (ω) change to
their linear version, i.e., xss = 5ω and uss = 0ω, respec-
tively. Thus, considering the feedback control u = Kx + Lw
has the full access to states x and ω, then the conditions for
linear output regulation arises; with K ∈ Rm×n, 0 ∈ Rm×q,
5 ∈ Rn×q, and L = 0−K5; with this in mind, the set (5)-(6)
turns into:

5S = A5+ B0 + P,

C5 = Q,

and the linear regulation problem is solvable by

u(t) = K [x −5w] + 0w. (10)

The following section presents a proposal to achieve the
output regulation using the High-Gain observer as the exosys-
tem, resulting, in this way, the modified regulation equations.

III. HIGH-GAIN OBSERVER
In this section, some well-known results of High-Gain
observers are briefly reminded, while their use to construct
an exosystem is introduced. Consider, the nonlinear system
described by:

ẋ = Ahx + Bh8(x), (11)

y = Chx, (12)

with x ∈ Rρ , bounded for all t ≥ 0, and y ∈ R as the state
and output vector, respectively; besides 8(x) is a nonlinear
function, locally Lipschitz and partially or fully unknown.

Then, the high-gain observer for (11) and (12) is defined
as

˙̂x = Ahx̂ + Bh80(x̂) + H · (y− ŷ), (13)

ŷ = Chx̂, (14)

where

Ah =


0 1 0 · · · 0
0 0 1 · · · 0
...
...
...
. . . 0

0 0 0 · · · 1
0 0 0 · · · 0


ρ×ρ

, (15)

Bh =
[
0 0 · · · 0 1

]T
1×ρ , (16)

Ch =
[
1 0 · · · 0 0

]
1×ρ , (17)

80(x̂) is a nominal model for 8(x̂). By considering the
estimation error x̃ = x − x̂ and knowing that y = x1 and
ŷ = x̂1, then equation (13) can be rewritten as:

˙̃x = Ahx̃ + Bh · (8(x) −80(x̂)) − Hx̃1, (18)

= A0x̃ + Bh · (8(x) −80(x̂)), (19)

where

A0 =


−h1 1 0 · · · 0
−h2 0 1 · · · 0
...

...
...

. . .
...

−hρ−1 0 0 · · · 1
−hρ 0 0 · · · 0

 . (20)

Notice that in the absence of Bh · (8(x)−80(x̃)) the asymp-
totic error convergence is reached by designing the gains
H = col(h1, h2, . . . , hρ) such that A0 is Hurwitz and H is
defined as:

H =

[α1
ϵ

α2

ϵ2
· · ·

αρ

ϵρ

]T
, (21)

where ϵ is a positive number sufficiently small related to the
decay rate of the estimation error and α1, . . . , αp are fixed
such that

sρ + α1sρ−1
+ α2sρ−2

+ . . .+ αρ−1s+ αρ, (22)

is Hurwitz. On the other hand, let

η1 =
x̃1
ϵρ−1 , η2 =

x̃2
ϵρ−2 , . . . , ηρ = x̃ρ . (23)

Then

ϵη̇ = Fη + ϵBh · (8(x) −80(x̂)), (24)

where

F =


−α1 1 0 . . . 0
−α1 0 1 . . . 0
...

...
...

. . . 0
−αρ−1 0 0 . . . 1
−αρ 0 0 . . . 0

 ,
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is also Hurwitz because A0 and F are related by a similarity
transformation. Besides, it can be noticed that when ϵ gets
smaller, then the second term of (24) becomes negligible, and
in case of considering80(x̂) = 0, then the linear observer can
estimate the system (11) and (12) even if 8(x) is completely
unknown [22].

A. HIGH-GAIN OBSERVER USED AS EXOSYSTEM AND THE
MODIFIED FRANCIS-ISIDORI-BYRNES EQUATIONS
Consider a smooth, unmodelled, and continuously differen-
tiable signal ψ(t) as the output of the nonlinear system (11)
and (12)with ρ ≥ 1. Therefore, by considering80(x̂) = 0 the
High-Gain Observer (13) and (14) can be rewritten as

˙̂x = Ahx̂ + H · (ψ(t) − ŷ), (25)

ŷ = Chx̂, (26)

and it is capable of estimating the states of the non-existent
system (11) and (12) with 8(x) = ψρ(t) where ψρ(t) is
derivative of order ρ of ψ(t) with ρ ≥ 1. Then, the existence
of High-Gain Observer is granted ifψρ(t) is Lipschitz. Thus,
consider the smooth, unmodelled, and continuously differen-
tiable vector 9(t) defined as

9T (t) =
[
ψ1 ψ2 · · · ψm · · · ψm+d

]
, (27)

where ψ1, . . . , ψm are reference signals to be tracked and
ψm+1, . . . , ψm+d are the disturbance signals to be rejected.
Then 9(t), measurable for t ≥ 0, can be considered as the
output of a non-existent dynamical model, and the High-Gain
Observer (25) and (26) can be used to estimate the state and
output of such a system, resulting:

ẇ = SAw+ SH · (9(t) − yw), (28)

yw =

[
yref
ydis

]
=

[
Qref
Qdis

]
w = Qww, (29)

where yref ∈ Rm are the m references to track and ydis ∈ Rd

are the d disturbances to reject. Thus, the overall output vector
is yw ∈ Rm+d .
One of the problems that faces this observer is when ρ

is to big, because the gains are proportional to powers of
1
ϵ
, . . . , 1

ϵρ
, causing large peaks during the transient state.

To avoid this problem and for sake of simplicity, in this work,
ρ is considered equal to 2.

On the other hand, the matrices involved in (28)-(29), are
related to the m reference and the d disturbance signals, and
they are defined as follows:

SA =



A1 0 0 · · · · · · 0
0 A2 0 · · · · · · 0
...

...
. . .

...
...

...

0 0 · · · Am · · · 0
...

...
...

...
. . .

...

0 0 · · · · · · · · · Am+d


,

SH =



H1 0 0 · · · · · · 0
0 H2 0 · · · · · · 0
...

...
. . .

...
...

...

0 0 · · · Hm · · · 0
...

...
...

...
. . .

...

0 0 · · · · · · · · · Hm+d


,

Qref =


Q1 0 0 · · · · · · 0
0 Q2 0 · · · · · · 0
...

...
. . . · · · · · · 0

0 0 · · · Qm · · · 0

 ,

Qdis =


0 · · · Qm+1 0 · · · 0
0 · · · 0 Qm+2 · · · 0
...

...
...

... · · ·
...

0 · · · 0 0 · · · Qm+d

 .
with Ai, Qi and Hi as (15), (17) and (21), respectively, for
i = 1, . . . ,m+ d .
Thus, by virtue of (20), the system (28)-(29) can be rewrit-

ten as

ẇ = Sw+ SH9(t), (30)

yw =

[
yref
ydis

]
=

[
Qref
Qdis

]
w, (31)

where

S =



S1 0 0 · · · · · · 0
0 S2 0 · · · · · · 0
...

...
. . .

...
...

...

0 0 · · · Sm · · · 0
...

...
...

...
. . .

...

0 0 · · · · · · · · · Sm+d


,

with Si ∈ Rρ×ρ are block matrices defined as:

Si =



−
α1

ϵ
1 0 · · · 0

−
α2

ϵ2
0 1 · · · 0

...
...

...
. . .

...

−
αρ−1

ϵρ−1 0 0 · · · 1

−
αρ

ϵρ
0 0 · · · 0


,

for i = 1, . . . ,m+ d .
Notice that equations (24) to (31) are given for ρ ≥ 1,

which means that the proposed approach can be applied even
if observers of higher order are considered.

Now the Nonlinear Regulation Problem for unmodelled
reference/disturbance signals, with the exosystem (30) and
(31), when (27) ismeasurable for all t ≥ 0 can be summarized
as follows: 1) To find a gain K such that the linear approxi-
mation of (1) is asymptotically stable, and 2) To obtain the
nonlinear gains π(w), and γ (w) from

∂π(w)
∂w

(Sw+ SH9(t)) = f (π (w),w, γ (w)), (32)

0 = h(π(w)) − Qref (w). (33)
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Then, the Nonlinear Regulation Problem for unmodeled
references is solvable by u = K (x − π (w))+ γ (w).
The set of equations (32)-(33) are the Francis-Isidori-

Byrnes (FIB) equations for unmodeled references.
For the linear counterpart, the regulation problem is

described by

ẋ = Ax + Bu+ Pw, y=Cx, (34)

ω̇ = Sω + SH9(t), (35)

e = Cx − Qref ω, with (36)

u = Kx + Lω. (37)

where the mappings are xss = 5ω and uss = 0ω, with K ∈

Rρ×n, 0 ∈ Rρ×ρ(m+d), 5 ∈ Rn×ρ(m+d), and L = 0 − K5.
Thus, by considering the change of coordinates: x̃ = x−5w,
one has:

˙̃x = ẋ −5ẇ,

= Ax + Bu+ Pw−5Sw−5SH9(t),

= Ax + BKx + BLw+ Pw−5Sw−5SH9(t),

and knowing that x = x̃ + 5w, the previous system can be
expressed as:

˙̃x = A(x̃ +5w) + BK (x̃ +5w) (38)

+ BLw+ Pw−5Sw−5SH9(t),

= (A+ BK )x̃ (39)

+ (A5+ BK5+ BL + P−5S)w−5SH9(t).

Hence, the system posses a stable invariant subspace, where
5 is a solution of the equation:

5S +5SH9(t) = (A+ BK )5+ (BL + P) . (40)

On the other hand, the tracking error is

e = Cx − Qref w = C(x̃ +5w) − Qref w

= Cx̄ + (C5− Qref )w. (41)

Therefore, the error goes to zero, i.e., limt→∞ e(t) = 0,
if 5 fulfills C5− Qref = 0. Then, the following conditions
directly arise:

• Design K such that ˙̃x = (A + BK )x̃ is stable. To this
end, the proposed approach sets a gain K to create a
globally attractive steady state by using LMIs; allowing
to modify the exponential decay rate or to impose input-
output bounds.

• Compute 5 and 0 such that the following equations
hold:

0 = A5+ B0 + P−5S −5SHQw, (42)

0 = C5− Qref . (43)

The previous conditions are the Francis-Isidori-Byrnes
for linear systems with unmodelled references/disturbances
signals.

The previous discussion is summarized in the flowchart
depicted in Figure 1.

TABLE 1. Symbol description rotary inverted pendulum.

IV. NUMERICAL EXAMPLES
A. FURUTA PENDULUM SYSTEM
Figure 2 shows a rotational pendulummechanism [23], which
consists of two beams, the horizontal one has driven by the
DC motor while the vertical is joined with the first one, so it
can freely rotate. Its dynamic equations can be derived from
the Lagrange Equations of motion, where φ is the angle of
the horizontal beam and θ is the angle between the upright
position and the vertical beam q = [φ, θ], thus

M (q)q̈+ C(q, q̇)q̇+ G(q) = B̄u, (44)

where

M (q) =

[
Jarm + mpr2 + mpl2p sin

2 θ mprlp cos θ
mprlp cos θ Jp + mpl2p

]
,

C(q, q̇) =


1
2
mpl2p θ̇ sin 2θ

1
2
mpl2p φ̇ sin 2θ − mprlpθ̇ sin θ

1
2
mpl2p sin θ 0

 ,
G(q) =

[
0

mpglp sin 2θ

]
,

B̄ =

[
1
0

]
, u =

Kt (Vm − Kmφ̇)
Rm

.

Consider x1 = φ, x3 = φ̇, x2 = θ and x4 = θ̇ , its nonlinear
model from the Lagrange-Euler equations is

ẋ1
ẋ2
ẋ3
ẋ4

 =


x3
x4

f1(x, u)
f2(x, u)

 (45)

with [
f1(x, u)
f2(x, u)

]
= M (x)−1(B̄u− C(x, ẋ)ẋ − G(x)) (46)

Figure 2 shows a free body diagram of rotary Inverse Pendu-
lum with pendulum mass mp and length lp. The pendulum is
connected to the DC motor through an arm of mass marm. θ
and α are the arm angle and the pendulum angle, respectively.
In table 1 one can see the terminology used.

By linearizing the nonlinear system (45) around the origin
and by considering x1 as the output to be regulated, results:

ẋ = Ax + Bu+ Pw, y=Cx, (47)
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FIGURE 1. Flowchart for the design of the output regulator when the exosystem is a high-gain observer.

FIGURE 2. The furuta pendulum system.

ω̇ = Sω + SHQw, yref =Qref ω, (48)

e = Cx − Qref ω, (49)

where

A =


0 0 1 0
0 0 0 1
0 76.2884 − 0.5689 0
0 82.2655 − 0.2399 0

 ,
B =

[
0 0 17.0842 7.2054

]T
, C =

[
1 0 0 0

]
,

Qref =
[
1 0

]
, P =

[
0
0

]
.

According to (30), and by assuming ρ = 2, the blockmatrices
S and SH for α1 = 1, α2 = 1 and ϵ = 0.005 are:

S =

[
−200 1

−40000 0

]
, SH =

[
200
40000

]
.

The linear mappings xss = 5ω and uss = 0ω are
computed by the equations (42)-(43) which leads to:

5 =


1 0
0 0
0 1
0 0

 , 0 =
[
0 0.0333

]
.

On the other hand, in order to get a K such that the system
A+BK be Hurwitz the following Lyapunov function V (x) =

xTXx is proposed with X = XT and M satisfying

X > 0, AX + BM + XAT +MBT + 2αX < 0. (50)

The previous inequality guarantees that V̇ ≤ −2αV , related
to a maximum speed convergence α > 0. Nevertheless,
in practical it is important to consider a bound on the control
input ||u(t)|| ≤ β, β > 0 so that it can be ensured the actuator
security. For control bounding it has[

1 xT (0)
x(0) X

]
≥ 0 and

[
X MT

M β2

]
≥ 0, (51)

with x(0) as initial condition and K computed from K =

MX−1. Therefore, setting α = 5.85, µ = 5volts and x(0) =

[0 0 0 0]T one can obtain

K =
[
8.7550 −90.5175 3.3777 −12.1899

]
.

The simulation is carried out using the Matlab software with
the following initial conditions x(0) = [0 2◦ 0 0]T and
w(0) = [−10◦, 0]T . In Figure 3, it can be seen the behavior
of state x1 under the action of the proposed control law.
Besides, it is showed how the output tends to the measurable
reference signal, which in turn, is estimated by the state ω1 of
the High-Gain Observer, which is used as the exosystem.

The performance of the exosystem through the High-Gain
Observer is depicted in Figure 4, for ψ1(t) = π/12 sin
(π/5 · t) − π/12 cos(π/3 · t) as unmodeled reference sig-
nal. It can readly observed that the output w1 tends to the
reference ψ1(t).
When the controller is applied to the system the states

behavior can see in Figure 5 for the tracking signal.
Since the goal in this work is the straightforward imple-

mentation in real-time, the use of LMIs is recommended
because they are an alternative to provide a decay rate α ≥

0 and impose the constrain |u(t)| ≤ µ for an initial condition

VOLUME 11, 2023 10797



T. Hernández-Cortés et al.: On the Output Regulation for an Underactuated Inverse Pendulum

FIGURE 3. Output versus reference (x1 vs w1) for the Inverse Rotary
Pendulum system.

FIGURE 4. Exosystem output signal versus unmodeled reference
signal ψ1.

FIGURE 5. States of the Inverse Rotary Pendulum system.

x(0) = [0 2◦ 0 0]T . Then, large amplitudes are avoided in
the control signal.

V. EXPERIMENTAL TEST
This section presents the experimentation equipment and
analysis of results. The QNET 2.0 Rotary Pendulum board,
Figure 6, is used to verify the proposed control scheme via
hardware- in-the-loop experiments

FIGURE 6. Inverse Rotary Pendulum system.

FIGURE 7. Output versus reference (x1 vs w1) for the Inverse Rotary
Pendulum system.

The test is carried out using the LabView software. There-
fore, for a reference signal (unmodeled but measurable)
ψ(t) = π/12 sin(2π/3·t)+π/12 cos(π/3·t) it can be seen in
Figure 7a a simulation of (47) and (48) with initial conditions
defined as x(0) = [0 2◦ 0 0]T under the influence of the
proposed controller. Besides, Figure 7b shows the behavior of
the physical plant under the same control and as it can be seen,
the output x1 tends to the reference signal ω1 in accordance
with what was expected in the simulation results.

Even more, the states of the simulated system are depicted
in Figure 8a in order to see the upright position (pendulum)
and the reference tracking. On the other hand, in Figure 8b,
a comparison between the simulation and the in real-time
experiment is depicted. As can be noticed, for the reference
signal ψ(t) = π/12 sin(2π/3 · t)+π/12 cos(π/3 · t) the sim-
ulation and the real-time results are close enough to validate
the efficacy of the regulator.
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FIGURE 8. States for the Inverse Rotary Pendulum system.

FIGURE 9. Output versus reference (x1 vs w1) for the inverse rotary
pendulum system with different reference signal.

FIGURE 10. States for the inverse rotary pendulum system.

In order to verify the performance of the proposed
approach; different signals and gains for the observer are
considered. Now, the block matrices S and SH for α1 = 1,
α2 = 1, and ϵ = 0.05 are

S =

[
−20 1
−400 0

]
, SH =

[
20
400

]
.

Again, the simulation is carried out using the Matlab soft-
ware with the following initial conditions x(0) = [0 2◦ 0 0]T

and w(0) = [−10◦, 0]T . Therefore, for a new refer-
ence signal defined as ψ1(t) = π/12 sin(π/5 · t) − π/

12 cos(π/3 · t) for the same system (Furuta pendulum) the
simulation behavior can be seen in Figure 9a, while the

FIGURE 11. Control signal for the inverse rotary pendulum system.

evolving of the physical system is depicted in Figure 9b.
Additionally, as in the previous example, the simulation/real-
time system states are given in Figures 10a and 10b, respec-
tively. The corresponding control signals are depicted in
Figures 11a and 11b for simulation/real system, respectively.
Once more, the efficacy of the approach has been validated
by a real-time experiment.

VI. CONCLUSION
In this work, an extension of the output regulation theory to
the case of unmodeled reference/disturbance signals has been
presented. Themissing exosystem is constructed based on the
well-known High-Gain Observers theory. Roughly speaking,
the proposed approach is formed by two parts: 1) a stabilizer,
obtained by LMIs, in which certain performances create a
globally attractive steady state, and 2) the output regulator
for unmodeled reference signals based on new equations,
which can be solved practically. As a result, an approach
capable of minimizing the tracking error for nonlinear prob-
lems has been obtained. This leads to a new opportunity for
its application in different platforms as robotics, process con-
trol, synchronization, and entertainment, among others. The
challenges will consist of the adequate parameterization of
trajectories, modeling, and application in real-time. Finally,
a Rotary Inverted Pendulum system has been presented to
show the advantages of the proposed approach.
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