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ABSTRACT Simulation and optimization methods have been widely used in forklift design due to their
cost-effectiveness. However, this type of method involves challenges such as the accuracy of the simulation
model and the simulation solution time. These challenges reduce the stability and precision of the surrogate
model and hence generate further optimization errors. In this paper, a multi-objective surrogate modeling
(MSM) method for telescopic boom forklifts based on closed-loop transfer learning is proposed in order
to solve these challenges. The MSM consists of the following two steps: to pre-train an initial deep neural
network model (deep model) with a large amount of existing simulation data from the same type of forklift
and to transfer themodel with a small amount of measurement data collected on the current forklift. A general
framework for deep neural network (DNN) training is introduced to improve the approximation ability of the
initial model. Moreover, a novel uncertainty-analysis-based sampling method is suggested for measurement
data development, and combined with transfer learning to form a closed-loop mode to improve the stability
of the final model. The superiority ofMSM is demonstrated through comparative studies with the fine-tuning
method on a telescopic boom forklift with two objectives. The experimental results show that the Correlation
coefficient (R) of the deep model can reach 0.9971 by using only 80 sets of training data. In addition, it can
also achieve an improvement of at least a 13.25% reduction in Root Mean Squared Error (RMSE) and a
9.19% reduction on average inMaximumAbsolute Error (MAE), as well as stronger robustness compared to
the benchmarks. Furthermore, it will provide a valuable reference for the simulation optimization of complex
electromechanical products.

INDEX TERMS Telescopic boom forklift, surrogate model, transfer learning, uncertainty analysis, hyper-
parameter optimization.

I. INTRODUCTION
The forklift is a complex modern engineering vehicle. It has
been widely used in factories, stations, docks, gardens,
warehouses, and other places due to the advantages of
small size, flexible work, and large load. According to
the operation mode, it is classified into pallet forklift,
stack forklift, balance heavy forklift, heavy-duty forklift,
telescopic boom forklift, etc. Among them, the telescopic
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boom forklift is popular since its telescopic boom can lift to
17-30 meters, making it ideal for entering narrow spaces [1].
To improve the performance of forklifts and reduce the
cost of their physical prototype trial production, computer
simulation-based methods are often used in its design pro-
cesses, such as mechanical properties design [2], [3], safety
improvement [4], [5], and comfort improvement [6], [7].
A variety of performance requirements need to consider
more factors in forklift design. At present, the forklift
has become a multidisciplinary coupling system integrating
mechanical, control, electronics, hydraulic, etc., whichmakes

VOLUME 11, 2023
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 11629

https://orcid.org/0000-0002-5172-0951
https://orcid.org/0000-0003-2367-676X
https://orcid.org/0000-0002-7423-6580
https://orcid.org/0000-0002-4870-2592
https://orcid.org/0000-0001-6417-3750


J. Lin et al.: Multi-Objective Surrogate Modeling Through Transfer Learning for Telescopic Boom Forklift

it challenging to build a simulation model that can accu-
rately reflect its real response characteristics. In particular,
the solution time of the simulation model will be very
long.

To improve the efficiency of simulation optimization, the
surrogate model (or response surface) method based on
computer experimental design is usually used in industry and
academia, such as Sparse response surface [8], [9], Support
vectormachine [10], [11], Kriging [12], [13], andRadial basis
function [14], [15]. This type of approach regards the simu-
lation model as a black-box function, and a surrogate model
is then constructed for the black-box function using a small
amount of simulation data. On this basis, an optimization
algorithm is employed to search globally in the design space
to reduce the number of simulation model calls as many as
possible [16]. However, it is difficult to construct a precise
surrogate model for the high-dimensional nonlinear simula-
tion model based on a small amount of data, which may lead
to deviations between the optimization results and the actual
situation.

The surrogate model can be regarded as a predictive model
in nature [17]. In the field of machine learning, using neural
networks with sufficient depth and width, as well as a large
amount of training data, a predictive model (i.e., deep model)
can be constructed through a deep learning algorithm to
accurately characterize the high-order nonlinear relationship
between multiple inputs and multiple outputs implied in the
data [18], [19]. However, in many application scenarios,
acquiring sufficient labeled data is often prohibitive, such as
in computer vision [20] and some complex systems [21], [22].
From another perspective, the above studies mostly focused
on developing new surrogate models and/or applying existing
surrogate models to practical problems. The surrogate for
a new task is often built from scratch and the knowledge
gained from previous surrogate modeling for similar tasks is
neglected [23].

Similar ideas for knowledge transfer can be found
in transfer learning [24], [25]. Among them, domain
adaptation [26], [27] is an important branch that has
been developed. It reduces the need for expensive data
in the target domain by reusing models or data from
similar domains. Existing models are usually completely
updated [28], [29] or retrained in the last few lay-
ers [30], [31]. Their successful applications can be seen in
many areas [32]. Especially for image recognition and clas-
sification tasks, there are already many large marked image
databases [33], [34] and some pre-trained models available
for downloads, such as AlexNet [35], VGGNet [36], and
Inception [37].

In the engineering optimization community, the above
research does not apply to the surrogate modeling of neural
networks as function approximators. To the best of our knowl-
edge, there are no pre-trained models or general databases
available. Although a few works have explored transfer
learning in an engineering context, little has been done on
the problem of how to obtain data for pre-training the initial
model [38], [39], [40], [41], [42]. Some attempts to plan

data directly from simulation models may keep modeling still
limited to the efficiency problem [43], [44]. As for serially
developed complex electromechanical products, planning a
large amount of simulation data seems unnecessary due
to the high similarity between new products and existing
products [45]. Taking the telescopic boom forklift as an
example, the new product in design is usually a variant of the
existing product, both of which the product structure, opera-
tion principle, and performance response characteristics are
similar, resulting in their measurement data isomorphism or
close to isomorphism. Based on the above analysis, this paper
focuses on: (1) how to train the initial model to accurately
approximate the characteristics of the existing simulation
data, and (2) how to plan the data for transfer learning so
that the existing deep model is better adapted to the new
domain.

The training algorithm of deep neural networks has been
widely studied in recent years. From different perspectives,
the gradient descent algorithm [46], [47], the multi-task
learning algorithm [48], [49], and the hyper-parameter
optimization algorithm [50], [51], [52] are often involved,
but there is a lack of a general framework to apply them to
engineering practice. Compared with training algorithms, lit-
tle attention is paid to data planning for transfer learning, and
the commonly used random sampling has been considered
insufficient to effectively promote the adaptability of the deep
model [41], [43].

In the current context, transfer learning is a kind of small-
sample learning. In this case, it is difficult to ensure the
efficient filling of design space by design points even using
a uniform sampling algorithm [53], [54]. In addition, due
to the existence of noise, the perturbation of measurement
data will lead to the uncertainty of model transfer, making
its prediction accuracy may be lower than the expected
value [55], [56]. Although the alphabet design [57], [58], [59]
can reduce the impact of data perturbation by exchanging
different combinations of design points, ensuring that the
prediction accuracy of the deep model is close to the
theoretical mean. However, the design points obtained by
this type of method are mainly concentrated in the large
curvature region or edge region of the model, resulting in
a large blank in the filling of the design space [59], [60].
Since the insufficient learning of the blank area, there may
be a large error between the transferred model and the
reality.

To solve the above problems, an uncertainty-analysis-
based closed-loop transfer learning method is pro-
posed in this paper. The main contributions are as
follows:

(1) Based on the simulation model of a telescopic boom
forklift, the influencing factors of its target performance are
analyzed, and a multi-layer perceptron (MLP) deep model is
designed.

(2) A general training framework of the deep model
is suggested, and an algorithm application example is
given. The framework can be applied to single-output and
multi-output problems, and it is easy to combine existing
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FIGURE 1. The forklift and its simulation model.

training algorithms to improve modeling efficiency and
model accuracy.

(3) A new uncertainty-analysis-based sampling algorithm
is proposed, based on which the data for transfer learning is
developed in a closed-loop iterative mode.

(4) The effectiveness of the modeling method is verified by
an engineering experiment of a telescopic boom forklift.

The rest of this paper is organized as follows. Section II
briefly introduces the simulation model and the deep
model of the forklift. Section III gives the general frame-
work for deep model training. Section IV introduces the
uncertainty-analysis-based closed-loop transfer method in
detail. Section V presents experimental results and discus-
sions. Concluding remarks are shared in Section VI.

II. THE MODEL OF TELESCOPIC BOOM FORKLIFT
Fig. 1 shows a forklift and its simulation model, which
the simulation model consists of three parts: body system,
boom system, and tire road system. The body system is
mainly composed of the frame and the cab. To improve driver
comfort, the frame and the cab are connected by rubber shock
absorbers, but the cab is allowed to jump in a small range in
the Z direction, and bolts are used to restrict the movement
of the cab in other directions. Two oil cylinders are arranged
at the front and rear of the frame. The front cylinder is a
leveling oil cylinder, which is used to level the entire forklift
before work. The rear cylinder is a rear axle stabilization
system (RAS) oil cylinder, which is used to absorb shocks
and improve driving comfort. The boom system is connected
to the frame through a rotating pair and is driven by a luffing
cylinder to realize lifting. The boom system includes four-
section telescopic arms, of which the first and second sections
are driven by a telescopic cylinder, and the third and fourth
sections are driven by a chain and pulley. The tire road system
is a rigid-flexible coupling model, including a tire model
and a road model with trapezoidal obstacles, which aims
to realistically restore the working state of the forklift and
simulate driving conditions.

The construction of the simulation model of the forklift
is the preliminary work of this paper. In the simulation model,
the structural design parts are completed in Pro/E software

and imported into ADAMS software for configuration and
kinetic analysis. The circuit and hydraulic control parts are
designed in AMESim software. To better reproduce the
functions of actual components, the spool and flow area
of the balance valve are approximated by the hydraulic
design and hydraulic component design modules, and the
variable amplitude multi-way valve is also designed using
this method. It should be noted that when configuring the
structural model in ADAMS, the type of material needs to
be changed simultaneously if a part with large deformation
is transformed into a flexible body, in order to avoid the loss
of elastic modulus and Poisson’s ratio. After the simulation
model is constructed, the response value is obtained through
simulation and compared with the measurement value. Then,
according to the error between the response value and the
measurement value, the parameters of the three systems are
further adjusted to obtain a sufficiently accurate simulation
model.

Based on the simulation model, various performance
responses of the forklift can be calculated. Fig. 2 shows an
example of the maximum roll angle of the frame and the
Z-axis amplitude of the cab base from the simulation model
under driving conditions. These two outputs usually represent
the safety and comfort of forklifts and are also the focus of
this paper. In Fig. 2, the sharp wave position indicates that
the forklift passes the obstacles at about 2.5 seconds and
6.8 seconds. The first obstacle is for the right tire to pass, and
the second obstacle is for the left tire to pass. Since the cab
is installed on the left side of the frame, the center-of-mass
of the forklift is not on the center of the frame, causing the
frame to tilt slightly to the left when reaches the stable state.
As can be seen from the picture below, the base of the cab is
about 376 mm above the ground (excluding the dimensions
of the tires).

To construct the surrogate of the simulation model,
we analyzed the design parameters related to the above two
outputs. In engineering practice, design parameters related to
the two outputs are coupled with each other. For example,
the amplitude of the cab base is related to the stiffness and
damping of the rubber shock absorber, while the roll angle
is related to the mass and center of mass of the forklift.
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FIGURE 2. Roll angle and Z-value of the forklift when it passes obstacles.

Meanwhile, these two outputs are related to the parameters
of the hydraulic control system of the RAS cylinder and
the parameters of the tires. Accordingly, the mathematical
expression of the objective of surrogate modeling is written
as

f (x) = [f1(x), f2(x)]T , (1)

where f1(x) and f2(x) are the outputs, which respectively
represent the roll angle of the frame and the Z-axis amplitude
of the cab base; x is the input, that is, the design parameters
related to the outputs.

In the engineering practice of forklift design, some design
parameters have been fixed or are difficult to optimize (or the
optimization cost is very high). In general, these parameters
will be treated as constants, resulting in the following design
variables for Eq. (1): (a) the stiffness and the damping of
the rubber shock absorber, (b) the mass and center-of-mass
of the forklift, and (c) the current of the hydraulic control
system. The above variables will serve as x, where x =

[x1, x2, x3, x4, x5]T , and its definition space 2 is listed in
Table 1, x ∈ 2.

Eq. (1) is a black box function, whosemapping relationship
between inputs and outputs is contained in a large number
of simulation data and can be approximated by a surrogate
model. Based on the powerful learning ability of the deep
neural network to data features, an MLP deep model is
designed for Eq. (1), as shown in Fig. 3. The framework of

TABLE 1. Design variable and its definition space.

FIGURE 3. The framework of the MLP deep model.

MLPhas three types of layers: the input layer, k hidden layers,
and the output layer. The 5 design parameters to be input
constitute the input layer, and the 2 fitted results are exported
by the output layer. The middle hidden layers establish the
nonlinear model of the forklift under driving conditions, in
which k is usually set to k ≥ 2. The different layers are
connected by weights and biases.

In Fig. 3, nl , wlij and b
l represent the number of neurons,

the connection weights, and biases of neurons, in the lth
hidden layer, respectively, l = 1, · · · , k; e represents
the error between the actual output ŷ = f (x) and
the desired output y; the dotted line represents the error
back-propagation.

To improve the training efficiency, the input and out-
put data are uniformly normalized using the following
equation as

x ′
=

2 × (x − xmin)

xmax − xmin
− 1. (2)

where x, x ′ represent the data before and after normalization,
respectively, and xmax and xmin represent the maximum and
minimum values of the data.

The neurons of the input layer of MLP are mainly used to
cache data. The neurons in the hidden layer and output layer
perform data transformation through activation functions.
In this work, ReLU is chosen as the activation function, and
its mathematical description is

f
(
Olj
)

= max
(
0,Olj

)
, (3)
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FIGURE 4. The general framework for deep model training.

where Olj represents the output of the jth neuron of the lth
hidden layer, and

Olj =

nl−1∑
i=1

wljiO
l−1
i + bl, (4)

Ol−1
i is the ith output of the (l−1)th layer, Olj is the jth output

of the lth layer,wlji is the weight used to connect the jth output
of the lth layer and the ith output of the (l−1)th layer, and bl

is the bias of the lth layer.

III. GENERAL FRAMEWORK FOR DEEP MODEL TRAINING
Let Aθ,λ(·) be the deep model of the given hyper-parameter
configuration λ, θ = {w;b} are the unknown parameters to be
estimated, then the training of the model can be regarded as
minimizing a loss function, which is defined as

Lθ,λ
=

1
Nout

Nout∑
i=1

γi

(
yi − A

θ,λ
i (x)

)2
, (5)

where Nout is the number of outputs, γi is the weight
coefficient, 0 ≤ γi ≤ 1,

∑Nout
i=1 γi = 1, yi and A

θ,λ
i (x)

are the expected and predicted values of the deep model,
respectively.

As mentioned earlier, Eq. (5) can be solved by the back-
propagation method [18]. Specifically, θ are first randomly
initialized, and then optimized by gradient descent algorithm
to asymptotically approximate the expected θ∗ over θ ∈ 2,
which is mathematically described as

Aθ∗,λ (x) = Argmin
θ∈2

mean
x∈X train

L
θ,λ
t , (6)

where 2 is the neural networks parameter space, X train is
the training set, L

θ,λ
t is the training error calculated by Eq.

(5). Obviously, for any given λ, we can get a deep model
Aθ∗,λ (x), and the best model Aθ∗,λ∗

(x) depends on an
optimal hyper-parameter configuration λ∗ defined by

λ∗
= Argmin

λ∈3
mean
x∈Xvalid

Lθ∗,λ
v , (7)

where 3 is the hyper-parameter space, Xvalid is the validation
set, and Lθ,λ

v is the validation error calculated by Eq. (5).

In this work, 3 usually includes the framework of the
neural network, parameters of the gradient descent algorithm,
weight coefficients of outputs, etc.

Note that we cannot evaluate λ over the unknown function
Aθ∗,λ (x), since θ∗ still needs to be optimized. Fortunately,
the technique of cross-validation can be used to estimate it.
Therefore, Eq. (7) is rewritten as

λ∗
≈ Arg min

λ∈{λ1···λs}
9 (λ) = λ̂, (8)

where 9 (λ) = mean
x∈Xvalid

Lθ∗,λ
v , S is the number of trials

{λ1 · · · λS}, and λ̂ is the best trial from the set of {λ1 · · · λS}

with limited resources.
The problem of Eq. (8), also known as Hyper-parameter

optimization of deep learning algorithm [50], [51], [61],
has been well studied in the machine learning community,
but may not be well known in the engineering optimization
community. To facilitate engineering application, a general
framework for deep model training is given in this paper,
as shown in Fig. 4.

The framework reveals a two-level nested iterative opti-
mization process, which involves: (1) an inner optimization
that minimizes the training error L

θ,λ
t over θ ∈ 2; and

(2) an outer optimization that minimizes the validation error
Lθ,λ
v over λ ∈ 3, where 3 is usually determined by

the type of gradient descent algorithm and DNN. Take the
MLP model as an example. Before the training starts, the
following hyper-parameters need to be given. (1) Parameters
of gradient descent algorithm Adam [46]: the initial learning
rate δ, the learning rate step size s, the decay factor τ ,
and the attenuation coefficient βj, j = 1, 2; (2) Structural
parameters of neural network MLP: the number of hidden
layer k and the number of neurons in the lth hidden layer
nl ; (3) Batch size of the training data: B. The combination
of these hyper-parameters is the so-called hyper-parameter
configuration λ =

{
k, nl, B, δ, s, τ, β1, β2

}
, and their value

ranges constitute the hyper-parameter space 3 mentioned
above.

It is worth noting that in hyper-parameter optimization
studies, the weight coefficient γ is usually not taken into
account. Although evenly distributing the weight coefficients
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can avoid tedious debugging, it may lead to unbalanced
training for some scenarios. To solve this problem, the
Gaussian likelihood estimation method [48], namely Multi-
task learning, is introduced into the general training frame-
work. Taking a model with two outputs as an example, the
likelihood estimate can be constructed as follows:

p
(
y1, y2|Aθ,λ (x)

)
= p

(
y1|Aθ,λ (x)

)
· p
(
y2|Aθ,λ (x)

)
= N

(
y1; Aθ,λ (x) , σ 2

1

)
·N
(
y2; Aθ,λ (x) , σ 2

2

)
, (9)

where σ is the uncertainty parameter of the output, which is
inversely proportional to the weight coefficient γ . Accord-
ingly, θ = {θ;σ } can be optimized by the gradient descent
algorithm to maximize the likelihood estimation to obtain
similar prediction performance for the two outputs. The
likelihood estimation construction of the model with more
output can be referred to [48].

Assuming that the dimension of λ is a and the partition
of each dimension is b, then the number of trials S = ba.
When the dimension is high or each dimension needs to
be carefully divided, S is a very large number, and some
brute-force search algorithms [62] such as Grid search and
Random search will be difficult to cope with. In this case,
heuristic hyper-parameter optimization algorithms such as
Hyperband [52], Bayesian optimization [51], [63], or hybrid
methods [50], [64] should be used. Whichever algorithm is
chosen, it can be easily incorporated into the framework of
Fig. 4, and the termination condition of the nested iteration
can be set to such that the evaluation index of the model
does not improve after multiple iterations (for example,
10 iterations). Then, with the given iteration resources, the
approximately optimal hyper-parameter configuration λ∗ is
selected from the evaluated trials of {λ1 · · · λS}, and the
surrogate model Aθ∗,λ∗

(x) is finally obtained.

IV. UNCERTAINTY-ANALYSIS-BASED
CLOSED-LOOP TRANSFER
Due to the existence of noise, transfer learning with a small
amount of measurement data will lead to uncertainty in
the model, thus affecting its prediction accuracy [55], [56].
Unfortunately, many existing studies fail to take this into
consideration in the surrogate modeling process. To address
this issue, an uncertainty-analysis-based sampling algorithm
is introduced in this section to obtain the data for model
transfer and further form a closed-loop transfer learning
approach.

A. UNCERTAINTY-ANALYSIS-BASED SAMPLING
Data sampling based on uncertainty analysis is also known
as active data development (ADD) [59], [65]. Assuming
that θ∗ is the expected parameter matrix of deep model, its
parameter evaluation error (θ − θ∗) follows zero mean value,
and the variance is C = σ 2M (�, θ)

−1
. Further, suppose pi

is the probability that the design point xi placed at different
positions in the design space, ADD firstly usesm×m Fischer

information matrix (FIM) to associate a design � and pi as
follows:

M (�, θ) =

N∑
i=1

piV (�, θ)iV (�, θ)Ti = M (p) , (10)

where xi ∈ �, N is the size of �, and V (�, θ) is
the N × m Jacobian matrix, in which the jth column is
vj = ∂Aθ (xi)

/
∂θj, j = 1, · · · ,m.

In Eq. (10), the design � is a group of support points
from the design space [65]. The combination of different
points will result in different M (�, θ). In general, the larger
M (�, θ), the larger the uncertainty of the model, the lower
the prediction ability of the model. Since M (p) is a matrix,
themathematical expression of the optimization objective can
be defined as

� = max
x∈2

[
logdet (M (p))

]
(11)

where logdet (·) represents the log-determinant value of the
matrix.

Eq. (11) can be solved by the Federov exchange algo-
rithm [66], [67] or the Multiplication algorithm [68], [69],
and the obtained design � is a set of design points with
pi = 1. As mentioned earlier, these design points are usually
concentrated in the large curvature region or edge region of
the model [59], [60]. As a result, large portions of the design
space are not covered, which may lead to a large deviation
between the deep model and the expected model. To solve
this problem, pi should not be directly used as the sampling
index, or the value of pi should not be considered only.
We suggested a new data development method that com-

bined a Monte Carlo sampling [70] with the multiplication
iteration, where pi is relaxed to 0∼1 and converted to a
cumulative probability gc. Further, gc is taken as the sampling
mode, so that xi with large gc value has a high probability of
being sampled, and vice versa. Since gc > 0, the sampling
probability of all design points is greater than zero, which
makes design points of � statistically cover the whole design
space.

The detailed process of the new method is summarized as
follows:

(1) Given the size of the design �: N ;
(2) Given a monotone increasing function f (d, δ) with

δ > 0 for multiplication iteration:

f (d, δ) =

{
δed , d < 0
δ (d + 1) , d ≥ 0.

(12)

Different from the functions commonly used in the existing
study as [68]: f (d, δ) = eδd , f (d, δ) = eδ(d−1), and
f (d, δ) = edδ

/
(1+edδ), a piecewise function, that is Eq.

(12), is used in this paper for multiplication iteration, so as
to avoid the situation where the function value converges too
slowly or increases too fast when d is a large positive number.

(3) Use the uniform design (UD) algorithm [53] to
discretize the design space 2 to Nc candidate design points,
where Nc ≫ N ;
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FIGURE 5. The process of the close-loop transfer.

(4) Use the multiplication iteration to calculate the pi of the
Nc candidate design points as

p(r+1)
i =

p(r)i f
(
d (r)i , δ

)
∑Nc

j=1 p
(r)
j f

(
d (r)j , δ

) , (13)

where

d (r)i =
∂∅ (p)

∂p(r)i
=

1
m
V T
i M

(
p(r)

)−1
Vi, (14)

and

∅ (p) = logdet (M (p)) , (15)

V is the V (�, θ) that ignores the (�, θ) for simplification,
r is the iteration step and the initial value of pi is set to
pi = 1

/
Nc. After each iteration, pi is normalized to between

0 and 1, and
∑Nc

i=1 pi = 1.
(5) Sort theNc design points in descending order according

to pi and divide them into K contours as follows:

Ec = {xi: (c− 1) u < i ≤ cu} , c = 1, · · · ,K , (16)

where u = Nc
/
K is assumed to be an integer, the first contour

E1 contains u design points with the largest value in pi, and
the last contour EK contains u design points with the smallest
value in pi.

(6) Calculate the average value of pi in each contour:

ac =
1
u

∑cu

i=(c−1)u+1
pi, (17)

(7) Calculate the cumulative distribution probability of the
contours:

gc =

c∑
j=1

ac, (18)

(8) Finally, sample from candidate design points based on
gc. At first, generate N random numbers st , where st ∈ [0, 1],
and t = 1, · · · ,N . If st ≤ gc, the cth contour is drawn,
and then a design point will be randomly selected from the
contour. If the contour Ec occurs nc > 0 times in these draws,
nc design points will be generated from Ec.
After obtaining the design �, the response value of the

design points should be obtained by the real forklift test, so as
to obtain the data D for model transfer.

B. MODEL CLOSED-LOOP TRANSFER
Eq. (13) reveals that the calculation of pi of candidate design
points is affected by θ∗ of the deep model, thus affecting
the design � and the data D. Since the θ∗ of the deep
model cannot precisely reflect the personality characteristics
of the new product, it is unreliable if planning the N design
points of � at once. Therefore, to obtain a good distribution
of design points in �, it is recommended to update θ∗

with a small amount of data developed by UD, and then
implement a closed-loop transfer, as shown in Fig. 5. For ease
of description, we use θ (t) represents the parameter matrix
of the model obtained after transferring, where t represents
the number of closed-loop transfer, t ≥ 1, and therefore
N =

∑
N [t]. The θ (0) represents the parameter matrix of the

deep model before the closed-loop transfer, and N [0] is the
number of data (or design points) developed by UD.

At each iteration of the closed-loop transfer, it maintains:
• Set θ∗ to be the optimal(θ (t));
• Generate N [t] design points by the proposed sampling
method based on θ∗ and collect their observations;

• Merge the previous data as Dt =
∑
D(t);

• Transfer the model with Dt to obtain θ (t).
It is worth noting that the data used to transfer the model

is Dt , not D(t). The purpose of merging data is to avoid
overfitting. To improve themodeling efficiency, design points
can be generated in batches, that is, N [t]

≥ 2, since the same
area on the model should have close gradients in two adjacent
samplings. The maximum number T of closed-loop iterations
is a user-defined parameter, which can also be set to correlate
with the prediction accuracy of the model.

V. EXPERIMENTAL RESULTS AND DISCUSSIONS
A. EXPERIMENT SETTINGS
1) EVALUATION CRITERIA
The following three metrics [8], namely Root Mean Square
Error (RMSE), Maximum Absolute Error (MAE), and
Correlation coefficient (R) are used to assess the modeling
performance, where RMSE is defined by

RMSE =

{
1
Nv

Nv∑
i=1

(
yi − ŷi

)2}1/2

, (19)
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TABLE 2. Settings of the closed-loop transfer algorithm.

TABLE 3. Definition space of hyper-parameter.

MAE is defined by

MAE = max
∣∣yi − ŷi

∣∣ , i = 1, · · · ,Nv, (20)

R is defined by

R =

(∑Nv
i=1 (yi − ȳ)

(
ŷi − ¯̂y

))
({∑Nv

i=1 (yi − ȳ)2
} 1

2
{∑Nv

i=1

(
ŷi − ¯̂y

)2} 1
2
) , (21)

yi is the expected response and ŷi is the predicted response
at the ith test point, Nv is the size of the validation set, ȳ is
the mean of the expected response, and ¯̂y is the mean of the
predicted response.

2) ALGORITHM SETTING
At the beginning of the closed-loop transfer, some algorithm
parameters need to be set first, as shown in Table 2.

In the general framework, the combination of Hyperband
and multi-task learning is used to pre-train the DNN by
default. Random search (RS) [62] is the benchmark for
comparison in this study because it is a representative
hyper-parameter optimization method. For Hyperband [52],
the maximum iteration resources for each hyper-parameter
configuration is rmax = 100 and the downsampling factor
is η = 3. The total number of iteration resources is set to
50×rmax = 5000 as a constraint. To demonstrate the possible
imbalance of gradient descent-based surrogate modeling, the
multi-task learning method is not affiliated with RS for model
training, and the weight parameter of the loss function is set
to γ1 = γ2 = 0.5. The hyper-parameter definition space is
shown in Table 3.

The existing product in this paper is a forklift with a rated
load of 6klb (6K), while the newly developed product is a

forklift with a rated load of 10klb (10K). They belong to
the same type of sequence-developed products. In the model
pre-training stage, a total of 1725 sets of simulation data
are available. For the convenience of the experiment, the
simulation data is also used in the model transfer part, that
is, the response of the developed design points is obtained
from the simulation model instead of the real forklift test.
Not surprisingly, this data needs to be added with noise.
The validation data consisted of 100 groups of mixed data
including real forklift test data and simulation data of the 10K
forklift. The program is written based on PyTorch framework
and runs on Intel i5-9600K-3.7GHz CPU and GeForce RTX-
2080 GPU. The operating system is Windows 10 64-bit.
After 10 repetitions, the optimal model is selected as the
pre-trained deep model, that is, the initial model for transfer
learning.

B. EXPERIMENTAL RESULTS
1) VERIFICATION RESULTS OF THE PRE-TRAINED MODEL
It takes about 2 minutes on average to pre-train the surrogate
model under the constraint of total iteration resources. The
experimental results are listed in Table 4 and plotted in
Fig. 6 (average best results), where α represents the roll
angle of the frame, Z represents the Z-axis amplitude
of the cab base, RS-NML represents RS with non-multi-
task learning, HB-ML represents Hyperband with multi-task
learning, Improvement represents the comparison results, and
the Network framework is the optimal model framework
defined by (k, nl).

Table 4 indicates that as for the R indicator of the deep
model, RS-NML gets 0.9066 and 0.9184, while HB-ML
gets 0.9324 and 0.9326. These results of the two outputs
reveal that there should be a training imbalance in the
construction of the deep model, and multi-task learning can
improve the accuracy of themodel. In other words, after using
multi-task learning, the accuracy difference between the two
outputs is reduced from 1.27% to 0.02% compared with the
same weight parameter. The R indicator also shows that the
characteristics of the two forklifts have a great similarity
since the training data of the deep model comes from the
6K forklift and the validation data comes from the 10K
forklift. This discovery further inspires us that it is feasible
to reuse existing data when constructing deep models of
complex electromechanical products of the same type. The
experimental results also show that, comparedwith RS-NML,
an improvement of at least a 17.655% reduction in RMSE and
a 24.475% reduction on average inMAE, as well as a 2.145%
increment on average in R, are achieved after using HB-ML.

The main reason for the different modeling results may
be that Hyperband uses adaptive resource allocation and
early stopping strategies [52]. Compared with RS, it can
evaluate more hyper-parameter configurations under the
same resources, thus finding the best configuration faster.
As shown in the right-most column of Table 4, among
the two optimal hyper-parameter configurations, they are
consistent only in the batch size of training data. From the
multiple of rmax marked on the horizontal axis of Fig. 6,
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FIGURE 6. The results of pre-training models using different algorithms.

TABLE 4. Verification results of the pre-training model.

TABLE 5. Verification results of modeling on 80 groups of data.

it also can be seen that after consuming 25rmax , the modeling
performance of HB-ML is better than those of RS-NML
exhausted 50rmax .

2) VERIFICATION RESULTS OF MODEL TRANSFER
In this work, the classical fine-tuning (FT) method is used
as a benchmark to illustrate the effectiveness of the proposed
uncertainty-analysis-based closed-loop transfer method (i.e.,
closed-loop fine-tuning, CLFT). As for FT, the 80 design
points are planned by LHD [54], and on this basis, training
data is further collected from the 10K forklift. Moreover,
these training data are also used to retrain a deep model
from scratch and serve as another benchmark for comparison,
namely Retraining (RT). The results of the three comparison
modeling methods are listed in Table 5 and plotted in Fig. 7.
Asmentioned above, the real forklift test is replaced bymodel
simulation for convenience.

Fig. 7 reveals that CLFT achieved the best performance
after modeling with 80 groups of data. Compared with the
RT, both fine-tuning methods have a higher performance
starting point and faster convergence due to the use of the
pre-training model. By comparing Fig. 6, it can be found
that the performance of the pre-training model is even better
than that of the mode training from scratch with 80 groups of
10K forklift data. The main reason may be that the response
performance of the two forklifts is very similar. In addition,
the curves of the three indicators remind us that the CLFT
has a faster convergence rate than the FT. For example, after
using 55 groups of data, the model performance obtained
by CLFT is similar to those obtained by the FT using
80 groups of data. According to the trend of the three curves,
we can also predict that with the increase of training data, the
modeling performance of the three methods will gradually
approach.
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FIGURE 7. The results of modeling 80 groups of data using different algorithms.

FIGURE 8. The box plots of modeling results of different methods.

As can be seen from Table 5, the R indicator obtained by
the two fine-tuning methods is at least 0.9955, while the best
R indicator obtained by the RT method is 0.8973. Moreover,

compared with the RT method, the two fine-tuning methods
also achieved about 40% improvement in MAE and RMSE.
When only comparing the two fine-tuning methods, as for
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RMSE and MAE, after using CLFT, average improvements
of 16.78% and 9.19% are achieved, respectively. From the
R indicators obtained by CLFT, the two outputs both reach
0.9971, which proves that it is feasible in surrogate modeling
of the telescopic boom forklift. It should be noted that the
training data in RT and FT are obtained through a single
sampling. The sampling time is less than 1 second, and the
training time is about 2s and 1s, respectively. In CLFT, design
point planning is performed 13 times, and each planning
takes about 4 seconds. As a result, the modeling time reached
about 1 minute. To improve sampling efficiency, CLFT can
be accelerated with the Pronzato method [65] in the part of
multiplication iteration.

The results of modeling the two outputs separately using
CLFT are recorded in the bottom two rows of Table 5. It can
be seen that the modeling results are slightly worse than
those based on multi-task learning. The main reason may
be that associated tasks enhance the performance of each
other by sharing information and complementing each other.
In addition, training a multi-output model is clearly more
efficient than training multiple models separately.

To evaluate the robustness of the modeling results using
CLFT and FT, 30 independent experiments are repeated. The
box plot of the results is plotted in Fig. 8, in which, the three
MAE/RMSE/R indicators of the roll angle of the frame α

are drawn in the upper row, while the three MAE/RMSE/R
indicators of the Z-axis amplitude of the cab base Z are
drawn in the lower row. The results in Fig. 8 reveal that
CLFT is more robust than FT since the distance between
the upper quartile and the lower quartile of those boxes is
smaller.

C. DISCUSSION
The M (�, θ) describes the stable distribution range of the
surrogate model Aθ (x) on its mean value, which is related to
the structure of the parameter θ , the number of experimental
measurement data D, and the distribution of the design �.
Generally, the more measurement data we get, the stronger
the regularity of its distribution will be, but the acquisition of
large amounts of data is very time-consuming. In this paper,
a good distribution of design � is obtained by closed-loop
sampling based on uncertainty analysis, and the structure of
the parameter θ is searched by Hyperband. Consequently,
after only 80 groups of data are used for fine-tuning, the
R indicators of the surrogate model both reach 0.9971.
However, the results in Fig. 8 also show that it is a challenge
to improve the prediction accuracy and robustness of the
surrogate model with multiple outputs at the same time, for
example, the box plots of Z have a few singularities, and the
box plots of MAE are still large.

Theoretically, the deepmodel can only represent the reality
as well as the simulation model at most, even if the cost
of simulation data acquisition for the 10K forklift is not
considered. In this case, the transfer learning of the model
using the developed real forklift test data is also beneficial,
because it helps to correct the expression deviation of the deep
model to the real system.

VI. CONCLUSION
This paper mainly studies the application of transfer learning
to surrogate modeling of complex electromechanical prod-
ucts, specifically, constructing a deep model for a telescopic
boom forklift, and focuses on the following two points:
(1) how to pre-train the initial deep model to accurately
approximate the mapping features of the existing simulation
data, and (2) how to plan the data for transfer learning
to improve the adaptability of the deep model. To solve
the above problems, a general framework for deep model
training is given, a new sampling algorithm based on
uncertainty analysis is proposed, and a closed-loop transfer
learning method is further developed. The effectiveness of
the proposed method has been verified by a comparative
experimental study. The results show that the R indicators of
the surrogate model with two outputs, namely the roll angle
of the frame and the Z-axis amplitude of the cab base, can
both reach 0.9971 by only using 80 simulation data of the
currently designed forklift, which meets the requirements of
engineering application. The results of a variety of evaluation
indicators also show the advantages of the proposed method
compared with the benchmark. However, the method still
needs to be tested in more cases and compared with the
state-of-the-art approaches (especially different types of
parameter-based transfer learning approaches), which is one
of the future works. In addition, multi-objective performance
optimization of the 10K forklift based on the existing deep
model will also be implemented in the future.
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