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ABSTRACT The mathematical form of many optimization problems in engineering is constrained
optimization problems. In this paper, an improved genetic algorithm based on two-direction crossover
and grouped mutation is proposed to solve constrained optimization problems. In addition to making full
use of the direction information of the parent individual, the two-direction crossover adds an additional
search direction and finally searches in the better direction of the two directions, which improves the
search efficiency. The grouped mutation divides the population into two groups and uses mutation operators
with different properties for each group to give full play to the characteristics of these mutation operators
and improve the search efficiency. In experiments on the IEEE CEC 2017 competition on constrained
real-parameter optimization and ten real-world constrained optimization problems, the proposed algorithm
outperforms other state-of-the-art algorithms. Finally, the proposed algorithm is used to optimize a single-
stage cylindrical gear reducer.

INDEX TERMS Genetic algorithm, constrained optimization problem, two-direction crossover, grouped
mutation.

I. INTRODUCTION
Many engineering practices involve the solution of a
constrained optimization problem [1], [2], [3], [4]. A con-
strained optimization problem (COP) aims at finding the
optimal solution of a numerical function (called an objective
function) with some equality or inequality constraints. COP
could be classified into many categories, such as linear
programming [5], convex quadratic programming [6], convex
optimization [7], and non-convex optimization [8]. Both
linear programming and convex quadratic programming
are typical types of convex optimization. The convex
optimization problem is relatively easy to solve because there
is no local optimum, whereas non-convex optimization could
have many local optima and it is impossible to assert that
a solution is locally optimal unless a better one is found.
Unfortunately, COPs in many engineering practices are non-
convex optimization.
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Researchers have developed many types of evolutionary
algorithms to solve COPs [9], [10], [11], [12]. The genetic
algorithm (GA) is a powerful type of evolutionary algorithm
that can solve the non-convex optimization problem because
GA keeps a population of solutions and it not only utilizes
information in the current population but also explores
new areas in the search region. Therefore, individuals in
GA can escape from local optima. Researchers have made
many developments of GA, and the main efforts could be
roughly classified into two categories: develop new crossover
operators and new mutation operators.

The crossover operator generates offspring by recombining
information of individuals in the current population. In the
early period, crossover operators of the genetic algorithm are
designed by directly imitating crossover operators of binary
GA. Simulated binary crossover simulates the principle of the
single-point crossover operator on binary strings [13]. Later
researchers got rid of the shackles of binary coding and began
to develop crossover operators on real numbers. Arithmetic
crossover, local crossover, flat crossover, and blend crossover
generate two offspring on the line segment between two
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parents [14], [15], [16], [17], [18]. Recently, researchers focus
on the direction-based crossover operators, which search for
new solutions using the information of direction from the
worse parent to the better parent [19], [20], [21], [22].

The mutation operator randomly changes individuals to
avoid getting stuck in local optima. To achieve this purpose,
the mutation operators often add random perturbations to
individuals [23], [24], [25], [26], [27], [28]. Therefore,
the mutation is also searching for the optimal solution
with certain rules, and different mutation operators have
different characteristics. However, different evolution stages
or different types of problems require different search
strategies according to the evolution process or the nature of
the problem [29]. Combinational mutation combinesmultiple
mutation methods so that the mutation operator has the
advantage of multiple mutation operators [21], [30].

In this paper, namely GA-TDX, an improved genetic
algorithm is proposed, which consists of two-direction
crossover and grouped mutation. The two-direction crossover
uses the information from the worse parent to the better
parent. However, due to COPs being nonlinear, this direction
is usually not the optimal search direction. Therefore, the two-
direction crossover finds a direction at an angle of 45 degrees
to this direction as a new search direction, searches for an
individual along each of the two search directions in the
two parents, and retains the two optimal individuals. This
additional search direction makes two-direction crossover a
better search capability. In grouped mutation, individuals in
different parts of the population are mutated by different
single mutation operators. Individuals in different parts of the
population suit different search tasks, to be precise, the best
part of the population is good at finding the global optimum,
whereas the worst part of the population is good at skipping
the local optimum.

The remaining of this paper is organized as follows.
Section II briefly introduces the mathematical model and
constraint handling technique of COP. Section III introduces
details of the proposed GA-TDX. Section IV shows the
experimental results of the proposed algorithm compared
with other algorithms on the IEEE CEC 2017 benchmark
functions and ten COPs. In Section V, GA-TDX is applied
to optimize the parameters of a single-stage cylindrical gear
reducer. Finally, Section VI concludes this paper.

II. CONSTRAINT OPTIMIZATION PROBLEM
A. MATHEMATICAL MODEL OF COP
The objective function of real-valued COP is formulated
in (1).

min f (x), x = [x1, x2, . . . , xn] ∈ Rn (1)

where x ∈ F ⊆ S . The objective function f is defined
on the search space S ∈ Rn and the set F ⊆ S defines
the feasible region. Usually, the search space S is defined
as an n-dimensional rectangle in Rn (domains of variables
defined by their lower and upper bounds) as shown in (2).
The feasible region F ⊆ S is defined by a set of P + Q

additional constraints as shown in (3). The infeasible region
I is defined by F ∪ I = S and F ∩ I = ∅. At any point
x ∈ F , the constraints gk that satisfy gk (x) = 0 are called the
active constraints at x [31].

ai ≤ xi ≤ bi, i = 1, 2, . . . , n (2)

gi ≤ 0, i = 1, 2, . . . ,P

hi = 0, i = 1, 2, . . . ,Q (3)

COP is more challenging than an unconstrained optimization
problem. The search region S of COP is divided into several
small irregular regions by the constraints. Some of these small
regions are feasible regions, whereas others are infeasible
regions. Thus, COP is essentially an optimization problem
to find the optimal solution in F , whereas an unconstrained
optimization problem is an optimization problem to find the
optimal solution in S. The first challenge of COP is that
the optimal solution in F is always worse than the optimal
solution in S, as a result, the optimal solution is very likely
located on the border between F and I. However, it is
difficult for Evolutionary algorithms to precisely search the
boundary area [31]. Secondly, these small feasible regions
may not be adjacent and evolutionary algorithms have to find
new feasible regions which have not been found, because
these undiscovered regions may contain the optimal solution.

B. CONSTRAINT HANDLING TECHNIQUE
Constraint handling techniques are of great significance
in efficiently solving constrained optimization problems.
Researchers have proposed many types of penalty functions,
such as static penalty [32], dynamic penalty [33], [34],
the superiority of feasible solutions [35], ranking-based
method [36], and ensemble constraint handling tech-
nique [37]. In the evolutionary algorithm community, the
most commonly used approach to handle constraints is the
penalty function [38]. The idea of this method is to transform
a COP into an unconstrained optimization problem by adding
a penalty term (negative for maximization problems or
positive for minimization problems) to the objective function
based on the amount of constraint violation present in a
certain solution. In this paper, the static penalty function is
used because of its simplicity. The mathematical form of
static penalty is shown in (4).

φ(x) = f (x)+ m× (
P∑
i=1

max(0, gi(x))2 +
Q∑
i=1

h2i (x)) (4)

where m is the predefined penalty parameter to define the
tolerance of constraints violation. To ensure the feasibility of
the obtained optimal solution,m should be a sufficiently large
positive number.

III. THE PROPOSED ALGORITHMS
A. THE ALGORITHM STRUCTURE
Algorithm 1 shows the structure of the proposed algo-
rithm, consisting of sorting grouping selection, two-direction
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crossover (TDX), and grouped mutation (GM). Sorting
grouping selection cuts a population into two parts based
on the fitness value and pairs individuals between these two
parts to ensure that the algorithm searches in the direction
of decreasing the value of the objective function [21]. Then,
TDX searches along not only the direction from the worse
parent to the better parent but also a random direction at
45 degrees to the former to avoid getting stuck in a local
optimum. Finally, GM cut the population into two groups
based on the fitness value. The best group is used for local
search, and the worst group is used for global search.

Algorithm 1 Algorithm of GA-TDX
Require: Population size NP, Initialize population x(0) =
{xi(0) ∈ S, i = 1, 2, . . . ,NP}, Maximum number of
iterations T.

Ensure: best found solutions xb and its function value f (xb)
k = 0
while k < T do
sort x(k)
cut x(k) into two parts, x1 = {xi(k), i = 1, 2, . . . , NP2 }
and x2 = {xi(k)|i = NP

2 + 1, NP2 + 2, . . . ,NP} //Sorting
Grouping Selection
xc ← Two-direction Crossover(x1, x2) //see Algorithm
2
xi(k) = best of xi(k) and xci , i=1,2,. . . ,NP
xm← Grouped Mutation(x(k)) //see Algorithm 3
xi(k + 1)← best of xi(k) and xmi , i=1,2,. . . .,NP
k = k + 1

end while
return best found solution xb in x(k) and its function value
f (xb)

B. TWO-DIRECTION CROSSOVER
Given that parents x1, x2, if the fitness value of x1 is smaller
than x2, the first search direction is d1 = x1− x2. Then, using
the method in (6) (details of this equation will be introduced
later), a vector dp = (dp1, dp2, . . . , dpn)T perpendicular to
d1 = (d11, d12, . . . , d1n)T is found and the length of dp is

scaled to ||d1|| using (5), where ||d || =
√
dT · d =

√∑
d2i

represents the length of a vector d . Therefore, the length of

dp is ||dp|| =
√∑n

i=1(
dpi||d1||
||dp||

)2 =
√
( ||d1||
||dp||

)2
∑n

i=1 d
2
pi =

||d1||
||dp||

√∑n
i=1 d

2
pi =

||d1||
||dp||
||dp|| = ||d1||. Next, the sec-

ond search direction is d2 =
d1+dp

2 and its length is

||d2|| =
√
( d1+dp2 )T · d1+dp2 =

√
dT1 ·d1+d

T
1 ·dp+d

T
p ·d1+dTp ·dp

4 =√
||d1||+||dp||

4 =

√
2
2 ||d1||. There is a 45

◦ angle between d1 and

d2 because d1 · d2 = d1 ·
(d1+dp)

2 =
1
2 ||d1||

2
=

√
2
2 ||d1|| ·

||d2|| = cos(45◦)||d1|| · ||d2||. Finally, TDX searches along
each search direction at each parent. The search step is a
uniformly distributed random number in the interval [0, 1].
To keep population size invariant, only the better one of

FIGURE 1. An example of TDX in a 2-dimensional plane. x1 and x2 are
two parents and the function value of x1 is better than x2.
x2x1, x2x4, x1x5, and x1x6 are four search directions, and o1, o2, o3, and
o4 are four searched individuals. The better one between o1, o2 and the
better one between o3, o4 are retained as offspring.

two individuals searched from each parent is retained, which
makes TDX finds offspring along the better direction of two
at each parent. The whole algorithm of TDX is shown in
Algorithm 2.

dpi =
dpi||d1||
||dp||

, i = 1, 2, . . . , n (5)

Fig. 1 shows an example of TDX in a 2-dimensional
plane. Given x1 and x2 as before. According to the method
mentioned above, vector d1, dp, and d2 is obtained, which
are −−→x2x1,

−−→x2x3, and
−−→x2x4 respectively. Then, −−→x1x5 and −−→x1x6

are obtained by translating vectors −−→x2x1 and −−→x2x4 to start at
x1. Next, four offspring o1, o2, o3, and o4 are obtained by
uniformly random finding a point in each segment of x2x1,
x2x4, x1x5, and x1x6. Finally, the better one of o1 and o2 is
retained as the first offspring, and the better one of o3 and
o4 is retained as the second offspring.
TDX finds new points in the better direction of two in each

iteration. The search region of TDX contains a line (d1) and
the surface of two cones (−−→x2x4 and −−→x1x6) whose apex angle
is 90◦, which makes it have a fast speed and avoid getting
trapped in local optima. When the algorithm is iterated many
times, TDX searches along the best of ∞ direction (Due to
the bottom circle of a cone having infinite points, the number
of vectors from the apex of a cone to a random point on the
bottom circle is infinite).

1) FINDING A VECTOR PERPENDICULAR
TO A GIVEN VECTOR
In linear algebra, if two vectors x and y are perpendicular,
there must be a perpendicular equation x ·y =

∑n
i=1 xiyi = 0,

which could be used to find a vector y perpendicular to a given
vector x. Suppose x, y ∈ Rn, an easy method to find y is to
randomly generate y1 to yn−1. Then, use the perpendicular

equation to calculate yn = −
∑n−1

i xiyi
xn

. However, if the
denominator xn is zero, the algorithm can not continue in
an electronic computer. It is necessary to develop a robust
method to calculate a vector perpendicular to a given vector.

It is obvious that if xn = 0, x · y =
∑n

i=1 xiyi =∑n−1
i=1 xiyi + xnyn =

∑n−1
i=1 xiyi + 0 =

∑n−1
i=1 xiyi,
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Algorithm 2 Algorithm of TDX
Require: Parents x1, x2 and fitness value of x1 is smaller than
x2

Ensure: Offspring population o
d1 = x1 − x2
dpj = U(0, 1), j = 1, 2, . . . , n− 1

dpn =


∑n−1

j=1 d1jdpj
d1n

, d1n ̸= 0∑n−1
j=1 d1jdpj

U (−mean(d1n),mean(d1n))
, else

dp =
||d1||
||dp||

dp
d2 = (d1 + dp)/2
α = U(0, 1)
o1 = x1 + αd1
o2 = x1 + αd2
o3 = x2 + αd1
o4 = x2 + αd2
o5 = the better of o1 and o2
o6 = the better of o3 and o4
return offspring o5 and o6

the perpendicular equation becomes
∑n−1

i xiyi = 0.
Then, the objective is transformed into calculating vector
y1 = (y1, y2, . . . , yn−1) perpendicular to a given vector
x1 = (x1, x2, . . . , xn−1). Thus, we could use the above
method to randomly generate y1 to yn−2 and calculate yn−1.
However, if xn−1 to xn−k (n > k > 1) are zeros too,
we have to transform the objective into calculating vector
yk+1 = (y1, y2, . . . , yn−(k+1)) perpendicular to a given vector
xk+1 = (x1, x2, . . . , xn−(k+1)). This recursive procedure has
uncontrollable recursion times and computational time.

Although any xn = 0 will stop the algorithm, the
probability of xn = 0 is very small. Therefore, We develop
a fast algorithm to find a perpendicular vector, which
has a certain computational time. Recall the perpendicular
equation, if xn = 0, the algorithm can not continue. Our
purpose is to remove the risk of the appearance of ∞ and
make the algorithm could continue. Therefore, we just replace
the denominator xn with a non-zero uniform distribution
number in [−mean,mean], where mean is the mean value of
xn in the population. The mathematical form of this method
is shown in (6). This method ensures that xn and yn are
perpendicular and void recursive calculations.

yj = U(0, 1), j = 1, 2, . . . , n− 1

yn =


∑n−1

j=1 xjyj
xn

, xn ̸= 0∑n−1
j=1 xjyj)

U(−mean,mean)
, else

(6)

C. GROUPED MUTATION
The sorted population is cut into two groups and two single
mutation operators are absorbed into GM. The first group
consists of the best group of individuals, which are mutated
by a local search mutation operator. The second group

FIGURE 2. Flow chart of GM. In this paper, GM uses two single mutation
operators. Each mutation operator mutates one group of the population
and the two offspring populations are combined to the offspring
population of GM.

consists of the rest individuals, which are mutated by a global
mutation operator. Fig. 2 shows the process of GM and an
algorithm of GM is shown in Algorithm 3.

Algorithm 3 Algorithm of GM
Require: populations x
Ensure: population o
xs← sort x, where the first individual is the best one
cut xs into two groups, x1 = {xsi |i = 1, 2, . . . , βNP},
x2 = {xsi |i = βNP+ 1, βNP+ 2, . . . ,NP}
o1← mutate x1 using (7)
o2← mutate x2 using (8)
o← combine o1, o2 into one population
return offspring population o

The first mutation operator is a normal mutation [21],
whereas its variance is calculated by two individuals as shown
in (7). The calculated variance ensures this normal mutation
operator could adaptively search a small region.

oij = xij +N (0, 1)×
|x1j − x(βNP)j|

6
(7)

where oij and xij are j − th variable of ith individual in
offspring population and parent population respectively, β is
the proportion of the best group in the population and XβNP
is the last individual in this group.

The secondmutation operator is the non-uniformmutation,
which is shown in (8), where rand is a uniformly distributed
random number generated within the interval [0, 1], t is the
current generation, T is the maximum number of generations
and γ is a shape parameter that controls the speed at
which the step length decreases. The search range of this
mutation operator decreases adaptively with the increase of
iteration times, so this operator can have a larger search
range in the early stage and better convergence in the later
stage.

oij =

{
(bj − xij)× δi(t), if rand ≤ 0.5
(aj − xij)× δi(t), else

δi(t) = (1− rand (1−
t
T )
γ

) (8)

Individuals in the first group are the better group of
the population and are considered to be the closer to the
global optimum. Therefore, mutating them using the normal
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mutation operator to search the local region has the higher
probability to find the global optimum. Individuals in the
second group are the worse group of the population and
are considered to be the farther from the global optimum.
Therefore, mutating them using the non-uniform mutation
operator to search in a large region has the higher probability
to find the global optimum.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
A. SYSTEM DETAILS
The proposed algorithm was implemented in MATLAB
R2022a under Windows 10 with AMD 5700X CPU @
2.3GHz with 32 GB of RAM.

B. BENCHMARK SUIT FUNCTIONS
Performance of GA-TDX and other methods are compared
on solving the IEEE CEC 2017 competition on constrained
real-parameter optimization [39] and ten real COPs from
[31], [40]. The ten COPs are mathematical models extracted
from real-world optimization problems. Appendix A shows
details of these COPs.

C. PARAMETER SETTINGS AND ALGORITHMS
COMPARISONS
Penalty parameter is set asm = 1010. Population size is set as
NP = 100. When the number of iterations of the algorithms
reaches the maximum number of iterations T , the algorithm
stops. For the IEEE CEC 2017 benchmark functions, T is
100D, where D is the number of decision variables. As for
ten COPs, T is 1000.
Eight state-of-the-art algorithms are adopted for com-

parison: GA-MPC [41], GA-LX [19], GA-DBX [20],
GA-HNDX [21], GA-DEX [22], BOA [42], CS [43],
OSCPSO [44]. The parameters of the eight state-of-the-
art algorithms are the same as the values in the original
paper where they are proposed. The initial population of all
algorithms is the same, but the initial population of different
runs is different.

D. PERFORMANCE METRICS
Each COP is solved 25 times by each algorithm. Since the
theoretical optimal solution of COP is unknown, a non-
negative difference between the optimal solution obtained by
a specific method and the optimal solution obtained by all
methods is used as the error of this method. To assess the
performance of all contestant algorithms, the mean (denoted
as F) and standard deviation of the error are used. The mean
indicates the accuracy of the search process of the algorithm,
while the standard deviation is an indicator of how consis-
tent the algorithm is when solving a certain optimization
function.

To comprehensively compare the results of different
algorithms for solvingmultiple functions, a rank value is used
and the best algorithm will obtain the lowest rank value. For
each problem, algorithm ranks are determined in terms of the

mean values and median solutions at the maximum allowed
number of evaluations, respectively. The total rank value of
each algorithm is calculated as in (9), where meanranki and
medianranki are the rank of mean and median of the ith
functions respectively.

For a rigorous performance comparison between GA-TDX
and the other algorithms, the Wilcoxon signed rank test [45]
is used for pairwise comparison between the contestant
algorithms at the significance level of α = 0.05, and the
results are reported as W+,W−, p, and l. The W+,W−

symbols are used to indicate the sum of ranks where the
performance of GA-TDX is superior or inferior to the other
peers, respectively. The p-value is used as the minimum level
of significance to detect a difference in performance between
the algorithms. If the p-value is less than α, then this means
that the result of the well-performing algorithm is statistically
significant. From the statistical point of view, and using α
and the p-value, the l value can be used to indicate if GA-
TDX is significantly worse (l = ‘‘−’’), insignificant (l =
‘‘=’’), or significantly better (l = ‘‘+’’) than the contestant
methods.

E. SENSITIVITY ANALYSIS
It is anticipated that some parameters like β and γ have an
important impact on search efficiency. In this subsection, a set
of parameter sensitivity tests are carried out to investigate the
impact of these parameters on the performance of GA-TDX.

1) EFFECTS OF β
The value of β determines the size of two groups in GM,
which may affect the effect of GM. The search performance
of GA-TDX was investigated when β is set from 0 to 1 with
an interval of 0.1 using the IEEE CEC 2017 benchmark
functions at D = 10, 30, 50. In Fig. 3, different values of
β behave differently in different functions, and it is difficult
to conclude that the value of a certain value of β is superior
to other values. The value of β has little impact on the
performance of the algorithm. As shown in Tab. 1, although
the gap is small, the β of 0.2 has the smallest rank value at all
dimensions. This value is used in the following parts of this
article.

rank value =
28∑
i=1

(meanranki + medianranki) (9)

2) EFFECTS OF γ
The value of γ affects the reduction rate of the search area of
the non-uniformmutation operator as the number of iterations
increases, which may affect the effect of GM. The search
performance of GA-TDX was investigated when γ is set
from 0 to 10 with an interval of 1 using the IEEE CEC
2017 benchmark functions at D = 10, 30, 50. In Fig. 4,
different values of γ behave differently in different functions,
and it is difficult to conclude that the value of a certain
value of γ is superior to other values. The value of γ has
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FIGURE 3. Performance of different values of β on CEC 2017 test functions at D = 10,30,50.

TABLE 1. Rank value of different values of β.

FIGURE 4. Performance of different values of γ on CEC 2017 test functions at D = 10, 30, 50.

little impact on the performance of the algorithm. As shown
in Tab. 2, although the gap is small, the γ of 6 has the

smallest rank value at all dimensions. This value is used in
the following parts of this article.
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TABLE 2. Rank value of different values of γ .

TABLE 3. Performance comparison between GA-TDX and other selected algorithms on the IEEE CEC 2017 benchmark functions at D = 10.

TABLE 4. Performance comparison between GA-TDX and other selected algorithms on the IEEE CEC 2017 benchmark functions at D = 30.

F. ANALYSIS OF RESULTS USING THE IEEE
CEC 2017 BENCHMARK FUNCTIONS
The simulation results from solving the IEEE CEC
2017 benchmark problems at D = 10, 30, 50, obtained
using the proposed GA-TDX algorithm and other selected
algorithms are presented in Tab. 3, 4, 5 respectively. The
best results are marked in boldface. The standard deviation is
shown in parentheses. It can also be noted that performance
comparisons between GA-TDX and its different peers

are summarized in the last row of the tables using rank
value.

Tab. 3, 4, 5 demonstrated the superiority of the proposed
GA-TDX algorithm among the other algorithms with its
ability to achieve the best F over 17, 14, 16 functions out of
the 28 selected benchmark functions. The proposed GA-TDX
algorithm has the lowest rank value, suggesting this algorithm
outperforms other algorithms in solving these benchmark
functions at D = 10, 30, 50.

10038 VOLUME 11, 2023



F. Wang et al.: Improved Genetic Algorithm for Constrained Optimization Problems

TABLE 5. Performance comparison between GA-TDX and other selected algorithms on the IEEE CEC 2017 benchmark functions at D = 50.

TABLE 6. Wilcoxon signed rank test for the pairwise comparison between
GA-TDX and other selected algorithms on the IEEE CEC 2017 benchmark
functions at D = 10.

TABLE 7. Wilcoxon signed rank test for the pairwise comparison between
GA-TDX and other selected algorithms on the IEEE CEC 2017 benchmark
functions at D = 30.

The pairwise comparison between the proposed algorithm
and its peer algorithms is conducted using Wilcoxon signed
rank test and is summarized in Tab. 6, 7, 8 in terms of
W+,W−, p, and l values, as was stated in Section IV-D. The
l-values show significant improvement of GA-TDX over the
other eight competent algorithms, shown as a ‘‘+’’ sign.

G. ANALYSIS OF RESULTS USING TEN COPs
Tab. 9 shows the simulation results from solving ten COPs.
The proposed GA-TDX achieve the best F over 6 COPs out
of 10 and has the lowest rank value, suggesting this algo-
rithm outperforms other algorithms in solving these COPs.

TABLE 8. Wilcoxon signed rank test for the pairwise comparison between
GA-TDX and other selected algorithms on the IEEE CEC 2017 benchmark
functions at D = 50.

Tab. 10 shows the pairwise comparison between the proposed
algorithm and its peer algorithms, conducted using Wilcoxon
signed rank test. The l-values show a significant improvement
of GA-TDX over seven competent algorithms, shown as a
‘‘+’’ sign, and an insignificant improvement of GA-TDX
over GA-TEX, shown as a ‘‘=’’ sign.

V. OPTIMIZATION DESIGN OF SINGLE-STAGE
CYLINDRICAL GEAR REDUCER
A gear reducer is a widely used transmission device, used
to reduce speed and increase torque. Constrained by the
strength of the material, the size of the gears and shafts of
the reducer must be large enough to carry the corresponding
loads. However, the larger the size of the gears and shafts,
the higher the cost. Therefore, the design of a reducer is
to find the smallest shaft and gear size while satisfying the
constraints.

In this paper, we optimize a single-stage cylindrical gear
reducer. The structural sketch of the reducer is shown in
Fig. 5. The gear ratio is u = 5, input power is P = 58 kW,
speed of driving gear is n1 = 1000 r/min, allowable stress
of gear is [σ ]H = 550 MPa, allowable bending stress is
[σ ]f = 400MPa. The purpose is to find the design parameters
that minimize the volume of the reducer under the condition
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TABLE 9. Performance comparison between GA-TDX and other selected algorithms on 10 COPs.

TABLE 10. Wilcoxon signed rank test for the pairwise comparison
between GA-TDX and other selected algorithms on ten COPs.

FIGURE 5. Schematic of a single-stage cylindrical gear reducer. D1 is the
diameter of the small gear, Dz1 is the diameter of the output axle, D2 is
the diameter of the big gear, Dz2 is the diameter of the input axle, B is the
depth of gears, L is the thickness of the shell.

of strength and stiffness. Since the parts inside the shell, i.e.
gears and axles, are the basis for determining the volume of
the reducer, the objective function (shown in (10)) can be
established according to the principle of minimizing the sum
of their volumes, where the first two terms are the volumes of
the two gears, and the latter term is the sum of the volumes
of the two shafts.

V = 0.25πB(D2
1 − D

2
z1)+ 0.25πB(D2

2 − D
2
z2)

+ 0.25πL(D2
z1 + D

2
z2)

= 0.25π [M2Z2
1B− D

2
z1B+M

2Z2
1 u

2B− D2
z2B

+ D2
z1L + D

2
z2L]

= 0.25π [26M2Z2
1B+ (L − B)(D2

z1 + D
2
z2)] (10)

The volume of the reducer depends on six parameters:
modulusM , number of teeth of the first gear Z1, the thickness
of gears B, the thickness of the gearbox L, and the diameter of
the first shaft Dz1 and the second shaft Dz2. Let design vari-
able x = [x1, x2, x3, x4, x5, x6]T = [M ,Z1,B,L,Dz1,Dz2]T .
The objective function is minf39(x) = V , and constraints are
shown in (11), where g1 is the lower limit constraint on the

number of teeth, g2 and g3 are the lower and upper limit
constraints on the tooth width factor, g4 is the lower limit
constraint on the modulus, g5 is the upper limit constraint on
the diameter of the first gear, g6 and g7 are the lower and upper
limit constraints on the diameter of the first axis, g8 and g9 are
the lower and upper limits of the diameter of the second shaft,
g10 is the lower limit constraint of the box thickness, g11 is
the contact stress constraint of the first gear, g12 and g13 are
the bending stress constraints of the two gears, g14 and g15
are the bending stress constraints of the two shafts.

g1(x) = zmin − Z1 = 17− x2 ≤ 0

g2(x) = ψmin − B/Z1M = 0.9− x3/(x1x2) ≤ 0

g3(x) = B/Z1M − ψmax = x3/(x1x2)− 1.4 ≤ 0

g4(x) = 2−M = 2− x1 ≤ 0

g5(x) = Z1M − D1max = x1x2 − 300 ≤ 0

g6(x) = Dz1min − Dz1 = 100− x5 ≤ 0

g7(x) = Dz1 − Dz1max = x5 − 150 ≤ 0

g8(x) = Dz2min − Dz2 = 130− x6 ≤ 0

g9(x) = Dz2 − Dz2max = x6 − 200 ≤ 0

g10(x) = B+ 0.5Dz2 + 40−L = x3 + 0.5x6 − x4 + 40 ≤ 0

g11(x) = σH − [σ ]H = 1486250/(x1x2
√
x3)− 550 ≤ 0

g12(x) = σF1 − [σ ]F = 9064860y11y12/(x21x
2
2x3)− 400 ≤ 0

g13(x) = σF2 − [σ ]F = 9064860y21y22/(x21x
2
2x3)− 400 ≤ 0

g14(x) = σw1 − [σ ]w =
1

x35

√
(
2.85× 106x4

x1x2
)2 + 2.4× 1012

− 5.5 ≤ 0

g15(x) = σw2 − [σ ]w =
1

x36

√
(
2.85× 106x4

x1x2
)2 + 6× 1013

− 5.5 ≤ 0 (11)

When solving this problem, we increase the value of m to
10200 to avoid the phenomenon that the previous value will
result in an unreasonable negative objective function value.
Other parameters are the same as before. Tab. 11 shows the
simulation results from optimizing this reducer. The proposed
GA-TDX achieve the best F , suggesting this algorithm
outperforms other algorithms in optimizing this reducer.
Tab. 12 shows the pairwise comparison between the proposed
algorithm and its peer algorithms, conducted using Wilcoxon
signed rank test. The l-values show significant improvement
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TABLE 11. Performance comparison between GA-TDX and other selected algorithms on a single-stage cylindrical gear reducer.

TABLE 12. Wilcoxon signed rank test for the pairwise comparison
between GA-TDX and other selected algorithms a single-stage cylindrical
gear reducer.

of GA-TDX over other competent algorithms, shown as a
‘‘+’’ sign. The GA-TDX algorithm obtained an optimal
function value of 4.3815 × 106, with the parameters set as
0.6003, 77.2057, 41.7126, 146.7126, 118.5073, 130.0000.

VI. CONCLUSION
In this paper, a novel class of improved genetic algorithms is
introduced to solve constrained optimization problems. The
two-direction crossover utilizes the orientation information
of paired individuals in the current population and adds an
additional search direction. Searching for an individual in
both directions and keeping the better individual improves
the search efficiency. The grouped mutation introduces two
mutation operators with different properties and performs
different mutation operations on different groups of the
population. Grouped mutation takes full advantage of the
characteristics of each mutation operator and improves
the search efficiency.

The performance of the proposed algorithms was tested
on a challenging set of 28 benchmark problems taken
from the IEEE CEC 2017 competition on constrained real-
parameter optimization and ten real constrained optimization
problems. The simulation results affirm the fact that the
proposed algorithm significantly outperforms other improved
genetic algorithms as well as state-of-the-art evolutionary
algorithms. Finally, the optimization results for a single-stage
cylindrical gear reducer show that the proposed algorithm can
significantly reduce the size and cost of the gearbox.

APPENDIX A
MATHEMATICAL MODEL OF TEN COPs
It is difficult to find the precise optimal solution of COPs
used in this paper, due to the objective and constraints are
very complicated. The optimal solution shown below is not
the exact optimal solution, but a reference value. Details of
ten COPs are shown as follow:

COP1. There are 13 variables and 9 constraints in this COP.
The best solution is x∗ = (1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 1)
and its function value is f (x∗)=−15. 6 constraints are active
at x∗.

min f29(x) = 5
4∑
i=1

(xi − x2i )−
13∑
i=5

xi

s.t. 2x1 + 2x2 + x10 + x11 ≤ 10,

2x1 + 2x3 + x10 + x12 ≤ 10,

2x2 + 2x3 + x11 + x12 ≤ 10,

− 8x1 + x10 ≤ 0,

− 8x2 + x11 ≤ 0,

− 8x3 + x12 ≤ 0,

− 2x4 − x5 + x10 ≤ 0,

− 2x6 − x7 + x11 ≤ 0,

− 2x8 − x9 + x12 ≤ 0,

0 ≤ xi ≤ 1, i = 1, 2, . . . , 9,

0 ≤ xi ≤ 100, i = 10, 11, 12,

0 ≤ x13 ≤ 1

COP2. There are 5 variables and 6 constraints in this COP.
The best solution is x∗ = (78, 33, 27.071, 45, 44.9692) and
its function value is f (x∗)=−31025.37961619. 2 constraints
are active at x∗.

min f30(x) = 5.3578547x23 + 0.8356891x1x5
+ 37.293239x1 − 40792.141

s.t. 0 ≤ 85.334407+ 0.0056858x2x5 + 0.00026x1x4
+ 0.0022053x3x5 ≤ 92,

90 ≤ 80.51249+ 0.0071317x2x5 + 0.0029955x1x2
+ 0.0021813x23 ≤ 110,

20 ≤ 9.300961+ 0.0047026x3x5 + 0.0012547x1x3
+ 0.0019085x3x4 ≤ 25,

78 ≤ x1 ≤ 102,

33 ≤ x2 ≤ 45,

27 ≤ xi ≤ 45, i = 3, 4, 5,

COP3. There are ten variables and eight constraints in
this COP. The best solution is x∗ = (2.171996, 2.363683,
8.773926, 5.095984, 0.9906548, 1.430574, 1.321644,
9.828726, 8.280092, 8.375927) and its function value is
f (x∗) = 24.3062091. 6 constraints are active at x∗.

min f31(x) = x21 + x
2
2 + x1x2 − 14x1 − 16x2 + (x3 − 10)2

+ 4(x4 − 5)2 + (x5 − 3)2 + 2(x6 − 1)2 + 5x27
+ 7(x8 − 11)2 + 2(x9 − 10)2 + (x10 − 7)2 + 45
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s.t. 105− 4x1 − 5x2 + 3x7 − 9x8 ≥ 0,

− 3(x1 − 2)2 − 4(x2 − 3)2 − 2x23 + 7x4 + 120 ≥ 0,

− 10x1 + 8x2 + 17x7 − 2x8 ≥ 0,

− x21 − 2(x2 − 2)2 + 2x1x2 − 14x5 + 6x6 ≥ 0,

8x1 − 2x2 − 5x9 + 2x10 + 12 ≥ 0,

− 5x21 − 8x2 − (x3 − 6)2 + 2x4 + 40 ≥ 0,

3x1 − 6x2 − 12(x9 − 8)2 + 7x10 ≥ 0,

− 0.5(x1 − 8)2 − 2(x2 − 4)2 − 3x25 + x6 + 30 ≥ 0,

− 10 ≤ xi ≤ 10, i = 1, . . . , 10

COP4. There are 7 variables and 4 constraints in this COP.
The best solution is x∗ = (2.330499, 1.951372,−0.4775414,
4.365726,−0.6244870, 1.038131, 1.594227) and its function
value is
f (x∗) = 680.6300573. 2 constraints are active at x∗.

min f32(x) = (x1 − 10)2 + 5(x2 − 12)2 + x43 + 3(x4 − 11)2

+ 10x65 + 7x26 + x
4
7 − 4x6x7 − 10x6 − 8x7

s.t. 127− 2x21 − 3x42 − x3 − 4x24 − 5x5 ≥ 0,

196− 23x1 − x22 − 6x26 + 8x7 ≥ 0,

282− 7x1 − 3x2 − 10x23 − x4 + x5 ≥ 0,

− 4x21 − x
2
2 + 3x1x2 − 2x23 − 5x6 + 11x7 ≥ 0,

− 10 ≤ xi ≤ 10, i = 1, . . . , 7

COP5. There are 8 variables and 6 constraints in this COP.
The best solution is x∗ = (579.3167, 1359.943, 5110.071,
182.0174, 295.5985, 217.9799, 286.4162, 395.5979) and its
function value is f (x∗) = 7049.3307. 3 constraints are active
at x∗.

min f33(x) = x1 + x2 + x3
s.t. 1− 0.0025(x4 + x6) ≥ 0,

1− 0.0025(x5 + x7 − x4) ≥ 0,

1− 0.01(x8 − x5) ≥ 0,

x1x6 − 833.33252x4 − 100x1 + 83333.333 ≥ 0,

x2x7 − 1250x5 − x2x4 + 1250x4 ≥ 0,

x3x8 − 1250000− x3x5 + 2500x5 ≥ 0,

100 ≤ x1 ≤ 10000,

1000 ≤ xi ≤ 10000, i = 2, 3,

10 ≤ xi ≤ 1000, i = 4, . . . , 8

COP6. There are 5 variables and 6 constraints in this COP.
The best solution is x∗ = (4.53743097, 2.4, 60, 9.3, 7) and its
function value is f (x∗) = −5280335.12777216. 1 constraint
is active at x∗.

min f34(x) = −24345+ 8720288.849x1
− 150512.5253x1x2 + 156.6950325x1x3
− 476470.3222x1x4 − 729482.8271x1x5,

s.t. 294000 ≥ −145421.402x1 + 2931.1506x1x2
− 40.427932x1x3 + 5106.192x1x4

+ 15711.36x1x5 ≥ 0,

294000 ≥ −155011.1084x1 + 4360.53352x1x2
+ 12.9492344x1x3 + 10236.884x1x4
+ 13176.786x1x5 ≥ 0,

277200 ≥ −326669.5104x1 + 7390.68412x1x2
− 27.8986976x1x3 + 16643.076x1x4
+ 30988.146x1x5 ≥ 0,

0 ≤ x1 ≤ 1000,

1.2 ≤ x2 ≤ 2.4,

20 ≤ x3 ≤ 60,

9 ≤ x4 ≤ 9.3,

6.5 ≤ x5 ≤ 7

COP7. There are 7 variables and 6 constraints in this COP.
The best solution is x∗ = (5.17123, 0.786669, 2.636062,
3.78776, 0.766223, 1.001394, 0.021073) and its function
value is f (x∗)= 559.29739702. 3 constraints are active at x∗.

min f35(x) = 10x1x
−1
2 x24x

−3
6 x0.57 + 15x−11 x−22 x3x4x

−1
5 x0.57

+ 20x−21 x2x
−1
4 x−25 x6 + 25x21x

2
2x
−1
3 x0.55 x−26 x7

s.t. 1− 0.5x0.51 x−13 x−26 x7 − 0.7x31x2x
−2
3 x6x0.57

− 0.2x−12 x3x
−0.5
4 x2/36 x1/47 ≥ 0,

1− 1.3x−0.51 x2x
−1
3 x−15 x6 − 0.8x3x

−1
4 x−15 x26

− 3.1x−11 x0.52 x−24 x−15 x1/36 ≥ 0,

1− 2x1x
−1.5
3 x5x

−1
6 x1/37 − 0.1x2x

−0.5
3 x5x

−1
6 x−0.57

− x−11 x2x0.53 x5 − 0.65x−22 x3x5x
−1
6 x7 ≥ 0,

1− 0.2x−21 x2x
−1
4 x0.55 x1/37 − 0.3x0.51 x22x3x

1/3
4 x1/47 x−2/35

− 0.4x−31 x−22 x3x5x
3/4
7 − 0.5x−23 x4x0.57 ≥ 0,

100 ≤ f (x) ≤ 3000,

0.1 ≤ xi ≤ 10, i = 1, . . . , 6,

0.01 ≤ x7 ≤ 10

COP8. There are 8 variables and 6 constraints in this COP.
The best solution is x∗ = (6.465114, 2.232709, 0.6673975,
0.5957564, 5.932676, 5.527235, 1.013322, 0.4006682) and
its function value is f (x∗) = 3.95117606. 4 constraints are
active at x∗.

min f36(x) = 0.4x0.671 x−0.677 +0.4x0.672 x−0.678 +10−x1−x2
s.t. 1− 0.0588x5x7 − 0.1x1 ≥ 0,

1− 0.0588x6x8 − 0.1x1 − 0.1x2 ≥ 0,

1− 4x3x
−1
5 − 2x−0.713 x−15 − 0.0588x−1.33 x7 ≥ 0,

1− 4x4x
−1
6 − 2x−0.714 x−16 − 0.0588x−1.34 x8 ≥ 0,

1 ≤ f (x) ≤ 4.2,

0.1 ≤ xi ≤ 10, i = 1, . . . , 8

COP9. There are 9 variables and 13 constraints in this
COP. The best solution is x∗ = (0.8841292, 0.4672425,
0.03742076, 0.9992996, 0.8841292, 0.4672424, 0.03742076,
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0.9992996, 26e-19) and its function value is f (x∗) =
−0.86600353. 8 constraints are active at x∗.

min f37(x) = −0.5(x1x4 − x2x3 + x3x9 + x5x8 − x6x7)

s.t. 1− x29 ≥ 0,

1− x23 − x
2
4 ≥ 0,

1− x25 − x
2
6 ≥ 0,

1− (x1 − x5)2 − (x2 − x6)2 ≥ 0,

1− (x1 − x7)2 − (x2 − x8)2 ≥ 0,

1− (x3 − x5)2 − (x4 − x6)2 ≥ 0,

1− (x3 − x7)2 − (x4 − x8)2 ≥ 0,

1− x21 − (x2 − x9)2 ≥ 0,

1− x27 − (x8 − x9)2 ≥ 0,

x3x9 ≥ 0,

− x5x9 ≥ 0,

x5x8 − x6x7 ≥ 0,

x1x4 − x2x3 ≥ 0,

x9 ≥ 0

COP10. There are 15 variables and 29 constraints in this COP.
The best solution is x∗ = (8, 49, 3, 1, 49, 0, 0, 63, 7, 0, 77,
8, 0, 91, 9) and its function value is f (x∗) = 641.73505000.
9 constraints are active at x∗.

min f38(x) =
4∑

k=0

(2.3x3k+1 + 0.0001x23k+1 + 1.7x3k+2

+ 0.0001x23k+2 + 2.2x3k+3 + 0.00015x23k+3)

s.t. 0 ≤ x3j+1 − x3j−2 + 7 ≤ 13, j = 1, . . . , 4,

0 ≤ x3j+2 − x3j−1 + 7 ≤ 14, j = 1, . . . , 4,

0 ≤ x3j+3 − x3j + 7 ≤ 13, j = 1, . . . , 4,

x1 + x2 + x3 − 60 ≥ 0,

x4 + x5 + x6 − 50 ≥ 0,

x7 + x8 + x9 − 70 ≥ 0,

x10 + x11 + x12 − 85 ≥ 0,

x13 + x14 + x15 − 100 ≥ 0,

8 ≤ x1 ≤ 21,

43 ≤ x2 ≤ 57,

3 ≤ x3 ≤ 16,

0 ≤ x3k+1 ≤ 90, k = 1, . . . , 4,

0 ≤ x3k+2 ≤ 120, k = 1, . . . , 4,

0 ≤ x3k+3 ≤ 60, k = 1, . . . , 4
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